18 research outputs found

    Feature Extraction Methods for Character Recognition

    Get PDF
    Not Include

    Blur Invariants for Image Recognition

    Full text link
    Blur is an image degradation that is difficult to remove. Invariants with respect to blur offer an alternative way of a~description and recognition of blurred images without any deblurring. In this paper, we present an original unified theory of blur invariants. Unlike all previous attempts, the new theory does not require any prior knowledge of the blur type. The invariants are constructed in the Fourier domain by means of orthogonal projection operators and moment expansion is used for efficient and stable computation. It is shown that all blur invariants published earlier are just particular cases of this approach. Experimental comparison to concurrent approaches shows the advantages of the proposed theory.Comment: 15 page

    Restoration of Defaced Serial Numbers Using Lock-In Infrared Thermography (Part I)

    Get PDF
    Infrared thermal imaging is an evolving approach useful in non-destructive evaluation of materials for industrial and research purposes. This study investigates the use of this method in combination with multivariate data analysis as an alternative to chemical etching; a destructive method currently used to recover defaced serial numbers stamped in metal. This process involves several unique aspects, each of which works to overcome some pertinent challenges associated with the recovery of defaced serial numbers. Infrared thermal imaging of metal surfaces provides thermal images sensitive to local differences in thermal conductivity of regions of plastic strain existing below a stamped number. These strains are created from stamping pressures distorting the atomic crystalline structure of the metal and extend to depths beneath the stamped number. These thermal differences are quite small and thus not readily visible from the raw thermal images of an irregular surface created by removing the stamped numbers. As such, further enhancement is usually needed to identify the subtle variations. The multivariate data analysis method, principal component analysis, is used to enhance these subtle variations and aid the recovery of the serial numbers. Multiple similarity measures are utilised to match recovered numbers to several numerical libraries, followed by application of various fusion rules to achieve consensus identification

    Feature Extraction for image super-resolution using finite rate of innovation principles

    No full text
    To understand a real-world scene from several multiview pictures, it is necessary to find the disparities existing between each pair of images so that they are correctly related to one another. This process, called image registration, requires the extraction of some specific information about the scene. This is achieved by taking features out of the acquired images. Thus, the quality of the registration depends largely on the accuracy of the extracted features. Feature extraction can be formulated as a sampling problem for which perfect re- construction of the desired features is wanted. The recent sampling theory for signals with finite rate of innovation (FRI) and the B-spline theory offer an appropriate new frame- work for the extraction of features in real images. This thesis first focuses on extending the sampling theory for FRI signals to a multichannel case and then presents exact sampling results for two different types of image features used for registration: moments and edges. In the first part, it is shown that the geometric moments of an observed scene can be retrieved exactly from sampled images and used as global features for registration. The second part describes how edges can also be retrieved perfectly from sampled images for registration purposes. The proposed feature extraction schemes therefore allow in theory the exact registration of images. Indeed, various simulations show that the proposed extraction/registration methods overcome traditional ones, especially at low-resolution. These characteristics make such feature extraction techniques very appropriate for applications like image super-resolution for which a very precise registration is needed. The quality of the super-resolved images obtained using the proposed feature extraction meth- ods is improved by comparison with other approaches. Finally, the notion of polyphase components is used to adapt the image acquisition model to the characteristics of real digital cameras in order to run super-resolution experiments on real images

    Overcomplete Image Representations for Texture Analysis

    Get PDF
    Advisor/s: Dr. Boris Escalante-Ram铆rez and Dr. Gabriel Crist贸bal. Date and location of PhD thesis defense: 23th October 2013, Universidad Nacional Aut贸noma de M茅xico.In recent years, computer vision has played an important role in many scientific and technological areas mainlybecause modern society highlights vision over other senses. At the same time, application requirements and complexity have also increased so that in many cases the optimal solution depends on the intrinsic charac-teristics of the problem; therefore, it is difficult to propose a universal image model. In parallel, advances in understanding the human visual system have allowed to propose sophisticated models that incorporate simple phenomena which occur in early stages of the visual system. This dissertation aims to investigate characteristicsof vision such as over-representation and orientation of receptive fields in order to propose bio-inspired image models for texture analysis

    Human-Centric Machine Vision

    Get PDF
    Recently, the algorithms for the processing of the visual information have greatly evolved, providing efficient and effective solutions to cope with the variability and the complexity of real-world environments. These achievements yield to the development of Machine Vision systems that overcome the typical industrial applications, where the environments are controlled and the tasks are very specific, towards the use of innovative solutions to face with everyday needs of people. The Human-Centric Machine Vision can help to solve the problems raised by the needs of our society, e.g. security and safety, health care, medical imaging, and human machine interface. In such applications it is necessary to handle changing, unpredictable and complex situations, and to take care of the presence of humans
    corecore