11 research outputs found

    Curvelet-Based Texture Classification in Computerized Critical Gleason Grading of Prostate Cancer Histological Images

    Get PDF
    Classical multi-resolution image processing using wavelets provides an efficient analysis of image characteristics represented in terms of pixel-based singularities such as connected edge pixels of objects and texture elements given by the pixel intensity statistics. Curvelet transform is a recently developed approach based on curved singularities that provides a more sparse representation for a variety of directional multi-resolution image processing tasks such as denoising and texture analysis. The objective of this research is to develop a multi-class classifier for the automated classification of Gleason patterns of prostate cancer histological images with the utilization of curvelet-based texture analysis. This problem of computer-aided recognition of four pattern classes between Gleason Score 6 (primary Gleason grade 3 plus secondary Gleason grade 3) and Gleason Score 8 (both primary and secondary grades 4) is of critical importance affecting treatment decision and patients’ quality of life. Multiple spatial sampling within each histological image is examined through the curvelet transform, the significant curvelet coefficient at each location of an image patch is obtained by maximization with respect to all curvelet orientations at a given location which represents the apparent curved-based singularity such as a short edge segment in the image structure. This sparser representation reduces greatly the redundancy in the original set of curvelet coefficients. The statistical textural features are extracted from these curvelet coefficients at multiple scales. We have designed a 2-level 4-class classification scheme, attempting to mimic the human expert’s decision process. It consists of two Gaussian kernel support vector machines, one support vector machine in each level and each is incorporated with a voting mechanism from classifications of multiple windowed patches in an image to reach the final decision for the image. At level 1, the support vector machine with voting is trained to ascertain the classification of Gleason grade 3 and grade 4, thus Gleason score 6 and score 8, by unanimous votes to one of the two classes, while the mixture voting inside the margin between decision boundaries will be assigned to the third class for consideration at level 2. The support vector machine in level 2 with supplemental features is trained to classify an image patch to Gleason grade 3+4 or 4+3 and the majority decision from multiple patches to consolidate the two-class discrimination of the image within Gleason score 7, or else, assign to an Indecision category. The developed tree classifier with voting from sampled image patches is distinct from the traditional voting by multiple machines. With a database of TMA prostate histological images from Urology/Pathology Laboratory of the Johns Hopkins Medical Center, the classifier using curvelet-based statistical texture features for recognition of 4-class critical Gleason scores was successfully trained and tested achieving a remarkable performance with 97.91% overall 4-class validation accuracy and 95.83% testing accuracy. This lends to an expectation of more testing and further improvement toward a plausible practical implementation

    Symmetry and Complexity

    Get PDF
    Symmetry and complexity are the focus of a selection of outstanding papers, ranging from pure Mathematics and Physics to Computer Science and Engineering applications. This collection is based around fundamental problems arising from different fields, but all of them have the same task, i.e. breaking the complexity by the symmetry. In particular, in this Issue, there is an interesting paper dealing with circular multilevel systems in the frequency domain, where the analysis in the frequency domain gives a simple view of the system. Searching for symmetry in fractional oscillators or the analysis of symmetrical nanotubes are also some important contributions to this Special Issue. More papers, dealing with intelligent prognostics of degradation trajectories for rotating machinery in engineering applications or the analysis of Laplacian spectra for categorical product networks, show how this subject is interdisciplinary, i.e. ranging from theory to applications. In particular, the papers by Lee, based on the dynamics of trapped solitary waves for special differential equations, demonstrate how theory can help us to handle a practical problem. In this collection of papers, although encompassing various different fields, particular attention has been paid to the common task wherein the complexity is being broken by the search for symmetry

    Doctor of Philosophy

    Get PDF
    dissertationAtrial fibrillation (AF) is the leading cause of ischemic stroke and is the most commonly observed arrhythmia in clinical cardiology. Catheter ablation of AF, in which specific regions of cardiac anatomy associated with AF are intenionally injured to create scar tissue, has been honed over the last 15 years to become a relatively common and safe treatment option. However, the success of these anatomically driven ablation strategies, particularly in hearts that have been exposed to AF for extended periods, remains poor. AF induces changes in the electrical and structural properties of the cardiac tissue that further promotes the permanence of AF. In a process known as electroanatomical (EAM) mapping, clinicians record time signals known as electrograms (EGMs) from the heart and the locations of the recording sites to create geometric representations, or maps, of the electrophysiological properties of the heart. Analysis of the maps and the individual EGM morphologies can indicate regions of abnormal tissue, or substrates that facilitate arrhythmogenesis and AF perpetuation. Despite this progress, limitations in the control of devices currently used for EAM acquisition and reliance on suboptimal metrics of tissue viability appear to be hindering the potential of treatment guided by substrate mapping. In this research, we used computational models of cardiac excitation to evaluate param- eters of EAM that affect the performance of substrate mapping. These models, which have been validated with experimental and clinical studies, have yielded new insights into the limitations of current mapping systems, but more importantly, they guided us to develop new systems and metrics for robust substrate mapping. We report here on the progress in these simulation studies and on novel measurement approaches that have the potential to improve the robustness and precision of EAM in patients with arrhythmias. Appropriate detection of proarrhythmic substrates promises to improve ablation of AF beyond rudimentary destruction of anatomical targets to directed targeting of complicit tissues. Targeted treatment of AF sustaining tissues, based on the substrate mapping approaches described in this dissertation, has the potential to improve upon the efficacy of current AF treatment options

    Vol. 15, No. 2 (Full Issue)

    Get PDF

    Mammography

    Get PDF
    In this volume, the topics are constructed from a variety of contents: the bases of mammography systems, optimization of screening mammography with reference to evidence-based research, new technologies of image acquisition and its surrounding systems, and case reports with reference to up-to-date multimodality images of breast cancer. Mammography has been lagged in the transition to digital imaging systems because of the necessity of high resolution for diagnosis. However, in the past ten years, technical improvement has resolved the difficulties and boosted new diagnostic systems. We hope that the reader will learn the essentials of mammography and will be forward-looking for the new technologies. We want to express our sincere gratitude and appreciation?to all the co-authors who have contributed their work to this volume

    A methodology for the efficient integration of transient constraints in the design of aircraft dynamic systems

    Get PDF
    Transient regimes experienced by dynamic systems may have severe impacts on the operation of the aircraft. They are often regulated by dynamic constraints, requiring the dynamic signals to remain within bounds whose values vary with time. The verification of these peculiar types of constraints, which generally requires high-fidelity time-domain simulation, intervenes late in the system development process, thus potentially causing costly design iterations. The research objective of this thesis is to develop a methodology that integrates the verification of dynamic constraints in the early specification of dynamic systems. In order to circumvent the inefficiencies of time-domain simulation, multivariate dynamic surrogate models of the original time-domain simulation models are generated using wavelet neural networks (or wavenets). Concurrently, an alternate approach is formulated, in which the envelope of the dynamic response, extracted via a wavelet-based multiresolution analysis scheme, is subject to transient constraints. Dynamic surrogate models using sigmoid-based neural networks are generated to emulate the transient behavior of the envelope of the time-domain response. The run-time efficiency of the resulting dynamic surrogate models enables the implementation of a data farming approach, in which the full design space is sampled through a Monte-Carlo Simulation. An interactive visualization environment, enabling what-if analyses, is developed; the user can thereby instantaneously comprehend the transient response of the system (or its envelope) and its sensitivities to design and operation variables, as well as filter the design space to have it exhibit only the design scenarios verifying the dynamic constraints. The proposed methodology, along with its foundational hypotheses, is tested on the design and optimization of a 350VDC network, where a generator and its control system are concurrently designed in order to minimize the electrical losses, while ensuring that the transient undervoltage induced by peak demands in the consumption of a motor does not violate transient power quality constraints.Ph.D.Committee Chair: Mavris, Dimitri; Committee Member: Charrier, Jean-Jacques; Committee Member: Garcia, Elena; Committee Member: Grijalva, Santiago; Committee Member: Schrage, Danie

    Epilepsy

    Get PDF
    With the vision of including authors from different parts of the world, different educational backgrounds, and offering open-access to their published work, InTech proudly presents the latest edited book in epilepsy research, Epilepsy: Histological, electroencephalographic, and psychological aspects. Here are twelve interesting and inspiring chapters dealing with basic molecular and cellular mechanisms underlying epileptic seizures, electroencephalographic findings, and neuropsychological, psychological, and psychiatric aspects of epileptic seizures, but non-epileptic as well

    Six Decades of Flight Research: An Annotated Bibliography of Technical Publications of NASA Dryden Flight Research Center, 1946-2006

    Get PDF
    Titles, authors, report numbers, and abstracts are given for nearly 2900 unclassified and unrestricted technical reports and papers published from September 1946 to December 2006 by the NASA Dryden Flight Research Center and its predecessor organizations. These technical reports and papers describe and give the results of 60 years of flight research performed by the NACA and NASA, from the X-1 and other early X-airplanes, to the X-15, Space Shuttle, X-29 Forward Swept Wing, X-31, and X-43 aircraft. Some of the other research airplanes tested were the D-558, phase 1 and 2; M-2, HL-10 and X-24 lifting bodies; Digital Fly-By-Wire and Supercritical Wing F-8; XB-70; YF-12; AFTI F-111 TACT and MAW; F-15 HiDEC; F-18 High Alpha Research Vehicle, F-18 Systems Research Aircraft and the NASA Landing Systems Research aircraft. The citations of reports and papers are listed in chronological order, with author and aircraft indices. In addition, in the appendices, citations of 270 contractor reports, more than 200 UCLA Flight System Research Center reports, nearly 200 Tech Briefs, 30 Dryden Historical Publications, and over 30 videotapes are included
    corecore