3,862 research outputs found

    Image fusion techniqes for remote sensing applications

    Get PDF
    Image fusion refers to the acquisition, processing and synergistic combination of information provided by various sensors or by the same sensor in many measuring contexts. The aim of this survey paper is to describe three typical applications of data fusion in remote sensing. The first study case considers the problem of the Synthetic Aperture Radar (SAR) Interferometry, where a pair of antennas are used to obtain an elevation map of the observed scene; the second one refers to the fusion of multisensor and multitemporal (Landsat Thematic Mapper and SAR) images of the same site acquired at different times, by using neural networks; the third one presents a processor to fuse multifrequency, multipolarization and mutiresolution SAR images, based on wavelet transform and multiscale Kalman filter. Each study case presents also results achieved by the proposed techniques applied to real data

    A robust nonlinear scale space change detection approach for SAR images

    Get PDF
    In this paper, we propose a change detection approach based on nonlinear scale space analysis of change images for robust detection of various changes incurred by natural phenomena and/or human activities in Synthetic Aperture Radar (SAR) images using Maximally Stable Extremal Regions (MSERs). To achieve this, a variant of the log-ratio image of multitemporal images is calculated which is followed by Feature Preserving Despeckling (FPD) to generate nonlinear scale space images exhibiting different trade-offs in terms of speckle reduction and shape detail preservation. MSERs of each scale space image are found and then combined through a decision level fusion strategy, namely "selective scale fusion" (SSF), where contrast and boundary curvature of each MSER are considered. The performance of the proposed method is evaluated using real multitemporal high resolution TerraSAR-X images and synthetically generated multitemporal images composed of shapes with several orientations, sizes, and backscatter amplitude levels representing a variety of possible signatures of change. One of the main outcomes of this approach is that different objects having different sizes and levels of contrast with their surroundings appear as stable regions at different scale space images thus the fusion of results from scale space images yields a good overall performance

    The TerraSAR-X Mission and System Design

    Get PDF
    This paper describes the TerraSAR-X Mission Concept within the context of a public-private-partnership (PPP) agreement between the German Aerospace Center DLR and industry. It briefly describes the PPP-concept as well as the overall project organization. The paper then gives an overview of the satellite design, the corresponding Ground Segment as well as the main mission parameters. After a short introduction to the scientific and commercial exploitation scheme, the paper finally focuses on the mission accomplishments achieved so far during the ongoing mission

    Oil spill detection using optical sensors: a multi-temporal approach

    Get PDF
    Oil pollution is one of the most destructive consequences due to human activities in the marine environment. Oil wastes come from many sources and take decades to be disposed of. Satellite based remote sensing systems can be implemented into a surveillance and monitoring network. In this study, a multi-temporal approach to the oil spill detection problem is investigated. Change Detection (CD) analysis was applied to MODIS/Terra and Aqua and OLI/Landsat 8 images of several reported oil spill events, characterized by different geographic location, sea conditions, source and extension of the spill. Toward the development of an automatic detection algorithm, a Change Vector Analysis (CVA) technique was implemented to carry out the comparison between the current image of the area of interest and a dataset of reference image, statistically analyzed to reduce the sea spectral variability between different dates. The proposed approach highlights the optical sensors’ capabilities in detecting oil spills at sea. The effectiveness of different sensors’ resolution towards the detection of spills of different size, and the relevance of the sensors’ revisiting time to track and monitor the evolution of the event is also investigated

    Building profile reconstruction using TerraSAR-X data time-series and tomographic techniques

    Get PDF
    This work aims to show the potentialities of SAR Tomography (TomoSAR) techniques for the 3-D characterization (height, reflectivity, time stability) of built-up areas using data acquired by the satellite sensor TerraSAR-X. For this purpose 19 TerraSAR-X single-polarimetric multibaseline images acquired over Paris urban area have been processed applying classical nonparametric (Beamforming and Capon) and parametric (MUSIC) spectral estimation techniques

    Learning Spectral-Spatial-Temporal Features via a Recurrent Convolutional Neural Network for Change Detection in Multispectral Imagery

    Full text link
    Change detection is one of the central problems in earth observation and was extensively investigated over recent decades. In this paper, we propose a novel recurrent convolutional neural network (ReCNN) architecture, which is trained to learn a joint spectral-spatial-temporal feature representation in a unified framework for change detection in multispectral images. To this end, we bring together a convolutional neural network (CNN) and a recurrent neural network (RNN) into one end-to-end network. The former is able to generate rich spectral-spatial feature representations, while the latter effectively analyzes temporal dependency in bi-temporal images. In comparison with previous approaches to change detection, the proposed network architecture possesses three distinctive properties: 1) It is end-to-end trainable, in contrast to most existing methods whose components are separately trained or computed; 2) it naturally harnesses spatial information that has been proven to be beneficial to change detection task; 3) it is capable of adaptively learning the temporal dependency between multitemporal images, unlike most of algorithms that use fairly simple operation like image differencing or stacking. As far as we know, this is the first time that a recurrent convolutional network architecture has been proposed for multitemporal remote sensing image analysis. The proposed network is validated on real multispectral data sets. Both visual and quantitative analysis of experimental results demonstrates competitive performance in the proposed mode
    • 

    corecore