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ABSTRACT

Multitemporal processing of synthetic aperture radar im-
agery, e.g. for the extraction of a soil moisture index,
requires normalization of acquisitions from different lo-
cations in space to a common incidence angle. Incidence
angle dependence of backscatter is known to depend on
the amount of aboveground vegetation, and can thus be
expected to vary seasonally as a result of vegetation phe-
nology. This study tries to assess the impact of vegetation
phenology on the angular dependence, and the effect on
a soil moisture index derived using a change detection
method. It is found that soil moisture accuracy overall
decreases when seasonality in the angular dependence of
backscatter is ignored.
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1. INTRODUCTION

The 10-year archive of imagery collected by the Ad-
vanced Synthetic Aperture Radar (ASAR) onboard ESA’s
ENVISAT platform offers opportunities for the deriva-
tion of spatially distributed soil moisture through mul-
titemporal approaches. These approaches, where rela-
tive changes in backscatter are related to relative changes
in soil moisture, are today already used in the opera-
tional soil moisture products for ERS’s scatterometers
and MetOp’s advanced scatterometer (ASCAT) [15, 2, 7].
Data collected by the first Sentinel satellite will likely, in
the near future, allow the production of high resolution
soil moisture products.

Several multitemporal soil moisture retrieval methods
were applied on synthetic aperture radar (SAR) data in
the past. Shoshany et al. [10], for example, suggested
to use a normalized difference of SAR backscatter of
two images as an indicator of soil moisture changes be-
tween the times of image acquisition. On a larger time
series of 10 SAR images over one month time, Wickel

et al. [17] found strong correlations between soil mois-
ture change and backscatter change for wheat stubble
fields. Pathe et al. [8] presented a methodology, based
on the scatterometer and ASCAT soil moisture retrieval
algorithm, to derive a 1 km soil moisture index from EN-
VISAT ASAR in Global Monitoring (GM) mode and ap-
plied it to 697 ASAR GM images over Oklahoma. The
same product was validated using in situ and airborne soil
moisture data over an area in southeastern Australia [6].

SAR backscatter is, in addition to land surface properties
(including vegetation cover, surface roughness and soil
moisture content) and sensor properties (including sig-
nal frequency and polarization), also influenced by geo-
metric properties [12]. Specifically, SAR backscatter de-
pends on the angle of the incident radar signal, which
is determined by the position of the sensor in space, the
geographic location of the area under investigation and
the local orientation of the terrain. When processing
SAR data multitemporally, a normalization has to be per-
formed to compensate for the effects of different inci-
dence angles. Only under specific conditions, i.e. when
different images are acquired from the same sensor’s po-
sition in space, multitemporal data can be processed with-
out prior normalization [e.g. 16].

Angular normalization techniques range from purely the-
oretical, e.g. based on Lambert’s law for optics [12, 1],
to purely empirical. Although more advanced tech-
niques have been developed, many empirical normaliza-
tion techniques consist of fitting a first [4, 8, 13] or sec-
ond [17, 3, 5] order polynomial to a large number of inci-
dence angle-backscatter coefficient couples. The polyno-
mial coefficient(s) obtained from this fit can subsequently
be used to normalize SAR backscatter coefficients to a
common incidence angle.

The incidence angle dependence of radar backscatter is
known to be influenced by, amongst others, the amount
of aboveground vegetation, with the backscatter of bare
soil varying strongly with incidence angle and backscat-
ter over densely vegetated terrain exhibiting a more mod-
est dependence [15]. Over vegetated surfaces, the angular
dependence can thus be expected to vary throughout the
year as a result of vegetation phenology or agricultural
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practices. This seasonality has to be incorporated in the
angular normalization in order to avoid the introduction
of errors. For the coarse resolution real aperture radar
systems ERS Scatterometer and MetOp ASCAT, the sea-
sonal variation of the angular dependence of backscat-
ter can be derived thanks to the multi-angular capabilities
of these sensors and their short revisit time [15, 14, 7].
SAR systems, however, in general do not allow for multi-
angular observations of a single location at a single mo-
ment in time. Polynomial angular normalization tech-
niques therefore usually apply a single set of coefficients
for the entire year. A number of studies [4, 3, 13], how-
ever, derived the angular dependence for a high vegeta-
tion season and a low vegetation season separately, result-
ing in significant differences between the two estimates.

This study analyses the seasonal variability on the angu-
lar dependence of backscatter, and the influence of this
variability on the accuracy of soil moisture retrieval using
a multitemporal time series of ENVISAT ASAR images.

2. STUDY AREA AND DATASETS

The peninsula of Calabria (Fig. 1) is situated in the south-
western tip of mainland Italy, measuring approximately
250 km in length and 30 km to 100 km in width, and is
dissected longitudinally by a mountain range with eleva-
tions up to approximately 2000 m. Soil structure varies
greatly, with clayey soils at the eastern side of the penin-
sula and more sandy soils at the western part.

Agriculture is concentrated in the lower elevation ranges
and consists of both arable land and permanent crops.
Of the latter, citrus and olive groves occur over large ar-
eas. Due to the Mediterranean climate, agriculture at the
lower elevations is rainfall limited and (mainly cereal)
crops exhibit a winter growing season. At the central
plateaus, different growing cycles may occur as a result
of lower temperatures and hence energy limited vegeta-
tion growth.

Figure 1. Left: topography of the study site. Right:
Corine land cover 2000 map of the study site.

A total of 130 (87 descending and 43 ascending mode)
Advanced Synthetic Aperture Radar Wide Swath (WS)

images, completely or partially covering Calabria, were
acquired between January 2008 and August 2011. The
WS mode is one of the ScanSAR modes of ASAR and
covers a swath of 405 km width with a spatial resolution
of 150 m and a radiometric accuracy of approximately
0.6 dB. The temporal resolution is limited due to conflict-
ing data acquisitions in other modes (especially over Eu-
rope) and the maximum duty cycle of 30 % in WS mode.

In order to validate the ASAR-derived soil moisture, a
spatially distributed soil moisture model, inspired by the
hydrological BEACH model of Sheikh et al. [9], was
used. Details of this model, as well as its validation using
in situ soil moisture measurements, are given in Van don-
inck et al. [13].

3. LINEARITY OF INCIDENCE ANGLE-
BACKSCATTER RELATIONSHIP

ASAR WS images were topographically corrected (in-
cluding masking of regions affected by radar shadow
and/or layover) and radiometrically calibrated using the
10 m resolution digital elevation model TINITALY/01
that is available for the Italian territory [11] and resam-
pled to a grid of 0.0025◦ (approximately 300 m) reso-
lution. The preprocessing resulted for each ASAR WS
pixel, for each acquisition date, in an incidence angleθ,
expressed in degrees, and a corresponding backscatter co-
efficientσ0(θ), expressed in dB.

Following Loew et al. [4], Pathe et al. [8], the dependence
of σ0(θ) onθ can be assessed assuming a linear relation-
ship for the range of incidence angles covered by ASAR
in WS mode (approximately 20◦ to 40◦):

σ0(θ) = α+ βθ , (1)

where the polynomial coefficientsα (in dB) andβ (in
dB/deg) are obtained for each pixel by fitting this relation
to a large number of multitemporal (θ,σ0(θ)) couples.
The coefficientβ can subsequently be used to normal-
ize ASAR backscatter at incidence angleθ to a common
incidence angle.

The rationale behind the use of this linear relationship is
that, although the relation between incidence angle and
backscatter is typically not linear [12], it can be con-
sidered as such for the limited incidence angle range in
which the ASAR instrument operates. When using both
ascending and descending mode images, however, the in-
cidence angle range will extend beyond the typical range
of 20◦– 40◦ for pixels over sloped terrain. For a slope of
20◦, for example, the incidence angle range can increase
to 0◦– 60◦, a range for which the linear approximation
of the angular dependence is not necessarily valid. Fig. 2
shows examples of theθ–σ0(θ) relationship for two pix-
els, one over relatively flat terrain and one over strongly
sloped terrain. While the small range ofθ over modest
topography results in a relationship that can be approxi-
mated as linear, it is clear that the large range over sloped
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Figure 2. Scatterplot of backscatter coefficient versus
incidence angle for ascending mode (boxes) and de-
scending mode (crosses) images over two example pix-
els, together with coefficients of determination of linear fit
(R2

lin, full line) and second order polynomial fit (R2
quad,

dashed line).

terrain can result in severe non-linearity. When consid-
ering ascending and descending mode images separately,
however, theθ–σ0(θ) relationship can be approximated
by a linear function irrespective the terrain slope. There-
fore, only descending mode images will be used in the
remainder of this study. Ascending mode images could
be processed separately in a similar way.

4. SEASONALITY IN ANGULAR DEPENDENCE
OF BACKSCATTER

The first order polynomial coefficient or angular correc-
tion coefficient can, for each pixel of the study site, be
obtained by fitting Equation 1 to all available (θ,σ0(θ))
couples. The thus derivedβyear is given in Fig. 3(a). It
is observed that more negative values correspond to more
sparsely vegetated terrain such as arable land, while val-
ues close to zero occur over forests.
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Figure 3. Value of the polynomial coefficientβyear for
each pixel in the study site (a). Temporal behaviour of
βmonth (full line), as well asβyear (dotted line) for three
example pixels over (top to bottom) permanent crops,
arable land and deciduous forest (b). Difference between
maximum and minimum value ofβmonth for each pixel in
the study site (c).

Instead of derivingα andβ in Equation 1 using the entire

multitemporal dataset, they can also be produced for each
month of the year individually by only using (θ,σ0(θ))
couples from that specific month, thus incorporating the
effects of vegetation phenology. Here, the polynomial co-
efficients are derived on a monthly basis, fitting Eq. 1 to
the (θ,σ0(θ)) couples of a sliding 3-month window over
all the years, i.e.βmonth for the month of January is de-
rived using observations during December, January and
February from 2008 to 2011. For larger datasets, the
size of this temporal window could be reduced in or-
der to increase the temporal resolution of the slope esti-
mates. Fig. 3(b) shows the temporal behaviour ofβmonth

for three examples pixels over permanent crops, arable
land and deciduous forest, as well asβyear for these pix-
els. It is observed thatβ for the arable land pixel shows
much more seasonal variability than the other land cover
types. This is confirmed when considering the difference
between maximum and minimum values ofβmonth (∆β)
given in Fig. 3(c).∆β is found to be in the order of mag-
nitude ofβyear.

Incidence angles are normalized as:

σ0(θref) = σ0(θ)− β(θ − θref) , (2)

where the reference incidence angleθref is defined for
each pixel individually as the average of the minimum
and maximum value ofθ for that pixel. Two normaliza-
tions are performed, one by replacingβ in Eq. 2 byβyear,
the other usingβmonth. The influence of using different
values ofβ is assessed in the following section.

5. ACCURACY OF SOIL MOISTURE RE-
TRIEVAL

In a last step, a relative soil moisture index for each pixel
of the study site is derived for each available descending
mode ASAR WS image. The change detection approach
as applied by, e.g., Pathe et al. [8] is applied here:

SMI =
σ0(θref)− σ0

dry

S
, (3)

whereSMI is a relative soil moisture index,σ0
dry is the

dry reference backscatter, defined as the lowest value of
σ0(θref) in the time series, andS is the sensitivity, de-
fined as the difference between the highest and lowest
value ofσ0(θref) in the time series.

The ASAR-derived soil moisture is validated for each
pixel through the coefficient of correlation (R) be-
tween ASAR soil moisture and modelled soil moisture
(Fig. 4(a)). It is observed that soil moisture can be pre-
dicted relatively accurate over most arable land areas, and
that moderate to low values ofR occur over permanent
crops and forests.

The values given in Fig. 4(a) refer to the soil moisture in-
dex obtained fromσ0(θref) values derived usingβmonth.
When deriving the soil moisture index using the yearly
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Figure 4. Validation of the soil moisture index (in terms of
correlation coefficient) obtained after normalizing ASAR
WS backscatter usingβmonth (a). Decrease in correlation
coefficient when replacingβmonth byβyear (b).

correction coefficientβyear, correlation coefficients on
average decrease. Decrease inR is given in Fig. 4(b).
Regions with the strongest decreases inR do, however,
not correspond to the regions with the largest variability
of the angular correction coefficient. This is because the
error on the soil moisture estimate is strongly influenced
by the sensitivity of radar backscatter, or the difference
in backscatter over wet and dry conditions, with larger
sensitivity resulting in a smaller error [8]. In this study,
regions of high seasonality inβmonth correspond to re-
gions with large sensitivities.

6. CONCLUSION

This study investigated the influence of vegetation
phenology on the angular dependence of ASAR WS
backscatter and on a soil moisture index derived through
a change detection method. In a first step, it was inves-
tigated whether the assumption of a linear relationship
between incidence angle and backscatter was valid for
the study site, the peninsula of Calabria, Italy. It was
shown that strong topography in the study site can re-
sult in a strong non-seasonality of this relationship, when
both ascending and descending mode images are consid-
ered. When using only data obtained in one mode, how-
ever, the relationship can be approximated as linear. In
a second step, it was shown that the angular dependence
of ASAR backscatter can vary considerably throughout
the year, depending on landcover. Crops on arable land
in particular are responsible for large differences in an-
gular dependence. Finally, the accuracy of a soil mois-
ture retrieval method was assessed using a hydrological
model based on meteorological data and a soil map. It

was shown that spatial changes in soil moisture can be
detected using ASAR WS images when vegetation cover
is relatively low. Over forests, retrieval accuracies are
low. When neglecting seasonality in the angular depen-
dence of backscatter, soil moisture retrieval accuracies on
average decrease.
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