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Testing Point Null Hypothesis of a Normal 
Mean and the Truth:                                    
21st Century Perspective 

Calyampudi Radhakrishna Rao 
Penn State University 

State College, PA 

Miodrag M. Lovric 
University of Kragujevac  

Kragujevac, Serbia 

 

 
Testing a point (sharp) null hypothesis is arguably the most widely used statistical 
inferential procedure in many fields of scientific research, nevertheless, the most 
controversial, and misapprehended. Since 1935 when Buchanan-Wollaston raised the 
first criticism against hypothesis testing, this foundational field of statistics has drawn 
increasingly active and stronger opposition, including draconian suggestions that 
statistical significance testing should be abandoned or even banned. Statisticians should 
stop ignoring these accumulated and significant anomalies within the current point-null 

hypotheses paradigm and rebuild healthy foundations of statistical science. The 
foundation for a paradigm shift in testing statistical hypotheses is suggested, which is 
testing interval null hypotheses based on implications of the Zero probability paradox. It 
states that in a real-world research point-null hypothesis of a normal mean has zero 
probability. This implies that formulated point-null hypothesis of a mean in the context of 
the simple normal model is almost surely false. Thus, Zero probability paradox points to 
the root cause of so-called large n problem in significance testing. It discloses that there is 
no point in searching for a cure under the current point-null paradigm. 

 
Keywords: zero-probability paradox, point null hypothesis, Lebesgue measure, 
rational numbers, algebraic numbers, almost sure false null hypothesis, inexactification, 
paradigm shift in testing statistical hypotheses. 

 

 
 

“It cannot be denied that, during the recent rapid development 
of practical methods, fundamental problems have been ignored 

and fundamental paradoxes left unresolved” 
Fisher (1922) 
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Introduction 

Following Fisher’s foundational contribution to significance tests, and Neyman 

and Pearson to hypothesis tests, statistical testing has become widely adopted by 

researchers as the most common statistical inferential approach in almost all 

different branches of science. However, there has been a steadily growing 

dissatisfaction in the scientific community with traditional tests of the point (sharp, 

precise) null hypothesis. Since Buchanan-Wollaston (1935) raised the first 

criticism against significance testing, their application has been debated 

extensively, and numerous objections and severe complaints have been leveled 

against their utility. Critics also accentuated statistical tests are not only overused, 

but are often misunderstood and misused. Nickerson (2000) provided a summary 

of common misconceptions, and criticisms as well as arguments in support of null 

hypothesis testing, from a non-statistician viewpoint.  

The most trenchant critics requested significance tests should be abandoned, 

banned or deinstitutionalized (e.g., Lindley, 1975; Hunter, 1997; Armstrong, 

2007; Orlitzky, 2012). The editors of the American Journal of Public Health 

imposed a ban, although it only lasted two years. Similarly, in 1997 the officers of 

the American Psychological Association (APA) created a task force to make 

recommendations about appropriate statistical practice and to consider banning 

significance testing. The proposal was regarded as too extreme and was rejected 

(Wilkinson, 1999). More recently, in 2015, the editors of Basic and Applied 

Social Psychology journal enforced a ban on significance testing (as well as 

confidence intervals). On behalf of the ASA Board of Directors, Wasserstein & 

Lazar (2016) formulated six principles regarding the usage of p-values, hoping 

that the ASA statement would open a fresh discussion with regards to the use of 

statistical inference. 

The ASA’s statement should be praised as the first organized reply from 

statistics community to the abovementioned issues. However, it did not address 

the fundamental problems and did not provide a new perspective on statistical 

testing. 

Critics advocated reform of statistical inference and statistics education. 

They recommended less emphasis should be placed on reporting of p values, 

cynically termed “harvest of asterisks” (Cohen, 1990). The reformers, mainly 

non-statisticians, argued attention should be shifted to effect size, point estimation, 

confidence interval, information theoretic approaches (e.g., Akaike Information 

Criterion), graphical methods, and progressively more on the communication of 

results using Bayesian inference. 
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Consider two of the most important criticisms of significance testing: (1) 

point null hypotheses are unlikely to be true, and (2) a statistical significant result 

is always obtainable with a sufficiently large sample. The scope of this paper is 

limited to the problem of testing the mean of a normal distribution, although this 

problem is of substantial importance because of its widespread application in 

statistical theory and practice. The primary objective is to prove that in the real-

world research when testing the mean of a normal distribution using a point-null 

hypothesis, the probability of that hypothesis is zero. We call this result the Zero 

probability paradox. This paradox undoubtedly reveals logical deficiency of a 

point-null hypothesis of a normal mean: in reality, its testing is actually a 

procedure that unequivocally will lead (with sufficiently large sample) to a 

foregone conclusion that formulated null hypothesis is almost surely false. The 

logical name for this procedure in which a sharp null hypothesis is ultimately 

being rejected should be “inexactification,” rather than testing (Good, 1994, p. 

241). 

The Existence of Point Null Hypothesis: History and 
Overview 

Testing a point null hypothesis is arguably the most widely used and at the same 

time the most controversial, misapprehended and severely criticized statistical 

procedure in many fields of scientific research. Focus on one of the most common 

criticisms, that point null hypotheses are not realistic. The Zero probability 

paradox, presented here, evolved as a result of persuasive and accumulated ideas 

of statisticians, and non-statisticians referred to in this section.  

There is a vast amount of references in statistics and non-statistics literature 

with the claim that, in reality, point null hypotheses are almost always false. 

Critics, however, supported this statement only by intuitive arguments, empirical 

evidence, and common sense. One of the early critics, L. J. Savage (1954, p. 254), 

disproved the validity of tests “in which the null hypothesis is such that it would 

not really be accepted by anyone.” I. R. Savage, (1957, p. 332-333) asserted the 

“null hypotheses of no difference are usually known to be false before the data are 

collected…when they are, their rejection or acceptance simply reflects the size of 

the sample and the power of the test, and is not a contribution to science.” 

Nunnally (1960, p. 642) expressed a similar assertion, but admitted he agreed 

although he cannot prove it directly. However, he argued it is supported both by 

common sense and by practical experience. Likewise, Meehl, (1967, p. 108) 

pointed out there is “universal agreement that the old point-null hypothesis…is 
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[quasi-] always false in biological and social science.” His opinion was based on 

the result that in “psychological and sociological investigations involving very 

large numbers of subjects, it is regularly found that almost all correlations or 

differences between means are statistically significant” (p. 109). Meehl illustrated 

this by providing an example of a large sample of over 55,000 Minnesota high 

school seniors that revealed 91% significant associations among a collection of 45 

variables.  

In the same way, Cohen (1990, p. 1308) stated the null hypothesis “taken 

literally (and that's the only way you can take it in formal hypothesis testing), is 

always false in the real world. It can only be true in the bowels of a computer 

processor running a Monte Carlo study (and even then a stray electron may make 

it false).  If it is false, even to a tiny degree, it must be the case that a large enough 

sample will produce a significant result and lead to its rejection. So if the null is 

always false, what’s the big deal about rejecting it?"  

There is near consensus in the literature that exactly true point null 

hypotheses are extremely rare in reality. This is exemplified by the following by 

Kadane (1987, p. 347): “For the last 15 or so years I have been looking for 

applied cases in which I might have some serious belief in a null hypothesis. In 

that time I found only one [testing an astrologer claim that on the bases of peoples 

birthdays it is possible to predict who is likely to have a drug problem]... I do not 

expect to test a precise hypothesis as a serious statistical calculation.”  

In a similar manner, there was a quest for an existence of a realistic case for 

which a null hypothesis cannot be regarded beforehand as false.  As a result of 

this pursuit, a commonly given example is found, that there is no extrasensory 

effect in a parapsychological experiment. Good (1994, p. 241) argued there is at 

least one example of a precisely sharp null hypothesis: precognition is impossible. 

Similarly, Ghosh et al. (2006, p. 45) suggested astrology cannot predict the future. 

Berger and Delampady (1987, p. 320), although admitting that it is perhaps 

impossible to have a null hypothesis that can be exactly modeled as θ = θ0, noted 

talking to plants has no effect on their growth. Nevertheless, they admitted minor 

biases in the design of the experiments may produce statistical significance. They 

also argued that point null hypotheses are reasonable approximations to fuzzy 

precise (small interval) nulls. However, as pointed out by Bernardo (1999, p. 102) 

“this approximation always breaks down for sufficiently large samples.” Likewise, 

Rousseau (2007) showed for large samples the Bayes factor associated with point 

null hypotheses is a poor approximation of Bayes factors of interval null 

hypotheses unless the intervals are extremely small. 
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In contrast, Zellner (1987, p. 339) emphasized many realistic examples of 

point null hypotheses can be given in testing well-formulated physical laws, such 

as s =. 5gt2 and E = mc2. Kass and Raftery (1995, p. 788) argued although “one 

rarely believes a scientific law in an absolute sense, it is a great convenience to 

speak and to act as if laws are valid. When one says that a certain theory is correct, 

one means that deviations from it are sufficiently minor to be irrelevant for all 

practical purposes at hand.” 

Based on the above arguments, a natural question arises: why are we testing 

point null hypotheses at all, when it is known in advance they are almost never 

exactly true in the real world? Sprenger (2013) argued these hypotheses often give 

useful idealization of reality. He considered this originated in the Popperian 

philosophy of science: “only a highly testable or improbable theory is worth 

testing and is actually (and not only potentially) satisfactory if it withstands severe 

tests.” (Popper, 1963, p. 219–220)  

According to Cox (2006, p. 31) null hypothesis refers to a probability model, 

and this implies idealization. He argued it would be absurd to think that a 

mathematical model could be an exact representation of a real system. Thus, null 

hypotheses are postulated within a system that is untrue. 

Good (1956, p. 254) remarked a null hypothesis is tested, although it is 

known in advance it cannot be exactly true, because “we wish to test whether the 

hypothesis is in some sense approximately true, or whether it is rejectable on the 

sort of size of sample that we intend to take.” Kruskal (1968) indicated the need is 

to test whether the mean is near µ0, meaning as near as makes no substantive 

difference. He stated this will be achieved as long as the sample sizes and 

significance levels are reasonable and the power is at least moderately large for 

alternatives interestingly different from the null hypothesis. 

Edwards, et al. (1963) presented a Bayesian view on the sharp null 

hypothesis problem. They acknowledged in usual applications the null hypothesis 

is known to be false from the outset, because realistically the null hypothesis 

cannot be infinitely sharp. From a Bayesian perspective, a sharp null hypothesis is 

likely to be appropriate only when it deserves special initial credence. They also 

highlighted in Bayesian analysis the null hypothesis is “a hazily defined small 

region rather than a point [italicized by authors]” (p. 235).  

Finally, consider Krueger’s (2001) attempt to explain why all null 

hypotheses are false. He started from the premise that in statistics populations are 

mathematical abstractions that contain infinite possible observations. “This 

implies an infinite number of possible states of the population, and each of these 

states may be a distinct hypothesis. With an infinite number of hypotheses, no 
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individual hypothesis can be true with any calculable probability” (p. 17). It is, 

however, clear that his arguments on the survival of the flawed significance 

testing are themselves flawed. It is erroneous to claim that one-sided and interval 

null hypotheses are always false. 

It can be concluded existing literature does not offer proof of the 

extraordinary statement that all point null hypotheses are false. 

The Nature of a Point Null Hypothesis 

Before exposing the Zero probability paradox, it is of fundamental importance to 

clarify some misconceptions about the nature of the point null hypothesis. 

Suppose that a random sample of size n, X = (X1, X2, …, Xn), is selected 

from the normal population N(θ, σ2), where θ is an unknown mean assuming 

values in a parameter space Θ   1 . Suppose also that the variance, σ2 > 0 is 

known. It is required to test the null hypothesis H0 : θ = θ0 versus an unspecified 

alternative hypothesis H1 : θ ≠ θ0. Regard this sharp or point null hypothesis as a 

numerically exact statement, that is free of vagueness and ambiguity, namely as 

an assertion that exactly specifies a single value of a parameter θ0. In other words, 

it is obvious that θ0 as a crisp number, not a fuzzy number. 

It is well known that to every real number there corresponds a unique point 

on the number line and vice versa. Obviously, point hypothetical value θ0 

corresponds to a distinctive point on the real number line, not to an interval. As 

Euclid gave an intuitive definition in the first sentence from his Elements book 1, 

“a point is that which has no part, or which has no magnitude.” In the 

contemporary notion, this is tantamount to saying that a point is a dimensionless 

entity that has only a location. It also naturally implies that “every point is 

unextended” (Playfair, 1819, p. 289). 

Claims that there are different kinds of sharp hypotheses, some fuzzy sharp 

and some infinitely sharp, in other words, that equal sign can be perceived in 

infinitely different ways, are unconvincing. If testing “hazily defined small region” 

is considered a null hypothesis in a scientific, non-subjective way, then it is a sine 

qua non to formulate that hypothesis accurately, for example, as H0 :|θ – θ0| ≤ δ or 

using fuzzy set theory as 0 0:H   , where   is the unknown fuzzy parameter 

and 0  a known fuzzy number. However, in the traditional point null hypothesis 

H0 : θ = θ0, in practice, (since the pioneering work of Arbuthnott (1710)) θ0 has 

always been formulated as a crisp rational number, never as a fuzzy number  . 
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A fuzzy number,  , in contrast, is a distinctly different entity. It is defined 

as a fuzzy set in  with a normal, fuzzy convex and a continuous membership 

function of bounded support. Note also that, in the fuzzy set framework, the 

possible values of the parameter of interest are expressed as linguistic variables, 

and that the data are observations of a normal fuzzy random sample. In conclusion, 

0 0  , that is, (Crisp number = Fuzzy number), is nothing else but a self-

deception. 

Zero Probability Paradox 

In a real-world research, the probability of an exact point-null hypothesis of the 

mean of a normally distributed population is zero. Let  be the set of all rational 

real numbers, that is  / ; , , 0m n m n n   , where  stands for the set of all 

integers. Suppose, as in the previous section, that a random sample of size n, 

X = (X1, X2, …, Xn), is selected from the normal population N(θ, σ2), where θ is an 

unknown mean assuming values in a parameter space Θ 1 . Divide parameter 

space into two disjoints sets   and \  that are mutually exclusive 

( \   ) and exhaustive ( \  ). Suppose further that the set 

  is equivalent to the set of all rational numbers  and that \  is equivalent 

to the set of all irrational numbers \ . 

It is desired to test the traditional null hypothesis 

 

 
0 0:H     (1) 

 

versus an unspecified alternative hypothesis 

 

 1 0:H   , 

 

where θ0 is a rational number, i.e. 0   

. 

Point-null zero probability paradox (Zero Probability paradox). 

Probability of the null hypothesis (1) is equal to zero: 

 

  0 | 0P H    .  
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This is tantamount to saying that probability of the null hypothesis 

 

 
  

  

0

1

| All rational numbers 0,  and

| All irrational numbers 1.

P H

P H





 

 
  

 

Here, regard rationals on the number line as indicators of the means of 

corresponding normal distributions that have rational numbers as their means. 

 

Proof: 

 

A) In scientific research and statistical practice, any point null 

hypothesis of the normal population is almost always stated as a 

single rational number. 

B) As proved by Cantor in 1873, rational numbers are countable—that 

is, there is in one-one correspondence between the rational numbers 

and the natural numbers (see, for example, Calkin and Wilf, 2000, 

for a binary tree argument). Because the rational numbers, qi, are 

countable, enumerate them as a sequence {qi}, or  1i iq

 . 

Hence, the set of all hypothetical null values of the point-null 

hypotheses that could be expressed using rational numbers,  , is 

also countable. In other words, this set has a bijective 

correspondence to the set of rational numbers. 

C) The Lebesgue measure of any singleton set, {x}, is zero (where 

singleton means the smallest possible nonempty set). Every 

countable set has Lebesgue measure zero (see, for example, Adams 

and Guillemin, 1996, p. 9). Therefore, Lebesgue measure of the set 

of all rational numbers is also zero, that is 

      1

1

0i i i

i

q q  








   . 

In light of this fact, Lebesgue measure of the set of all 

hypothetical null values of the point-null hypotheses that could be 

expressed using rational numbers ( 0 :H   ) is also zero because 

this set is countable, λ( ) = 0. 

D) Normal distribution is absolutely continuous with respect to the 

Lebesgue measure λ. This signifies that all sets which have zero 

Lebesgue measure must also have zero probability under probability 
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measure; i.e., for all events AR such that µ(A) = 0 → PX(A) = 0. 

As Borovkov (2013, p. 39) has nicely exemplified “for an absolutely 

continuous distribution, the probability of hitting a set of zero 

Lebesgue measure is zero.” 

E) Because for an absolutely continuous distribution, a countably 

infinite set of all rational numbers has Lebesgue measure zero, 

conclude their probability measure is also zero. 

F) Therefore, probability measure of a set of all possible hypothetical 

null rational values of the point-null hypotheses in testing a normal 

mean is also zero,   0 | 0P H    . This unequivocally 

amounts to the deduction that any single-point null hypothesis about 

the normal mean has also probability zero, that is, 

 

P(Point-null hypothesis formulated as a rational number | Normal 

distribution) = 0. 

 

Quod erat demonstrandum. 

 

Subsequently, the probability of point null formulated as an irrational 

number is one. Figuratively speaking, rationals occupy zero length on a real line 

and the set of irrationals is uncountably infinite. 

The scope of the Zero probability paradox can be further extended to the 

even more general set of all point null hypotheses asserted as real algebraic 

numbers, that is, the roots of single variable polynomial equations whose 

coefficients are all integers. This set includes rational numbers, Gaussian integers, 

golden ratio, constructible numbers, some irrational numbers such as √3, etc. 

Because this set is countable, as also proved by Cantor in 1874, (see, for example, 

Kaplansky, 2001, Paradox 4, p. 23) it has Lebesgue measure zero and therefore 

under Gaussian distribution its probability is zero. The cardinality (a measure of 

the "number of elements of the set") of the algebraic numbers is 0א (aleph-naught), 

the same as the natural numbers and rational numbers. However, the cardinality of 

the set of transcendental numbers is the same as that of the set of real numbers 

, the cardinality of the continuum. Almost all real numbers are transcendental, 

but we are familiar with almost none of them (except, for example, π, e, Liouville 

numbers, Champernowne constant, etc.). 

It is important to emphasize that the Zero probability paradox applies both 

in the case when population variance is known and unknown. 
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It might be objected that a point-null hypothesis that the mean of the errors 

made in astronomical observations is equal to zero is reasonable and that its 

probability could be larger than zero. Karl Pearson (1935a, p. 296) replied, “I 

have never found a normal curve fit anything if there are enough observations! 

The astronomical data provided to prove that errors of observation follow normal 

curves are pitiably scanty, and if proper tests are applied usually show that they 

do not!” 

Conclusion 

Zero Probability and Impossibility.  

Before discussing some of the implications of the Zero probability paradox, it is 

of considerable interest to clarify the difference between zero probability and 

impossibility. The most common and persistent misconception in the literature 

about probability is the interpretation that zero probability implies that an event is 

impossible. This is equally shared by many applied statistics textbooks writers 

(for example, Everitt, 1999, p. 14; de Muth, 2014, p. 20; Burns & Burns, 2008, p. 

164; Sharma, 2010, p. 191) and non-statisticians (for example, Poole & 

Mackworth, 2010, p. 296; Finlayson & McMahon, 2004, p. 360; Yoe, 2012, p. 

305; Quinn and Keough, 2002, p. 7). This does not come as a surprise since many 

notable scholars held the same false impression in the past.  

As reported by Finetti (2008, p. 49), Borel used to say “let us consider the 

probabilities 10-3, 10-10, 10-100, 10-1000. A probability of 10-1000 is roughly equal to 

the probability of picking by chance a particular atom in the entire universe.” 

Indeed, Borel (1962, p. 3), one of the founding fathers of measure theory, 

proposed in a book for the non-scientists published in 1943 “the single law of 

chance,” or Borel’s law. It states “Events with a sufficiently small probability 

never occur; or at least, we must act, in all circumstances, as if they were 

impossible.” Similar interpretations were given by many other eminent scientists 

who tried to relate probabilities to the physical world. For example, Bernoulli 

(1713, pp. 211-212) stated in the first chapter of Part IV of his Ars Conjectandi 

that “if one thing is considered morally certain which has 999/1000 certainty, 

another thing will be morally impossible, which has only 1/1000 certainty.” 

Cournot (1843, p. 78) also tried to build a bridge from probability theory to the 

physical world by stating that “a physically impossible event is one whose 

probability is infinitely small.” Likewise, Popper (2002, p. 195) pointed out that 
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“the rule that extreme improbabilities have to be neglected…agrees with the 

demand for scientific objectivity.”  

However, today, there is an almost general agreement among statisticians 

that probability zero means “almost surely impossible” or extremely unlikely. In 

other words, an event of zero probability will almost never happen but there may 

be exceptions. For example, Kolmogorov (1956, p. 5) emphasized that “P(A) = 0 

does not imply the impossibility of A…all we can assert is that…event A is 

practically impossible.” According to Hand (2014, p. 6), “extremely improbable 

events are commonplace. It’s a consequence of more fundamental laws, which all 

tie together to lead inevitably and inexorably to the occurrence of such 

extraordinarily unlikely events.” Although we approve of Hand’s position that 

events of vanishingly small probability will ultimately happen, we strongly 

disagree with establishing statistical tests on point-null hypotheses and expecting 

for coincidences and miracles to happen. 

In light of the previous discussion, we restate the Zero probability paradox 

in the following, more comprehensible way: in practice, when testing a mean of 

the normal distribution using a point-null hypothesis, the probability of that 

hypothesis is zero. This does not imply that it is “absolutely” impossible to state a 

true point-null hypothesis, but that formulated point-nulls in the context of the 

simple normal model are almost surely false. 

Some Implications of the Zero Probability Paradox.  

Fisher’s illuminating words (1922) are more relevant today than in 1922:  

 

It cannot be denied that, during the recent rapid development of 

practical methods, fundamental problems have been ignored and 

fundamental paradoxes left unresolved…This anomalous state of 

statistical science…the obscurity which envelops the theoretical bases 

of statistical methods may perhaps be ascribed to two considerations. 

In the first place, it appears to be widely thought, or rather felt, that in 

a subject in which all results are liable to greater or smaller errors, 

precise definition of ideas or concepts is, if not impossible, at least not 

a practical necessity. In  the  second place, it  has happened that  in  

statistics  a purely verbal  confusion  has hindered  the  distinct 

formulation  of statistical problems. (p. 311-312) 
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We argue that the Zero probability paradox has a specific power to shed new 

light on some fundamental problems in the foundations of statistical science that 

have been ignored, and help us to resolve some accumulated anomalies related to 

the point-null hypothesis testing, including so-called large n problem in 

significance testing, and the Jeffreys-Lindley paradox. It can also elucidate the 

notion of the Bayes factor, mixed prior distribution advocated by Jeffreys, 

“irreconcilability of p-values and evidence” (Berger & Sellke, 1987), and 

Cromwell’s rule (Lindley, 1991, p. 104), among others. 

However, detailed consideration of the implications of the Zero probability 

paradox for the Fisherian significance testing, Neyman-Pearson hypothesis testing, 

and Bayesian testing are beyond the scope of this paper. We confine ourselves, 

therefore, only to some general implications. Berkson (1938) was the first to 

notice dependence of significance testing on the sample size. He objected that it is 

possible to obtain a statistically significant chi-square test merely by increasing 

sample size:  

 

I believe that an observant statistician who has had any considerable 

experience with applying the chi-square test repeatedly will agree with 

my statement that, as a matter of observation, when the numbers in the 

data are quite large, the P's tend to come out small… we have 

something here that is apt to trouble the conscience of a reflective 

statistician using the chi-square test. For I suppose it would be agreed 

by statisticians that a large sample is always better than a small sample. 

If, then, we know in advance the P that will result from an application 

of a chi-square test to a large sample there would seem to be no use in 

doing it on a smaller one. But since the result of the former test is 

known, it is no test at all!” [italicized for emphasis]  

 

Berkson failed to recognize that the same deficiency (sensitivity to sample 

size) is also shared by other significance tests based on point-null hypotheses and 

continuous data. Today this is well known as the large n problem. As argued by 

Mayo (2006, p. 809): “for any discrepancy from the null, however small, one can 

find a sample size such as there is a high probability (as high as one likes) that the 

test will yield a statistically significant result (for any p-value one wishes).” She 

claims that the large n problem is the basis for the famous Jeffreys-Lindley 

paradox (Lindley, 1957), probably the most quoted divergence between the 

frequentist and Bayesian approaches to inference. A number of suggestions have 

been proposed to alleviate this problem, including adjustment of p-values to a 
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fixed sample size (Good, 1988, p. 391), rules of thumb for decreasing α as n 

increases, and indicated effect size. 

Karl Pearson (1935b, p. 550) opined “there is only one case in which an 

hypothesis can be definitely rejected, namely when its probability is zero.” 

Relating this to the Zero probability paradox leads to the following conclusion. 

Focusing on the inferential aspects of the problem (not on the decision-making 

approach) permits rejecting the point-null hypothesis a priori, before seeing data. 

To paraphrase Berkson, because the result of the significance tests are known, 

they are no test at all. Term testing is a misnomer in this case and should be 

replaced by inexactification.  These tests are merely procedures that ask 

researchers to waste their time and financial resources, to collect enough data, and 

when ultimately reject their point nulls to confirm what they knew beforehand, 

that their point nulls were almost surely false. 

Zero probability paradox points to the root cause of the large n problem and 

discloses that there is no cure for it under the current point-null paradigm. 

Because classical significance tests (Z and t-test) are consistent, as the sample size 

increase, they will become extremely sensitive and therefore, detect even the 

tiniest discrepancy from the crisp hypothetical (almost surely false) null 

hypothesis. In other words, classical test statistic converges almost surely to ∞ 

and therefore, gives the asymptotically correct result (see, for example, DasGupta, 

2008, p. 337, or Lehman and Romano, 2005, p. 462). Again, this means that in the 

real world testing any sharp null hypothesis of the normal mean will be ultimately, 

almost surely, rejected with large enough sample size.  

This significant logical inconsistency of the significance testing was not an 

overwhelming issue in the first half of the past century when Gosset was 

“‘naughtily’ playing about with absurdly small numbers” (Eagon Pearson, 1939, p. 

217). However, if Efron’s view (2010, p. VII) is embraced that in the 21st century, 

statisticians will deal with large data sets and complex questions, it is clear that 

the current point-null paradigm is inadequate. Van der Laan and Rose (2010), for 

example, indicated that next generation of statisticians must construct new tools 

for massive data sets since the current ones are severely limited. Similarly, Hand 

(1998, p. 113) insisted in data mining instead of “statistical significance, consider 

more carefully substantive significance: is the effect important or valuable or not?”  

To rephrase Box (1979): the only question of interest is "Is the normal 

model based on point-null hypothesis illuminating and useful?" The answer must 

be “No”. 

So, what should we do? This article is an initial contribution to making a 

paradigm shift in testing statistical hypotheses. Instead of testing highly 
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problematic and almost surely false point null hypotheses, as a natural 

replacement, test a negligible null hypothesis: 

 

0 0:H      (Effect size is negligible) against 

1 0:H      (Effect size is practically meaningful). 

 

We propose naming this avant-garde proposal the “Hodges-Lehmann 

paradigm”. Hodges and Lehmann (1954) were among first statisticians who had 

noted deficiencies of the point null hypothesis and formulated testing of “material 

significance” in their path-breaking paper “Testing the approximate validity of 

statistical hypotheses”. We do not regard the Hodges-Lehmann paradigm as deus 

ex machine, nor as a magic alternative to the traditional point-null testing. 

However, we argue that it will substantially improve scientific research based on 

statistical testing. The argument that point nulls are mathematically more tractable 

is obsolete and belongs to the pre-MCMC era.  

We regard statistics as the grammar of science. Thus, we are responsible for 

providing unambiguous rules of that grammar. We should not feel proud if non-

statisticians are trying to make reform in statistical inference and statistics 

education. We, statisticians, are accountable to provide researchers in other 

sciences non-conflicting, coherent, and consistent concepts of testing the 

statistical hypotheses. Otherwise, significance tests “can actually impede 

scientific progress.” (Kirk, 2003, p. 100) and even harm “development of 

scientific knowledge” (Armstrong, 2007, p. 321). Researchers and scientists will 

feel confused and deceived by statistics and statisticians. As pointed out by 

Cousins (2014, p. 35): “More than a half century after Lindley drew attention to 

the different dependence of p-values and Bayes factors on sample size n 

(described two decades previously by Jeffreys), there is still no consensus on how 

best to communicate results of testing scientific hypotheses.” 

Presumably, we all agree on the point that overcoming of accumulated 

inconsistencies is always a crucial method in science. As pointed out by Good 

(1982, p. 489), “a Bayes/non-Bayes compromise or synthesis is necessary for 

human reasoning.” We argue that this compromise is impossible to reach within 

the point null-hypothesis testing paradigm, as Jeffreys-Lindley paradox evidently 

testifies. 

In sharp contrast to the current point-nulls model, we argue that it is possible 

to harmonize inferential results of frequentist and Bayesian testing within the new 

framework. In other words, frequentist and Bayesian inference will become, in 
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principle, compatible and would (or at least could) lead to the similar conclusions 

in (a) one-sided testing, (b) two-sided testing, and (c) interval estimation. 

However, to make this proposal fully justifiable it is necessary to obtain a 

proof that point nulls are also almost always false in the case of two samples. The 

initial clue is given by Tukey (1991, p. 100): 

 

“Statisticians classically asked the wrong questions—and were willing 

to answer with a lie, one that was often downright lie. They asked 

“Are the effects of A and B different?” and they were willing to 

answer “no.” All we know about the world teaches us that the effects 

of A and B are always different—in some decimal place—for any A 

and B. Thus asking ‘Are the effects different’ is foolish.”  

 

Only then, we can set as one of the fundamental rules of the 21st century 

Statistical Science Decalogue: Hypotheses exactas non fingo! 
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The debate if the point null hypothesis is ever literally true cannot be resolved, because 
there are three competing statistical systems claiming ownership of the construct. The 
local resolution depends on personal acclimatization to a Fisherian, Frequentist, or 
Bayesian orientation (or an unexpected fourth champion if decision theory is allowed to 
compete). Implications of Rao and Lovric’s proposed Hodges-Lehman paradigm are 
discussed in the Appendix.  

 
Keywords: true null hypothesis, Rao-Lovric, Hodges-Lehman. 

 

In their historical reviews of experimental design, Cochran (1977) and Frank 

Yates posited the first planned controlled experiment was conducted by Daniel 

(7th–6th century BCE), who employed a ten day treatment vs comparison group 

post-test only trial. The purpose was to demonstrate the efficacy of a Kosher diet 

of high protein, low fat, dried legume seeds and water on soldiering skills vs 

Nebuchadnezzar’s army’s royal comestible of non-Kosher wine and meat (Daniel 

1:3-16). In Contra Celsus (1:15), Origen of Alexandria (153–253 CE) cited 

Hermippus (5th century BCE) and Hecatæus (4th century, BCE, presumably of 

Abdera) who opined subsequent development of analytical analyses of 

experimental principles by the Jews influenced, if not culminated in, Pythagoras’ 

philosophy of mathematical sciences. Subsequently, Tana Kama (Mishna Gittin 

7:1; Talmud Gittin 67b) underscored the importance of co-variables and the 

minimum number of repetitions for a reliable single subject study design. Shimon 

ben Chalafta also invoked experimental replications to test claims (e.g., Talmud 

Chulin 57b). 

In the middle of the 2nd century CE, Galen (Aelius/Claudius Galenus)  

mused how much credence should be given, if any, to a 50th medical study if the 

previous 49 replications were of no significance. In the early 11 th century CE, 

http://dx.doi.org/10.22237/jmasm/1478001720
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Avicenna (Abu ibn Sina) reacted to haphazard methods in the conduct and 

analysis of experiments and presented seven governing rules. In 1266 CE, Roger 

Bacon systematized observation of empirical data in controlled experiments. 

Arthur Young (1771, Figure 1) published a course on experimental agriculture, 

wherein comparative designs employing standardized methods and analyses were 

proposed. The analysis of the hypothesis “every year there shall be born more 

males than females” (1710-1712, p. 188) by John Arbuthnott (un-admittedly 

inspired by Sir William Petty & John Graunt) is considered the origin of the 

nonparametric Sign Test, although it predates more formal origins of empirical 

probability captured in the treatises on the doctrines of conjecture and chance by 

Jacob Bernoulli (1713), Abraham de Moivre (1718) and Thomas Bayes (Price, 

1763, p. 370). 

In the early part of the 20th century CE, Sir Ronald Fisher (influenced by 

Pierre-Simon Laplace, Carl Gauss, Joseph Jastrow, Sir Francis Galton, Karl 

Pearson, G. Udny Yule, William Gosset, and certainly others; perhaps later also 

with Andrey Kolmogorov & E. J. G. Pittman) defined the null hypothesis, the 

fundamental building block of modern hypothesis testing, as being true unless 

there is evidence from the sample (randomly obtained or data at hand) to the 

contrary. His innovations regarding blocking variables and factorial layouts were 

pioneering developments in the design of experiments. 

Following the logic of experimentation by C. S. Peirce in late 19 th century, 

the Frequentist lemma by Jerzy Neyman and Egon Pearson developed in the 

1930s-1940s violated the Fisherian cannon with the introduction of the alternative 

hypothesis. It was indeed irrefragable blasphemy, because Frequentists must 

admit the choice and magnitude of the alternative are subjective and independent 

of both the null hypothesis and the sample. Other 20 th century developments in 

experimental design included orthogonal arrays by my esteemed colleague 

Professor C. R. Rao, sequential experiments by Abraham Wald and later Herman 

Chernoff, and the quality control designs of Genichi Taguchi. 

Nevertheless, the Frequentists had the advantage, because in the Fisherian 

system the lack of an alternative obviated the desired notion of fixed comparative 

statistical power, and by extension, stable effect size. These two modern 

approaches to statistics are antipodal. Many misunderstandings in hypothesis 

testing are due to their intrinsic incompatibility, starting with Sir Fisher’s “lapsus 

linguae” (Neyman, 1941, p. 129) fiducial argument (see Sawilowsky, 2003). 
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Figure 1. Arthur Young (1801), Annals of Agriculture and other Useful Arts, Vol 37. 

London: Rackham & Hill. (From the JMASM Archives.) 
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This struggle provided the segue for a Bayesian resurrection from Fisher’s 

epithet, “From a purely historical standpoint it is worth noting that the ideas and 

nomenclature for which I am responsible were developed only after I had inured 

myself to the absolute rejection of the postulate of Inverse Probability” (1937a, p. 

151; see also 1937b, 1939). Although also receiving a boost from C. S. Peirce’s 

logic, Bayesian analysis during Sir Fisher’s reign was conducted without benefit 

of his development of degrees of freedom. The initial inability to replicate 

Fisherian/Frequentist numerical results was a serious setback to the modern 

Bayesian paradigm (Sawilowsky, 2002, 2003). Although they have since 

recovered and inverse probability is currently quite popular, unless there are 

documented informative prior probabilities available, such as baseball batting 

averages, Fisher’s inurement prevails. 

Now comes the debate on certifying the literal truth of the null hypothesis. 

Original Fisherians needs no proof, because postulation of the putative null was 

the pivotal theoretic spanning well over two millennia in the science of 

discovering truth. Frequentists, however, can never accept any proof. The most 

that can be said is based on the current sample there is no evidence to support the 

alternative. (This should not be considered an open invitation to collecting 

potentially endless (a) random samples, known as the quest for a Type I error and 

its attendant rewards of publishing and tenure or (b) data sets at hand, known as 

non-representative findings never interpreted with caution to support situational 

truths with its attendant rewards of political fodder, ill-begotten relief from the 

court, financial returns based on false advertising, etc.) Moreover, it wouldn’t 

matter even if the null hypothesis is always literally false, because it must be false 

to an a priori specified magnitude to be rejected. 

The Frequentist nomenclature, failure to reject the null hypothesis, was just 

the ticket in the social and behavioral sciences, where politically correct thinking 

of the 1960s had begun to take control of those in charge of the keys to situational 

truths. At best, near-null, near-nil, and the like, were approved substitutes. 

Philosophically, the yellow submarine is a closed system, so at some decimal of 

the mantissa there must be a non-Zero value. 

The various Frequentist counterproofs were flawed attempts to make 

something out of nothing by incorrectly preserving the post hoc effect size even 

when the statistical test was not significant. For example, in the two sample layout, 

the t statistic is a test of difference between two means. If the p value is above the 

a priori selected nominal α level, it means the observed difference is not real and 

should be read as zero. Based on the sample, assumed to be random for 

generalization purposes, there is no evidence that the populations from which they 
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were drawn differed in terms of location. Just as the observed difference in means 

can be safely ignored, the effect size was not statistically significantly different 

from zero, and can be safely ignored.  

This means regardless of the magnitude of the obtained value (e.g., Cohen’s 

d, 1962, 1969, 1977, 1988) in the two sample layout [from very small (0.01; 

Sawilowksy, 2009) to small (0.2; Cohen, 1988) to moderate (0.5; Cohen, 1988) to 

large (0.8; Cohen, 1988) to very large (1.2; Sawilowsky, 2009) to huge (2.0; 

Sawilowsky, 2009)], it should be read and interpreted as zero. Hence, the point 

null hypothesis, to the Fisherian, is indeed considered to be literally true 

regardless of the magnitude of Cohen’s d when the p value is greater than nominal 

α. 

In the antecedent article, colleagues C. R. Rao and M. Lovric 

(http://digitalcommons.wayne.edu/jmasm/vol15/iss2/2), cited Cohen (1990) who 

wrote the null hypothesis can only be true “in the bowels of a computer processor 

running a Monte Carlo study (and even then a stray electron may make it false)” 

(p. 1, 308). Based on my letters with him, documented elsewhere, Cohen’s 

statement was not surprising. 

Subsequently, this was discussed conceptually in Knapp and Sawilowsky 

(2001, p. 71-74; for expanded commentary relative to the debate see Harlow, et 

al., 1997; Imbens & Rubin, 2015). I included Meehl’s (1990) recapitulation that 

he initially referred only to quasi-experiments and surveys (Meehl, 1978), but 

later admitted the null hypothesis can be literally true in an “experimental study” 

(Meehl, 1990, p. 204). (Carol H. Ammons, the co-Editor of Psychological 

Reports where it was published, sent me a reprint of Meehl (1990) soon after its 

publication. In our subsequent conversation, I was supportive of Meehl’s 

recapitulation, and I remain so today.) Similarly, in Knapp and Sawilowksy 

(2001) I also included Hagen’s (1997, p. 20) imputed recapitulation of Cohen 

(1994). 

A simple demonstration of the algorithm I presented in Knapp and 

Sawilowsky (2001) is coded in R in Figure 2. When executed, it creates two 

groups, x and y, and populates them with scores randomly selected from the 

standard normal curve. Although a Monte Carlo is unnecessary when underlying 

assumptions are met, it is employed to facilitate the demonstration. The two 

independent samples pooled variance t test is conducted on the data, and if the p 

value is less than nominal α = 0.05, a counter is incremented. The process is 

repeated 100,000 times. The final value of the counter is divided by the number of 

repetitions to produce the Type I error rate. 

http://digitalcommons.wayne.edu/jmasm/vol15/iss2/2
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The code will produce the same result on any computer platform and 

operating system, because the seed number is set for the pseudo-random number 

generator. That result is 0.04919. Rejections occurred across the 100,000 

repetitions, but they were known false positives. The point null hypothesis was 

indeed literally true, because it was programmed to be so. The collection of false 

positives that give rise to the notion the point null is never literally true were 

simply the constituent figments of imagination that sum to the Type I error rate. 
 
 

set.seed (123457) 
to5 <- NULL 

rep <- 100000 

rejt05 <- numeric(length=rep) 
ss <- 30 

for (i in 1:rep) { 

   x1 <- rnorm(ss) 
   x <- x1+0.0 

   y <- rnorm(ss) 

   tp <- t.test(x,y,var=TRUE)[["p.value"]] 
   rejt05[i] <- ifelse (tp < 0.05,1,0) 

 } 

t05 <- sum(rejt05)/rep 
 
Figure 2. Monte Carlo t Test in R Code 

 

 
 

The rejection rate obtained from the code will approach 0.05 as (a) the 

sample size, set to 30 per group in this example, increases, (b) the number of 

repetitions of the experiment increases, or (c) possibly even with the current study 

parameters if a different initial seed number is selected (Hill & Sawilowsky, 

2011). For example, if the number of repetitions is increased to 1,000,000, the 

Type I error improves to 0.049858. 

A non-null condition can be created by replacing the 0.0 with a non-zero 

number (positive or negative) in the line x <− x1 + 0.0. For example, to 

model a very small effect size of 0.01 (Sawilowsky, 2009), replace the 0.0 in this 

code segment with a constant c = 0.01 (representing 0.01*σ; where σ refers to the 

standard deviation of the normal curve = 1). The constant c is added to each 

member of the x group and shifts its location by that magnitude, while leaving the 
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scale unaffected. The resulting rejection rate is known as statistical power (not 

Type I error rate). With 100,000 repetitions it amounts to 0.04923, a nuanced but 

detectable difference of 0.00004 above nominal α for this sample size and data 

pseudo-randomly sampled from the standard normal curve. 

If the effect size is increased to 0.05 the power yield increases to .05342, 

and for an effect size of 0.1 the power increases to 0.06542. For Cohen’s (1988) 

small effect size of 0.2, the power increases further to 0.11611. As the effect size 

approaches infinity (and depending on the distribution and sample size, the effect 

size may not need to increase past a small fraction or multiple of its σ) the power 

approaches 1. 

Random numbers represent a literally true null condition. This R code 

proves that when the point null is literally true, the t test (if all conditions are met, 

i.e., normality, homoscedasticity, independence) will retain the null hypothesis to 

the nominal α level. Hence, in real world applications of a true randomized 

experimental design, if there is no difference between x  and y  (the two sample 

means) the t test will testify to that fact.  

Execution of the R code demonstrates increasing the sample size and/or 

number of repetitions of the experiment to ∞ will not lead to a rejection rate of the 

null hypothesis different from nominal α, which is the answer to Cohen’s 

speculation of what might happen in the bowels of a Monte Carlo study. 

Moreover, despite the current fascination with big data (and hopefully its ardent 

fans are able to recognize and deprecate its often hidden or embedded stepwise 

methods), Gosset noted many in applied disciplines we are forced to work with 

small samples. This was aptly captured in Sir Fisher’s revelation to Samuel 

Stouffer regarding the inspiration for deriving a certain postulate: something had 

to be done when rabbits got into the garden and ate a lot of the degrees of freedom.  

To the Fisherian, QED. To the Frequentist, the discussion is much ado about 

(something that can never be literally) nothing. To the Bayesian, add non-

informative priors to the perils of non-normality, heteroscedasticity, and non-

independence; and then choose sides. 
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Appendix 

In Knapp and Sawilowsky (2001), I presented rebuttals to “the following 

propositions: 

 

 The null hypothesis is always false. 

 A sufficiently large enough sample guarantees rejection of the null 

hypothesis. 

 Statistical tests are of no use because the results do not address 

practical importance. 

 Testing a near-nil null hypothesis is better than testing a null 

hypothesis. 

 Hypothesis testing does not lead to scientific discoveries. 

 Confidence intervals are superior to hypothesis testing. 

 Effect sizes should be reported regardless of the outcome of 

hypothesis testing.” (p. 71). 

 

The subjectivity of defining a near-nil null hypothesis will also have a deleterious 

effect on equivalence testing, and could be added to the above list. 

With regard to testing a near-nil null instead of a null hypothesis, Rao and 

Lovric, in the antecedent article, proposed a paradigm shift to testing the 

negligible null hypothesis: 

 

H0 :|θ – θ0| ≤ δ (Effect size is negligible) against 

H1 :|θ – θ0| > δ (Effect size is practically meaningful). 

 

They aptly named it the “Hodges-Lehmann paradigm,” a nomenclature well 

known in other contexts. In R-measures of location, for example, the inversion of 

signed ranks can lead to the Hodges-Lehmann estimator, a robust (median 

unbiased) pseudo-θ point estimator of symmetry (Hodges & Lehmann, 1963). In 

bracketed (see Sawilowsky, 2003, p. 128) intervals, the Hodge-Lehmann 

treatment alternative is modeled by a systematic progression from pseudo-θ, 

although no expertise is called on to determine negligible or practical 

meaningfulness. 

Regarding near-nill null hypotheses within the context of hypothesis testing, 

I’ve opined (Knapp & Sawilowsky, 2001),  
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This remedy's attendant difficulties are obvious considering the 

chaos that would arise from the infinite number of near-nils that might 

be chosen. (Eventually, we speculate, some common near-nils would 

emerge and evolve into a universally accepted traditional near-nil, 

completing the circle.) Moreover, the near-nil weakens the Fisherian 

logic regarding the null hypothesis, which is indirect proof by 

contradiction. If the probability associated with sample data obtained 

from a designed study is so remote, the null hypothesis or the model 

that generated it is contradicted. Rejecting a null hypothesis should be 

more compelling than rejecting an arbitrarily chosen near-nil 

hypothesis. Also, in the social and behavioral sciences for cases in 

which treatment effects or naturally occurring differences are often 

tiny, using the near-nil hypothesis when investigating interventions 

with potentially subtle differences may hide a treatment effect. 

Similarly, as the magnitude of the near-nil increases, the sample size 

necessary to detect a false near-nil null hypothesis increases in the 

treatment versus control group and related designs, which would be 

highly undesirable. (p. 73). 
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Although we have much to agree with in Rao and Lovric’s important discussion of the 
test of point null hypotheses, it stirred us to provide a way out of their apparent Zero 
probability paradox and cast the Hodges-Lehmann paradigm from a Serlin-Lapsley 

approach. We close our remarks with an eye toward a broad perspective. 
 
Keywords: Hypothesis testing, point null, statistical practice 

 

Statistical methods and the testing of hypotheses play a pivotal role in day-to-day 

practical science, but not always an enlightened one. There are several well-

known criticisms of testing a point null hypothesis in the statistical literature that 

go back at least to Berkson (1938, 1942) and Hodges and Lehmann (1954). 

Debates about the role of statistical hypothesis testing, its uses, misinterpretations, 

and abuses as well as adjacent discussions of interpretations and abuses of 

confidence intervals, effect sizes, and statistical power continue unabated in the 

methodological, statistical and substantive literatures. Through all of this, 

however, conventional significance tests, point null hypotheses, and p-values 

continue to be used in nearly all experimental publications in the social, 

behavioral, natural, and health sciences to dichotomize claims from statistical 

hypotheses in to significant versus nonsignificant findings. The use of 

significance tests of point null hypotheses, as a kind of ritualistic cultural 

behaviour, continues unabated because these statistical techniques appear (at least 

to practicing scientists) to be objective and exact, they are easily and readily 

available in statistical software packages and on web applets, students are taught 

to use them, and journal reviewers and editors demand them. 
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Rao and Lovric’s (2016, this issue) recent paper rests in this backdrop of our 

discipline’s longstanding ineffective critical obsession to challenge and repurpose 

our most sacred of empirical methodological cows: the testing of point null 

hypotheses via significance testing. Rao and Lovric are to be most warmly 

thanked for bringing this fundamentally important issue to the attention of readers 

of the Journal of Modern Applied Statistical Methods and initiating an important 

conversation. Their recent contribution to the literature gives us much to agree 

with, but also stirs us to critically reflect on some of their claims and observations. 

This is distinctly a sign of good scholarship. 

We have arranged our remarks in to three categories. In what follows we: (i) 

reserve the majority of our remarks for Rao and Lovric’s point null Zero 

probability paradox and the matter of events of vanishingly small probability 

ultimately happening, a key point in the on-going controversy surrounding testing 

point null hypotheses, (ii) bring what we call the Serlin-Lapsley perspective to the 

Hodges-Lehmann paradigm briefly attending to its strengths and limitations, and 

(iii) close with some remarks that aim to move us to a broader perspective. 

Rao and Lovric’s point null Zero probability paradox, and 
on the event of vanishingly small probability ultimately 
happening 

As Rao and Lovric remind us, Hand (2014, p. 6) stated: “extremely improbable 

events are commonplace. It’s a consequence of more fundamental laws, which all 

tie together to lead inevitably and inexorably to the occurrence of such 

extraordinarily unlikely events”. We are in agreement, per Kolmogorov (1956), 

that the probability of an event A being zero does not imply that the event A is 

impossible. Indeed, it is the support of a probability measure that separates the 

possible from the impossible, not the value of the measure on its support. It is true, 

for example, that the probability of observing the event {X = 1} is zero when X is 

an exponential random variable, but that the event {X = 1} should not be 

considered impossible, since the measure is well-defined and nonzero on any 

open set containing this event. However, the event {X = −1} is indeed 

ontologically impossible when X is an exponential random variable; this event is 

simply not in the support of X.  

We must disagree though with Hand’s claim that "events of vanishingly 

small probability will ultimately happen." This is not true in general, at least, not 

if an event of "vanishingly small probability" is to be interpreted as an event that 

is almost surely null; i.e., an event whose probability is equal to zero. Broadly 
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speaking, most random variables of practical interest fall into one of two 

categories: they are defined by measures that are either (1) absolutely continuous 

with respect to Lebesgue measure, usually defined on the real line or half line; or 

(2) absolutely continuous with respect to counting measure on some countable set, 

usually the positive or nonnegative integers. We remind the reader that a measure 

μ is absolutely continuous with respect to another measure λ if every λ-null set is 

also a μ-null set.  

We note that absolute continuity implies the existence of a probability 

density function, case (1), or a probability mass function, case (2), by the classical 

Radon-Nikodym Theorem; indeed, this is precisely how these objects are 

formally defined. We also note that this definition presupposes the specification 

of a legitimate σ-algebra, and it suffices to take the Borel sets on the real line, or 

the power set on the integers respectively. With this terminology in mind, we will 

see that Hand's statement is false when our probability measure is absolutely 

continuous with respect to Lebesgue measure, and unnecessary when our measure 

is absolutely continuous with respect to counting measure. 

Let X be distributed according to a probability measure, Pr, that is absolutely 

continuous with respect to Lebesgue measure. Choose any real number a. What is 

the probability that we eventually sample {a}? Formally, if we let Xi denote the ith 

(independent) sampling, we wish to calculate the probability of the union of 

events {Xi = a} over all i > 0. Apply countable subadditivity of the measure (a 

defining property of measures) to bound this probability by the sum of 

Pr({Xi = a}). Each of these is identically zero (by absolute continuity), therefore 

the probability of their union is as well. Thus, we can sample infinitely often and 

we will in fact never sample the singleton {a}, almost surely. This argument 

immediately generalizes to any countable set, which is automatically a Pr-null set 

by absolute continuity. So, for example, the probability that we ever observe any 

rational number in infinitely many samples of X is zero. The argument can be 

fully extended to apply to any Lebesgue-null event, including those containing 

certain uncountable sets of reals, such as Cantor or various other fractal sets. 

Two key points are noteworthy about the above argument. First, we take as 

definition that any sampling scheme must consist of a countable number of steps. 

That is, we do not allow the possibility of drawing uncountably many samples. 

Theoretically, this kind of uncountable sampling scheme is not impossible, but it 

would be completely meaningless in practice: any mechanistic process requires 

countability of its steps.  

The second point to note is that the theoretical argument above relies on the 

infinite precision of our sample, and this is where the crux of the matter lies. A 



SOME REMARKS ON RAO AND LOVRIC 

36 

careful reading of the above argument will reveal an apparent paradox: the 

probability of ever observing any rational number under a probability measure, 

absolutely continuous with respect to Lebesgue measure, is identically zero; yet, 

in practice, every singleton sample that we draw from such a distribution will be a 

rational number. This is simply another, equivalent instantiation of what Rao and 

Lovric term the Zero probability paradox. Any practical measuring device will 

demand that a sampled point is drawn to only a finite level of precision; i.e., we 

can only observe real numbers with finite decimal expansion in practice. The way 

out of this apparent paradox is to realize that all probability measures, in practice, 

are only supported on a finite set. The size of this set is dictated by the precision 

of our measurements, but we know that this precision must always be of finite 

detail. Consequently, if we choose any real number a in the support of our 

practical probability measure, Pr*, we have Pr*(X = a) > 0; this follows since any 

finite set of real numbers, under the classic topology, is nowhere dense. Revisiting 

our generic sampling scheme from before, we now calculate: 
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The limit goes to zero since Pr*(Xi = a) > 0 for all i, so the probability that we 

eventually observe the singleton {a} is exactly 1, almost surely. The same 

reasoning applies to any subset of the practical probability space. 

This is the distinction between probability in practice, the ultimate subject of 

statistics, and the platonic structure of the mathematical objects that we use to 

conveniently describe that practice. These descriptions are nearly always 

approximations: we simplify our practical probability spaces by smudging them 

into theoretical ones. This has undeniably proven to be an extremely fruitful tactic, 

but it has also given rise to several conundrums and apparent paradoxes like the 

ones discussed here. Point null hypotheses may be almost surely false in the 

platonic sense, but this is only a reflection of the disconnect between the literal 

structure of the objects we study and the approximations, like the various scaled-

Lebesgue measures, that we use to conveniently describe them mathematically. It 

is meaningful effects that we truly care about, relative to the precision of our 
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measurements and the object of our research, and in this regard we are very much 

in agreement with Rao and Lovric. 

Finally, we note that this entire discussion is unnecessary when considering 

random variables that are absolutely continuous with respect to counting measure 

(all the standard "discrete" distributions, for example). By definition, such a 

corresponding probability space contains no nontrivial null sets in the support of 

the measure; thus, there are no events of "vanishingly small probability" to speak 

of. Just as in the resolution of our apparent paradox on a practical probability 

space above, every event will eventually happen almost surely. 

Hodges-Lehmann Paradigm with a Serlin-Lapsley Twist 

We would agree with Rao and Lovric that the Hodges-Lehmann method is not a 

magical alternative to the traditional point null testing but that it may provide a 

useful paradigm for the practicing empirical scientist. However, we would 

contend that in its day-to-day use among empirical researchers the Hodges-

Lehmann paradigm still suffers from some of the same issues as the point null. In 

particular, the magic choice of "delta", in the Hodges-Lehmann or Serlin-Lapsley 

senses, remains arbitrary – or necessarily defined subjectively by the researcher, 

contingent on precision, etc., as before. Furthermore, a key to the widespread 

adoption of the Hodges-Lehmann paradigm is what we will refer to as the Serlin-

Lapsley approach to statistical science that incorporates a ‘good enough’ principle 

and embodies Imre Lakatos’s view of science. Our message is the same as Rao 

and Lovric’s but from a different framework. 

Efforts to facilitate testing what may be called ‘range nulls’, which require 

assumptions about the distribution of a statistic when the null is false, have been 

made by Serlin and Lapsley (1985, 1993). In short, this approach involves 

incorporating an external criterion or statistic, such as an effect size, into the 

hypothesis test via a range-null hypothesis approach. The kernel of the ‘range-null 

hypothesis approach’ specifies a range of values under the null hypothesis for 

which a rejection implies a meaningful result. One tests against a negligibly small 

or trivial effect. If one rejects the null range hypothesis this implies not only that, 

for example, the mean of the experimental group is different than control group, 

but the difference is of large enough magnitude to be meaningful. As Serlin and 

Lapsley (1985) note, minimum effects testing can test more realistic hypotheses, 

rather than the “straw man” zero effect (p. 74). The important difference in terms 

of scientific practice is that Serlin and Lapsley’s (1985) framework focuses on 

testing one’s own theory as the null, along with using what they call a “good-
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enough belt” around a “complex null hypothesis” (p. 79). Central to this paradigm 

is the principle that this "good-enough belt" be defined subject to the analyst's 

particular research question, knowledge from the previous literature, and the 

precision of measurement. One machinery for applying Serlin and Lapsley’s 

framework is the Hodges-Lehmann paradigm described in Rao and Lovric or one 

could, as Serlin and Lapsley (1985) do, construct a test criterion by directly 

computing the percentile of the noncentral distribution involved in the test of the 

hypothesis to set the critical value – for example, the noncentral F distribution in a 

situation similar to the one described in Rao and Lovric. 

Closing Remarks 

In closing, Rao and Lovric’s paper highlights for us the continuing need for 

dialogue on conceptual and foundational matters in statistics. The statistical 

significance test is the most widely known point in empirical science wherein 

probabilities and probability models enter the scientific process as either a 

platonic structure of the mathematical objects or a practical mathematical model. 

In this light, the nature, use and misuse of significance tests have been widely 

discussed in both statistical and non-statistical circles. Clearly for significance 

tests to be of much use to empirical researchers they must focus on sensible and 

interesting null hypotheses. As is widely discussed in the methodological 

literature and growing in importance in the statistical literature, there are clear 

distinctions between statistical significance and the more important notions of 

practical, clinical or biological significance. Likewise, we need to move beyond 

the conventional language of Type I and Type II error rates and also consider 

errors that are directly related to day-to-day statistical practice such as Type S 

(sign) and Type M (magnitude) errors, which Gelman and Tuerlinckx (2000) 

describe as relating to the probability that claims with confidence have the wrong 

sign or are far in magnitude from underlying effect sizes. These errors speak more 

directly to quantifying our subjective assumptions about what matters and what 

does not. 

Highest among our concerns is that there is a misunderstanding among some 

experimental researchers that statistical theories of hypothesis testing (be they of 

the Fisherian, Neyman-Pearson, or some blended approach of the two 

frameworks) are intended to give an automated and (naively) objective support to 

an empirical claim. This misunderstanding reflects a lack of alignment of 

statistical and scientific reasoning. Cox (1982) stated the matter best: 
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“Failure to achieve an interesting level of significance in a study does not 

mean that the topic should be abandoned. Significance tests are not intended to 

inhibit the free judgment of investigators. Rather they may on the one hand warn 

that the data alone do not establish an effect, and hence guard against over 

interpretation and unwarranted claims, and on the other hand show that an effect 

is reasonably firmly proved.” (Cox, 1982, p. 327). 
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For robust measures of location associated with J dependent groups, various methods 
have been proposed that are aimed at testing the global hypothesis of a common measure 
of location applied to the marginal distributions. A criticism of these methods is that they 
do not deal with outliers in a manner that takes into account the overall structure of the 
data. Location estimators have been derived that deal with outliers in this manner, but 

evidently there are no simulation results regarding how well they perform when the goal 
is to test the some global hypothesis. The paper compares four bootstrap methods in 
terms of their ability to control the Type I error probability when the sample size is small, 
two of which were found to perform poorly. The choice of location estimator was found 
to be important as well. Indeed, for several of the estimators considered here, control over 
the Type I error probability was very poor. Only one estimator performed well when 
using the first of two general approaches that might be used. It is based on a variation of 
the (affine equivariant) Donoho-Gasko trimmed mean. For the second general approach, 

only a skipped estimator performed reasonably well. (It removes outliers via a projection 
method and averages the remaining data.) Only one bootstrap method was found to 
perform well when using the first approach. A different bootstrap method is 
recommended when using the second approach. 
 
Keywords: Bootstrap methods, outliers, skipped estimator, Donoho-Gasko trimmed 
mean 

 

Introduction 

Methods for comparing dependent groups, based on the usual sample mean, are 

not robust under general conditions. A fundamental concern with any inferential 

technique based on the mean is that it can result in relatively low power when 

dealing with heavy-tailed distributions (e.g., Marrona, Martin, & Yohai, 2006; 

Staudte & Sheather, 1990; Wilcox, 2012). Roughly, heavy-tailed distributions are 

http://dx.doi.org/10.22237/jmasm/1478001840
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characterized by outliers that inflate the standard error of the sample mean. Even 

an arbitrarily small departure from normality can result in poor power. Another 

concern is that the breakdown point of the sample mean is only 1 / n, where n is 

the sample size. That is, the minimum proportion of points that must be altered to 

completely destroy the sample mean (make it arbitrarily large or small) is 1 / n.  

Various methods for comparing J ≥ 2 dependent groups have been derived 

and studied that are based on replacing the marginal means with some robust 

estimator (e.g., Wilcox, 2012, Ch. 8). That is, if Xij (i = 1, …, n; j = 1, …, J) is a 

random sample of n vectors from some J-variate distribution, for each j, a robust 

measure of location is computed. These methods deal with outliers among the 

marginal distributions, but they do not deal with outliers in a manner that takes 

into account the overall structure of the data. As a simple example of what this 

means, it is not unusual to be young, it is not unusual to have heart disease, but it 

is very unusual to be both young and have heart disease.  

Situations are encountered where there are no outliers among the marginal 

distributions based on, for example, a boxplot or the MAD-median rule, yet there 

are outliers when using a multivariate outlier detection technique that takes into 

account the overall structure (e.g., Wilcox, 2012).  

Another possible criticism of applying a robust estimator to each of the 

marginal distributions is that the resulting measure of location is not affine 

equivariant (e.g., Rousseeuw & Leroy, 1987). To elaborate, note that a basic 

requirement for ˆ
j  to qualify as a location estimator is that it be both scale and 

location equivariant. That is, if ˆ
j  = T(Xij , …, Xnj) is some estimate of θj, then for 

ˆ
j  to qualify as a location estimator, it should be the case that for constants a and 

b, 

 

    1 1, , , , .n nT aX b X A b aT X X b      

 

In the multivariate case, a generalization of this requirement, affine equivariance, 

is that for a J-by-J nonsingular matrix A and vector b having length J, 

 

    1 1, , , , .n nT T   X A b X A b X X A b   (1) 

 

In particular, the estimate is transformed properly under rotations of the data as 

well as changes in location and scale. 
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The goal in this paper is to report simulation results on several methods for 

comparing dependent groups with an emphasis on situations where the sample 

size is small. Several multivariate estimators were considered that take into 

account the overall structure of the data when dealing with outliers. All of them 

are location and scale equivariant, but one is not affine equivariant.  

Here, two types of global hypotheses are considered. To describe them, let 

 ̂ X  represent one of the multivariate location estimators to be considered. 

Letting Θ = (θ1, …, θj) represent the estimand associated with  ̂ X  (the 

population analog of  ̂ X , the first global hypothesis is 

 

 0 1: jH      (2) 

 

To describe the second hypothesis, let Dijk = Xij - Xik, j < k, and let  ˆ D  be some 

multivariate location estimator based on the Dijk values. There are L = (J2 - J)/ 2 

parameters being estimated, which are labeled Δ = (δ1, …, δL). Now the goal is to 

test 

 

 
0 1: 0.LH       (3) 

 

From basic principles, when dealing with means, there is no distinction 

between (2) and (3). But under general conditions, this is not the case when using 

a robust estimator. (It is readily verified, for example, that the difference between 

the marginal medians is not necessarily equal to the median of the difference 

scores.) 

Two bootstrap methods for testing (2) were considered here, and another 

two methods were considered when testing (3). As will be seen, the choice of 

estimator, as well as the bootstrap method that is used, is crucial in terms of 

controlling the Type I error probability, at least when the sample size is small. 

Description of the Methods 

The Location Estimators 

The first estimator is based on a particular variation of an affine equivariant 

estimator derived by Donoho and Gasko (1992), which will be labeled the DG 

estimator henceforth. Roughly, it begins by quantifying how deeply each point is 
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nested within the cloud of points. Here, this is done using a projection-type 

method, which provides an approximation of half-space depth (Wilcox, 2012, 

section 6.2.5). To elaborate, let ̂  be some initial affine equivariant location 

estimator. Here, the (fast) minimum covariance determinant estimator (MCD) is 

used (e.g., Wilcox, 2012, section 6.3.2). Briefly, the MCD estimator searches for 

a subset of half the data that minimizes the generalized variance. The mean of this 

subset is the MCD measure of location. Let 
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(i = 1, …, n) and for any j (j = 1, …, n), let 
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The distance between ̂  and the projection of Xj (when projecting onto the line 

connecting Xi and ̂ ) is 

 

  signij ij ijH W T   

 

where ijT  is the Euclidean norm associated with the vector Tij. 

Let dij be the depth of Xj when projecting points onto the line connecting Xi and ̂ . 

That is, for fixed i and j, the depth of the projected value of Xj is 

 

     min # ,# ,ij ij ik ij ikd H H H H     

 

Where #{Hij ≤ Hik} indicates how many Hik (k = 1, …, n) values satisfy Hij ≤ Hik. 

The depth of Xj is taken to be Lj = min dij, the minimum being taken over all 

i = 1, …, n. 
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The Donoho-Gasko (DG) γ trimmed mean associated with the Xij values is 

the average of all points that are at least γ deep in the sample. That is, points 

having depth less than γ are trimmed and the mean of the remaining points is 

computed. If the maximum depth among all n points is at least γ, the breakdown 

point of the DG estimator is γ / (1 + γ), where the breakdown point refers to the 

minimum proportion of points that must be altered to completely destroy an 

estimator. Here, γ = .2 is used. 

The other estimator considered here, which performed well in simulations 

when testing (3), is a skipped estimator based on a projection method for 

detecting outliers, which will be labeled the SP estimator. Fix i, and for the point 

Xi let 

 

 ˆ,i i   A X   

 

 ˆ
j i   B X   
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i j

j j

j j

A B
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C B   

 

j = 1, …, n. Then when projecting the points onto the line between Xi and ̂ , the 

distance of the jth point from ̂  is 

 

 .ij jV C   

 

The jth point is declared an outlier if 

 

  2 1ij VV M c q q     (5) 

 

Where MV, q1 and q2 are the usual sample median and estimates of the lower and 

upper quartiles, respectively, based on the Vi1, …, Vin values, and c is the .95 

quantile of a chi-squared distribution with J degrees of freedom. (Here, the 

quartiles are estimated via the ideal fourths; see Frigge, Hoaglin, & Iglewicz, 

1989.) 

The process just described is for a single projection. Repeating this process 

for each i (i = 1, …, n), Xj is declared an outlier if for any of these projections, Vij 

satisfies (5). Removing any points declared an outlier, the mean of the remaining 
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data is taken to be the SP estimator of location. Its small-sample efficiency 

compares well to the DG estimator (Wilcox, 2012). Note that the estimate of 

interquartile range, q2 – q1, based on the ideal fourths, has a breakdown point 

of .25 indicating that the breakdown point of the SP estimator is .25 as well. The 

small-sample efficiency of the SP estimator compares well to several other robust 

estimators that have been derived (Ng & Wilcox, 2010).  

Several other affine equivariant estimators were considered but which 

performed poorly in simulations in terms of controlling the Type I error 

probability. So computational details related to these other estimators are not 

provided. They included the minimum volume ellipsoid (MVE) estimator 

(Rousseeuw & van Zomeren, 1990), the minimum covariance determinant (MCD) 

estimator (Rousseeuw & Van Driessen, 1999), the translated-biweight S-estimator 

(Rocke, 1996), the median ball algorithm (Olive, 2004) and the orthogonal 

Gnanadesikan-Kettenring (OGK) estimator (Maronna & Zamar, 2002). 

Testing (2) and (3)  

Two bootstrap methods for testing (2), as well as (3), were considered. The first, 

which is designed to test (2) and corresponds to the RMPB3 in Wilcox (2012, 

section 8.2.5), is applied as follows. Compute the test statistic 

 

  
2

ˆ ,jQ      

 

Where ˆ J  . An appropriate critical value is estimated by first setting 

ˆ
ij ij jZ X   . That is, shift the empirical distributions so that the null hypothesis 

is true. Next, a bootstrap sample is obtained by resampling, with replacement, n 

rows from the matrix Z yielding  * 1, , ; 1, ,ijZ i n j J  . Compute the 

measure of location that is of interest based on this bootstrap sample yielding 
*ˆ
j  

and test statistic Q*. Repeat this process B times yielding * *

1 , , BQ Q . Put these B 

values in ascending order yielding    
* *

1 B
Q Q  . Then reject the hypothesis of 

equal measures of location at the α level if  
*

u
Q Q , where u = (1 – α) B rounded 

to the nearest integer. 

The second method for testing (2) is based in part on bootstrap samples 

obtained from the Xij values rather than the Zij values. The strategy is based on 

determining how deeply the grand mean is nested within the resulting bootstrap 
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cloud. Details about this strategy can be found in Wilcox (2012, pp. 392-393). 

Because this approach performed poorly for the situation at hand, no details are 

provided.  

The two bootstrap methods for testing (3) can be roughly described as 

follows. Take B bootstrap samples by resampling with replacement from the 

matrix X, compute a measure of location based on the resulting difference scores 

and determine how deeply the null vector 0 is nested within the bootstrap cloud. 

Here, two methods were used to measure the depth of a point in data cloud: 

Mahalanobis distance and projection distance. In general this approach did not 

perform well. But when coupled with the DG estimator, it did perform reasonably 

well when testing (3). 

To provide more details, let  *ˆ 1, ,b b B   indicate the location estimate 

of Δ based on the bth bootstrap sample and for convenience let *

0̂  denote the null 

vector. Let  * *ˆ
d bP   be the projection distance of *ˆ

b  based on the B + 1 points 

* *

0
ˆ ˆ, , B  . So  * *ˆ

d bP   reflects how far the null vector is from the center of the 

bootstrap cloud. Then, from general theoretical results in Liu and Singh (1997), a 

p-value is  

 

     * * * *

01

1 ˆ ˆ1
B

d d bb
I P P

B 
      

 

where the indicator function     * * * *

0
ˆ ˆ 1d d bI P P     if    * * * *

0
ˆ ˆ

d d bP P   ; 

otherwise     * * * *

0
ˆ ˆ 0d d bI P P    . This will be called method D-P. When the 

projection distance is replaced by Mahalanobis distance, this will be called 

method D-M. 

Simulation 

Simulations were used to study the small-sample properties of the methods 

described in the previous section. The simulations were run using the software R, 

with much of the code written in C++. In addition, the R functions took advantage 

of a multi-core processor via the R package parallel. Despite this, execution time 

was relatively high, particularly when using the DG estimator in conjunction with 

method D-P. Consequently, estimated Type I error probabilities were based on 

2000 replications. Four types of distributions were used: normal, symmetric and 
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heavy-tailed, asymmetric and light-tailed, and asymmetric and heavy-tailed. More 

precisely, the marginal distributions were taken to be one of four g-and-h 

distributions (Hoaglin, 1985) that contain the standard normal distribution as a 

special case. (The R function rmul, in Wilcox, 2012, was used to generate 

observations.) If Z has a standard normal distribution and g > 0, then 

 

 
 

 2
exp 1

exp 2
gZ

W hZ
g


   

 

has a g-and-h distribution where g and h are parameters that determine the first 

four moments. If g = 0, this last equation is taken to be 

 

  2exp 2 .W Z hZ   

 

The four distributions used here were the standard normal (g = h = 0.0), 

asymmetric heavy-tailed distribution (h = 0.2, g = 0.0), an asymmetric distribution 

with relatively light tails (h = 0.0, g = 0.2), and an asymmetric distribution with 

heavy tails (g = h = 0.2). Table 1 shows the skewness (κ1) and kurtosis (κ2) for 

each distribution. Additional properties of the g-and-h distribution are 

summarized by Hoaglin (1985). The number of bootstrap samples was taken to be 

B = 500. This choice generally seems to perform well in other settings, in terms of 

controlling the Type I error probability (Wilcox, 2012). But a possibility is that a 

larger choice for B might yield more power (e.g., Racine & MacKinnon, 2000). 

The correlation among the variables was taken to be ρ = 0 or ρ = .5. 
 
 
Table 1. Some properties of the g-and-h distribution. 

 

g h κ1 κ2 

0.0 0.0 0.00 3.0 

0.0 0.2 0.00 21.46 

0.2 0.0 0.61 3.68 

0.2  0.2  2.81 155.98 

 
 

As a partial check on the impact of heteroscedasticity on the Type I error 

probability, the Xij values were taken to be λXij (i = 1, …, n). The two choices for 

λ were 1 and 4. For symmetric g-and-h distributions (g = 0), all of the measures of 

location considered here are equal to zero, so for λ = 4 the null hypothesis remains 
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true. But when dealing with skewed distributions (g > 0), this is not the case. To 

deal with this, the expected value of an estimator was determined by generating 

4000 samples of size n from a specified g-and-h distribution (with λ = 1) and then 

averaging the resulting estimates. So with p = 4, in essence 16,000 estimates are 

being used. Then the marginal distributions were shifted so that, based on the 

expected value of an estimator, the null hypothesis is true. 

Shown in Table 2 are the results when using the SP estimator with methods 

D-M and D-P to test (3). Although the seriousness of a Type I error depends on 

the situation, Bradley (1978) has suggested that as a general guide, when testing 

at the .05 level, at a minimum the actual level should be between .025 and .075.  

As can be seen, this criterion is generally met when using D-M. But under 

normality, with ρ = .5, is this not the case, the largest estimate being .098. In 

contrast, when using D-P, the largest estimate is .075.  
 
 
Table 2. Estimated Type I error probabilities when testing (3), n = 20, α = .05 using the 
SP estimator. 
 

  D-M D-P 

  λ = 1 λ = 4 λ = 1 λ = 4 

g h ρ = .0  ρ = .5 ρ = .0  ρ = .5 ρ = .0  ρ = .5 ρ = .0  ρ = .5 

0.0 0.0 .069 .065 .096 .083 .055 .063 .075 .065 

0.0 0.2 .052 .047 .055 .049 .033 .042 .041 .043 

0.2 0.0 .070 .071 .039 .046 .054 .070 .054 .056 

0.2 0.2 .044 .044 .030 .040 .035 .039 .028 .040 

 
 

Reported in Table 3 are simulation results when using method Q to test (2) with 

the DG estimator and n = 30. For n = 20, estimated Type I error probabilities 

exceed .075. But as indicated in Table 3, with n = 30, the estimates ranged 

between .025 and .061 when testing at the .05 level. When testing (2) instead via 

methods D-M or D-P, control over the Type I error probability was poor.  
 
 
Table 3. Estimated Type I error probabilities, n = 30, α = .05 using method Q to test (2) 

with the DG estimator 
 

 λ = 1 λ = 4 

g h ρ = .0 ρ = .5 ρ = .0 ρ = .5 

0.0 0.0 .056 .057 .053 .060 

0.0 0.2 .031 .034 .040 .041 

0.2 0.0 .054 .060 .057 .061 

0.2 0.2 .026 .025 .038 .040 
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Conclusion 

When using a location estimator that takes into account the overall structure of 

data when dealing outliers, finding a method for testing (2) and (3) appears to be 

nontrivial when the sample size is small. The bulk of the methods considered here 

performed poorly in terms of controlling the Type I error probability, particularly 

when using an affine equivariant estimator.  

Only one method performed well in simulations when testing (2) and an affine 

equivariant estimator is used: method Q in conjunction with the DG estimator. No 

method based on an affine equivariant estimator was found to perform reasonably 

well when testing (3). Moreover, several bootstrap methods that perform 

reasonably well using a robust estimator applied to each of marginal distributions 

did not perform well for the situations considered here. However, the skipped 

estimator studied here, which is location and scale equivariant, was found to 

perform reasonably well when testing (3) via a percentile bootstrap method that 

measures the depth of null vector using projection distances. Another possible 

appeal of the SP estimator over the DG estimator is that for light-tailed 

distributions, including normal distributions, the DG estimator has relatively poor 

efficiency (e.g., Massé & Plante, 2003; Wilcox, 2012, p. 251). In contrast, the SP 

estimator performs nearly as well as the usual sample mean. 

R functions are available for applying the methods that performed well in 

the simulations. The R function bd1GLOB tests (2). The DG estimator can be 

used by setting the argument est=dmean. Setting the argument MC=TRUE takes 

advantage of multi-core processor, if multiple cores are available, via the R 

package parallel, which can be installed via R command install.packages. The R 

function rmdzD applies method D-P in conjunction with the SP estimator. Again, 

setting the argument MC=TRUE will take advantage of a multi-core processor if 

one is available and the R package parallel has been installed. These functions can 

be installed with the R command install.packages(``WRS'',repos=``http:R-

Forge.R-project.org''). They are also stored in the file Rallfun-v24, which can be 

downloaded from the first author's web page. 
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Educators use meta-analyses to decide best practices. It has been suggested that effect 
sizes have declined over time due to various biases. This study applies an established 
methodological framework to educational meta-analyses and finds that effect sizes have 
increased from 1970–present. Potential causes for this phenomenon are discussed. 
 
Keywords: Effect sizes, meta-analysis, research methodology, publication bias. 

 

Introduction 

Effect sizes are commonly used in conducting meta-analyses, such as in 

educational research. Jennions and Moller (2002) suggested reliance on effect 

sizes has declined somewhat due to various sources of bias. The primary concern 

of this study is with the application of increased rigor to educational literature. It 

is important that educators and educational policy-makers use practices and 

policies based on the strongest empirical evidence. Because public school funding 

is a limited resource, it is important for that funding to be spent wisely and on 

effective innovations. This applies to other fields as well, such as social work 

(Shlonsky, Noonan, Littell, & Montgomery, 2011). 

Meta-analysis 

Effect sizes describe the magnitude difference between the null and alternative 

hypothesis. Effect sizes are calculated for each study, weighted by sample size 

and study quality, and then averaged to produce an overall effect size (Littell, 

Corcoran, & Pillai, 2008). Although typical data analysis uses multiple 

observations of a phenomenon as data points, meta-analysis uses multiple studies 

as data points (Wolf, 1986; Littell et al., 2008). The resulting literature synthesis 

http://dx.doi.org/10.22237/jmasm/1478001900
mailto:j.a.stephens@csuohio.edu
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may become stronger than that provided in a qualitative or narrative fashion 

(Asher, 1990).  

Unstable Effect Size 

Ecologists discovered several examples of diminishing effect sizes (Alatalo, 

Mappes, & Elgar, 1997; Gontard-Danek & Moller, 1999; Poulin, 2000; Simmons, 

Tomkins, Kotiaho, 1999). An interpretation of why effect sizes apparently 

diminish over time has not emerged. The following are possible explanations. 

Alatalo et al. (1997) attributed diminishing effect sizes to changing belief systems. 

Palmer (2000) attributed the phenomenon to fads. Tregenza and Wedell (1997) 

attributed it to biased study design. Alatalo et al. (1997) suggested submitting 

findings for publication that support previously held ideas makes it easier to get 

published. Simmons et al. (1999) suggested that it is easier to publish 

confirmatory findings during early stages of research in a particular field, but it 

becomes more difficult as critique of that field narrows. This may be particularly 

emphasized in the social sciences, where it takes longer to publish non-significant 

results (Stern & Simes, 1997). 

Social science researchers who study the phenomenon of diminishing effect 

sizes cite two primary potential causes: dissemination bias and citation bias. 

Dissemination bias is a broad term encompassing many different sorts of 

biases related to the publication and dissemination process, including bias related 

to date of publication, language, multiple publication bias, selective reference 

citation, database index bias, media attributed bias, selective publication bias, 

familiarity of techniques, and the cost of research reports (Rothstein, Sutton & 

Bornstein, 2005; Song, Eastwood, Gilbody, Duley, & Sutton, 2000). 

“Dissemination bias occurs when the dissemination profile of a study’s results 

depends on the direction or strength of its findings” (Song et al., 2000, p. 17). It 

refers to the notion that a given literature review does not represent a random 

sampling of all studies in a given field, and therefore is a type of non-random 

sampling error similar to that found when conducting primary research (Song et 

al., 2000).  

Both indirect and direct evidence support the existence of dissemination bias 

(Sohn, 1996). Examples of indirect evidence include disproportionately high 

percentage of positive findings in journals, or larger effect sizes in small studies 

relative to large studies. Small studies are more vulnerable to dissemination biases, 

as the results of these studies will be more widely spread around the true results 

owing to greater random error (Begg & Berlin, 1988). Direct evidence includes 
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such things as admissions by investigators and publishers and comparison of 

results from published and unpublished studies (Song et al., 2000). Rotton, Foos, 

VanMeek, and Levitt (1995) found that the most significant reason given by 

authors for not submitting their work for publication was the failure to find 

statistical significance.  

The strongest evidence supporting the existence of dissemination bias comes 

from comparisons between published and unpublished studies (Song et al., 2000). 

Simes (1986) performed meta-analyses on both published and unpublished studies 

of a cancer treatment regimen and discovered that the published findings found 

that the treatment was effective, but when the published and unpublished studies 

were analyzed together, the treatment effect was not found. 

There are specific types of dissemination bias. Biases in addition to those 

mentioned earlier include positive results bias, hot stuff bias, time-lag bias, grey 

literature bias, full publication bias, place of publication bias, outcome reporting 

bias, and retrieval bias (Song et al., 2000). These forms of bias may be prevalent 

in many disciplines and may account for observed decline in effect sizes in 

ecology and other fields. 

Methodology 

The purpose of this study is to analyze whether meta-analytically derived results 

are longitudinally stable in education research. To accomplish this task, a process 

similar to that used by Jennions and Moller (2002) will be invoked.  

Study Selection 

First, a set of meta-analyses, based on K–12 classroom interventions from the 

years 1970 to 2011, was selected from the EBSCOHost databases. Studies were 

included if they specifically provide effect size results based on meta-analytical 

techniques and provide a comprehensive list of studies used to generate effect 

sizes. 
 
 
Table 1. Descriptive statistics of included studies 

 

N 
Year of Publication 

Range 
Mean Year 

of Publication 

Mean Number of 
Reported Effect Sizes 

Per Meta-Analysis 

60 1984-2010 2002.3 42.7 
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The study involved a broad search for literature, which was then winnowed 

down through a rigorous paring process, resulting in a final set of 60 studies that 

were analyzed. Descriptive statistics of these studies are shown in Table 1. After 

final literature was selected, data analysis was initiated. 

Statistical Procedure 

The 60 selected studies were then analyzed using a process outlined by Jennions 

and Moller (2002), involving the use of four Spearman’s ρ (rho) analyses on two 

levels. The first set of analyses dealt with the effect sizes reported in the selected 

studies. This will hereafter be known as the “study level” of analysis. The second 

set of analyses were conducted on the meta-analyses themselves. This is hereafter 

known as the “meta-analysis level.” 

On both the study level and the meta-analysis level, four relationships were 

analyzed: (i) the relationship between effect size and year of publication; (ii) the 

relationship between effect size and sample size; (iii) the relationship between 

standardized effect size and sample size; and (iv) the relationship between effect 

size and year of publication, after weighting for variation in sampling effort. The 

first three relationships were conducted using a Spearman’s ρ (rho) test and were 

performed in SPSS.  

The fourth relationship was conducted using MetaWin 2.0. This relationship 

was estimated by creating a random-effects continuous model meta-analysis with 

year of publication as the independent variable and the inverse of sampling 

variance as the weighting factor. Random-effects meta-analysis was selected over 

a fixed-effects model, as fixed-effects models become problematic when some 

studies have very large sample sizes. These studies then dominate the analysis, 

and the results from the studies with smaller sample sizes are largely ignored 

(Helfenstein, 2002). 

MetaWin 2.0 was used to obtain a one-tailed ρ-value for year of publication 

generated by a randomization method with 999 replicates. A one-tailed ρ-value 

was chosen because the Jennions and Moller (2002) study used a one-tailed test, 

since they postulated that a declining effect size was more likely. The effect size 

generated by the meta-analysis was converted to a Spearman’s ρ- (rho-) value so 

that all results were reported in a uniform manner. The formula to do this is as 

follows: 

 

 
2

2 4

d

d
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All Spearman’s ρ-values were then converted to standard normal deviates (Z-

scores), using the formula: 

 

 
2Z

n
    

 

This was done so that all results were normalized, thus diminishing the effects of 

outliers and providing a more robust answer to the research question. 

Results 

Results regarding the possibility of effect sizes diminishing over time are 

compiled in Table 2. 
 
 
Table 2. Relationships (ρ) between effect size, standardized effect size, year of 

publication, and sample size. 
 

 

Method of Calculation 

Weighted meta-
analysis of: 

Year v. 
Effect Size 

n v. 
Effect Size 

n v.  
Standard Effect 

Year v. Effect Size (after 

weighing for sampling variance) 

Datasets 
  0.105*   -0.073**   -0.073**   0.440* 

Original Meta-
Analyses   

0.317** 
  

-0.148   -0.148   0.333* 

 

Note: * Significant at the <0.001 level; **Significant at the <0.01 level 

 
 

Beginning at the study level, these results indicate that there is a statistically 

significant positive relationship between year of publication and effect size 

(ρ = 0.105, p < 0.001, n = 1167). However, there was also a significant 

relationship between sample size and both effect size and standardized effect size, 

so the relationship was re-assessed after accounting for sampling variance. Still, 

however, a statistically significant positive relationship was observed (ρ = 0.440, 

p < 0.001, n = 1167). Figures 1 – 4 show scatterplots of these four relationships. 
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Figure 1. Publication year compared to 

effect size (g) at the study level 

 

 
 

 
 
Figure 2. Sample size compared to 

effect size (g) at the study level 

 

 
 
Figure 3. Sample size compared to 

standardized effect size (z-transformed) 
at the study level 

 

 
 

 
 
 
Figure 4. Year of publication compared 

to effect size (g) after weighting for 
sample size at the study level 

 

 
 

A similar observation is found at the meta-analysis level. These results 

indicate that there is a statistically significant positive relationship between year 

of publication and effect size (ρ = 0.317, p < 0.009, n = 60). However, there was 

not a significant relationship between sample size and both effect size and 

standardized effect size. Still, however, a statistically significant, positive 

relationship was observed (ρ = 0.333, p < 0.001, n = 60) after accounting for 

sampling variance. Figures 5 – 8 below show scatterplots of the relationships 

from the meta-analysis level. 
 



JOSHUA STEPHENS 

59 

 

 
 
Figure 5. Publication year compared to 

effect size (g) at the meta-analysis level 

 

 
 

 
 
Figure 6. Sample size compared to 

effect size (g) at the meta-analysis level 

 

 
 

 
 
Figure 7. Sample size compared to 

standardized effect size (z-transformed) 
at the meta-analysis level 

 

 
 

 
 
 
Figure 8. Year of publication compared 

to effect size (g) after weighting for 
sample size at the meta-analysis level 

 

 
 

It is notable that effect sizes increase at both the study and meta-analysis 

levels. Data were parsed out to show mean effect sizes by decade to allow for 

simpler understanding of how effect sizes have increased over time. Table 3 

shows this descriptive information. 
 
 
  



LONGITUDINAL STABILITY OF EFFECT SIZES 

60 

Table 3. Mean effect sizes by decade. 

 

 
N 

Mean effect size 
(g) 

Range 
Standard 
Deviation 

1970s / 1980s 2 0.100 -0.20 – 0.40 0.424 

1990s 21 0.424 -0.09 – 1.61 0.329 

2000s 31 0.509 -0.75 – 1.40 0.506 
2010s 6 0.595 0.33 – 0.91 0.276 

 

Conclusion 

It was found that education meta-analyses do not appear to follow the pattern seen 

in the natural sciences, because the effect sizes on which they are based did not 

decline. On the contrary, for the sample included in this study, they tended to 

increase over time. 

This finding bears some consideration. If no statistically significant 

relationships had been observed between effect sizes and year of publication, then 

it could be assumed that meta-analysis provides a longitudinally stable measure, 

and a strong argument could have been made for wider use of this analytical 

technique. However, as measured effect sizes tend to increase over the time 

period 1970 – 2012, either there is some persistent set of biases that are impacting 

the conduct or publication of educational research, or effect sizes are indeed 

increasing over time as the field of education develops into a more complex and 

sophisticated science and leaves behind ineffective educational practices. 

Persistent Bias in Educational Research 

One explanation for the observed phenomenon of longitudinally increasing effect 

sizes is publication bias. Given the findings of this study, it seems reasonable to 

conclude that it is possible that some of these forms of bias may be more active 

than others. In particular, the following forms of publication bias are possible 

explanations for the findings of this study: positive results bias; hot stuff bias; 

grey literature bias; and confirmation bias. 

 

Positive results bias   Positive results bias refers to the tendency of 

authors to submit—and for editors to publish—positive or significant research 

results while ignoring non-significant results (Song et al., 2000). This seems to be 

a likely cause of increasing effect sizes. Since researchers generally will find 

statistically significant results when they are searching for literature to use to 
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conduct meta-analyses, they will find ever-increasing effect sizes across time. 

Then this effect becomes multiplied, as other researchers use published meta-

analyses to generate effect sizes for new research and duplicate biases from past 

research.  

 

Hot stuff bias    Another form of bias that could account for the 

phenomenon of increasing effect sizes is hot stuff bias. This refers to the 

phenomenon of journal publishers tending to publish topics that are timely or 

popular but which may only have relatively weak results (Sackett, 1979). This 

seems to be a likely form of publication bias in education where fads and trends 

dominate pedagogical practice. These trends may be pushed by textbook 

publishers looking to profit from a product, or politicians who make educational 

policy with little understanding of educational systems and processes. 

Hot stuff bias may account for increasing effect sizes through publishers 

choosing articles to publish based on what they believe will promote their 

journal’s readership. Publishers choose articles that may be methodologically 

unsound; these articles are then indexed in electronic indexes and used to conduct 

meta-analyses, thereby creating the appearance of increasing effect sizes over 

time. When the particular timely trend ends, no researcher bothers to fully 

repudiate it or no journal chooses to publish these repudiations, so it appears that 

these effect sizes are significant and increasing over time. 

 

Grey literature bias   Grey literature refers to things such as conference 

presentations, dissertations, working papers, and other pieces of literature that are 

difficult to obtain as they are not electronically indexed in any systematic manner 

(Auger, 1998). Grey literature bias refers to the notion that these pieces of 

literature tend to show non-significant or statistically weaker results and that 

excluding these from meta-analyses produces an artificially high effect size (Song 

et al., 2000). McAuley et al. (1999) sampled 135 meta-analyses, 38 of which 

included grey literature, found that those meta-analyses that included grey 

literature showed a diminished effect size of approximately 12%. 

Grey literature bias would appear to be a significant problem in the field of 

educational research where many universities have large numbers of master’s and 

doctoral students who are producing volumes of research that is never published. 

While it is difficult to quantify specifically how much research is conducted and 

never included in any sort of meta-analysis, it is safe to assume it must be a large 

amount every year. When one includes classroom research done by practicing 

teachers, the amount of grey literature skyrockets. While not all of this research 
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would meet methodological criteria for publication or for inclusion in properly 

conducted meta-analyses, some certainly would. The exclusion of this grey 

literature could be a significant factor in the observed phenomenon of increasing 

effect sizes. If established researchers get their statistically significant findings 

published while student researchers or others who find non-significance do not, 

then effect sizes would tend to increase over time as no one individual or 

organization reputes earlier findings. 

 

Confirmation bias   Confirmation bias refers to the psychological 

phenomenon whereby humans tend to subconsciously look for ideas and 

information that confirms their earlier beliefs. This information tends to be more 

readily assimilated and utilized than does information that contradicts what an 

individual believes (Bushman & Wells, 2001). 

Confirmation bias seems like a likely cause of increasing effect sizes. As 

researchers look for studies to help them build the case for their study, they will 

naturally begin by searching for studies that confirm what they already believe. 

As they find increasing numbers of these studies, it seems that the results of the 

study are a foregone conclusion. This may lead researchers to discount or ignore 

studies that may disagree with what they believe is true about a research question. 

In a meta-analysis, this may take the form of a researcher applying more stringent 

selection criteria to studies that don’t confirm his or her hypothesis, leading to 

effect sizes that increase across time. 

Increasing effect sizes represent educational reality 

There is another explanation for the phenomenon of longitudinally increasing 

effect sizes in educational research: it is possible that effect sizes seem to be 

increasing because they actually are. This is a hopeful notion that as educational 

researchers have begun to more rigorously conduct research and educational 

practitioners have received better training in the utilization of research-based 

educational techniques, that educational practices have become more effective. 

This would be supported by the fact that, over the past 40 years in the sample 

considered in this study, many states have implemented tougher teacher training 

and licensure laws, and departments of education at universities have taken a 

more rigorously quantitative approach. However, when the outcomes of large-

scale assessments of student learning are observed across this time period, no 

similarly significant gains are apparent. It is beyond the scope of this study to 

adequately assess the growth of students in comparison to the perceived growth of 
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teacher effectiveness. However, it does seem less likely that this is the case and 

more likely that the correct explanation for the phenomenon of longitudinally 

increasing effect sizes is publication bias. 

Potential solutions for addressing increasing effect sizes 

If, as the results of this study suggest, effect sizes are in fact increasing over time, 

then this potentially indicates that there is a problem in the publication process 

that should be corrected by researchers and publishers. Failure to do so may cause 

misperceptions regarding the efficacy of a host of educational interventions that 

may diminish the impact of schooling for students which is a patently undesirable 

outcome. 

Educational researchers should strive to conduct meta-analyses and other 

research in the most methodologically sound manner possible. Narrative literature 

reviews should be only used when a research question is either very limited in 

scope or is so new that very little literature is available such that it would be 

possible for a researcher to adequately summarize findings from the literature 

base without quantitative methods. It may also be useful to provide narrative 

literature reviews as an element of a meta-analysis. Meta-analytic techniques 

should be included in most literature reviews and these techniques should follow 

the guidelines set forth by the Cochrane and Campbell Collaborations (Pfeffer & 

Sutton, 2006). These organizations have initiated programming to assist 

researchers with developing the most accurate summarizations of literature 

possible. Following their recommendations globally would create a less biased 

body of educational literature that would be more useful to practitioners and 

researchers alike. 

To further ameliorate this phenomenon, there would need to be a change in 

the way education research is published. First and foremost, there must be a 

journal dedicated to publishing only null or statistically insignificant findings. 

This journal must be indexed properly in major educational research databases 

and should draw from as many countries and languages as possible. By doing so, 

researchers who wish to properly conduct meta-analyses will be able to more 

readily access these results and then conduct a more methodologically sound and 

less biased meta-analysis.  

Additionally, a comprehensive effort should be made to index the wide body 

of grey literature that is generated globally each year. Conference presentations, 

dissertations, theses, working papers, action research and other forms of grey 

literature may provide important insight into research questions and should not be 
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ignored. Moreover, publishers should be conservative when announcing special 

issues or accepting papers on topics that are very new. Although this is difficult to 

do and may not always be advisable, this would help alleviate the problems 

associated with hot stuff bias, as described above. 

Limitations of the present study 

There are two limitations in this study that require comment. First, component 

studies came from a limited subset of education studies. Hence, a more inclusive 

literature search may invalidate or temper the results found here. Second, it has 

been opined that meta-analysis be conducted using a team of reviewers who make 

decisions regarding which studies to include. Presumably, that process creates a 

less biased set of inclusion criteria. It is possible that, had this research been 

conducted utilizing a team of researchers or assistants to help determine which 

studies should be included, the results of this project may have been different.  

The larger question remains as to the cause of the observed phenomenon. Is 

it caused by pervasive publication biases that should be immediately addressed 

and remedied, or have effect sizes increased because educators have become 

better at their jobs over the past 40 years? This causal question is truly vexing and 

should be a primary focus of future research. In general, publication biases are not 

widely studied in education, and should be a source of concern for the community 

of educational researchers and for those who utilize that research. 
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When the sample size n is small, the random variable  T n X S   is said to 

follow a central t distribution with degrees of freedom (n – 1), where X  is the sample 
mean and S is the sample standard deviation, provided that the data X ~ N (μ, σ2). The 

random variable T can be used as a test statistic to hypothesize the population mean μ. 
Some argue that the t-test statistic is robust against the normality of the distribution and 
claim that the normality assumption is not necessary. In this article we will use 
simulation to study whether the t-test is really robust if the population distribution is not 
normally distributed. In particular, we will study how the skewness of a probability 
distribution will affect the confidence interval as well as the t-test statistic.  
 

Keywords: Skewness, t-test, confidence interval, Edgeworth expansion 

 

Introduction 

The effect of skewness, denoted by γ from here on, of a random variable X on 

t-test have been investigated by Johnson (1978), Hall (1992), Abramovitch and 

Singh (1985) and many others; but, those are more on the theoretic investigation 

and concentrated on the t-test. Very little has been studied on the confidence 

interval. Two independent samples t-test are studied by Sawilowsky and Blair 

(1992). Their studies are based on several skewed distributions and various 

sample sizes. Their simulation results show that the proportions of rejection in the 

upper tail or lower tail are affected by the skewness of the distribution when 

samples sizes are small. Blair and Sawilowsky (1993) comparing the performance 

http://dx.doi.org/10.22237/jmasm/1478001960
mailto:limw@wpunj.edu
mailto:canalice@gmail.com
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usual independent samples t-test and modified t-tests under different distribution 

functions and various samples sizes. For further details on the performance and 

recommendation of which t-test under various distributions, see Blair and 

Sawilowsky (1993). 

Consider the one sample t-test. Based on simulation studies, skewness of the 

distribution does not affect the t-test as much as the confidence interval. It can be 

shown that the coverage error is larger than the pre-determined coverage error, α, 

if the data follow a skewed distribution function. 

Intuitively, if X is a random variable with mean μ but is positively skewed, 

γ > 0, then the population median is less than the population mean μ. A sample of 

size n from X is likely to have more than 50% of values to be less than μ; hence 

most likely   0X   . If γ > 0, then a (1 – α) × 100% confidence interval for μ 

 

 
2 2,

S S
X t X t

n n
 

 
  

 
  (1) 

 

will miss the mean μ more on the upper side than the lower side. This effect is 

reported by Boos and Hughes-Oliver (2000). Define the missed right and missed 

left as given in Boos and Hughes-Oliver (2000, p. 122), where miss right occurs 

when the population mean μ is above the upper confidence limit, i.e., 

 

 2 ,
S

X t
n

     

 

and miss left occurs when the population mean μ is below the lower confidence 

limit, i.e., 

 

 2 ,
S

X t
n

     

 

and miss =  (miss right   miss left). Tables 1, 2, 3 and 4 are the simulated results 

of missed right, missed left and missed of usual confidence interval given in 

equation (1). Four types of population distributions, namely normal distribution 

(γ = 0), Laplace distribution (γ = 0), Gamma distribution (γ > 0) and Gumbel 

distribution (γ < 0) were selected for the simulation study. 
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Table 1. Table of miss right, miss left and miss of (1 – α) × 100% confidence interval for μ 

with X1, X2,…,Xn ~ Normal (1, 2), n = 10 and skewness = 0.0. 
 

 
 
Table 2. Table of miss right, miss left and miss of (1 – α) × 100% confidence interval for μ 

with X1, X2,…,Xn ~ Laplace (1, 2), n = 10 and skewness = 0.0. 
 

 
 
Table 3. Table of miss right, miss left and miss of (1 – α) × 100% confidence interval for μ 

with X1, X2,…,Xn ~ Gamma (1, 2), n = 10 and skewness = 2. 
 

 
 
  

α 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 

miss right 0.005 0.011 0.015 0.021 0.025 0.029 0.033 0.041 0.043 0.052 

miss left 0.004 0.009 0.017 0.022 0.023 0.033 0.034 0.038 0.049 0.06 

miss 0.009 0.02 0.032 0.044 0.048 0.061 0.067 0.079 0.092 0.111 

           
α 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2 

miss right 0.053 0.057 0.067 0.073 0.07 0.082 0.088 0.1 0.098 0.101 

miss left 0.056 0.061 0.063 0.071 0.082 0.082 0.087 0.093 0.107 0.101 

miss 0.109 0.118 0.129 0.144 0.152 0.164 0.175 0.192 0.205 0.201 

α 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 

miss right 0.003 0.007 0.012 0.015 0.02 0.025 0.03 0.037 0.041 0.047 

miss left 0.004 0.005 0.01 0.014 0.02 0.026 0.031 0.035 0.039 0.047 

miss 0.007 0.012 0.022 0.029 0.04 0.051 0.061 0.072 0.08 0.094 

           
α 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2 

miss right 0.052 0.059 0.058 0.07 0.075 0.081 0.086 0.095 0.095 0.101 

miss left 0.054 0.058 0.07 0.07 0.079 0.079 0.083 0.089 0.1 0.1 

miss 0.106 0.117 0.128 0.14 0.154 0.16 0.169 0.184 0.195 0.201 

α 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 

miss right 0.051 0.061 0.08 0.093 0.101 0.108 0.121 0.122 0.125 0.13 

miss left 0.0 0.001 0.001 0.002 0.005 0.004 0.007 0.009 0.009 0.015 

miss 0.051 0.062 0.081 0.095 0.106 0.112 0.128 0.132 0.134 0.145 

           
α 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2 

miss right 0.144 0.149 0.155 0.157 0.167 0.174 0.177 0.175 0.185 0.192 

miss left 0.015 0.017 0.02 0.025 0.03 0.029 0.037 0.044 0.047 0.047 

miss 0.159 0.166 0.175 0.182 0.197 0.203 0.215 0.219 0.232 0.239 
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Table 4. Table of miss right, miss left and miss of (1 – α) × 100% confidence interval for μ 

with X1, X2,…,Xn ~ Gumbel (1, 2), n = 10 and skewness= -1.14. 
 

 
 

It is shown in Table 1 if X is normally distributed, the nominal coverage 

error α is close to the simulated missed coverage error. Results in Tables 1 and 2 

show that if the probability distributions are symmetrically distributed, then the 

missed left   missed right. Tables 3 and 4 show that if X is skewed, such as in the 

Gamma distribution (Table 3) or Gumbel distribution (Table 4), the missed 

coverage error is more than the nominal coverage error α. Interestingly, the results 

show that for a right skewed distribution, the missed right coverage errors are 

substantially greater than the missed left coverage errors (see Table 3). The 

opposite is true for the left skewed, Gumbel, distribution (see Table 4). 

It is well known that the random variable  T n X S   is a ratio of the 

normal random variable and  1n



 random variable with  X   and S 

statistically independent. Will the random variable  T n X S   be affected 

by the skewness of the probability distribution? Simulated empirical distribution 

of T for the same four chosen population distributions are under studied. Our 

results are summarized in Figures 1, 2, 3 and 4. In this simulation, a sample of 

n = 10 is drawn from the population distribution with replications of M = 5000. 

Each figure contains figures (a), (b) and (c), with the exception of Figure 1. 

Figures (a) are histograms of the t-test statistics,  *

0 ,t n X S   under the 

assumption that 0 0:H    is true. Figures (b) are the plots of 
0X   versus S. 

In Figure 1,  1 2 10, , , ~ 1,2
iid

X X X N  were sampled. The histogram in 

Figure 1(a) is an empirical distribution of t* under the assumption of 0 : 1H   . 

The histogram is quite symmetric and the plot of 0X   versus S does not seem 

α 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 

miss right 0.001 0.003 0.005 0.008 0.01 0.014 0.016 0.02 0.021 0.029 

miss left 0.019 0.03 0.036 0.044 0.054 0.066 0.068 0.082 0.084 0.089 

miss 0.02 0.033 0.041 0.052 0.064 0.08 0.084 0.102 0.105 0.118 

           
α 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2 

miss right 0.031 0.031 0.039 0.042 0.047 0.049 0.055 0.062 0.063 0.063 

Miss left 0.099 0.094 0.103 0.117 0.118 0.118 0.129 0.137 0.142 0.149 

miss 0.13 0.125 0.142 0.159 0.165 0.167 0.184 0.199 0.206 0.212 
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to have any correlation. This is what we expected from a t-test statistic. What 

happens if X is not normal? 

Figure 2(a) is the distribution of t* with  1 2 10, , , ~ 1,2
iid

X X X Laplace . The 

histogram shows that t* is symmetric. The plot of  0X  , where 
0 1  , versus 

S, see Figure 2(b), does not show any correlation. Figure 2(c) is the empirical 

distribution of t* based on X ~ N (1, 2) versus X ~ Laplace (1, 2). It can be seen 

that the distribution of t* based on X ~ Laplace (1, 2) has shorter tails than the t* 

computed from X ~ N (1, 2). Clearly the variability of  0X   plays a role in the 

distribution of t*. This may suggest that t* generated from X following a Laplace 

distribution may not be as sensitive as the t* obtained from a normal distribution.  
 
 

  
 

 (a) (b) 
 

Figure 1. (a) histogram of  *

0 ,t n X S   where 
0 1  , 

 1 2 10, , , ~ 1,2X X X Normal . (b) plot of  0X   versus S. 
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 (a) (b) 
 

 

(c) 
 

Figure 2. (a) histogram of  *

0 ,t n X S   where 
0 1  , 

 1 2 10, , , ~ 1,2X X X Laplace . (b) plot of  0X   versus S. (c) Fig. 2a over Fig. 1a 
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 (a) (b) 
 

 
 

(c) 
 

Figure 3. (a) histogram of  *

0 ,t n X S   where 
0 2  , 

 1 2 10, , , ~ 1,2X X X Gamma . (b) plot of  0X   versus S. (c) Fig 3a over Fig 1a 
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 (a) (b) 
 

 
 

(c) 
 

Figure 4. (a) histogram of  *

0 ,t n X S   where 0 0.1544   , 

 1 2 10, , , ~ 1,2X X X Gumbel . (b) plot of  0X   versus S. (c) Fig 4a over Fig 1a 

 

 
 

Figures in 3 and 4 are simulation results from a skewed probability 

distributions. Figure 3(a) is the distribution of t* with 

 1 2 10, , , ~ 1,2
iid

X X X Gamma . Interestingly, Gamma distribution is a right 

skewed distribution but the distribution of t* is left skewed. One can see in Figure 

3(b) that there is a positive correlation between  0X  , where 0 2  , and S. 
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Further, Figure 3(c) shows that t*s constructed from X ~ Gamma (1, 2) lie below 0 

more often than fall above 0. One can see in Figure 3(b) that  0X   versus S is 

more disperse when  0 0X    while it is less varied when  0 0X   . Thus, 

when  0 0X    and large, it tends to counter by large S making t* more 

concentrated on the right hand side. On the other hand, when  0 0X    and S 

is small, t* tends to stretch further towards the negative side making t* skewed 

negatively. Similar arguments can explain why left skewed distributions will have 

X  overestimate μ more often and making the distribution of t* positively skewed, 

see Figure 4 where 
0 0.1544   . In the next section we will compare the two 

transformation methods, proposed by Hall (1992), with the usual test statistics T. 

Correction and Transformation 

Johnson (1978) and others noticed some undesired effects on skewed distributions 

on the t-test. Hall (1992) proposed to modify the t-test statistic T, say g(T), so that 

g(T) is less skew and less bias. The transformed test statistic g(T) must be 

invertible to obtain a unique modified confidence interval for μ. He suggested g 

been a monotonic function to achieve the invertibility. The two monotonic 

transformations of T proposed by Hall (1992) are: 

 

 2 2 2 3

1

1 1
ˆ ˆ ˆ

3

a
T T T a T b

n nn
        (2) 

 

and 
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where  
3 3

1

ˆ
n

i

i

X X n S


 
  
 
  is an estimate of γ. Note that as the estimated 

skewness ˆ 0   both 1 0T   and 2 0T  . The test statistic 1T  is a direct 

consequence of the Edgeworth expansion of T given below, see for example, A. 

DasGupta (2008) page 191.  
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Theorem 1.  Let 1 2, , , nX X X  be iid with CDF F having mean μ, variance 

σ2, and E(X1 - μ)4 < ∞. Assume that F satisfies Cramër’s condition. Let 

γ = E(X1 - μ)3 /σ3, P1(x) = (2x2 + 1) / 6, then the CDF of t-statistic 

 T n X S   admits the expansion  

 

    
 

   1 1
P x

P T x x x O n
n


        (4) 

 

uniformly in x, where Φ(x) and ϕ(x) are standard normal distribution and density 

function, respectively. 

 

From the above theorem, the skewness of the distribution F has significant 

effect on T especially when the sample size n is small. One term Edgeworth 

expansion for T is (see Hall 1987)  
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         (5) 

 

From (5) a modified test statistic is  
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     (6) 

 

which may be used to correct the skewness of T. One may use a = 1/3 and b = 1/6 

in equations (2) and (3). As indicated by Hall (1992), T0 is not a monotonic 

function and hence is not invertible to construct a confidence interval for μ. Hall 

(1992) modified T0 to T1 as given in (2) so that it can be inverted to construct the 

confidence interval as well as to correct the bias and skewness. We are not sure 

why the last term of (2) and (3) is  ˆb n  rather than  ˆb n . Zhou and Gao 

(2000) uses  
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      (7) 

 

which is slightly different from Hall’s T1 and we will called (7) the T1 from now 

on.  
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The simulation will justify the P1(x) in the one term of Edgeworth expansion 

of T is indeed a polynomial function of order 2. Consider the Edgeworth 

expansion of T,  
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and one can show that  
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Similarly,  
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If P1(t) > 0 for all t, one can see then, a positively skewed distribution (γ > 0) 

P(miss right) > P(miss left). It can be seen in (9) that, with γ > 0 and P1(t) > 0, 

 miss right
2

P


  and in equation (8) one obtains  miss left
2

P


 . The 

opposite is true for a negatively skewed distribution. Let  
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Let     missk P    and      2 1 2 1 2g t P t P t     . Rewrite Equation 

(10) as  
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and 
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A plot of    2
ˆnk t   versus 2t  will review the structure of  1P x  if the 

random variable X is skewed. 
 
 

  
 

 (a) (b) 
 

Figure 5. Plot of    2
ˆnk t   versus 2t  (a)  1 2, , , ~ 1,2nX X X Normal  

and (b)  1 2, , , ~ 1,2nX X X Laplace . 

 

 

Finding the structure of g is a matter of regression. However, we are 

interested in whether the structure of g agrees with the quadratic function given in 

Theorem 1. Note that   2

1 2 1P x x   is an even function. Hence, 

   2 1 2 0P t P t    . However, if X is a right skewed distributed function, we 

have seen in Table 3 that P(miss right) > P(miss left); we expect  2 0g t   (see 

Figure 6(a)). Similarly, one can see that  2 0g t   when X has left skewed 

distribution (see Figure 6(b)). If X  is a symmetrically distributed function with 

skewness γ = 0, then the plot of    2
ˆnk t   versus 2t  does not show any 

pattern as seen in Figures 5 (a) and (b). Figures 6 (a) and (b) show that  2g t  

resembles a quadratic function, confirming that the use of the second term in (5) 

is necessary if skewness appeared in the data. From the simulation and the 
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equation (10) one can see that if X is skewed, then P (miss) > α; because 

   2 2

ˆ
> 0.g t t

n
 




 
 
 

 Thus, it explains that when X is a skewed distribution 

the coverage error will be larger than the nominal coverage error α. 
 
 

  
 

 (a) (b) 
 

Figure 6: Plot of    2
ˆnk t   versus 2t  (a)  1 2, , , ~ 1,2nX X X Gamma  

and (b)  1 2, , , ~ 1,2nX X X Gumbel . 

 

 

Comparison of T, T1 and T2 

The objective is to compare the test statistics T, T1, and T2. The modified test 

statistic T2 given in Hall (1992) has not been paid attention to as far as we know. 

As mentioned earlier, ˆ 20lim T T   and if X is positively skewed, most likely 

  0X   . We modify the T in T2 by adding the term b n  to X  so that it 

shifts to the correct direction, i.e.,  
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Unlike T2 in (3), our modified T2 is  
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  (12) 

 

The simulation study is repeated on the four chosen distributions but this time we 

compare the empirical distributions of three test statistics, i.e., T , 1T  and 
2T 

. 

Both 1T  and 
2T 

 are less skewed than T if X is simulated from a skewed 

distribution, which are shown in Figures 9 and 10. Figures 7 and 8 show that if X 

is a symmetric distribution, the distributions of 1T  and 2T 
 remain symmetric. 

Confidence Interval 

A simulation study of confidence intervals derived from T, 1T  and 2T 
 was 

conducted. The (1 – α) × 100% confidence interval for μ derived from 1T  is  
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. One can see that 

 1

1h t
 may produce complex values for some ̂  and t. If the first 4 terms of 

 1

1h t
 are expanded and the expansion is simplified,  
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Then, replace  1

1h t
 by  1

1*h t
 in (13), the approximation confidence interval of 

1T , called 1T 
, will guarantee to produce a real valued confidence interval. The 

confidence interval of 1T 
 is  
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Figure 7. Left figure is the histogram of  T n X S  ,  1 2, , , ~ 1,2nX X X Normal . The graph in the middle is the 

histogram of 1T  and the histogram on the right is the empirical distribution of 2T 
. 

 

 

   
 

Figure 8. Left figure is the histogram of  T n X S  ,  1 2, , , ~ 1,2nX X X Laplace . The graph in the middle is the 

histogram of 1T  and the histogram on the right is the empirical distribution of 2T 
. 
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Figure 9. Left figure is the histogram of  T n X S  ,  1 2, , , ~ 1,2nX X X Gamma . The graph in the middle is the 

histogram of 1T  and the histogram on the right is the empirical distribution of 2T 
. 

 

 
 

   

Figure 10. Left figure is the histogram of  T n X S  ,  1 2, , , ~ 1,2nX X X Gumbel . The graph in the middle is the 

histogram of 1T  and the histogram on the right is the empirical distribution of 2T 
. 

 



LIM & LIM 

 

 

83 

where  1

1*h t
 is given in (14). The (1 – α) × 100% confidence interval for μ 

derived from 
2T 

 is  
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It is not surprising that the logarithm function may produce a complex number. 

Expand the logarithm function and keep the first 3 terms of the Taylor series 

expansions, the approximation confidence interval for μ is 
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The above confidence interval (16) may be called a confidence interval from 
**

2T . The confidence interval in (16) is different from that of in (15). The 

confidence interval in (15) subtract  ˆb n  from 2t  on upper and lower 

confidence limit. Unlike the confidence interval in (15), the confidence interval in 

(16) tends to subtract  ˆb n  from 2t  on the lower confidence limit but add 

 ˆb n  on the upper confidence limit. 

It can be seen in Table 7 that if X is severely skewed, the modified 

confidence intervals 1T 
 and 

**

2T  perform substantially better than the usual 

confidence interval derived from T. If the skewness is not severe, T performs 

better than the modified T. 
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Table 5. Table of nominal coverage error α and the simulated missed for (1 – α) × 100% 

confidence interval for μ with  1 2, , , ~ 1,2nX X X Normal .  

 

 n = 10 M = 10000 Normal (1,2) skewness = 0, a = 1/3, b = 1/6 

α  0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 

miss T  0.01 0.02 0.03 0.04 0.049 0.06 0.069 0.079 0.089 0.101 

miss *

1T   0.011 0.022 0.031 0.04 0.05 0.06 0.069 0.08 0.09 0.101 

miss **

2T   0.013 0.025 0.035 0.045 0.055 0.064 0.074 0.084 0.094 0.104 

           
α  0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2 

miss T  0.109 0.122 0.13 0.14 0.15 0.16 0.168 0.177 0.189 0.202 

miss *

1T   0.109 0.12 0.128 0.138 0.149 0.158 0.167 0.176 0.187 0.2 

miss **

2T   0.114 0.125 0.132 0.142 0.152 0.162 0.171 0.181 0.191 0.203 

 
 
Table 6. Table of nominal coverage error α and the simulated missed for (1 – α) × 100% 

confidence interval for μ with  1 2, , , ~ 1,2nX X X Laplace .  

 

 n = 10 M = 10000 Laplace (1,2) skewness = 0, a = 1/3, b = 1/6 

α  0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 

miss T  0.005 0.014 0.023 0.032 0.041 0.051 0.061 0.073 0.084 0.095 

miss *

1T   0.01 0.023 0.037 0.049 0.061 0.074 0.086 0.1 0.113 0.125 

miss **

2T   0.015 0.032 0.049 0.064 0.076 0.092 0.104 0.119 0.132 0.144 

           
α  0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2 

miss T  0.105 0.116 0.127 0.14 0.151 0.161 0.171 0.182 0.194 0.202 

miss *

1T   0.135 0.148 0.159 0.172 0.186 0.194 0.205 0.216 0.23 0.237 

miss **

2T   0.154 0.167 0.178 0.191 0.204 0.213 0.224 0.236 0.249 0.256 

 
 
Table 7. Table of nominal coverage error α and the simulated missed for (1 – α) × 100% 

confidence interval for μ with  1 2, , , ~ 1,2nX X X Gamma . 

 

 n = 10 M = 10000 Gamma (1,2) skewness = 2, a = 1/3, b = 1/6 

α  0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 
miss T  0.047 0.062 0.077 0.089 0.1 0.109 0.119 0.13 0.139 0.148 

miss *

1T   0.024 0.035 0.048 0.058 0.068 0.077 0.088 0.098 0.108 0.118 

miss **

2T   0.022 0.033 0.046 0.056 0.065 0.074 0.086 0.097 0.107 0.117 

           
α  0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2 

miss T  0.156 0.166 0.176 0.186 0.19 0.198 0.206 0.22 0.229 0.238 

miss *

1T   0.128 0.138 0.149 0.16 0.167 0.178 0.186 0.2 0.21 0.221 

miss **

2T   0.127 0.137 0.149 0.159 0.168 0.178 0.186 0.201 0.211 0.223 
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Table 8. Table of nominal coverage error α and the simulated missed for (1 – α) × 100% 

confidence interval for μ with  1 2, , , ~ 1,2nX X X Gumbel . 

 

 n = 10 M = 10000 Gumbel (1,2) skewness ≈ -1.14, a = 1/3, b = 1/6  

α  0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 

miss T  0.019 0.033 0.043 0.055 0.064 0.075 0.085 0.094 0.105 0.115 

miss *

1T   0.015 0.027 0.037 0.048 0.058 0.068 0.079 0.088 0.099 0.109 

miss **

2T   0.017 0.028 0.039 0.050 0.061 0.071 0.081 0.091 0.101 0.111 

           α  0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2 

miss T  0.125 0.134 0.142 0.153 0.162 0.173 0.182 0.193 0.201 0.212 

miss *

1T   0.12 0.129 0.138 0.149 0.158 0.169 0.18 0.19 0.199 0.208 

miss **

2T   0.121 0.133 0.141 0.152 0.163 0.174 0.182 0.191 0.200 0.210 

 

Hypothesis Testing 

The three test statistics 1,T T  and *

2T  are compared in terms of the power of their 

tests. A Computer Approach Technique (CAT), given in Pal, Lim and Ling 

(2007), will be used. For a normal distribution all three test statistics perform 

relatively well. However, *

1 2 and T T  lost some power on the Laplace distribution, 

more on the 1T  than *

2T . If X is a positively skewed distribution, such as Gamma, 

1T  and *

2T  perform slightly better than T on the right side of 0  while T performs 

better than other two on the left side of 0 . The opposite is true for negatively 

skewed distribution. In terms of modified test statistics, *

2T  performs slightly 

better than 1T  from the point of view of power of the test. The simulation results 

for the power of the tests are summarized in Figures 11, 12, 13 and 14. 
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Figure 11. Plot of η versus power of the test for where  1 2, , , ~ ,2nX X X Normal  , 

with n = 10. The hypothesis testing is  0 : 4 4H     versus  1 : 4 4H     

 

 
 

  
 

Figure 12. Plot of η versus power of the test for where  1 2, , , ~ ,2nX X X Laplace  , 

with n = 10. The hypothesis testing is  0 : 4 4H     versus  1 : 4 4H     
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Figure 13. Plot of η versus power of the test for where  1 2, , , ~ ,2nX X X Gamma  , 

with n = 10. The hypothesis testing is  0 : 4 8H     versus  1 : 4 8H     

 

 
 

  
 

Figure 14. Plot of η versus power of the test for where  1 2, , , ~ ,2nX X X Gumbel  , 

with n = 10. The hypothesis testing is  0 : 4 2.84557H     versus 

 1 : 4 2.84557H     

 

 

Conclusion 

Based on these results, it appears that the usual t-test statistic, T, is quite robust 

regardless of the skewness of the distribution. The modified t-test statistics T1 and 
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*

2T  can improve the power on one side of the 0   only, but not on both sides. 

From the results, it appears the modified confidence intervals perform much better 

than the usual confidence interval derived from T when X is simulated from a 

skewed distribution. 
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The multistage balanced groups ranked set samples (MBGRSS) method is considered for 
estimating the population mean for samples of size m = 3k where k is a positive real 
integer. It is compared with the simple random sampling (SRS) and ranked set sampling 

(RSS) schemes. For the symmetric distributions considered in this study, the MBGRSS 
estimator is an unbiased estimator of the population mean and it is more efficient than 
SRS and RSS methods based on the same number of measured units. Its efficiency is 
increasing in s for fixed value of the sample size, where s is the number of stages. For 
non symmetric distributions considered in this paper, the MBGRSS estimator is biased. 
The method is applied in a study of bioleaching. 
 
Keywords: Ranked set sampling, simple random sampling, multistage balanced 

groups, ranked set samples, symmetric and asymmetric distribution 

 

Introduction 

Ranked set sampling is a sampling procedure, which is a less costly as compared 

to the widely used simple random sampling in cases where visual ranking of a set 

of observations can be easily done, while the exact measurement of observations 

is not easy and cost. The RSS mean was considered by McIntyre (1952) as an 

estimator of the population mean. The RSS mean estimator was considered more 

efficient than the SRS counterpart.  

Takahasi and Wakimoto (1968) introduced the mathematical theory of 

ranked set sampling. Al-Saleh and Al-Kadiri (2000) suggested double RSS 

method in order to estimate the population mean. Al-Saleh and Al-Omari (2002) 

suggested multistage RSS method to increase the efficiency of estimating the 

http://dx.doi.org/10.22237/jmasm/1478002020
mailto:amerialomari@aabu.edu.jo
mailto:cbouza2002@yahoo.es
mailto:dcova@uagro.mx
mailto:rpal2011@gmail.com
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mean for fixed value of the sample size. Jemain and Al-Omari (2006a, 2006b) 

considered double percentile RSS and multistage median RSS methods, 

respectively, for the mean estimation. They found that both methods are more 

efficient than the SRS based on the same sample size.  

Jemain, Al-Omari, and Ibrahim (2008) investigated balanced groups RSS 

method for estimating the population mean. Jemain, Al-Omari, and Ibrahim 

(2007) suggested multistage extreme ranked set sampling method for estimating 

the population mean. Al-Hadhrami and Al-Omari (2009) considered the Bayesian 

inference of the variance of the normal distribution using moving extreme ranked 

set sampling. Ozturk (2011) used the RSS for parametric inference about the 

parameters of the location-scale family of distributions. Dong and Cui (2011) 

investigated the optimal sign test for quantiles in ranked set samples. Al-Omari, 

Ibrahim, Jemain, and Al-Hadhrami (2009) proposed multistage balanced groups 

ranked set samples for estimating the population median. For more details about 

RSS see Herrera and Al-Omari (2011), Al-Omari (2011), Vock and Balakrishnan 

(2011), and Drikvandi, Modarres, and Jalilian (2011). 

Let X1, X2, …, Xm be a SRS of size m from cdf F(x). The ith order statistic 

X(i:m) has the probability density function (pdf) and the cumulative distribution 

function (cdf), f(i:m)(x) and F(i:m)(x), respectively, given by 
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   is the complete beta function. The mean and the 

variance of X(i:m) are given by 
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Multistage Balanced Groups Ranked Set Samples 

The RSS can be described as: randomly select m2 units from the target population. 

Allocate these units into m sets, each of size m. Rank the m units within each set 

visually or by any cheap method with respect to the characteristic of interest. 

From the ith set select the ith ranked unit for i = 1, 2,…, m. The process can be 

repeated n cycles to obtain a set of size mn from the initial m2n units. 

The MBGRSS as suggested by Al-Omari et al. (2009) consists from the 

following steps: 

 

Step 1: Randomly select (3k)s + 1 for k = 1, 2, 3,… units from the target 

population, and then allocate them into (3k)s sets, each of size 3k. 

Step 2: The 3k units of each set are ranked based on professional judgment 

or by any cheap method in terms of the variable of interest. Then 

the (3k)s sets are divided into three groups, each of 3s – 1ks sets.  

Step 3: From each set in the first group, the smallest ranked unit is 

selected; from each set in the second group; the median ranked 

unit is selected, and from each set in the third group, the largest 

ranked unit is selected. This step yields (3k)s - 1 sets, 3s - 2ks - 1 sets 

in each group. 

Step 4: Without doing any actual measurement, from the 3s - 2ks - 1 sets in 

the first group the smallest ranked unit is selected, from the 

3s - 2ks - 1 sets in the second group the median ranked unit is selected, 

and from the 3s - 2ks - 1 sets in the third group the largest ranked unit 

is selected. This step yields (3k)s - 2 sets, each group of 3s - 3ks - 2 sets 

of size 3k. 

Step 5: The process is continued using Steps (3) and (4) until we end up 

with one sth stage balanced groups RSS of size 3k. 

 

The procedure can be repeated n times if needed to obtain a sample of size 

3kn from the initial (3k)s + 1n units.  

Al-Omari et al. (2009) introduced an example to illustrate the MBGRSS 

when m = 3. In this paper we will illustrate the MBGRSS in estimating the 

population mean using m = 9. 
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Example 

Let s = 3 and k = 3, then m = 9. Therefore, we have to select 6561 units, say 

X1, X2,…, X6561. Allocate the 6561 selected units into 729 sets each of size 9. The 

9 observations of each set are ranked with respect to the study variable as follows: 

{Xi(1:9), Xi(2:9) ,…, Xi(9:9}, for i = 1, 2,…, 729. Now, allocate the 729 sets into 3 

groups, each of 243 sets as: 

 

1st Group: {Xi(1:9), Xi(2:9) ,…, Xi(9:9}, for i = 1, 2,…, 243, 

2nd Group: {Xi(1:9), Xi(2:9) ,…, Xi(9:9}, for i = 244, 245,…, 486, 

3rd Group: {Xi(1:9), Xi(2:9) ,…, Xi(9:9}, for i = 487, 488,…, 729. 

 

For s = 1, select the smallest ranked unit, 
 
 1

1:9i
X  for i = 1, 2,…, 243 from 

each set in the first group, and the median ranked unit, 
 
 1

5:9i
X  for 

i = 244, 245,…, 486 from each set in the second group, and finally, the largest 

ranked unit, 
 
 1

9:9i
X  for i = 487, 488,…, 729 from each set in the third group. This 

step yields 729 units, which are 
 
 

 
 

 
 

 
 

 
 1 1 1 1 1

1 1:9 2 1:9 243 1:9 244 5:9 245 5:9
, , , , , , ,X X X X X  

 
 

 
 

 
 

 
 1 1 1 1

486 5:9 487 9:9 488 9:9 729 9:9
, , , ,X X X X . Allocate these units into 81 sets, 27 sets in 

each group as follows: 

 

1st Group:    
 

   
 

   
  1 1 1

9 1 1 1:9 9 1 2 1:9 9 1 9 1:9
, , ,

i i i
X X X

     
, for i = 1, 2,…27, 

2nd Group:    
 

   
 

   
  1 1 1

9 1 1 5:9 9 1 2 5:9 9 1 9 5:9
, , ,

i i i
X X X

     
, for i = 28, 29,…, 54, 

3rd Group:    
 

   
 

   
  1 1 1

9 1 1 9:9 9 1 2 9:9 9 1 9 9:9
, , ,

i i i
X X X

     
 , for i = 55, 56,…, 81. 

 

Now, for s = 2, rank the units within each set in all the three groups and then 

select the smallest ranked unit, 
 
 2

1:9i
X  for i = 1, 2,…27 from each set in the 1st 

group, and the median ranked unit, 
 
 2

5:9i
X  for i = 28, 29,…, 54 from each set in the 

2nd group, and the largest ranked unit, 
 
 2

9:9i
X  for i = 55, 56,…, 81 from each set in 

the 3rd group. This step yields 81 units, which are 
 
 

 
 2 2

1 1:9 2 1:9
,X X ,…,

 
 

 
 

 
 2 2 2

27 1:9 28 5:9 29 5:9
, , ,X X X …,

 
 

 
 

 
 

 
 2 2 2 2

54 5:9 55 9:9 56 9:9 81 9:9
, , , ,X X X X . Allocate them into 9 

sets, 3 sets in each group as follows: 
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1st Group:    
 

   
 

   
  2 2 2

9 1 1 1:9 9 1 2 1:9 9 1 9 1:9
, , ,

i i i
X X X

     
, for i = 1, 2, 3, 

2nd Group:    
 

   
 

   
  2 2 2

9 1 1 5:9 9 1 2 5:9 9 1 9 5:9
, , ,

i i i
X X X

     
, for i = 4, 5, 6, 

3rd Group:    
 

   
 

   
  2 2 2

9 1 1 9:9 9 1 2 9:9 9 1 9 9:9
, , ,

i i i
X X X

     
, for i = 7, 8, 9. 

 

Next, for s = 3 rank the units within each set in each group, then select the 

smallest ranked unit, 
 
 3

1:9i
X  for i = 1, 2, 3 from each set in the 1st group, the 

median ranked unit, 
 
 3

5:9i
X  for i = 4, 5, 6 from each set in the 2nd group, and the 

largest ranked unit, 
 
 3

9:9i
X  for i = 7, 8, 9 from each set in the 3rd group. This step 

yields 9 units, which are 
 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 3 3 3 3 3 3 3 3

1 1:9 2 1:9 3 1:9 4 5:9 5 5:9 6 5:9 7 9:9 8 9:9
, , , , , , , ,X X X X X X X X  

 
 3

9 9:9
X  to be a MBGRSS of size 9. The mean of these units is considered as an 

estimator of the population mean. 

It is of interest to note here that the RSS and the MBGRSS are equivalent 

when m = 3 for s = 1. 

Estimation of the Population Mean 

Assume that X1, X2,…,Xm is a random sample from the cdf F(x) with a finite mean 

μ and variance σ2 Also, assume that X11h, X12h,…,X1mh; X21h, X22h,…,X2mh; 

Xm1h, Xm2h,…, Xmmh are m independent SRS of size m each in the hth cycle for 

h = 1, 2,…, n. If Xi(1:m)h, Xi(2:m)h,…, Xi(m:m)h are the order statistics of the ith sample 

Xi1h, Xi2h,…, Ximh, for i = 1, 2,…, m. Then, the measured RSS units are X1(1:m)h, 

X2(2:m)h,…, Xm(m:m)h.  

The SRS estimator of the population mean based on a sample of size m is 

defined as 

 

 
1 1

1 n m

SRS ih

h i

X X
mn  

   , (3) 

 

with variance 

 

  
2

Var SRSX
mn


  . (4) 
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The RSS estimator of the population mean (see McIntyre (1952)) is given 

by 

 

 
 :

1 1

1 n m

RSS i i m h
h i

X X
mn  

   , (5) 

 

with variance 

 

       

22

: :2 2
1 1 1

1 1
Var Var

n m m

RSS i i m h i m
h i i

X X
m n mn m n


 

  

    
     (6) 

 

If m is odd, in the hth cycle (h = 1, 2,…, n), let 
 
 
1:

s

i m h
X  be the smallest ranked 

observation of the ith sample for i = 1, 2,…, k, 
 
 

1
2

:m

s

i m h
X   be the median ranked 

observation of the ith sample for i = k + 1, k + 2,…, 2k, and 
 
 

:

s

i m m h
X  be the largest 

ranked observation of the ith sample when i = 2k + 1, 2k + 2,…, 3k. Therefore, 

when m is odd, the measured units 
 
 
1 1:

s

m h
X ,

 
 
2 1:

s

m h
X ,…

 
 

1:

s

k m h
X ,

 
 

1
2

1 :m

s

k m h
X 

,…,

 
 

1
2

2 :m

s

k m h
X  ,

 
 
2 1 :

s

k m m h
X


,…,

 
 
3 :

s

k m m h
X  will be denoted by MBGRSSO. It is of interest 

to mention here that the measured units within each group are identically 

independent (iid) but all units are independent but not identically distributed. 

The suggested estimator of the population mean based on MBGRSSO is 

given by 

 

  
 
   

 
 

2 3

11: :
:

1 1 1 2 12

1

3

n k k k
s s s s

MBGRSSO mi m h i m m h
i m h

h i i k i k

X X X X
kn

 
       

 
   

 
 

      (7) 

 

with variance 

 

 
    

    
 
  

2 3

11: :2
:

1 1 2 12

1
Var Var Var Var

9

k k k
s s s s

MBGRSSO mi m i m m
i m

i i k i k

X X X X
k n

 
      

  
    

    
    (8) 
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For even sample size, let 
 
 
1:

s

i m h
X  be the smallest ranked observation of the ith 

sample for i = 1, 2,…, k,, 
 
 

 
  2

2 2
: :

1

2
m m

s s

i m h i m h
X X


  be the median ranked observation 

of the ith sample for i = k + 1, k + 2,…, 2k, and 
 
 

:

s

i m m h
X  be the largest ranked 

observation of the ith sample for i = 2k + 1, 2k + 2,…, 3k. However, the measured 

observations 
 
 
1 1:

s

m h
X ,

 
 
2 1:

s

m h
X ,…,

 
 

1:

s

k m h
X ,

 
 

 
  2

2 2
1 : 1 :

1

2
m m

s s

k m h k m h
X X

 
 ,…,

 
 

 
  2

2 2
2 : 2 :

1

2
m m

s s

k m h k m h
X X


 ,

 
 
2 1 :

s

k m m h
X


,…,

 
 
3 :

s

k m m h
X  will be denoted as MBGRSSE. 

The suggested MBGRSSE estimator of the population mean is defined as 

 

 
 

 
     

 
 

2 3

21: :
: :

1 1 1 2 12 2

1 1

3 2

n k k k
s s s s s

MBGRSSE m mi m h i m m h
i m h i m h

h i i k i k

X X X X X
kn

   
           

    
            

     (9) 

 

with variance 

 

 
  

   

   

 
    

  

2
: :2

2 2

1

2
2

: :
2 2

3

1: :
1 2 1

Var Var

1

41
Var 2Cov ,9

Var Var

s s

m m
i m i mk

s i k
s s

MBGRSSE
m m

i m i m

k k
s s

i m i m m
i i k

X X

X X Xk n

X X

   
   
   

 

   
   
   

  

     
     

        
  
              
 
  
 



 

  (10) 

 

Define the following notations. For i = 1, 2,…,m in the hth cycle, 

h = 1, 2,…, n, let  
 

 
  : :

,
s s

j m i j m h
E X 

 
 

 
  2

: :Var ,
s s

j m i j m hX   where 

j = 1, 
2 1

, ,
2 2 2

m m m 
, m. Whether the sample size is even or odd the measured 

units 
 
 
1 1:

s

m h
X , 

 
 
2 1:

s

m h
X ,…, 

 
 

1:

s

k m h
X  are iid, and also 

 
 
2 1 :

s

k m m h
X


,

 
 
2 2 :

s

k m m h
X


,…,

 
 
3 :

s

k m m h
X  are iid. Also, when the sample size is odd, 

 
 

1
2

1 :m

s

k m h
X 

,
 

 
1

2
2 :m

s

k m h
X 

,…,

 
 

1
2

2 :m

s

k m h
X   are iid. Hence, Equations (8) and (10), respectively, can be written as 
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 2 2 2

11: :
:

2

1
Var

9

s s s s

MBGRSSO mm m m
m

X
kn

  
 

 
 

 
   

 
 

  (11) 

 

 
    

       
 
 2 2 2 2

2 21: :
: : : , :

2 2 2 2

1 1
Var 2

9 4

s s s s s s

MBGRSSE m m m mm m m
m m m m

X
kn

    
        

       
       

  
      

    

 (12) 

 

If the parent distribution is symmetric about its mean μ, then 

 
 

 
 

: 1:

s s

i m m i m
X X

 
  in distribution and then  

    
  : 1:

Var Var
s s

i m m i m
X X

 
  for 

i = 1, 2,…,m (David & Nagaraja, 2003). Therefore, we have 

 

     
   2 2

11:
:

2

1
Var 2

9

s s s

MBGRSSO mm
m

X
kn

 
 

 
 

 
  

 
 

  (13) 

 

and 

 

 
    

     2 2

21:
: : , :

2 2 2

1 1
Var 2

9 2

s s s s

MBGRSSE m m mm
m m m

X
kn

  
     

     
     

  
    

    

  (14) 

 

Lemma 3.1. If the population of study is symmetric about its mean μ, then 
 s

MBGRSSOX  and  s

MBGRSSEX  are unbiased estimators of the population mean. 

 

Proof: When the sample size is odd, the expectation of (7) is 

 

 
    

    
 
  

2 3

11: :
:

1 1 1 2 12

1

3

n k k k
s s s s

MBGRSSO mi m h i m m h
i m h

h i i k i k

E X E X E X E X
kn

 
       

  
    

    
      

 

 
 
   

 
 

2 3

11: :
:

1 1 1 2 12

1

3

n k k k
s s s

mm h m m h
m h

h i i k i kkn
  

 
       

 
   

 
 

      

 

 
 
   

 
 

11: :
:

2

1

3

s s s

mm m m
m
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Because the distribution is symmetric about μ, then we have 

 
 

 
 

1: :
2

s s

m m m
     and 

 
 

1
2

:m

s

m
 


 . Therefore, 

    
1

2
3

s

MBGRSSOE X      . 

Also, the expectation of (9) is 

 

 

    
      

 
  

2 3

21: :
: :

1 1 1 2 12 2

1 1

3 2

n k k k
s s s s s

MBGRSSE m mi m h i m m h
i m h i m h

h i i k i k

E X E X E X E X E X
kn

   
           

      
                  

   

 

  
     

 
 

2 3

21: :
: :

1 1 1 2 12 2

1 1

3 2

n k k k
s s s s

m mm h m m h
m h m h

h i i k i kkn
   

   
           

   
      

      

      

 

 
 
     

 
 

21: :
: :

2 2

1 1

3 2

s s s s

m mm m m
m m

   
   

   
   

  
     

    

  

 

  
 

 
      

21: :
: :

2 2

1 1

3 2

s s s s

m mm m m
m m

   
   

   
   

  
     

    

  

 

Because the distribution is symmetric about μ, then we have 
 
 

 
 

1: :
2

s s

m m m
     

and 
 
 

 
 

2
2 2
: :

2m m

s s

m m
    . Therefore, 

    
1 1

2 2 .
3 2

s

MBGRSSEE X   
 

    
 

 

Theorem 3.2: 

 

1)  s

MBGRSSOX  is more efficient than 
SRSX  if 

 
 

 
 

1
2

2 2 2

1: :
2 3

m

s s

m m
  


  . 

2)  s

MBGRSSEX  is more efficient than 
SRSX  if 

 
 

 
 

  
 

2
2 2 2

2 2 2

1: : : :
4 6

m m m

s s s

m m m m
   


   . 

 

Proof: The proof is directly using the MSE equations of the MBGRSS 

estimators with that of SRS method. 



AL-OMARI ET AL. 

99 

Simulation Study 

The suggested MBGRSS estimators of the population mean will be compared 

with their competitors using RSS and SRS schemes. Six probability distribution 

functions are investigated for the populations: uniform, normal, beta, exponential, 

gamma and Weibull. The averages of 60,000 samples estimates using k = 1, 2, 3 

corresponding to the sample sizes m = 3, 6, 9 are compared. Assume that the cycle 

is repeated once. The efficiency of RSS relative to SRS is defined as 

 

  
 
 

 

2

:
1

2

Var
, 1 .

Var

m

i m
SRS i

RSS SRS

RSS

X
eff X X

mX

 




  
  


  (15) 

 

If the distribution is symmetric, the efficiency of MBGRSSO and MBGRSSE 

relative to SRS are defined as: 

 

 
  

 
    

   
 
 

2

2 2 2

1: 1 :
:

2

Var 3
,

Var

SRSs

MBGRSSO SRS s s ss

m m m mMBGRSSO
m

X
eff X X

X



  
 

 
 

 
 

  

 

 

  
 
  

 
       

 
 

2

2 2 2 2

1: 2 2 :
: : : :

2 2 2 2

Var
,

Var

3
.

1
2

4

SRSs

MBGRSSE SRS s

MBGRSSE

s s s s s

m m m m m m m
m m m m

X
eff X X

X



    
       

      
      




 

    
  

 (16) 

 

The mean square errors of  s

MBGRSSOX  and  s

MBGRSSEX  are defined as 

 

     
   

 
    

2
2 2 2

11: :
:

2

1
MSE

9

s s s s s

MBGRSSO MBGRSSOmm m m
m

X E X
kn

   
 

 
 

 
      
  

 

  (17) 

 

and 
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 (18) 

 

If the distribution is asymmetric, the efficiency is defined as: 
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  (19) 

 

and 

 

 

  
 

  

 
 

   

   
    

2

2 2

2
: : 2

2 22 2

1: :

2
: :

2 2

Var
,

MSE

3
.

1
9

4 2

SRSs

MBGRSSE SRS s

MBGRSSE

s s

m m
m m

s s s

MBGRSSEm m ms

m m
m m

X
eff X X

X

kn E X



 

  


   
   
   

  
  
  




 
 

     
  

  

 (20) 

 

In terms of the efficiency and bias values, the results are summarized in Tables 

1-3 with m = 3, 6, 9, respectively for several values of s. 
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Table 1. The efficiency of RSS and MBGRSSO for estimating the population mean with 

m = 3 and 1 ≤ s ≤ 5 
 

Distribution RSS 
 MBGRSSO 

  s = 1 s = 2 s = 3 s = 4 s = 5 
Uniform (0,1) 2.000  Eff 2.000 5.746 16.148 38.257 89.134 
Normal (0,1) 1.914  Eff 1.914 3.288 5.010 6.937 9.046 

Beta (4,4) 1.989  Eff 1.989 4.249 8.763 17.514 35.017 
Exponential (1) 1.636  Eff 1.636 1.355 0.683 0.331 0.185 

   Bias 0.000 0.232 0.546 0.900 1.263 
Gamma (2,1) 1.767  Eff 1.767 1.764 1.100 0.565 0.321 

   Bias 0.000 0.243 0.587 0.966 1.355 
Weibull (1,3) 1.802  Eff 1.802 1.402 0.683 0.336 0.190 

   Bias 0.000 0.688 1.650 2.697 3.765 

 
 
Table 2. The efficiency of RSS and MBGRSSE for estimating the population mean with 

m = 6 and 1 ≤ s ≤ 3 
 

Distribution RSS 
 MBGRSSE 

  s = 1 s = 2 s = 3 

Uniform (0,1) 3.500  Eff 4.258 32.067 89.541 
Normal (0,1) 3.226  Eff 2.880 5.906 8.472 

Beta (4,4) 3.319  Eff 3.287 11.647 28.294 
Exponential (1) 2.460  Eff 1.497 0.335 0.154 

   Bias 0.135 0.647 0.996 
Gamma (2,1) 2.725  Eff 1.916 0.557 0.268 

   Bias 0.141 0.688 1.057 
Weibull (1,3) 2.424  Eff 1.472 0.324 0.154 

   Bias 0.408 1.943 2.984 

 
 
Table 3. The efficiency of RSS and MBGRSSO for estimating the population mean with 

m = 9 and 1 ≤ s ≤ 3 
 

Distribution RSS 
 MBGRSSO 

  s = 1 s = 2 s = 3 

Uniform (0,1) 5.000  Eff 6.395 53.838 342.878 
Normal (0,1) 4.442  Eff 3.467 7.283 11.386 

Beta (4,4) 4.726  Eff 4.278 18.740 71.316 
Exponential (1) 3.251  Eff 0.967 0.130 0.041 

   Bias 0.230 0.896 1.622 
Gamma (2,1) 3.610  Eff 1.449 0.222 0.071 

   Bias 0.242 0.960 1.747 
Weibull (1,3) 3.162  Eff 0.971 0.128 0.041 

   Bias 0.685 2.696 4.867 
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Based on the results in Tables 1-3, we can conclude the following: 

 

(1) When the parent distribution is symmetric about its mean we have: 

a. MBGRSS method is more efficient than the usual SRS. For 

example, for m = 9 and s = 2, the efficiency of MBGRSSO is 

18.740 for estimating the mean of beta (4, 4). 

b. MBGRSS estimators are unbiased of the population mean. 

c. The efficiency of MBGRSS is increasing in s for specific 

value of the sample size. For example, for m = 6, the 

efficiency values for s = 1, 2, 3 are 4.258, 32.067, and 89.541 

respectively for estimating the mean of the uniform 

distribution. 

d. The efficiency of MBGRSS estimators is increasing as the 

sample size increasing. As an example, for the standard 

normal distribution, for s = 2 and m = 3, 6, 9 the efficiency 

values are 3.288, 5.906, and 7.283, respectively. 

(2) When the underlying distribution is asymmetric about the population 

mean we have: 

a. MBGRSS estimators are biased of the population mean. For 

example, with m = 9 and s = 1, the efficiency of MBGRSSO 

is 0.971 with bias 0.685 when estimating the mean of the 

Weibull distribution with parameters 1 and 3. 

b. The efficiency is decreasing in s for specific value of the 

sample size. For example, for m = 6 and s = 1, 2, 3, the 

efficiency values of MBGRSSE are 1.497, 0.335 and 0.154, 

respectively for estimating the mean of exponential 

distribution with parameter 1. 

c. The bias of MBGRSS estimators is increasing in s. For 

example, if the parent distribution is gamma with parameters 

2 and 1, then for m = 3 and s = 1, 2, 3, 4, the bias values are 0, 

0.243, 0.587 and 0.966 respectively. 

(3) For m = 3 and s = 1, MBGRSSO is the same as RSS. Otherwise, 

when s > 1 and for any m the MERSSO is found to be more efficient. 
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Application to Bioleaching Studies 

Generally, RSS is more efficient than SRSWR. In practice, the interest is in 

estimating confidence intervals (CI). When the distribution is not known using 

resampling seems to be a good approach for evaluating the efficiency of RSS and 

for performing inferences. Bootstrap has proven to be good general resampling 

method for deriving the sampling distribution of statistics in SRS. Chen et al. 

(2004) considered a bootstrapping procedure for RSS re-sampling row-wise. Hui 

et al. (2005) proposed bootstrapping as a method to obtain confidence interval for 

estimation. We are going to use their proposals for deriving estimations of the 

sampling errors and CI`s. 

A Bootstrap procedure for RSS, BRSSR, is instrumented by the following 

algorithm.  

BRSSR algorithm: 

1. Assign to each element of the rth row a probability the same 

probability of being selected and select m units randomly from F(r),m 

with replacement to get 
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2.  Perform Step 1 for r = 1, 2,…, k to get a bootstrap ranked set 

samples  

3.  Define the Bootstrap distributions 
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The BRSSR scheme of Bootstrap resamples from each F(r),m(t) 

independently and then combine to have a Bootstrap sample. 

Denote by F(2) a collection of distribution functions having finite second 

moments, Hn,F as the sampling distribution of 
   :1

k

r rr mr

n

X m
T

k



 
 


, Hn,Fn 

as the sampling distribution of the corresponding BRSSR replica *

nT , and 

  
,

2
2 ,

X Y
G H inf E X Y   , where 

,X Y  is the collection of all possible joint 

distributions of the pairs (X,Y) whose marginal distributions are G and H, 

respectively. An important result is the following proposition: 

 

Proposition 5.1: (Modarres et al. 2006).  

If F ∊ F(2) the statistics 
   :1

k

rr r mr

n

X m
T

k



 
 


, *

nT  as the corresponding 

BRSSR replica. Then,    .

,2 ,  0
n

a s

n F nH H  . 

Once a number of Bootstrap samples B is fixed the Monte Carlo 

approximation of  , nn FH t  is defined as  
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Because Fn is completely specified, we can make  ,
ˆ

nn FH t  arbitrarily close 

to  , nn FH t  by taking a sufficiently large B. Now, we can estimate the moments of 

MBGRSSA, A = O,E using 

 

 

  *

 1 .ˆ

qB s

MBGRSSAbq b
n

X

B
 


  

 

These estimators allow estimating the variance of the estimator using 

 

     
2* 2

 
ˆ ˆˆ s

B MBGRSSA n nV X      

 

http://www.sciencedirect.com/science?_ob=MathURL&_method=retrieve&_udi=B6V8V-4HJYYKS-1&_mathId=mml146&_user=1999482&_cdi=5880&_rdoc=7&_ArticleListID=630808541&_acct=C000050602&_version=1&_userid=1999482&md5=f3174345fca247dc2ea5619806312451
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Approximate Bootstrap confidence intervals can also be determined 

computing the needed quantiles  

 

       * *
,

s s

NP MBGRSSAL MBGRSSAUIC X X    

 

such that 
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or the T-Student approximation: 
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Bioleaching is increasingly being used because of its economical and 

environmental advantages. A bioleaching is the most acceptable manner of 

processing of ores since it does not require elaboration of mining complexes and 

allows increasing the source of raw materials along with providing integrated 

approach to metals extraction. In terms of economy and environmental protection, 

biotechnological methods are more sufficient than chemical methods used for 

processing of ores. It consists of the acid leaching of the mineral enhanced by 

bacteria. 
 
 

  
 
Figure 1. Two leaching procedures 
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Figure 1 is a sketch of engineering procedures and Figure 2 of the 

mechanism. Direct molecular analysis of DNA has greatly enhanced the ability to 

assess the diversity of microorganisms growing in an ecosystem. The samples 

were collected in the agglomeration of mineral ores of a combination of nickel 

and cobalt. It is of interest to grant that the observations cover small, medium and 

large concentrations after bioleaching. 
 
 

 
 
 
Figure 2 Bioleaching mechanism 

 

 

The geophysics evaluate the contents of the mineral samples by a cheap 

method periodically. They are interested in evaluating the mean contents of cobalt 

in the ore. We considered the use of MBGRSS. The parameters of the example 

developed previously in which s = 1, 2,…, 5, k = 1, 2, 3, m = 3, 6, 9. The sample 

units were taken from the existent data base compiled in the last 5 years. We 

computed the estimation of the variances as well as the estimation of  Var RSSX  

using the Bootstrap estimator 
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The variance of the SRSWR mean,  Var RSSX , was estimated computing the 

usual estimator of σ2 as 
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The estimated efficiencies were computed as follows 
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The behavior of the proposed model was studied in the variable “Estimated 

lengths in nucleotides of the 16-23S intergenic spacer region in strains.” The data 

were collected on: 

 

X(1)=T. ferrooxidans 530 545 

X(2)=T. thiooxidans 480 555 

X(3) =L. ferrooxidans 495 505 

 

The ranking variable was a consideration on the concentrations reported by 

the engineers associated with each sample send to the laboratory. An R-code was 

developed for selecting the multistage RSS sample and performing the Bootstrap 

samples selections and the needed calculations. The results are presented in next 

tables. 
 
 
Table 4. Estimated efficiency of RSS and MBGRSSO estimators for estimating the 

population mean m = 3 and 1 ≤ s ≤ 5 
 

 RSS s = 1 s = 2 s = 3 s = 4 s = 5 

X(1) 2.391 2.391 5.019 5.158 7.541 8.400 
X(2) 1.634 1.634 4.402 8.460 10.020 13.066 
X(3) 2.703 2.703 5.969 8.709 9.522 12.893 

 
 
Table 5. Estimated efficiency of RSS and MBGRSSE estimators for estimating the 

population mean for m = 6 and 1 ≤ s ≤ 3 
 

 RSS s = 1 s = 2 s = 3 

X(1) 2.013 2.013 5.096 5.222 
X(2) 1.900 1.900 5.158 8.467 
X(3) 2.198 2.198 5.202 9.741 
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Table 6. Estimated efficiency of RSS and MBGRSSO estimators for estimating the 

population mean for m = 9 and 1 ≤ s ≤ 3 
 

 RSS s = 1 s = 2 s = 3 

X(1) 2.223 2.223 7.771 8.138 
X(2) 2.650 8.467 10.332 10.910 
X(3) 2.073 9.741 10.779 12.189 

 
 

Based on Tables 4-6, we conclude the following: 

 

a) MBGRSS method is more efficient than the SRS and RSS methods. 

b) MBGRSSO estimators with m = 3 and s = 5 obtains the best results 

in terms of efficiency for all the variables. 

c) The efficiency of MBGRSS estimators is increasing as s increasing. 

Conclusion 

Based on MBGRSS, it can be conclude that  

 

1) If the underlying distribution is symmetric about the population 

mean μ, then 

 The MBGRSS estimators are unbiased of the population 

mean. 

 
    Var Var
s

MBGRSS SRSX X , 

 
    Var Var
s

MBGRSS RSSX X  for s > 1, and s ≥ 1 for the 

uniform distribution. 

 The efficiency of MBGRSS estimators is increasing in s. 

2) If the parent distribution is asymmetric about μ, then 

  s

MBGRSSX  is biased.  

 For m = 3, 6 and s = 1, the MSE of  s

MBGRSSX  is less than the 

variance of 
SRSX ,  

3) It seems that MBGRSS should be preferred in bioleaching studies to 

RSS and SRS. 
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It is recommended that the MBGRSS be used to estimate the population mean of 

symmetric distribution. 
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Based on left type II censored samples from a Gumbel type II distribution, the Bayes 
estimators and corresponding risks of the unknown parameter were obtained under 
different asymmetric loss functions, assuming different informative and non-informative 
priors. Elicitation of hyper-parameters through prior predictive approach has also been 

discussed. The expressions for the credible intervals and posterior predictive distributions 
have been derived. Comparisons of these estimators are made through simulation study 
using numerical and graphical methods. 
 
Keywords: Left censoring, loss functions, credible intervals, posterior predictive 
distributions 

 

Introduction 

Gumbel type II distribution is very useful in life testing. Kotz and Nadarajah 

(2000) have given a brief characterization of the Gumbel type II distribution. 

Corsini, Gini, Greco, and Verrazzani (2002) studied the maximum likelihood 

(ML) algorithms and Cramer-Rao (CR) bounds for the location and scale 

parameters of the Gumbel distribution. Mousa, Jaheen, and Ahmad (2002) 

considered the Bayesian estimation to analyze both parameters of the Gumbel 

distribution based on record values. 

The probability density function of the Gumbel distribution of the second 

kind is given by 

 

    1
exp ,    0, , 0.f x x x x

    
          (1) 
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The corresponding cumulative distribution function is: 

 

   1 exp ,      0, , 0.F x x x           (2) 

 

The parameter υ (being known) is a shape parameter of the model, and τ is the 

scale parameter. 

The use of a Bayesian approach allows both sample and prior information to 

be incorporated into the statistical analysis, which will improve the quality of the 

inferences and permit a reduction in sample size. The decision-theoretic 

viewpoint takes into account additional information concerning the possible 

consequences of decisions (quantified by a loss function). The aim of this is to 

consider the statistical analysis of the unknown parameters when the data are left 

censored from the Gumbel distribution of the second kind. There is a widespread 

application and use of left-censoring or left-censored data in survival analysis and 

reliability theory. For example, in medical studies patients are subject to regular 

examinations. Discovery of a condition only tells us that the onset of sickness fell 

in the period since the previous examination and nothing about the exact date of 

the attack. Thus the time elapsed since onset has been left censored. Similarly, 

consider left-censored data when estimating functions of exact policy duration 

without knowing the exact date of policy entry; or when estimating functions of 

exact age without knowing the exact date of birth. Coburn, McBride and Ziller 

(2002) faced this problem due to the incidence of a higher proportion of rural 

children whose spells were left censored (i.e., those children who entered the 

sample uninsured), and who remained uninsured throughout the sample. As 

another example, job duration might be incomplete because the beginning of the 

job spells is not observed, which is an incidence of left censoring (Bagger, 2005).  

Likelihood Function and Posterior Distribution 

Let X(r + 1),…, X(n) be the last n - r order statistics from a random sample of size n 

following Gumbel type II distribution. Then the joint probability density function 

of X(r + 1),…, X(n) is given by 
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where s = n – r, and  

 

       1
1

exp .
n

i i r
i r

x x kx    


 

  
    

  
   

 

Prior and Posterior Distributions 

 

The uniform prior is assumed to be 

 

   ,  0.p k     (4) 

 

The posterior distribution under the uniform prior for the left censored data is: 
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  (5) 

 

The informative prior for the parameter τ is assumed to be exponential 

distribution: 

 

   ,    0,   0.wp we w      (6) 

 

The posterior distribution under the assumption of exponential prior is: 
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  (7) 

 

The informative prior for the parameter τ is assumed to be gamma 

distribution: 
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The posterior distribution under the assumption of gamma prior for the left 

censored data is: 
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  (9) 

 

The informative prior for the parameter τ is assumed to be inverse Levy 

distribution: 
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       (10) 

 

The posterior distribution under the inverse Levy prior for the left censored 

data is: 
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  (11) 

 

Bayes Estimators and Posterior Risks under Different Loss 

Functions 

Consider the derivation of the Bayes estimator and corresponding posterior risks 

under different loss functions. The Bayes estimators are evaluated under 

precautionary loss function (PLF), weighted squared error loss function (WSELF), 

squared-log error loss function (SLELF), and entropy loss function (ELF). The 
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Bayes estimator and corresponding posterior risks under different loss functions 

are given in the Table 1. 
 
 
Table 1. Bayes estimator and posterior risks under different loss functions 

 

Loss Function =  ˆ,L    Bayes Estimator Posterior Risk 
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The Bayes estimators and posterior risks under uniform prior are: 
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The Bayes estimators and posterior risks under the rest of priors can be obtained 

in a similar manner. 

Bayes Credible Interval for the Left Censored Data 

The Bayesian credible intervals for type II left censored data under informative 

and non-informative priors, as discussed by Saleem and Aslam (2009) are 

presented in the following. The credible intervals for type II left censored data 

under all priors are: 
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Elicitation 

Consider a probability elicitation method known as prior predictive elicitation. 

Predictive elicitation is a method for estimating hyper-parameters of prior 

distributions by inverting corresponding prior predictive distributions. Elicitation 

of hyper-parameter from the prior p(τ) is conceptually difficult task because we 

first have to identify prior distribution and then its hyper-parameters. The prior 

predictive distribution is used for the elicitation of the hyper-parameters which is 

compared with the experts' judgment about this distribution and then the hyper-

parameters are chosen in such a way so as to make the judgment agree closely as 

possible with the given distribution (see Grimshaw, 1993; Kadane, 1980; 

O'Hagan et al., 2006; Grimshaw, Collings, Larsen, & Hurt, 2001; Jenkinson, 

2005; and León, Vázquez-Polo, & González, 2003). 

According to Aslam (2003), the method of assessment is to compare the 

predictive distribution with experts' assessment about this distribution and then to 

choose the hyper-parameters that make the assessment agree closely with the 

member of the family. He discusses three important methods to elicit the hyper-

parameters: (i) via the prior predictive probabilities (ii) via elicitation of the 

confidence levels (iii) via the predictive mode and confidence level. We will use 

the prior predictive approach by Aslam (2003). 

 

Prior predictive distribution 

 

The prior predictive distribution is: 

 

      
0

p y p y p d  


    (12) 

 

The predictive distribution under exponential prior is: 
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       1

0

expp y w y y w d
   


       (13) 

 

After some simplification it reduces as 
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The predictive distribution under gamma prior is: 
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  (16) 

 

By using the method of elicitation defined by Aslam (2003), we obtain the 

following hyper-parameters w = 0.798566, a = 0.152109, b = 6.523695 and 

c = 15.985795. 

 

 

Posterior Predictive Distribution 

The predictive distribution contains the information about the independent future 

random observation given preceding observations. The reader desire more details 

can see Bansal (2007). 

The posterior predictive distribution of the future observation y = xn+1 is  

 

      
0

p y p p y d  


 x x   (17) 
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Where    1
exp ,p y x x

  
       is the future observation density and p (τ | x) 

is the posterior distribution obtained by incorporating the likelihood with the 

respective prior distributions. 

The posterior predictive distribution of the future observation y = xn+1 under 

uniform prior is  
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The posterior predictive distribution of the future observation y = xn+1 under 

exponential prior is 
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The posterior predictive distribution of the future observation y = xn+1 under 

gamma prior is 
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The posterior predictive distribution of the future observation y = xn+1 under 

Inverse-Levy prior is 
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Simulation Study  

Simulations can be helpful and an illuminating way to approach problems in 

Bayesian analysis. Bayesian problems of updating estimates can be handled easily 

and straight forwardly with simulation. Because the distribution function of the 

Gumbel type II distribution can be expressed, as well as its inverse in closed form, 

the inversion method of simulation is straightforward to implement. The study 

was carried out for different values of (n, r) using τ ∊ 2.5 and υ = 0.5. Censoring 

rates are assumed to be 5% and 10%. 

Sample size is varied to observe the effect of small and large samples on the 

estimators. Changes in the estimators and their risks have been determined when 

changing the loss function and the prior distribution of τ while keeping the sample 

size fixed. All these results are based on 5,000 repetitions. Tables 2-6 give the 

estimated value of the parameter, posterior risks and 95% confidence limits 

(Lower Confidence Limit (LCL) and Upper Confidence Limit (UCL)) for the 

parameter. The results are summarized in the following Tables and Figures 1-8. 

The amounts of posterior risks have been presented in the parenthesis in the tables.  
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Table 2. Bayes estimates and the posterior risks under PLF for τ ∊ 2.5. 

 

n 
Uniform Prior 

No Censoring 5% Censoring 10% Censoring 

20 
2.737920 

(0.125898) 
3.35045 

(0.157935) 
3.77639 

(0.181710) 

40 
2.677940 

(0.064145) 
3.15159 

(0.077609) 
3.64915 

(0.097539) 

60 
2.62145 

(0.042453) 
3.09163 

(0.051534) 
3.54489 

(0.060447) 

80 
2.57594 

(0.031510) 
3.04116 

(0.038311) 
3.50579 

(0.045182) 

100 
2.56138 

(0.025173) 
3.03806 

(0.030759) 
3.47670 

(0.036015) 

n Exponential Prior 

20 
2.58014 

(0.118643) 
2.96201 

(0.138226) 
3.38135 

(0.156758) 

40 
2.52198 

(0.060409) 
2.95898 

(0.072220) 
3.36035 

(0.084258) 

60 
2.52440 

(0.040720) 
2.95009 

(0.049112) 
3.35418 

(0.057015) 

80 
2.52171 

(0.030847) 
2.94949 

(0.037501) 
3.33655 

(0.043241) 

100 
2.50779 

(0.024647) 
2.92773 

(0.030070) 
3.30688 

(0.035032) 

n Gamma Prior 

20 
1.43895 

(0.068852) 

1.55700 

(0.075152) 

1.64308 

(0.079688) 

40 
1.82853 

(0.044707) 

2.04504 

(0.050801) 

2.21285 

(0.055460) 

60 
2.00816 

(0.032974) 

2.26658 

(0.037962) 

2.49874 

(0.042352) 

80 
2.11237 

(0.026111) 

2.41150 

(0.030475) 

2.67252 

(0.034264) 

100 
2.218482 

(0.021653) 

2.51014 

(0.025478) 

2.79600 

(0.028819) 

n Inverse Levy Prior 

20 
1.32737 

(0.062473) 

1.43304 

(0.067927) 

1.49803 

(0.071294) 

40 
1.72182 

(0.041743) 

1.91963 

(0.047193) 

2.05833 

(0.051005) 

60 
1.93203 

(0.031544) 

2.16662 

(0.036031) 

2.37030 

(0.039845) 

80 
2.04177 

(0.025129) 

2.32593 

(0.029234) 

2.55092 

(0.032477) 

100 
2.12131 

(0.020951) 

2.41626 

(0.024413) 

2.68807 

(0.027552) 
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Table 3. Bayes estimates and the posterior risks under WSELF for τ ∊ 2.5. 

 

n 
Uniform Prior 

No Censoring 5% Censoring 10% Censoring 

20 
2.66809 

(0.133405) 
3.08160 

(0.157976) 
3.54947 

(0.186003) 

40 
2.55583 

(0.063896) 

3.05530 

(0.078578) 

3.43934 

(0.090409) 

60 
2.55213 

(0.042536) 

3.02388 

(0.051901) 

3.42741 

(0.060168) 

80 
2.53489 

(0.031686) 

3.01692 

(0.038842) 

3.41996 

(0.04506) 

100 
2.51670 

(0.025167) 

3.00774 

(0.030991) 

3.40597 

(0.035925) 

n Exponential Prior 

20 
2.37956 

(0.118978) 
2.93114 

(0.139567) 
3.35007 

(0.158471) 

40 
2.42840 

(0.060710) 

2.87664 

(0.073818) 

3.27245 

(0.085679) 

60 
2.46768 

(0.041128) 

2.85571 

(0.049693) 

3.270610 

(0.057314) 

80 
2.47487 

(0.030936) 

2.72288 

(0.037589) 

3.134120 

(0.043824) 

100 
2.48550 

(0.024855) 

2.624320 

(0.030108) 

3.02926 

(0.035046) 

n Gamma Prior 

20 
1.33348 

(0.069626) 
1.44368 

(0.075839) 
1.51586 

(0.080755) 

40 
1.75474 

(0.044819) 

1.98012 

(0.050968) 

2.12591 

(0.055810) 

60 
1.95524 

(0.03306) 

2.25507 

(0.038435) 

2.44299 

(0.042656) 

80 
2.07625 

(0.026231) 

2.40362 

(0.030624) 

2.63342 

(0.034421) 

100 
2.244640 

(0.021630) 

2.50664 

(0.025501) 

2.77998 

(0.029085) 

n Inverse Levy Prior 

20 
1.24650 

(0.063923) 
1.31807 

(0.068090) 
1.38627 

(0.071871) 

40 
1.665110 

(0.042155) 

1.74892 

(0.044659) 

1.84547 

(0.047385) 

60 
1.86831 

(0.031400) 

2.10212 

(0.035987) 

2.32167 

(0.040176) 

80 
1.99783 

(0.02513) 

2.33427 

(0.030086) 

2.50929 

(0.032640) 

100 
2.18089 

(0.020913) 

2.40249 

(0.024701) 

2.64028 

(0.027546) 
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Table 4. Bayes estimates and the posterior risks under SLELF for τ ∊ 2.5. 

 

n 
Uniform Prior 

No Censoring 5% Censoring 10% Censoring 

20 
2.70493 

(0.048771) 
3.16249 

(0.051271) 
3.67867 

(0.054041) 

40 
2.60860 

(0.024690) 
3.08320 

(0.025973) 
3.52510 

(0.027396) 

60 
2.548760 

(0.016529) 
3.04864 

(0.017391) 
3.48125 

(0.018348) 

80 
2.53947 

(0.012422) 
3.02895 

(0.013072) 
3.46749 

(0.013793) 

100 
2.53070 

(0.009950) 
3.019810 

(0.010471) 
3.24692 

(0.011050) 

n Exponential Prior 

20 
2.42262 

(0.048771) 
2.89396 

(0.051271) 
3.13621 

(0.054041) 

40 
2.46614 

(0.024690) 
2.87997 

(0.025973) 
3.11318 

(0.027396) 

60 
2.47732 

(0.016529) 
2.79474 

(0.017391) 
3.01411 

(0.018348) 

80 
2.48808 

(0.012422) 
2.64583 

(0.013072) 
3.006108 

(0.013793) 

100 
2.497560 

(0.009950) 
2.60852 

(0.010471) 
2.985631 

(0.011050) 

n Gamma Prior 

20 
1.37081 

(0.050874) 

1.48503 

(0.0536004) 

1.56354 

(0.056635) 

40 
1.78940 

(0.025218) 

1.98832 

(0.026557) 

2.15504 

(0.028047) 

60 
1.98230 

(0.016764) 

2.23221 

(0.017651) 

2.45581 

(0.018638) 

80 
2.081680 

(0.012554) 

2.38376 

(0.013218) 

2.63859 

(0.013956) 

100 
2.26264 

(0.010035) 

2.48866 

(0.010565) 

2.77011 

(0.011154) 

n Inverse Levy Prior 

20 
1.27054 

(0.049989) 
1.34243 

(0.052619) 
1.42286 

(0.055541) 

40 
1.69351 

(0.024999) 
1.86554 

(0.026314) 
2.01136 

(0.027776) 

60 
1.90254 

(0.016663) 
2.19742 

(0.017856) 
2.32432 

(0.018518) 

80 
2.01472 

(0.012499) 
2.29894 

(0.013158) 
2.52262 

(0.013889) 

100 
2.20627 

(0.009999) 
2.40058 

(0.010526) 
2.64965 

(0.011111) 
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Table 5. Bayes estimates and the posterior risks under ELF for τ ∊ 2.5. 

 

n 
Uniform Prior 

No Censoring 5% Censoring 10% Censoring 

20 
2.63866 

(0.024792) 
3.10757 

(0.025787) 
3.56083 

(0.026520) 

40 
2.56586 

(0.012448) 
3.06196 

(0.012508) 
3.46458 

(0.012576) 

60 
2.53490 

(0.008310) 
3.03388 

(0.008570) 
3.42366 

(0.008987) 

80 
2.52287 

(0.006237) 
3.00312 

(0.006286) 
3.15751 

(0.006721) 

100 
2.51440 

(0.004992) 
2.901795 

(0.005235) 
3.003575 

(0.005982) 

n Exponential Prior 

20 
2.56510 

(0.024792) 
2.69689 

(0.025787) 
3.05465 

(0.026520) 

40 
2.52434 

(0.012448) 
2.58528 

(0.012508) 
3.02735 

(0.012576) 

60 
2.50708 

(0.008310) 
2.561238 

(0.008570) 
3.017921 

(0.008987) 

80 
2.48248 

(0.006237) 
2.52515 

(0.006286) 
3.00984 

(0.006721) 

100 
2.46838 

(0.004992) 
2.49894 

(0.005235) 
2.91496 

(0.005982) 

n Gamma Prior 

20 
1.33972 

(0.025879) 

1.44818 

(0.024988) 

1.52916 

(0.025776) 

40 
1.76606 

(0.012763) 

1.96735 

(0.012456) 

2.12581 

(0.011955) 

60 
1.94527 

(0.008429) 

2.21469 

(0.008322) 

2.44627 

(0.008047) 

80 
2.07237 

(0.006304) 

2.36455 

(0.006255) 

2.62396 

(0.006071) 

100 
2.15873 

(0.005034) 

2.47250 

(0.005010) 

2.75845 

(0.004880) 

n Inverse Levy Prior 

20 
1.23549 

(0.025422) 

1.31738 

(0.024519) 

1.39072 

(0.023289) 

40 
1.66838 

(0.012605) 

1.84774 

(0.012314) 

1.97503 

(0.0117967) 

60 
1.87576 

(0.008380) 

2.10021 

(0.008254) 

2.30080 

(0.007957) 

80 
2.011420 

(0.006276) 

2.26947 

(0.006214) 

2.49758 

(0.006016) 

100 
2.30955 

(0.005017) 

2.39526 

(0.004983) 

2.65130 

(0.004843) 
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Table 6. The 95% credible intervals for τ ∊ 2.5. 

 

n 
Uniform Prior 

Lower Limit Upper Limit Difference 

20 2.10503 5.23490 3.12987 

40 2.44587 4.67921 2.23334 

60 2.58722 4.39961 1.81239 

80 2.71041 4.29493 1.58452 

100 2.77531 4.19040 1.41509 

n Exponential Prior 

20 1.84980 4.60018 2.75038 

40 2.28485 4.37117 2.08632 

60 2.47071 4.20149 1.73078 

80 2.61670 4.14644 1.52974 

100 2.69796 4.07361 1.37565 

n Gamma Prior 

20 1.06688 2.58544 1.51856 

40 1.60787 3.04682 1.43895 

60 1.91272 3.23551 1.32279 

80 2.13391 3.36978 1.23587 

100 2.27978 3.43369 1.15391 

n Inverse Levy Prior 

20 0.86467 2.17747 1.31280 

40 1.41811 2.72520 1.30709 

60 1.74630 2.97690 1.23060 

80 1.98529 3.15093 1.16564 

100 2.14761 3.24636 1.09875 

 
 

Graphical Representation of Posterior Risks under Different Priors 

 

The graphs reveal that posterior risks under different informative and non 

informative priors. It is observed that both the priors (uniform and exponential) 

yield the approximately the identical posterior inferences under ELF and SLELF. 
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Figure 1. Effect of posterior risk under PLF with no censoring 

 

 
 

 
Figure 2. Effect of posterior risk under PLF with 10% censoring 
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Figure 3. Effect of posterior risk under WSELF with no censoring 

 

 
 

 
Figure 4. Effect of posterior risk under WSELF with 10% censoring 
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Figure 5. Effect of posterior risk under SLELF with no censoring 

 

 
 

 
Figure 6. Effect of posterior risk under SLELF with 10% censoring 
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Figure 7. Effect of posterior risk under ELF with no censoring 

 

 
 

Figure 8. Effect of posterior risk under ELF with 10% censoring 
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Conclusion 

The simulation study displayed some interesting properties of the Bayes estimates. 

The risks under said loss functions are reduced as the sample size increases. The 

effect of censoring on estimation of τ is in the form of overestimation under 

uniform and exponential priors and underestimation assuming gamma and inverse 

Levy priors. Larger degrees of censoring results in bigger sizes of over or 

underestimation.  

However, the parameter τ is either underestimated or overestimated 

depending upon the prior distribution to be used when censoring is not done. Then 

extent of this over or under estimation is directly proportional to amount of 

censoring rates and inversely proportional to the sample size. Further, the increase 

in sample size reduces the posterior risks of τ. 

Another interesting remark concerning the risks of the estimates is that 

increasing (decreasing) the censoring rate increasing (reduces) the risks of the 

estimates under said loss functions. The performance of squared-log error loss 

function and entropy loss function is independent of choice of parametric value. 

In comparison of informative priors and the uniform prior, the inverse Levy prior 

provides the better estimates as the corresponding risks are least under said loss 

functions except ELF and SLELF. Although the uniform and the exponential 

priors are equally efficient under ELF and SLELF, therefore they produce more 

efficient estimates as compared to the other informative priors. 

The credible intervals are in accordance with the point estimates, that is, the 

width of credible interval is inversely proportional to sample size. From the 

Table 6, appended above, it can be revealed that the effect of the prior information 

is in the form of narrower width of interval. The credible interval assuming 

inverse Levy prior is much narrower than the credible intervals assuming 

informative and non-informative priors.  

It is the use of prior information that makes a difference in terms of gain in 

precision. To see the effects of the posterior risks assuming different priors 

Figures 1-8 are prepared. It is observed from all the figures that posterior risk 

decreases with the increase in sample size under all loss functions. It is evident 

from Figures 5-8 that behavior of posterior risks is similar in all aspects. The 

study can further be extended by considering generalized versions of the 

distribution under variety of circumstances. 
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This paper uses simulation to explore the performance of a two-stage procedure where a 
preliminary Shapiro-Wilk test is used to choose between the ANOVA and Kruskal-Wallis 
tests as a three-sample location test. The results suggest that the two-stage procedure 

actually seems to be preferable when conducting such location tests. 
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Introduction 

It is common among applied researchers in psychology to conduct data analyses as 

two-stage procedures where one or more preliminary tests precede the test of 

interest (Keselman, Othman, & Wilcox, 2013). For example, when a researcher 

plans to compare two population means with Student’s t-test, the underlying 

normality assumption is often checked with a preliminary goodness-of-fit test. If 

the null hypothesis of normality is rejected, the Mann-Whitney test (or some other 

non-parametric test) is used to analyze the data. If the null hypothesis of normality 

is not rejected, the underlying homoscedasticity assumption may be checked in a 

similar manner. If the null hypothesis of homoscedasticity is rejected, Welch’s t-

test (or some other robust test) is used. If data were neither significantly non-normal 

nor significantly heteroscedastic, Student’s t-test is used to compare the two means. 

The normality assumption issue is highly relevant for data analyses in 

psychological research. For example, in the empirical study of achievement and 

psychometric measures conducted by Micceri (1989), significant non-normality 

contaminations were found in all 440 measures, including tail weights from the 

uniform to the double exponential, exponential level asymmetry, and bimodality. 

Furthermore, recent research has shown that most real data samples are at least 

http://dx.doi.org/10.22237/jmasm/1478002140
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slightly non-normal in terms of skewness and kurtosis (Blanca, Arnau, López-

Montiel, Bono, & Bendayan, 2013) and that the variance heterogeneity assumption 

is violated in a nontrivial number of published studies (Ruscio & Roche, 2012). 

However, there are several conceptual reasons why the use of a two-stage test 

procedure with a preliminary test of normality and/or the homoscedasticity 

assumption may be problematic in practice (Wells & Hinze, 2006): 

 

 The probability of a type I error as well as a type II error in the procedure 

may be heavily distorted. This is because the distribution of the location test 

statistic is not only related to the parental distribution(s), but also 

conditional on the preliminary test since both type I errors and type II errors 

are possible in the first stage. For example, even if a parental population is 

significantly contaminated from the exponential distribution, many samples 

will not look non-normal enough to fail the normality test. This is because 

of the random component of the sampling procedure. However, the samples 

that pass the normality test will often be significantly different from the 

other samples, not only in terms of shape but also in terms of mean and/or 

standard deviation. 

 A preliminary test in which the null hypothesis of normality is not rejected 

does not constitute proof that the normality assumption holds. In fact, no 

null hypothesis is strictly ever true when empirical data are considered 

(Cohen, 1994). From this perspective, normality assumptions are always 

violated. 

 Preliminary test procedures rely on assumptions themselves. This means 

that, strictly speaking, those assumptions also need to be tested. This would 

however also require new assumptions, and so on, and so forth. 

 Even though a preliminary test correctly indicates that a normality 

assumption does not hold, a parametric test with higher power than the 

corresponding non-parametric test might still be valid because of high 

robustness against the current type of non-normality. 

 

Recently, the performance of different two-stage procedures, where samples 

are checked with preliminary tests of normality before univariate or bivariate 

location tests, have been studied. For example, Rochon and Kieser (2011) examined 

the type I error rate of the one-sample Student’s t-test with a preliminary normality 

test. They found an increase in the type I error rate for conditional samples 

compared to unconditional ones, especially when parental distributions were 
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skewed. Schucany and Ng (2006) found similar results for the one-sample 

Student’s t-test with a preliminary normality test, concluding that graphical 

diagnostics are probably better in practice than formal pretests. Rochon, Gondan, 

and Kieser (2012) examined a two-stage procedure where a preliminary normality 

test was used to decide between the two-sample Student’s t-test and the Mann-

Whitney test in the second stage. They concluded that even though the two-stage 

procedure might be considered incorrect from a formal perspective, the procedure 

seemed to satisfactorily maintain the nominal significance level and had acceptable 

power properties in the investigated examples. Rasch, Kubinger, and Moder (2011), 

on the other hand, found that it is preferable to use Welch’s t-test without pre-testing 

for normality rather than the two-stage procedure including Student’s t-test as a 

standard test, and that the corresponding non-parametric test should not be used in 

the given context. Preliminary tests have also recently been discussed in related 

contexts by, for example, Lantz (2013), Zimmerman (2004, 2011, 2014), Shuster 

(2005, 2009), and Schoder, Himmelmann, and Wilhelm (2006). 

Overall, there seems to be a general consensus in the literature that two-stage 

procedures including preliminary tests are unnecessary at best, or harmful at worst, 

in a one-sample or a two-sample location test context. However, there does not 

seem to exist any similar literature based on simulated two-stage location tests for 

three (or more) groups, even though both Othman, Keselman, and Wilcox (2015) 

and Keselman, Othman, and Wilcox (2014) analyze the two-stage procedure 

problem itself in a multi-group context based on simulations. The focus in both 

papers is on the normality screening rather on the two-stage procedure as a whole, 

though. 

We thus seek to answer the following question in this paper: what are the 

properties of a two-stage procedure where a normality test at the first stage is used 

to decide between the omnibus one-way ANOVA and the Kruskal-Wallis test in 

the second stage? The purpose of this paper is to present the results from a 

simulation study designed to shed light on this issue. In the next section the 

methodology of the study is described. The results of the simulations are then 

presented and discussed in relation to previous research. Finally, the paper 

concludes with the implications of these results for use in statistical analysis in 

practice. 

Methodology 

In the simulations, random samples from three independent groups were drawn 

from four different distributions, in line with the typical contaminations found by 
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Micceri (1989) in his empirical study of achievement and psychometric measures. 

The distributions used are also the ones typically used in this type of study (e.g., 

Rochon et al., 2012), that is, the normal, the uniform, the exponential, and the 

Laplace distributions. The uniform distribution represents a decent approximation 

of the normal distribution, while the exponential and the Laplace distributions 

represent two different types of distinct non-normality in terms of skewness and 

kurtosis. The normal distribution is included for the purpose of comparability. 

The probability density function of the normal distribution is given by 
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with mean μ and variance σ2. It has no skewness and by definition no excess kurtosis.  
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The uniform distribution is symmetric, like the normal distribution, and slightly 

platykurtic. 

The probability density function of the exponential distribution is given by 
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where λ is the rate parameter. It represents a distinct form of non-normality due to 

its heavy skewness to the right and its strong leptokurtic form. In reality, it can often 

approximate, e.g., the time between events or the time of events. 

The probability density function of the Laplace distribution, finally, is given 

by 
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which means that it is symmetric and significantly leptokurtic with an excess 

kurtosis of 3. At first glance, one might think that the Laplace distribution resembles 

the normal distribution. The huge difference, however, is that outliers are much 

more common due to the fatter tails. Hence, it represents an important form of non-

normality where wild randomness exists (for realistic examples of such cases, see 

e.g., Mandelbrot & Taleb, 2006). 

In the simulations, the standard deviation was kept constant at 1 for all 

distributions in all cases while the mean values were varied to accomplish five 

different effect sizes in order to evaluate actual significance as well as actual power. 

Table 1 shows the manner in which the true mean values of the distributions were 

shifted to achieve a suitable range of effect sizes (see Cohen, 1992), ranging from 

no effect (f = 0.00) to a very large effect (f = 0.65). 

The simulated data sets for the three groups were subject to individual 

normality screening at various significance levels based on the Shapiro-Wilk test 

with the Royston algorithm (Royston, 1992), that is, the default algorithm in SPSS 

and other statistical software. The Shapiro-Wilk test has recently been found to 

have the best power among the tests commonly used for normality screening 

(Marmolejo-Ramos & González-Burgos, 2013; Razali & Wah, 2011), even though 

other researchers recommend other tests, such as the Anderson-Darling test (see 

Keselman et al., 2013), for normality screening. 

If the normality hypothesis for at least one group was rejected, a location test 

was performed with the Kruskal-Wallis test (Kruskal & Wallis, 1952) at the 0.05 

significance level. If not, a location test was performed with the omnibus one-way 

ANOVA at the 0.05 significance level. This two-stage procedure was repeated 

100,000 times for each combination of effect size and distribution, and for three 

different sample sizes (n = 15, n = 30, and n = 60 in each group). All 100,000 data 

sets were also analyzed with the ANOVA without a preliminary test, as well as with 

the Kruskal-Wallis test without a preliminary test. This was done in both cases for 

each combination of effect size, distribution, and sample size. All simulation 

procedures were conducted using Microsoft Excel 2010. 
 
 
Table 1. The different combinations of mean values 

 

Effect size f μ1 μ2 μ3 

0.00 0.000 0.000 0.000 

0.10 0.000 0.123 0.246 

0.25 0.000 0.307 0.614 

0.40 0.000 0.490 0.980 

0.65 0.000 0.796 1.592 
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Results 

Estimated Type I Error Probabilities 

This section presents the results when all samples were drawn from distributions 

with the same mean value. Table 2 displays the frequencies of significant tests out 

of the 100,000 conducted tests for the different combinations of test procedure (the 

ANOVA without the preliminary test, the Kruskal-Wallis test without the 

preliminary test, or the two-stage procedure), sample size (n = 15, n = 30, or n = 60 

in each group) and distribution (normal, uniform, exponential, or Laplace). For 

example, the two-stage procedure (TSP) where the preliminary Shapiro-Wilk test 

for normality was conducted on a significance level of 0.1 yielded 4,970 significant 

tests when n = 30. Hence, the estimated type I error probability for this specific 

combination of distribution, test procedure, and sample size was 4.97% when 

samples were taken from exponential distributions. 
 
 
Table 2. Estimated type I error probabilities 

 

Distribution Method n = 15 n = 30 n = 60 

Normal ANOVA 4.99% 4.99% 4.93% 
 Kruskal-Wallis 4.79% 4.86% 4.86% 
 TSP 0.1 5.13% 5.17% 5.06% 
 TSP 0.05 5.14% 5.15% 5.05% 
 TSP 0.01 5.06% 5.06% 4.97% 
 TSP 0.005 5.03% 5.03% 4.96% 

Uniform ANOVA 5.12% 5.10% 5.08% 
 Kruskal-Wallis 4.72% 4.90% 4.99% 
 TSP 0.1 4.88% 4.93% 4.99% 
 TSP 0.05 5.00% 4.96% 4.99% 
 TSP 0.01 5.09% 5.08% 5.01% 
 TSP 0.005 5.11% 5.11% 5.03% 

Exp ANOVA 4.46% 4.59% 4.74% 
 Kruskal-Wallis 4.75% 4.83% 4.85% 
 TSP 0.1 4.82% 4.83% 4.85% 
 TSP 0.05 4.95% 4.83% 4.85% 
 TSP 0.01 5.49% 4.84% 4.85% 
 TSP 0.005 5.69% 4.87% 4.85% 

Laplace ANOVA 4.77% 4.93% 4.90% 
 Kruskal-Wallis 4.78% 4.93% 4.92% 
 TSP 0.1 4.92% 4.97% 4.92% 
 TSP 0.05 4.97% 5.00% 4.92% 
 TSP 0.01 5.00% 5.04% 4.97% 

  TSP 0.005 4.96% 5.06% 4.98% 
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The overall picture seems to be that the two pure tests both perform in a 

similar way as the two stage process. The only, but rather minor, exception seems 

to be that that the two stage process generates slightly more type I errors when 

samples of a small size are drawn from an exponential distribution. This tendency 

is amplified when the preliminary test is conducted at a smaller significance level, 

but diminishes when the sample size becomes larger. The reason is probably that 

the normality screening of samples taken from exponential distributions favors 

samples with smaller standard deviations (Rochon & Kieser, 2011). 

Estimated Power under Exponential Distribution 

This section presents the results when all samples were drawn from exponential 

distributions with different mean values. Table 3 displays the frequencies of 

significant tests out of the 100,000 conducted tests for the different combinations 

of test procedure (the ANOVA without the preliminary test, the Kruskal-Wallis test 

without the preliminary test, or the two-stage procedure), sample size (n = 15, 

n = 30, or n = 60 in each group), and effect size (f = 0.10, f = 0.25, f = 0.40, or 

f = 0.65). For example, the ANOVA without the preliminary test yielded 12,740 

significant tests when the effect size was f = 0.10 and when n = 30. Hence, the 

proportion of significant tests for this specific combination test procedure, sample 
 
 
Table 3. Estimated power under the exponential distribution 

 

Method Sample size n f = 0.10 f = 0.25 f = 0.40 f = 0.65 

ANOVA 15 8.45% 32.05% 66.47% 95.54% 
 30 12.74% 56.37% 91.57% 99.65% 
 60 21.05% 85.11% 99.20% 99.42% 

Kruskal-Wallis 15 13.34% 52.24% 85.71% 99.18% 
 30 24.15% 84.81% 99.05% 99.69% 
 60 45.35% 98.63% 99.42% 99.42% 

TSP 0.1 15 13.40% 52.27% 85.70% 99.18% 
 30 24.15% 84.81% 99.05% 99.69% 
 60 45.35% 98.63% 99.42% 99.42% 

TSP 0.05 15 13.53% 52.29% 85.64% 99.17% 
 30 24.15% 84.81% 99.05% 99.69% 
 60 45.35% 98.63% 99.42% 99.42% 

TSP 0.01 15 13.82% 51.53% 84.66% 98.97% 
 30 24.16% 84.80% 99.05% 99.69% 
 60 45.35% 98.63% 99.42% 99.42% 

TSP 0.005 15 13.71% 50.44% 83.43% 98.76% 
 30 24.18% 84.78% 99.04% 99.69% 

  60 45.35% 98.63% 99.42% 99.42% 
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size, and effect size was 12.74% when samples were taken from exponential 

distributions. 

The two-stage procedure (regardless of the significance level of the Shapiro-

Wilk test) and the Kruskal-Wallis test perform similarly at all combinations of 

effect size and sample size. However, the ANOVA has substantially less power 

than both other procedures. Furthermore, this pattern remains the same regardless 

of the sample size. The main reason is of course that the preliminary normality 

screening in the two-stage procedure in most cases favors the Kruskal-Wallis test 

at the second stage. 

Estimated Power under Laplace Distribution 

This section presents the results when all samples were drawn from Laplace 

distributions with different mean values. Table 4 displays the frequencies of 

significant tests out of the 100,000 conducted tests for the different combinations 

of test procedure, sample size, and effect size. 

As when samples were drawn from exponential distributions, the ANOVA 

has a lower power than both the two-stage procedure (regardless of the significance 

level of the Shapiro-Wilk test) and the Kruskal-Wallis test when the samples come 

from Laplace distributions. The effect is somewhat smaller, however. 
 
 
Table 4. Estimated power under the Laplace distribution 

 

Method Sample size n f = 0.10 f = 0.25 f = 0.40 f = 0.65 

ANOVA 15 8.32% 30.06% 64.72% 96.08% 
 30 12.34% 54.84% 91.80% 99.41% 
 60 20.70% 84.70% 98.73% 98.90% 

Kruskal-Wallis 15 9.56% 37.45% 74.34% 98.09% 
 30 15.70% 68.64% 96.86% 99.44% 
 60 28.16% 93.86% 98.89% 98.90% 

TSP 0.1 15 9.54% 36.47% 72.93% 97.90% 
 30 15.50% 67.61% 96.51% 99.44% 
 60 28.08% 93.72% 98.89% 98.90% 

TSP 0.05 15 9.49% 35.60% 71.92% 97.72% 
 30 15.29% 66.64% 96.18% 99.44% 
 60 27.94% 93.55% 98.89% 98.90% 

TSP 0.01 15 9.19% 33.53% 69.24% 97.20% 
 30 14.65% 63.70% 95.20% 99.43% 
 60 27.15% 92.65% 98.88% 98.90% 

TSP 0.005 15 9.01% 32.74% 68.23% 96.97% 
 30 14.27% 62.36% 94.72% 99.43% 

  60 26.70% 92.09% 98.86% 98.90% 
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The Kruskal-Wallis test has slightly higher power than the two-stage 

procedure, and this effect is amplified when the preliminary test is conducted at a 

smaller significance level irrespective of the sample size. The reason is probably 

that normality screening at a lower significance level favors the ANOVA at the 

second stage because the Laplace distribution, despite its leptokurtic shape, 

resembles the normal distribution more than the exponential distribution does due 

to its symmetry and unimodality. 

Estimated Power under Uniform Distribution 

This section presents the results when all samples were drawn from uniform 

distributions with different mean values. Table 5 displays the frequencies of 

significant tests out of the 100,000 conducted tests for the different combinations 

of test procedure, sample size, and effect size. 

In line with previous research (see Schmider, Ziegler, Danay, Beyer, & 

Buhner, 2010, for a review), the ANOVA shows slightly higher power than the 

Kruskal-Wallis test when samples are drawn from uniform distributions. The main 

reason is of course that the uniform distribution, in terms of skewness and/or 

kurtosis, does not impose an equally serious violation of normality as the Laplace 

and exponential distributions do. 
 
 
Table 5. Estimated power under the uniform distribution 

 

Method Sample size n f = 0.10 f = 0.25 f = 0.40 f = 0.65 

ANOVA 15 8.25% 27.83% 62.92% 97.66% 
 30 12.13% 53.63% 92.81% 100.00% 
 60 20.35% 85.70% 99.91% 100.00% 

Kruskal-Wallis 15 7.75% 25.05% 56.24% 94.61% 
 30 11.53% 49.05% 88.43% 99.96% 
 60 19.43% 81.37% 99.64% 100.00% 

TSP 0.1 15 8.08% 26.69% 59.52% 95.37% 
 30 11.62% 49.56% 88.70% 99.96% 
 60 19.43% 81.37% 99.64% 100.00% 

TSP 0.05 15 8.21% 27.41% 61.28% 96.16% 
 30 11.77% 50.59% 89.37% 99.96% 
 60 19.43% 81.38% 99.64% 100.00% 

TSP 0.01 15 8.28% 27.84% 62.83% 97.40% 
 30 12.13% 53.05% 91.67% 99.97% 
 60 19.64% 81.88% 99.65% 100.00% 

TSP 0.005 15 8.28% 27.85% 62.91% 97.57% 
 30 12.16% 53.49% 92.30% 99.98% 

  60 19.89% 82.69% 99.67% 100.00% 
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In general, the ANOVA performs somewhat better than the two-stage 

procedure while the Kruskal-Wallis test performs somewhat worse. As one might 

expect, the performance of the two-stage procedure approaches the performance of 

the ANOVA when the normality tests are conducted at a lower significance level 

as that favors the ANOVA at the second stage. However, the difference in 

performance between the Kruskal-Wallis test and the two-stage procedure also 

diminishes when the sample size is larger. 

Estimated Power under Normal Distribution 

This section presents the results when all samples were drawn from normal 

distributions with different mean values. Table 6 displays the frequencies of 

significant tests out of the 100,000 conducted tests for the different combinations 

of test procedure, sample size, and effect size. 

As one would expect, the Kruskal-Wallis test performs somewhat worse than 

the ANOVA. The two-stage procedure on the other hand has a performance very 

similar to the ANOVA, which is easy to understand as the Shapiro-Wilk test only 

favors the Kruskal-Wallis test at the second stage in a few cases. 
 
 
Table 6. Estimated power under the normal distribution 

 

Method Sample size n f = 0.10 f = 0.25 f = 0.40 f = 0.65 

ANOVA 15 8.29% 28.55% 63.53% 97.05% 
 30 12.23% 54.16% 92.60% 99.99% 
 60 20.50% 85.40% 99.87% 100.00% 

Kruskal-Wallis 15 7.80% 26.63% 60.49% 96.13% 
 30 11.65% 51.75% 91.21% 99.98% 
 60 19.71% 83.61% 99.82% 100.00% 

TSP 0.1 15 8.43% 28.48% 63.15% 96.90% 
 30 12.38% 53.85% 92.30% 99.99% 
 60 20.65% 85.00% 99.86% 100.00% 

TSP 0.05 15 8.45% 28.69% 63.47% 97.02% 
 30 12.39% 54.15% 92.51% 99.99% 
 60 20.68% 85.26% 99.87% 100.00% 

TSP 0.01 15 8.37% 28.67% 63.63% 97.10% 
 30 12.31% 54.28% 92.65% 99.99% 
 60 20.60% 85.45% 99.88% 100.00% 

TSP 0.005 15 8.36% 28.64% 63.63% 97.10% 
 30 12.29% 54.25% 92.66% 99.99% 

  60 20.58% 85.46% 99.88% 100.00% 
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Conclusion 

A preliminary test of normality before conducting a location test will yield one of 

four possible outcomes: 

 

 Incorrectly rejecting H0 (i.e. a type I error), resulting in the use of a location 

test with less power than necessary at the second stage. 

 Correctly rejecting H0, resulting in the (correct) use of a non-parametric 

location test at the second stage. 

 Incorrectly ‘accepting’ H0 (i.e. a type II error), resulting in the use of an 

invalid location test (i.e. with uncertain actual power and significance) at 

the second stage. 

 Correctly ‘accepting’ H0, resulting in the (correct) use of a parametric 

location test at the second stage. 

 

Therefore, the probability of a type I error as well as of a type II error of the 

entire two-stage procedure may be heavily distorted, if it is at all possible to 

determine. In this study, we have used simulations in order to shed some light on 

this problem. While we have been unable to see any specific disturbance in the type 

I error probability of the two-stage procedure, the effect on power exhibits some 

interesting patterns in comparison to the ‘pure’ methods. The overall impression is 

that the two-stage procedure performs similarly to the ANOVA, but slightly better 

than the Kruskal-Wallis test when the parent distributions are ‘relatively normally’ 

distributed. On the other hand, the two-stage procedure performs similarly to the 

Kruskal-Wallis test, but substantially better than the ANOVA, when the parent 

distributions are characterized by a more distinct violation of normality. These 

observed patterns are also relatively insensitive to the sample sizes. 

The choice of level of significance for the preliminary tests also requires some 

thought. If we, for example, want to compare six groups and choose to use α = 0.10 

during the normality screening, the overall probability of a type I error, leading us 

to use a less powerful non-parametric test to compare the means in the second stage, 

would be around 50%. On the other hand, since the ANOVA typically perform a 

lot worse than the Kruskal-Wallis when there is a more distinct violation of 

normality while the Kruskal-Wallis only perform slightly worse when normality 

actually holds, type II errors are potentially a lot more harmful than type I errors in 

the first stage of the two-stage procedure. 
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Hence, in contrast to previous similar research on bivariate situations, the 

two-stage procedure seems in general to be the preferable choice when conducting 

location tests for three samples as neither the ANOVA nor the Kruskal-Wallis test 

as one-stage procedures perform noticeably better than the two-stage procedure, 

while the two-stage procedure is substantially better than the ANOVA when data 

are distinctly non-normally distributed. This is especially so when the normality 

screening is conducted at a relatively high significance level. Hence, the two-stage 

procedure seems to have no practical shortcoming but an apparent practical 

advantage. The theoretical weakness, of course, is that the true probability of type 

I and type II errors may be unknown, which, in addition to the fact that the ANOVA 

is known to be relatively robust to non-normally distributed data when groups sizes 

are roughly equal, albeit more sensitive to non-normality when group sizes are 

unequal, should be borne in mind (Schmider et al., 2010; Wilcox, 2012; Field, 

2013). 

Future research should extend the design in this study, for example, by using 

different sample sizes in the groups, and/or by including other statistical 

distributions in order to evaluate other types of non-normality than those related to 

skewness and kurtosis. Further research in this field should also aim at comparing 

other types of parametric methods with their non-parametric counterparts as two-

stage procedures, as well as comparing two-stage procedures with robust 

procedures in general such as bootstrapping. Screening for other types of violations, 

for example, heteroscedasticity, in the first stage would also be interesting to 

consider. 
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In this article, an attempt has been made to study on general estimation procedures of 
population mean on recent occasion when non-response occurs in h-occasion successive 
sampling. Suggested estimators have advantageously influenced the estimation 
procedures in the presence of non-response. Detailed properties of the suggested 
estimation procedures have been examined and compared with the estimation process of 
the same circumstances but in the absence of non-response. Empirical studies have been 
carried out to demonstrate the performances of the estimates and suitable 

recommendations have been made. 
 
Keywords: Non-response, successive sampling, study variable, variance 

 

Introduction 

Successive sampling was developed for estimation of population parameters on 

recent point of time (occasion), when the population parameters changes over 

successive points of time (occasion). It is a sampling method to provide reliable 

and fruitful estimates of population parameters over different desire points of time 

(occasion). Jessen (1942) initiated a technique with the help of past information to 

provide the effective estimates on current occasion in two-occasion successive 

sampling. Later, this technique was extended by Yates (1949), Patterson (1950), 

Tikkiwal (1951), Eckler (1955), Rao and Graham (1964), Gupta (1979), Binder 

and Hidiroglou (1988), Kish (1998), McLaren and Steel (2000), Singh, Kennedy 

and Wu (2001), Steel and McLaren (2002) among others. Sen (1971, 1973) 

applied this theory in designing the estimators of population mean using 

information on two or more auxiliary variables which was readily available on 

http://dx.doi.org/10.22237/jmasm/1478002200
mailto:aksharma.ism@gmail.com
mailto:gnsingh_ism@yahoo.com
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previous occasion in two-occasion successive sampling. Singh, Singh and Shukla 

(1991), Singh and Singh (2001) made an efficient use of auxiliary variable on 

current occasion and subsequently Singh (2003) uses this methodology for h-

occasion successive sampling in estimation of current population mean. 

In many situations, information on an auxiliary variable may be readily 

available on the first as well as on the second occasion. Utilizing the auxiliary 

information on both occasions, Feng and Zou (1997), Biradar and Singh (2001), 

Singh (2005), Singh and Karna (2009), Singh and Prasad (2010), Singh, Prasad, 

and Karna (2011), Singh, Majhi, Maurya, and Sarma (2015) and Singh and 

Sharma (2014, 2015) have proposed several estimators of population mean on 

current (second) occasion in two-occasion successive sampling. 

Non-response is a common problem almost encountered in all sample 

surveys and successive sampling is more prone to this problem because of its 

repetitive nature. For example, in agriculture yield surveys, it might be possible 

that crop on certain plots are destroyed due to some natural calamities or disease 

so that yield on these plots are impossible to be measured. Hansen and Hurwitz 

(1946) suggested a method of sub sampling of non-respondents to address the 

problems of non-response in mail surveys. Later on Cochran (1977) and Okafor 

and Lee (2000) extended this technique for the case when besides the information 

on character under study, information is also available on one auxiliary character. 

More recently, Choudhary, Bathla, and Sud (2004), Singh and Priyanka (2007), 

and Singh and Kumar (2008) used the Hansen and Hurwitz (1946) technique for 

the estimation of population mean on current occasion in context of sampling on 

two occasions. 

Motivated with the above arguments and using Hansen and Hurwitz (1946) 

method, the aim of the present work is to suggest the estimation procedure for 

population mean at hth (recent) occasion when the non-response occurs on hth 

occasion, (h-1)th (previous) occasion and simultaneously on both hth and (h-1)th 

occasions in h-occasion successive (rotation) sampling. The properties of the 

proposed estimation procedure have been examined and compared with the 

similar estimation but under complete response. Empirical studies are carried out 

and suitable recommendations have been made. 

Notations 

Let U = (U1, U2, - - -, UN) be the finite population of N units, which has been 

sampled over h occasions. The character under studies are denoted by yh and yh-1 

on the hth and (h-1)th occasions respectively. Assume that the non-response occur 
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on hth occasion, (h-1)th occasion and simultaneously on both hth and (h-1)th 

occasions, so that the population can be divided into two classes, those who will 

respond at the first attempt and those who will not. Let the sizes of these two 

classes be Nh and N*
h on the hth occasion and the corresponding sizes on (h-1)th 

occasion be Nh-1 and N*
h-1. Let a simple random sample (without replacement) of 

size n be selected on the hth occasion which consist of 
h hn n   units common to 

the units observed on the (h-1)th occasion and 
h hn n   units drawn afresh on the 

hth occasion i.e.
h hn n n   . Here λh and μh (λh + μh = 1) are the fractions of 

matched and unmatched samples, respectively, on the hth occasion. The values of 

λh and μh should be chosen optimally. Assume that in the unmatched portion of 

the sample on the hth occasion 
hn  units respond and 

2hn  units do not respond. Let 

2h sn  denote the size of sub sample drawn from the non-response class in the 

unmatched portion of the sample on the hth occasion and their response collected 

by direct contact or interview. Similarly, 
1hn  units respond and 

2hn  units do not 

respond in the sample of matched units and let 
2h sn  denote the size of sub sample 

drawn from the non-response class in the matched portion of the sample on the hth 

occasion and their response collected by direct contact or interview. Following are 

the list of notations, which are considered for their further use: 

 

hY : 
The population mean of the study variable yh on the hth 

occasion. 

hy : 
The sample mean of the study variable based on 

hn  units 

common to the units observed on the (h-1)th occasion. 

hy : 
The sample mean of the study variable based on 

hn  units drawn 

afresh on the hth occasion. 

, 1h h  : The correlation between the study variables yh and yh-1. 

2

hyS : The population variance of the variable yh on the hth occasion. 

*
* 1

1
h

h

N
W

N


  : 

The proportion of non-responding units in the population on the 

(h-1)th occasion. 

*
* h

h

N
W

N
 : 

The proportion of non-responding units in the population on the 

hth occasion. 
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n
f

N

 
 
 

: The sampling fraction. 

2
1

2

h

h s

n
f

n





.  

2
2

2

h

h s

n
f

n





.  

 

Formulation of Estimator 

For estimating the population mean Y  on the hth occasion, a sample mean and a 

regression type estimator are suggested. First is the Hansen and Hurwitz (1946) 

type estimator, say
h , which is based on 

hn  sample units drawn afresh on hth 

occasion such that out of these 
hn units, 

1hn  units respond and remaining 

 2 1h h hn n n     units do not respond. Hence, 
h  is defined as 

 

 
*

h hy    (1) 

 

where  

 

 
* 1 1 2 2h h h s

h

h

n y n y
y

n

   
 


  

 

The second estimator is based on the sample of size 
hn , which is common to the 

units observed on the (h-1)th occasion. Because non-response is occurred on the 

previous occasion, therefore, again Hansen and Hurwitz (1946) type estimator are 

considered. The second estimator, h , for estimating the population mean on hth 

occasion is a regression type estimator, and is defined as 

 

  * *

, 1 1 1h h h h h hy y    
       (2) 

 

where  
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   1 21 1 1 2* *1 1 2 2

1  ,   
h hh hh h h h

h h

h h

n y n yn y n y
y y

n n

 



      
  

 
  

 

and , 1h h   is population regression coefficient between the study variable yh and 

yh-1. 

The resulting estimator 
h  is a convex linear combination of the estimators 

h  and h . The estimator 
h  is defined as  

 

   1-h h h h h         (3) 

 

where  0 1h h    is the unknown constant to be determined under certain 

criterion. 

 

Remark 1: For estimating the mean on hth occasion the estimator 
h  is 

suitable, which implies that more belief on 
h could be shown by choosing 

h  as 

1 (or close to 1), while for estimating the change from one occasion to the next, 

the estimator 
h  could be more useful so 

h  might be chosen as 0 (or close to 0). 

For asserting both the problems simultaneously, the suitable (optimum) choice of 

h  is required. 

 

Remark 2: (i) Assume that the correlation between variables observed 

on two occasions, more than one occasion apart is zero. (ii) For practical 

application the population regression coefficient will be estimated by their 

respective sample estimates. 

Properties of the Estimator h  

Because 
h  and h  are sample mean and difference type estimators respectively, 

they are unbiased for population mean hY . Therefore, the resulting estimator h  

defined in equation (3) is also an unbiased estimator of hY . The variance of the 

estimator h  is shown in following theorem. 

 

Theorem 1: Variance of the estimator h  to the first order of 

approximations is obtained as 
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22 1 2 1 ,h h h h h h h h hV V V C                  (4) 

 

where 

 

     * 2

2

1 1
1 1h h hy

h

V W f S
n N


 

     
 

  (5) 

 

      * 2 2 21
1 1 , 1 , 1

1

1 1
1 1 1 h

h h h h h h hy

h h

V W f S
n n N


  

  



 
       

  
  (6) 

 

and 

 

   21
,h h hyC S

N
       (7) 

 

Remark 3: Following Hansen and Hurwitz (1946) technique, some 

variances which are used in Theorem 1, are evaluated as given below: 

 

 

     

     

 
 

* * *

1 2 1 2

22
2 22

*
22 2 *

, ,

1

11 1

h h h h h h h

h
h hy h

h

h
hy hy h

h

V y V E y n n E V y n n

n
V y E f S n

n

f N
S S N

n N n N

          
   

 
    

 

 
   

  

  

 

where  2 *

hy hS N  is the population variance of non response class on hth occasion. 

Further we assume that  2 * 2

hy h hyS N S , and hence 

 

  
 *

2* 2
11 1 h

h hy

h h

W f
V y S

n N n

  
     

    

  (8) 

 

Similarly 

 



SHARMA & SINGH 

155 

  
 *

1 1* 2
11 1 h

h hy

h h

W f
V y S

n N n


  

     
    

  (9) 

 

  
 

 

*

1 1* 2

1 1

11 1 h

h h y

h h

W f
V y S

n N n



 

  
     

    

  (10) 

 

where 

 

 2 2
1 2

2 2

;h h

h s h s

n n
f f

n n

 
 

 
  

 

Minimum Variance of the Estimator h  

Substituting the values of variances and covariance from equations (5), (6) and (7) 

in equation (4) we have the expression of the exact variance of the proposed 

estimator 
h . Now, minimize the variance of 

h , which is shown in equation (4). 

Define a function f (x, y), where the variables x and y are interpreted as 
h  and h  

respectively, which represents the expression of the variance of h  given in 

equation (4). Thus, variance of h  is reduce to following equation 

 

    
2

2 1
2, 1

1

S x
f x y x f

n y y


  
       

  
  (11) 

 

where 

 

 

 

 

2 2 2 *

, 1 1 , 1 1 1 1

* 1
2 2 1

1

,   1 ,   ,   1 ,  

 1 1 ,  ,   1 ,   and  .

hy h h h h h h

h
h h h h

h

S S t W f

n
W f t f

N

     


 



   






       

       
  

 

To find the minimum variance, we differentiate the equation (11) with 

respect to x and y respectively and then equate to zero, 

 

  2 1

1
1

1

x x
y

y y



      

  (12) 
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and 

 

 
2 1

1

1

x x

y y


  


  (13) 

 

From equations (12) and (13),  

 

   1

1 2 11y          (14) 

 

Again, from equations (13) and (14), if 

 

  
2

1

2 11
y

x
        (15) 

 

then 

 

 
1

11h h h

x
t r t

y


       (16) 

where 

 

    
2 1

2 1 1hr 


       (17) 

 

Because the values of α depend on the values of correlation. Therefore, 0   and 

consequently hr  is real. After iteration, 

 

 

1

1

1
hh

h k

j k j

t r



 

 
  
 
   (18) 

 

Hence, minimum variance of h  is obtained from equations (11) and (12) which 

is as follows 

 

      2opt opt
,h h

S
V f x y t f

n
       (19) 
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Special Cases 

 

Case 1: When non-response occurs only on (h-1)th (previous) 

occasion. 

 

For the case when non-response occurs only on (h-1)th occasion, the estimator for 

population mean hY  on recent occasion may be structured as  

 

  * * *1h h h h h          (20) 

 

where 
h hy    and  * * *

, 1 1 1 .h h h h h hy y    
      

*

h  is unknown constant to be 

determined so as to minimize the variance of the estimator *

h . 

Properties of the estimator 
*

h  

Because 
h   and 

h are sample mean and difference type estimators respectively, 

they are unbiased for population mean hY . Therefore, the resulting estimator *

h  is 

defined in equation (20) is also unbiased estimator of hY . 

 

Theorem 2: variance of the estimator *

h  is obtained as 

 

            
2

* *2 * * *1 2 1 ,h h h h h h h h hV V V C                  (21) 

 

where 

 

   21 1
-h hy

h

V S
n N


 

   
 

  (22) 

 

      
*

* 2 2 2-1
1 1 , 1 , 1

1

1 1
1 1 1 h

h h h h h h hy

h h

V W f S
n n N


    



 
       

  
  (23) 

 

and 
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   21
,h h hyC S

N
       (24) 

 

Minimum Variance of the estimator 
*

h  

Similarly, represent the expression of the variance of *

h  in equation (21) as  

 

    
*2

2
* * * * 1

* *
, 1

1

S x
f x y x f

n y y


  
      

  
  (25) 

 

To find the minimum variance,  

 

  
* *

*

1* *

1
1

1

x x
y

y y



    
 

  (26) 

 

 

* *

1* *

1

1

x x

y y


 


  (27) 

 

From equations (26) and (27), 

 

  * 1

1 11 1y         (28) 

 

Further, 

 

  
* 2

1

1*
1 1

y

x
       (29) 

 

 
*

1
* * * 1

1 *
1h h h

x
t r t

y





    

  (30) 

 

where 

 

    
2 1*

11 1hr 


      (31) 
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1

* *

1

1
hh

h k

j k j

t r



 

 
  
 
   (32) 

 

From (25) and (26) minimum variance of *

h  is expressed as 

 

    * * * * *

opt opt
,h h

S
V f x y t f

n
        (33) 

 

Case 2: When non-response occurs only on hth (recent) occasion 

 

The estimator for the population mean hY  on recent occasion for this case may be 

given as 

 

  ** ** **1h h h h h          (34) 

 

where 
h  is defined in equation (1) and  **

, 1 1 1h h h h h hy y    
      and 

**

h  is 

unknown constant to be determined so as to minimize the variance of the 

estimator 
**

h . 

Properties of the estimators 
**

h  

Because 
hand 

h   are sample mean and difference type estimators respectively, 

they are unbiased for population mean hY . Therefore, the resulting estimator 
**

h  

defined in equation (34) is also unbiased estimator of hY . 

 

Theorem 3: Variance of estimators 
**

h  is obtained as 

 

            
2

** **2 ** ** **1 2 1 ,h h h h h h h h hV V V C                  (35) 

 

where  hV   is shown in equation (5), 

 

    
**

2 2 21
, 1 , 1

1

1 1
1 h

h h h h h hy

h h

V S
n n N


  

 



 
     

  
  (36) 
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and 

 

   21
,h h hyC S

N
      (37) 

Minimum Variance of the estimator 
**

h  

The expression of the variance of 
**

h shown in equation (35) is reduced to the 

following form  

 

    
**2

2
** ** ** **

2** **
, 1

1

S x
f x y x f

n y y




  
       

  
  (38) 

 

To find the minimum variance, 

 

  
** **

**

** **

1
1

1

x x
y

y y
 


   
 

  (39) 

 

 

** **

2** **

1

1

x x

y y



 


  (40) 

 

From equations (39) and (40) 

 

  ** 1

21y         (41) 

 

then 

 

  
** 2

1

2**
1

y

x
        (42) 

 

 

**
1

** ** ** 1

1 **
1h h h

x
t r t

y





       (43) 

 

where 

 



SHARMA & SINGH 

161 

    
2 1**

2 1hr  


      (44) 

 

 

1

** **

1

1
hh

h k

j k j

t r



 

 
  
 
   (45) 

 

Thus, from (38) and (39) minimum variance of 
**

h  is obtained as 

 

    ** ** ** ** **

2opt opt
,h h

S
V f x y t f

n
         (46) 

 

Efficiency Comparison 

To examine the loss in precision of the estimators 
h , 

*

h  and 
**

h due to non-

response, the percent relative loss in precision of estimator 
h , 

*

h  and 
**

h  with 

respect to the estimator 
h , have been computed for different choices of , 1h h  . 

The estimator 
h  is defined under the similar circumstances as the estimator h

but in the absence of non-response. Hence the estimator 
h  is given as 

 

  1h h h h h          (47) 

 

where  , 1 1 1,    h h h h h h h hy y y     
         and 

h is unknown constant to be 

determined by the minimization of the variance of 
h . 

Following Sukhatme, Sukhatme, Sukhatme, and Asok (1984) the optimum 

variance of h  is given by 

 

  
opt

ˆ
h h

S
V t f

n
       (48) 

 

where 

1

1

ˆ ˆ1
hh

h k

j k j

t r



 

 
  
 
  and   

1

ˆ 1 1kr  


   . 
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Remark 4: To compare the performance of the estimators 
h , 

*

h  and 

**

h  with respect to 
h , the assumptions * *

1h hW W   (say *W ) are introduced. The 

percent relative losses in precision of the estimators 
h , 

*

h  and 
**

h  with respect 

to 
h  under their respective optimality conditions are given by 

 

 
   

 

   

 

*

optopt opt opt*

*

opt opt

100         100
h hh h

h h

V VV V
L L

V V

  

 


      

 

and 

 

 
   

 

**

optopt**

**

opt

100
h h

h

V V
L

V

 




    

 

The expressions of  opth
 ,  

*

opth
 ,  

**

opth
  and the percent relative losses are given 

in terms of the population correlation coefficients. Therefore, they have been 

computed for different choices of correlation , 1h h  . Percent relative losses in 

precision of the estimators 
h , 

*

h  and 
**

h  have been computed for different 

choices of f , 
1f , 

2f , 
*

hW , 
*

1hW   and , 1h h  . 

Presented in Tables 1 - 3 are the optimum values of  opth
 ,  

*

opth
 ,  

**

opth
  

and the percent relative losses with respect to 
h . 
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Table 1. Percent relative loss L in precision of 
h  with respect to 

h  for f = 0.1. 

 

Occasions (h)   , 1h h 
→ 0.5 0.7 0.9 

2 

f1↓ W *↓ f2↓  opth
  L  opth

  L  opth
  L 

1.0 

0.2 
1.5 0.3668 4.2873 0.5122 4.8124 0.6702 5.1467 
2.0 0.2053 6.5394 0.4443 8.2798 0.6451 9.2212 

        
0.4 

1.5 0.2053 6.5394 0.4443 8.2798 0.6451 9.2212 
2.0 * ** 0.3164 12.5942 0.5978 15.1928 

         

2.0 

0.2 
1.5 0.6201 13.0095 0.5745 12.0443 0.6632 9.6643 
2.0 0.4431 17.0978 0.5001 15.8719 0.6357 13.6380 

        
0.4 

1.5 0.7100 22.6145 0.5681 21.4502 0.6309 17.4019 
2.0 0.3503 28.9318 0.4167 26.8537 0.5750 23.0665 

          

3 

1.0 

0.2 
1.5 0.2822 3.1253 0.4008 2.8605 0.5172 1.5974 
2.0 0.0379 3.2392 0.2794 3.8429 0.4545 1.9800 

        
0.4 

1.5 0.0379 3.2392 0.2794 3.8429 0.4545 1.9800 
2.0 * ** 0.0094 1.4728 0.3205 0.0642 

         

2.0 

0.2 
1.5 0.6048 13.3281 0.5128 12.6047 0.5275 9.3567 
2.0 0.3951 16.9222 0.4000 15.0408 0.4640 10.2194 

        
0.4 

1.5 0.7042 22.9963 0.5128 22.2920 0.4778 16.7377 
2.0 0.2849 28.6079 0.2806 25.3154 0.3413 16.6839 

          

4 

1.0 

0.2 
1.5 0.2709 3.1253 0.3753 2.8605 0.4462 1.5974 

2.0 0.0027 3.2392 0.2305 3.8429 0.3521 1.9800 

        
0.4 

1.5 0.0027 3.2392 0.2305 3.8429 0.3521 1.9800 

2.0 * ** * ** 0.1294 0.0642 

         

2.0 

0.2 
1.5 0.6042 13.3281 0.5039 12.6047 0.4728 9.3567 

2.0 0.3910 16.9222 0.3800 15.0408 0.3830 10.2194 

        
0.4 

1.5 0.7041 22.9963 0.5057 22.2920 0.4142 16.7377 

2.0 0.2784 28.6079 0.2488 25.3154 0.2127 16.6839 
 

*Note: “*” indicate  opth
  does not exist. 
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Table 2. Percent relative loss L* in precision of 
*

h  with respect to 
h  for f = 0.1. 

 

Occasions (h)  , 1h h 
→ 0.5 0.6 0.8 

2 

f1↓ W *↓  
*

opth
  L *  

*

opth
  L *  

*

opth
  L * 

1.5 
0.2 0.6668 3.9706 0.6163 3.6895 0.6936 2.4170 
0.4 0.8053 6.3585 0.6524 6.7430 0.6920 4.6254 

        
2.0 

0.2 0.8053 6.3585 0.6524 6.7430 0.6920 4.6254 
0.4 * ** 0.7327 11.2723 0.6917 8.5195 

         

3 
1.5 

0.2 0.6556 4.3688 0.5670 4.6766 0.5822 3.8818 
0.4 0.8032 6.8491 0.6188 8.3301 0.5882 7.2990 

        
2.0 

0.2 0.8032 6.8491 0.6188 8.3301 0.5882 7.2990 
0.4 * ** 0.7196 13.3894 0.6024 13.0285 

         

4 

1.5 
0.2 0.6552 4.4016 0.5607 4.8963 0.5416 4.6755 

0.4 0.8032 6.8849 0.6156 8.6488 0.5532 8.6882 

        
2.0 

0.2 0.8032 6.8849 0.6156 8.6488 0.5532 8.6882 

0.4 * ** 0.7189 13.7590 0.5766 15.2022 

 

*Note “*” indicate  
*

opth
  does not exist. 

 
 

Table 3. Percent relative loss L** in precision of 
**

h  with respect to 
h  for f = 0.1. 

 

Occasions (h)  , 1h h 
→ 0.5 0.6 0.7 

2 

f2↓ W *↓  
**

opth
  L**  

**

opth
  **L   

**

opth
  L** 

1.5 
0.2 0.3668 4.2873 0.5122 4.8124 0.6702 5.1467 
0.4 0.2053 6.5394 0.4443 8.2798 0.6451 9.2212 

        
2.0 

0.2 0.2053 6.5394 0.4443 8.2798 0.6451 9.2212 
0.4 * ** 0.3164 12.5942 0.5978 15.1928 

         

3 

1.5 
0.2 0.2822 3.1253 0.4008 2.8605 0.5172 1.5974 
0.4 0.0379 3.2392 0.2794 3.8429 0.4545 1.9800 

        
2.0 

0.2 0.0379 3.2392 0.2794 3.8429 0.4545 1.9800 
0.4 * ** 0.0094 1.4728 0.3205 0.0642 

         

4 

1.5 
0.2 0.2709 2.9384 0.3753 2.2653 0.4462 -0.6762 

0.4 0.0027 2.4725 0.2305 2.2186 0.3521 -3.1638 

        
2.0 

0.2 0.0027 2.4725 0.2305 2.2186 0.3521 -3.1638 

0.4 * ** * ** 0.1294 -13.0652 
 

*Note: “*” indicate  
**

opth
  does not exist. 
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Results 

Behavior of Estimator h , 

From Table 1, 

 

(a) For the fixed values of h, f1, f2 and W*, the value of  opth
  are mostly 

increased while the values of L are almost decreased when the values 

of , 1h h   are increased. 

(b) For the fixed values of h, f1, W* and , 1h h  , the values of  opth


decrease while L increases with the increasing value of f2. This trend 

shows the larger fresh sample is required to be replaced on the recent 

occasion. 

(c) For the fixed values of h, f2, W*, and , 1h h  , the values of  opth
 and 

L are increasing with the increasing values of f1. 

(d) For the fixed values of h, f1, f2 and , 1h h  , the values of  opth
 almost 

decrease while L increases with the increasing value of W*. This 

behavior shows that the higher the non-response rate, the larger fresh 

sample is required to be replaced on the recent occasion. 

(e) For the fixed values of h, f1, W*and , 1h h  , the values of  opth
  and L 

are almost decreasing with the increasing values of number of 

occasions (h). This phenomenon suggests that smaller fresh sample 

is required on the recent occasion which leads in reducing the cost of 

the survey. 

 

Behavior of Estimator 
*

h
 

From Table 2, 

 

(a) For the fixed values of h, f1, and W*, no patterns are visible in the 

values of  
*

opth
  and L* with the increasing value of , 1h h  . 
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(b) For the fixed values of h, W*, and , 1h h  , the values of 
 

*

opth
  and L* 

are increasing with the increasing values of f1.  

(c) For the fixed values of h, f1, and , 1h h  , the values of 
 

*

opth
  and L* 

increase with the increasing values of W*.  

(d) For the fixed values of f1, W*and , 1h h  , the values of 
 

*

opth
 are 

decreasing while the values of L* are increasing with the increasing 

values of number of occasions (h). This event suggests that smaller 

fresh sample is required on the recent occasion so that cost of the 

survey is reduced.  

 

Behavior of Estimator 
**

h  

From Table 3, 

 

(a) For the fixed values of h, f2, and W* the values of  
**

opth
  and L** are 

almost increased when the value of , 1h h   is increased. 

(b) For the fixed values of h, , 1h h  , and W* the values of  
**

opth
  

decrease while L** increases with the increasing values of f2. This 

phenomenon indicates that if a highly correlated auxiliary variable is 

available it pays in terms of reducing the cost of the survey and 

smaller fresh sample is required at the recent occasion. 

(c) For the fixed values of h, f2, and , 1h h  , the values of  
**

opth
 decreases 

while the values of L** does not follow any certain pattern with the 

increasing value of W*. 

(d) For the fixed values of f2, W* and , 1h h  , the values of  
**

opth
  and L** 

are decreasing with the increasing values of number of occasions (h). 

This behavior suggests that lower the non-response is useful and 

smaller fresh sample is required at the recent occasion which leads in 

the minimizing the survey cost. 
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Conclusion 

On the basis of preceding interpretations, it may be concluded that the proposed 

estimation procedure is more useful and fruitful in the estimate of population 

mean when non-response occur on hth occasion, (h-1)th occasion and 

simultaneously on both hth and (h-1)th occasions in the h-occasion successive 

sampling. It is also visible from the empirical studies that the percent relative loss 

in precision is not so high. Hence, the proposed estimators 
h , 

*

h , and 
**

h  are 

performing well in terms of precision even in the presence of non-responses. Thus 

they are reliable and may be recommended to the survey statisticians and 

practitioners for its practical applications. 
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In this paper, an unbiased regression-ratio type estimator has been developed for estimating 
the population mean using two auxiliary variables in double sampling. Its properties are 
studied under two different cases. Empirical studies and graphical simulation have been 
done to demonstrate the efficiency of the proposed estimator over other estimators. 

 
Keywords: Double sampling, study variable, auxiliary variable, chain-type, regression, 
bias, variance, efficiency 

 

Introduction 

The use of supplementary information on auxiliary variable for estimating the finite 

population mean of the variable under study has played an eminent role in sampling 

theory and practices. Auxiliary information may be truthfully utilized at the 

planning, design, and estimation stages to develop improved estimation procedures 

in sample surveys. Ratio, product, and regression methods of estimation are good 

examples in this context. Use of auxiliary information at the estimation stage was 

introduced during the 1930’s with a comprehensive theory provided by Cochran 

(1940). Sometimes, information on auxiliary variable may be readily available for 

all the units of a population; for example, tonnage (or seat capacity) of each vehicle 

or ship is known in survey sampling of transportation, and number of beds available 

in different hospitals may be known well in advance in health care surveys. If such 

information is lacking, it is sometimes relatively cheap to take a large preliminary 

sample where an auxiliary variable alone is measured. Such practice is applicable 

in two-phase (or double) sampling. Two-phase sampling happens to be a powerful 

and cost-effective (economical) technique to generate reliable estimates of the 

unknown population parameters of the auxiliary variables in a first phase sample. 

http://dx.doi.org/10.22237/jmasm/1478002260
mailto:rebamaji09@gmail.com
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In order to construct an efficient estimator of the population mean of the 

auxiliary variable in a first-phase (preliminary) sample, Chand (1975) introduced 

the technique of chaining another auxiliary variable with the first auxiliary variable 

by using the ratio estimator in the first phase sample. This estimator is known as 

the chain-type ratio estimator. This work was further extended by Kiregyera (1980; 

1984), Sahoo and Sahoo (1993), Tracy, Singh, and Singh (1996), Singh and Espejo 

(2007), Gupta and Shabbir (2007), Dash and Mishra (2011), Shukla, Pathak, and 

Thakur (2012), and Choudhury and Singh (2012), among others, who proposed 

various chain-type ratio and regression estimators. It may be noted that the most of 

these estimation procedures of the population mean in two-phase sampling are 

biased which becomes a serious drawback for their practical applications. 

Encouraged and fascinated with the work discussed earlier, we have proposed 

an unbiased regression-ratio type estimator of the population mean and studied its 

properties under two different structures of two-phase sampling. Performances of 

the proposed estimator have been examined through empirical and graphical means 

of comparisons. Suitable recommendations to the survey statistician are made. 

Methodology 

Sample Structure and Some Existing Estimation Procedures 

Let yk, xk, and zk be the values of the study variable y, first auxiliary variable x, and 

second auxiliary variable z, respectively, associated with the kth unit of the finite 

population U = (U1, U2, U3,…, UN). The intent is to estimate the population mean 

Y̅ of the study variable y in the presence of auxiliary variables x and z when the 

population mean X̅ of x is unknown but information on z is readily available for all 

the units of population. 

To estimate Y̅, a first-phase sample S' (S' ⊂ U) of size n is drawn via a simple 

random sampling without replacement (SRSWOR) scheme from the entire 

population U and observed for the auxiliary variable x to furnish the estimate of X̅. 

Next, a second-phase sample S of size m (m ≤ n) is drawn by SRSWOR according 

to the following rules to observe the study variable y: 

 

Case I: Second-phase sample is drawn as a subsample of the first-phase 

sample 

Case II: Second-phase sample is drawn independently of the first-phase 

sample 
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The case where the second sample is drawn independent of the first was 

considered by Bose (1943). 

In the sections below, we use the following notations: 

 

x̅m, x̅n, y̅m, z̅m, z̅n: Sample mean of the respective variables of the sample sizes 

shown in subscripts. 

X̅, Y̅, Z̅: Population mean of x, y, and z, respectively. 

ρyx, ρyz, ρxz: Correlation coefficient between the variables shown in subscripts. 

Cx, Cy, Cz: Coefficient of variance of x, y, and z respectively. 

Syz: Population covariance between y and z. 
2

zS : Population mean square of z. 

syz(m): Sample covariance between y and z based on the sample of size m. 

 2

zs m : Sample mean square of z based on the sample of size m. 

βyz: Population regression coefficient between the variables y and z. 

bxz(n), byz(m), byx(m): Sample regression coefficient between the variables 

shown in subscripts and based on samples of the size indicated in braces. 

 

To estimate the population mean Y̅, the classical ratio estimator is presented 

as 

 

 m
r

m

y
y X

x
   (1) 

 

If X̅ is unknown, we estimate Y̅ under the two-phase sampling set up as 

 

 
1

m
n

m

y
t x

x
   (2) 

 

S. K. Srivastava (1971) generalized the ratio method of estimation, and its structure 

in two-phase sampling is given as 

 

 2
n

m

m

x
t y

x


 

  
 

  (3) 

 

where α is a real scalar which can be suitably determined by minimizing the mean 

square error (MSE) of the estimator. 
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The way in which the estimate of Y̅ is improved using the auxiliary 

information on x can also be extended to improve the estimate of X̅ in the first-

phase sample if another auxiliary variable, z, closely related to x but remotely 

related to y is used. Thus, assuming that the population mean of the auxiliary 

variable z is known, Chand (1975) proposed a chain-type ratio estimator as 

 

 
3

m n

m n

y x
t Z

x z
   (4) 

 

Similarly, for negative correlation between the variables y and x, the chain-type 

product estimator is defined as 

 

 
4

m n
m

n

x z
t y

x Z
   (5) 

 

Kiregyera (1984) suggested the chain linear regression estimator in double 

sampling as 

 

     5 m yx n xz n mt y b m x b n Z z x         (6) 

 

Singh and Espejo (2007) considered a ratio-product type estimator in double 

sampling as 

 

  6 1n m
m

m n

x x
t y k k

x x

 
   

 
  (7) 

Proposed Estimator 

The suggested unbiased regression-ratio type estimator for estimating the 

population mean Y̅ is 

 

 
3

*

1

i

n
R i m

i m

x
T d y

x

 
  

 
   (8) 

 

where   *

m m yz my y b m Z z    and the di (i = 1, 2, 3) are real scalars suitably 

chosen so that 
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3

1

1i

i

d


   (9) 

 

Remark 1: The estimator TR is proposed under the following conditions: 

 

1. The sum of the weights is one. 

2. The weights of the linear form are chosen such that the approximate bias is 

zero. 

3. The approximate variance attains minimum. 

Properties of the Estimator TR 

Note from (8) that the proposed estimator TR is biased for Y̅. Following Remark 1, 

it may be made unbiased for Y̅. The variance V(.) up to the first order of 

approximations are derived under large sample approximations using the following 

transformations: 
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where E(ei) = 0 and |ei| < 1 for all i = 1,…, 6. 

Under the above transformations the estimator TR takes the following form: 
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          (10) 

 

The bias and mean square error of the estimator was derived separately for 

the Cases I and II of the two-phase sampling structure. 

 

Case I:  When the second phase sample is drawn as a subsample of the first 

phase sample. 

In this case we have the following expected values of the sample statistics: 
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where 
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and p, q, r ≥ 0 are integers. 

Expanding the terms of (10) binomially and using the results from (11), we 

have derived the expression of bias and mean square error of the estimator TR up to 

the first order of approximations as 
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where 

 

 
3

2

1

1 1
,i

i

P id f
m n

     (14) 

 



MAJI ET AL. 

177 

Minimization of mean square error in (13) with respect to P yields its 

optimum value as 

 

   y

yx yz xz

x

C
P

C
      (15) 

 

Substituting the optimum value of P in (13), we obtain the minimum mean square 

error of TR as 

 

      
2
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Further, from (14) and (15), 
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which we will denote with R. 

From (9) and (17), it may be noted that the two equations in three unknowns 

are not sufficient to find the unique values of the di (i = 1, 2, 3). In order to get 

unique values of the di, impose the linear constraint 

 

  B 0RT    (18) 

 

Thus, from (12), 
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Equations (9), (17), and (19) can be written in matrix form as 
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Solving (20), the unique values of the di are 
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From (21), substituting the values of d1, d2, and d3 into (8) yields the unbiased 

optimum regression-ratio type estimator as 
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whose variance up to the first degree of approximations is given by 

 

      
2
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Case II: When the second-phase sample is drawn independently of the first-

phase sample. 

In this case, the expected values of the sample statistics are: 
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Proceeding as in Case I, the unbiased optimum regression-ratio type estimator is 

obtained as 
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with variance up to the first order of approximations as 
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Remark 2: The unique value of the scalars di depend on unknown population 

parameters such as βxz, βyz, μ012, μ003, Cx, Cy, Cz, X̅, Y̅, ρyx, and ρxz. Thus, to make the 

estimator practicable, these unknown population parameters may be estimated with 
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their respective sample estimates or from past data or guessed from experience 

gathered over time. Such problems are also considered by Reddy (1978), Tracy et 

al. (1996), and Singh and Espejo (2007). 

Results 

Efficiency Comparison 

To examine the performance of our proposed estimator, we have considered some 

contemporary estimators of population mean which are discussed in a previous 

section. The mean square errors/minimum mean square errors of the estimators ti 

(i = 1, 2,…, 6) are given below for both cases of two-phase sampling structure 

considered in this paper: 
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Case II: 
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where 
1

m

m

f

f f
 


. 

The superiority of the suggested estimator has been demonstrated over the 

estimators ti (i = 1, 2,…, 6) through numerical illustrations and graphical 

interpretation. 

Numerical Illustrations 

Five natural population data sets were selected to illustrate the efficiency of the 

proposed estimator. The source of the populations, the nature of the variables y, x, 

z and the values of the various parameters are as follows: 

 

Population I:  (Murthy, 1967) 

y: Area under wheat in 1964. 

x: Area under wheat in 1963. 

z: Cultivated area in 1961. 

 

Population II:  (Sukhatme & Sukhatme, 1970) 

y: Area (acres) under wheat in 1937. 

x: Area (acres) under wheat in 1936. 

z: Total cultivated area (acres) in 1931. 

 

Population III: (S. K. Srivastava, 1971) 

y: yield per plant. 

x: Height of the plant. 

z: Base diameter. 

 

Population IV: (Anderson, 1958) 

y: Head length of second son. 

x: Head length of first son. 

z: Head breadth of second son. 

 

Population V:  (R. S. Srivastava, Srivastava, & Khare, 1989) 

y: measurement of weight of children. 

x: Mid-arm circumference of children. 

z: Skull circumference of children. 
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Table 1. Parametric values of different populations 

 

Population N n m Y̅r ρyx ρyz ρxz Cy Cx Cz 

I 80 34 6 5182.60 0.9100 0.9400 0.9900 0.35000 0.94000 0.75000 

II 34 10 7 201.41 0.9300 0.9000 0.8300 0.74000 0.76000 0.61000 

III 50 20 12 5.69 0.7418 0.5677 0.2063 0.23830 0.09198 0.11260 

IV 25 10 7 183.84 0.7108 0.6932 0.7346 0.05460 0.05260 0.04880 

V 55 30 18 17.08 0.5400 0.5100 -0.0800 0.12690 0.07000 0.02650 

 
 
Table 2. PREs of different estimators (Case I) 
 

Population y̅m t1 t2 t3 t4 t5 t6 TR 

I 100 * 380.6032 * * 602.4841 380.6032 859.4502 

II 100 147.7505 148.5310 566.9582 * 557.1949 148.5310 591.1479 

III 100 128.6936 140.7686 159.0693 * 156.4518 140.7686 202.8928 

IV 100 122.5372 126.6649 178.8188 * 190.0258 126.6649 201.7059 

V 100 120.9633 120.9751 131.9087 * 118.3101 120.9751 165.7976 

 
 
Table 3. PREs of different estimators (Case II) 

 

Population y̅m t1 t2 t3 t4 t5 t6 TR 

I 100 * 426.8195 * * 577.2247 426.8195 862.0124 

II 100 * 214.2050 286.3820 * 330.5549 214.2050 590.4718 

III 100 * 159.5903 139.4500 * 143.0017 159.5903 242.1787 

IV 100 * 146.8638 120.7684 * 158.6188 146.8638 202.5066 

V 100 * 126.1805 116.6850 * 121.0860 126.1805 200.0489 

 
 

The values of various parameters obtained from the above populations are 

presented in Table 1. 

To have a tangible idea about the performance of the proposed estimator TR, 

the percent relative efficiencies (PREs) of TR and other estimators were computed 

with respect to the sample mean estimator y̅m, and the results are demonstrated in 

Tables 2-3. The PRE of an estimator T with respect to a sample mean estimator y̅ 

is defined as 

 

 
 

 

V
PRE 100

M

y

T
    (27) 

 

where M(T) denotes the MSE/Minimum MSE of an estimator T. 
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Graphical Interpretation 

The performance of the proposed estimator is illustrated by means of pictorial 

representation for different choices of correlations. This could not only improve the 

readability of the results but also allows the comparison of a much denser grid of 

different correlation values. For N = 100, n = 50, m = 20, and different values of ρyx, 

ρyz, ρxz, the PREs of the proposed estimator TR with respect to y̅m are computed and 

presented in Figures 1-2. Note that the X-axis, Y-axis, and Z-axis are denoting ρyx, 

ρyz, and PRE, respectively, and that ρxz is assumed to be 0.5. 
 
 

 
 
Figure 1. PRE of TR (Case I) 
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Figure 2. PRE of TR (Case II) 

 

Conclusion 

From Table 2 and Table 3, it may be observed that, under different structures of 

two-phase sampling set up, the suggested estimator TR is superior to the existing 

ones. It can also be noted that, for high positive values of correlation coefficients, 

the estimator TR yields impressive gains in efficiencies over the conventional 

estimators of population mean. 

From Figures 1 and 2, it is observed that, for fixed values of ρxz, the PRE of 

the proposed estimator is increasing with increasing values of ρyx and ρyz. This 

phenomenon indicates that suggested estimator could perform satisfactorily if 

highly positive correlated auxiliary variables are available. 

Therefore, the proposed estimator TR is more justified in comparison with the 

previous work of similar nature. Hence, it may be recommended to the survey 

practitioners for their use in real life problems. 
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The present work is an attempt to make use of several auxiliary variables on both occasions 
for improving the precision of estimates for the current population mean in two-occasion 
successive sampling. A generalized exponential-cum-regression type estimator of the 
current population mean is proposed and its optimum replacement strategy has been 
discussed. Empirical studies are carried out to show the dominance of the proposed 
estimation procedure over the sample mean estimator and natural successive sampling 
estimator. Empirical results have been interpreted and suitable recommendations are put 

forward to survey practitioners. 
 
Keywords: Successive sampling, auxiliary information, bias, mean square error, 
optimum replacement strategy 

 

Introduction 

There are many problems of practical interest in different fields of the applied and 

environmental sciences where the various characters of interest have tendencies to 

change over time. It is often required to monitor the behaviors of such characters at 

different points of time (occasions) and the patterns of variations occurring over the 

period of time. For example, an investigator or owner involved in the cold drinks 

industry may be interested (a) to know the average or total sale of cold drinks in the 

different seasons, (b) to know the pattern of change in average or total sale of cold 

drinks in two different seasons, or (c) they may be simultaneously interested to 

know both (a) and (b). These kinds of problems are well answered by the tools of 

successive (rotation) sampling. 

http://dx.doi.org/10.22237/jmasm/1478002320
mailto:aksharma.ism@gmail.com
mailto:aksingh.ism@gmail.com
mailto:gnsingh_ism@yahoo.com.
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The theory of successive (rotation) sampling was initiated by Jessen (1942), 

where the idea of using the available information gathered on previous occasions 

during the past surveys was suggested. Jessen (1942) used past information in order 

to make current estimates more precise in agronomical surveys. This idea was 

further explored by Patterson (1950), Rao and Graham (1964), Gupta (1979), Das 

(1982), and Chaturvedi and Tripathi (1983), among others. Sen (1971) extended 

this theory by utilizing the information on two auxiliary variables, which was 

available on previous occasions, and suggested estimators of current the population 

mean in two-occasion successive sampling. Sen (1972; 1973) generalized his idea 

for several auxiliary variables. V. K. Singh, Singh, and Shukla (1991) and G. N. 

Singh and Singh (2001) used the auxiliary information from the current occasion 

for estimating the current population mean in two-occasion successive sampling. 

G. N. Singh (2003) extended this work for h-occasion successive sampling. 

In many situations, information on an auxiliary variable may be readily 

available on the first as well as on the second occasion. For instance, to study the 

problems related to the public health and welfare of a state or a country, several 

factors that can be treated as auxiliary variables, such as the number of beds, doctors, 

and supporting staff in different hospitals, the amount of funds available for 

medicine, etc. may be known well in advance. Likewise, in other cases, there may 

be information available on several auxiliary variables and, if efficiently utilized, 

the estimates could be made more precise. 

Utilizing the auxiliary information on both occasions, Feng and Zou (1997), 

Biradar and Singh (2001), G. N. Singh (2005), G. N. Singh and Priyanka (2006; 

2007; 2008; 2010), G. N. Singh and Karna (2009), H. P. Singh and Vishwakarma 

(2009), G. N. Singh and Prasad (2010), G. N. Singh, Karna, and Prasad (2011), H. 

P. Singh, Tailor, Singh, and Kim (2011), G. N. Singh and Prasad (2013), and G. N. 

Singh and Homa (2013) proposed varieties of estimators of the population mean on 

the current (second) occasions in two-occasion successive sampling. 

Motivated with these arguments, the objective of the present work is to 

propose a more precise estimator of the population mean on the current occasion 

using the information on p (p ≥ 2) stable auxiliary variables which are readily 

available on both occasions. Utilizing the information on p auxiliary variables, a 

generalized exponential-cum-regression type estimator of the current population 

mean in two-occasion successive sampling has been proposed. The dominance of 

the proposed estimator has been shown over the sample mean and natural 

successive sampling estimators. Empirical studies have been carried out to justify 

the proposition of estimator. Results are interpreted, and suitable recommendations 

have been made. 
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Formulation of Estimator 

Let U = (U1, U2,…, UN) be a finite population of N units which has been sampled 

over two occasions, and let the character under study be denoted by x (y) on the 

first (second) occasion. It is assumed that the information on p stable (non-negative 

integer constant) auxiliary variables zj (j = 1, 2,…, p), whose population means are 

known and closely related to x and y, are available on the first (second) occasion. 

Let a simple random sample (without replacement) of size n be drawn on the first 

occasion. A random subsample of size m = nλ is retained (matched) for its use on 

the second occasion, while a fresh simple random sample (without replacement) of 

size u = (n – m) = nμ is drawn on the second occasion from the entire population so 

that the sample size on the second occasion is also n. Here λ and μ (λ + μ = 1) are 

the fractions of the matched and fresh samples, respectively, on the current (second) 

occasion. The values of λ or μ would be chosen optimally. 

The following notations have been considered for use below: 

 

X̅ (Y̅): The population mean of the study variable x (y) on the first (second) 

occasion. 

Z̅j: Population mean of the jth (j = 1, 2,…, p) auxiliary variable. 

x̅n, x̅m, y̅u, y̅m, z̅jn, z̅ju, z̅jm, (j = 1, 2,…, p): The sample means of the respective 

variables based on the sample sizes shown in the subscript. 

, , ,
j j j kyx yz xz z z    : Population correlation coefficients between the variables 

shown in the subscript. 

   
212

1
1

N

x ii
S N x X




   : Population variance of the variable x. 

2 2,
jy zS S : Population variances of the variables y and zj (j = 1, 2,…, p), 

respectively. 

 

To estimate the population mean Y̅ on the current (second) occasion, two 

independent estimators are suggested. One is a generalized exponential type 

estimator based on a sample of size u (= nµ) drawn afresh on the second occasion 

and given by 
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The second estimator is a generalized exponential-cum-regression type estimator 

based on the sample of size m (= nλ) common to both the occasions and is defined 

as 
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1
j

p
m

m m yz j jm

j

T y b Z z


     (2) 
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Combining the estimators Tu and Tm, we have the final estimator T of Y̅ given as 

 

  1u mT T T      (3) 

 

where φ (0 ≤ φ ≤ 1) is an unknown constant (scalar) to be determined under certain 

criterion. 

 

Remark 1: The estimator Tu is suitable for estimating the population mean on 

the current occasion, while the estimator Tm is more appropriate for estimating 

change over two occasions. These two estimators may be derived from the 

estimator T by choosing φ as 1 or 0, respectively. To handle both problems 

simultaneously, an optimum choice of φ is required. 

Properties of the Proposed Estimator 

Bias and Mean Square Error 

Because the estimators Tu and Tm are generalized exponential and generalized 

exponential-cum-regression type estimators, they are biased estimators of the 

population mean Y̅. Therefore, the resulting estimator T is also a biased estimator 

of Y̅. The bias B(.) and mean square error M(.) of the estimator T is derived under 
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large sample assumption and up to the first order of approximations using the 

following transformations: 
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such that E(ei) = 0 and E(ehj) = 0 ,|ei| ≤ 1 for i = 1, 2, 3, 4, 11, 12 and |ehj| ≤ 1 for 

h = 5, 6,…, 10, j = 1, 2, 3,…, p. 

Under the above transformations, the estimators Tu and Tm take the following 

forms: 
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  (5) 

 

Thus, there are the following theorems: 

 

Theorem 1: The bias of the estimator T to the first order of approximations is 

obtained as 

 

        B B 1 Bu mT T T      (6) 

 

where 
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and 
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  (8) 

 

where αpqr = E[(xi – X̅ )p(yi – Y̅ )q(zj – Z̅j)r] for integers p, q, r ≥ 0 and j = 1, 2,…, p. 

 

Proof: The bias of the estimator T is given by 
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  (9) 

 

where B(Tu) = E(Tu – Y̅ ) and B(Tm) = E(Tm – Y̅ ). 

To derive the B(Tu), proceed as follows: 
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Now, expanding the right hand side of (10) binomially and exponentially and 

taking expectations and retaining the terms up to the first order of approximations, 

we have the expression of the bias of the estimator Tu as given in (7). 

Similarly, the bias of the estimator Tm is written as 
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  (11) 
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Expanding (11) binomially and exponentially, taking expectations both sides, 

and retaining the terms up to the first order of approximations yields the expression 

of the bias of the estimator Tm as shown in (8). 

 

Theorem 2: The mean square error of the estimator T to the first degree of 

approximation is obtained as 

 

            
22M M 1 M 2 1 C ,u m u mT T T T T          (12) 

 

where 
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Proof: The mean square error of the estimator T is given by 
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  (16) 

 

where C(Tu, Tm) = E[(Tu – Y̅ )(Tm – Y̅ )], M(Tu) = E(Tu – Y̅ )2, M(Tm) = E(Tm – Y̅ )2. 

To derive the M(Tu), proceed as follows: 
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Now, expanding the right hand side of (17) binomially and exponentially and taking 

expectations and retaining the terms up to the first order of approximations, we 

have the expression of the mean square error of the estimator Tu as given in (13). 

The mean square error of the estimator Tm is written as 
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  (18) 

 

Expanding (18) binomially and exponential, taking expectations both sides, and 

retaining the terms up to the first order of approximations, the expression is derived 

for the mean square error of the estimator Tm as shown in (14). Similarly, the 

expectation of C(Tu, Tm) may be derived in the form shown in (15). 

 

Remark 2: The above results are derived under the assumption that the 

coefficients of variation of variables x, y, zj, and zk are approximately equal. We 

have also considered the intuitive assumptions 
j jxz yz   (j = 1, 2, 3,…, p), as 

suggested by Cochran (1984) and Feng and Zou (1997). In the light of these 

assumptions, the expression of M(Tm) takes the form as shown in (14). 

Minimum Mean Square Errors of the Estimator T 

Because the mean square error of the estimator T in (12) is a function of the 

unknown constant (scalar) φ, it can be minimized with respect to φ and, 

subsequently, the optimum value of φ is obtained as 
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From (19), substituting the value of φopt in (12), we get the optimum mean square 

error of the estimator T as 
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Further substituting the values from (13)-(15) into (19) and (20), the simplified 

values of φopt and M(T)opt are obtained as 
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where f = n/N. 

Optimum Replacement Strategy of the Estimator T 

The optimum mean square error M(T)opt in (22) is a function on µ, the fraction of 

the sample to be drawn afresh at the second occasion. It is an important factor in 

reducing the cost of the survey, therefore, to determine the optimum value of µ so 

that Y̅ may be estimated with maximum precision and minimum cost. We thus 

minimize M(T)opt with respect to µ which results in a quadratic equation in µ, which 

is shown as 

 

 
2

1 2 32 0D D D      (23) 

 



AN IMPROVED GENERALIZED ESTIMATION PROCEDURE 

196 

where D1 = A12A20 + A13A21, D2 = A10A20 + A13A18, D3 = A10A21 – A12A18. 

Solving (23) for μ, the solutions of μ (say ̂ ) are given as 
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D


 
   (24) 

 

From (24), it is clear that the real values of ̂  exist IFF the quantity under the 

square root is greater than or equal to zero. For any combinations of correlations 

which satisfy this condition for real solutions, two real values of ̂  are possible. 

Hence, while choosing the values of ̂ , it should be remembered that ˆ0 1  , 

and that all other values of ̂  are said to be inadmissible. If both the values of ̂  

are admissible, the lowest one is the best choice as it reduces the cost of the survey. 

From (24), substituting the admissible value of ̂  (say μ0) in (22), we have the 

optimum value of mean square error of the estimator T, which is shown below: 
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Special Case 

When the p auxiliary variates are mutually uncorrelated, i.e., 0
j kz z   for 

j ≠ k = 1, 2, 3,…, p, then the expression of the optimum values of μ and M(T)opt 

reduce to 
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Efficiency Comparison 

The percent relative efficiencies of the estimator T with respect to (i) the sample 

mean estimator y̅n when there is no matching and (ii)  * *ˆ 1u u mY y y      when 

no additional auxiliary information is used at any occasion, where 

 m m yx n my y x x    , have been obtained for different choices of the correlations 

involved. Since y̅n and Ŷ  are unbiased estimators of Y̅ following Sukhatme, 

Sukhatme, Sukhatme, and Asok (1984), the variance of y̅n and optimum variance 

of Ŷ  are given by 
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The percent relative efficiencies E1 and E2 of T (under optimal condition) with 

respect to y̅n and Ŷ , respectively, are given by 
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Empirical Study 

The expression of the optimum μ (i.e., μ0) and the percent relative efficiencies E1 

and E2 are in terms of population correlation coefficients. Therefore, the values of 

μ0, E1, and E2 have been computed for different choices of positive correlations, 

while the value of f (= n/N) (sampling fraction) is chosen to be 0.1. For empirical 

studies, cases of p = 2 and 3 have been considered. 

Case 1 

For p = 2 and assuming that the two auxiliary variables are correlated, i.e., 
1 2

0z z  , 

the values of A1, A2, A3, A4, A9, and A10 take the form 
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Substituting these values in (24) and (25) yields the values of optimum  
*

opt
M T , 

E1, and E2. For different choices of correlations, Tables 1-2 show the optimum 

values of μ (i.e., μ0) and percent relative efficiencies E1 and E2 of the estimator T 

(under optimal condition) with respect to y̅n and Ŷ , respectively. 

Case 2 

For p = 2 and assuming that the two auxiliary variables are uncorrelated, i.e., 

1 2
0z z  , the values of *

1A , *

2A , and *

10A  take the form 
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3 3
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Using these values in (26) and (27), the optimum values of μ, E1, and E2 are shown 

in Table 3. 
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Table 1. Optimum values of μ and percent relative efficiencies of T with respect to y̅n and 

ˆ
Y  for ρyx = 0.3 
 

 1
yz
ρ  

0.5  0.6  0.7 

2
yz
ρ  

1 2
z z
ρ  

μ0 E1 E2  μ0 E1 E2   μ0 E1 E2 

0.4 0.3 0.7265 132.18 128.80  0.4034 168.19 163.88  0.3533 247.90 241.56 

 0.4 0.7101 123.49 120.33  0.3839 152.06 148.16  0.3872 210.05 204.67 

 0.5 0.7001 115.87 112.91  0.3700 138.74 135.19  0.3360 181.76 177.10 

  0.6 0.6932 109.13 106.34  0.3595 127.57 124.31  0.2952 159.92 155.82 

             

0.6 0.3 0.6022 149.75 145.92  0.3207 193.77 188.81  0.3411 306.04 298.21 

 0.4 0.5842 138.08 134.54  0.2827 170.36 166.00  0.2607 243.37 237.15 

 0.5 0.5719 128.09 124.81  0.2548 151.91 148.03  0.1979 200.80 195.67 

  0.6 0.5630 119.44 116.39  0.2335 137.04 133.53  0.1475 170.24 165.88 

             

0.8 0.3 0.5882 174.09 169.63  0.3120 234.31 228.31  0.2669 418.57 407.85 

 0.4 0.5517 157.66 153.63  0.2512 197.91 192.84  0.1760 298.60 290.96 

 0.5 0.5252 144.02 140.34  0.2051 170.92 166.55  0.1034 228.96 223.10 

  0.6 0.5050 132.53 129.14  0.1690 150.21 146.36  0.0441 184.02 179.31 

 
 
Table 2. Optimum values of Optimum values of μ and percent relative efficiencies of T 

with respect to y̅n and 
ˆ

Y  for ρyx = 0.5 
 

 1
yz
ρ  

0.5  0.6  0.7 

2
yz
ρ  

1 2
z z
ρ  

μ0 E1 E2  μ0 E1 E2   μ0 E1 E2 

0.4 0.3 * -- --  0.3809 170.91 158.19  0.3568 249.91 231.31 

 0.4 0.7440 123.96 114.73  0.3815 152.39 141.05  0.3875 208.31 192.80 

 0.5 0.6739 115.31 106.73  0.3779 137.57 127.33  0.3431 178.37 165.10 

  0.6 0.6411 107.74 100.72  0.3738 125.42 116.08  0.3120 155.88 144.27 

  
   

 
   

 
   

0.6 0.3 0.6748 152.04 140.72 
 

0.2932 196.4 181.78 
 

0.3407 307.53 284.64 
 0.4 0.5913 138.47 128.16  0.2827 170.36 157.68  0.2673 240.90 222.97 

 0.5 0.5579 127.09 117.63  0.2740 150.50 139.29  0.2192 197.38 182.69 

  0.6 0.5386 117.45 108.71  0.2669 134.83 124.80  0.1851 166.90 154.48 

  
   

 
   

 
   

0.8 0.3 0.6209 176.39 163.26  0.3015 236.81 219.19  0.2670 418.02 386.91 

 0.4 0.5506 157.54 145.81 
 

0.2567 197.19 182.51 
 

0.1865 294.69 272.76 
 0.5 0.5134 142.28 131.69  0.2285 168.91 156.34  0.1319 225.58 208.79 

  0.6 0.4896 129.72 120.07  0.2089 147.72 136.73  0.0924 181.87 168.33 

 

Note: “*” indicates μ0 does not exists and “--“ indicates no gain. 
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Table 3. Optimum values of Optimum values of μ and percent relative efficiencies of T 

with respect to y̅n and 
ˆ

Y  for 
1 2

0.0z z   

 

 1
yz
ρ  

0.5  0.6  0.7 

yx
ρ  

yz
ρ

2

 
μ0 E1 E2  μ0 E1 E2   μ0 E1 E2 

0.5 0.3 0.4203 138.95 128.61  0.4317 158.35 146.57  0.3727 187.50 173.54 

 0.4 0.4874 156.18 144.55  0.5084 181.27 167.78  0.4661 219.80 203.44 

 0.5 0.5084 181.27 167.78  0.5359 216.08 200.00  0.4938 272.88 252.57 

  0.6 0.4661 219.80 203.44  0.4938 272.88 252.57  0.4112 371.39 343.75 

  
   

 
   

 
   

0.7 0.3 0.5632 157.93 132.85  0.5865 185.15 155.75  0.6036 228.38 192.11 

 0.4 0.6015 182.74 153.71  0.6312 220.87 185.79  0.6662 287.47 241.82 

 0.5 0.6312 220.87 185.79  0.6759 281.34 236.66  0.7712 417.32 351.04 

  0.6 0.6662 287.47 241.82  0.7712 417.32 351.04  * -- -- 

  
   

 
   

 
   

0.9 0.3 0.9388 268.34 184.24  * -- --  * -- -- 

 0.4 * -- --  * -- --  * -- -- 

 0.5 * -- --  * -- --  * -- -- 

  0.6 * -- --  * -- --  * -- -- 

 

Note: “*” indicates μ0 does not exists and “--“ indicates no gain. 

Case 3 

For p = 3 and assuming that the two auxiliary variables are correlated, i.e., 0
j kz z   

for j ≠ k = 1, 2, 3, the values of A1, A2, A3, A4, and A10 take the form 
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2 3yz yz 

  

 

In this case there are seven different correlations. For a few sets of these seven 

correlations, the optimum value of μ (i.e., μ0) and percent relative efficiencies E1 

and E2 of the estimator T (under optimal condition) with respect to y̅n and Ŷ  have 

been computed and shown below: 
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Set 1: 

 
1 2 3 1 2 1 3

2 3 0 1 2

0.3, 0.5, 0.6, 0.5, 0.3, 0.4,

0.6, 0.3664, 104.37, 101.37

yx yz yz yz z z z z

z z E E

     

 

     

   
  

 

Set 2: 

 
1 2 3 1 2 1 3

2 3 0 1 2

0.3, 0.6, 0.6, 0.5, 0.3, 0.4,

0.6, 0.2900, 110.60, 107.77

yx yz yz yz z z z z

z z E E

     

 

     

   
  

 

Set 3: 

 
1 2 3 1 2 1 3

2 3 0 1 2

0.3, 0.7, 0.6, 0.5, 0.3, 0.4,

0.6, 0.2393, 119.33, 116.27

yx yz yz yz z z z z

z z E E

     

 

     

   
  

 

Set 4: 

 
1 2 3 1 2 1 3

2 3 0 1 2

0.3, 0.8, 0.6, 0.5, 0.3, 0.4,

0.6, 0.2105, 131.59, 128.22

yx yz yz yz z z z z

z z E E

     

 

     

   
  

Case 4 

For p = 3 and assuming that the two auxiliary variables are uncorrelated, i.e., 

1 2
0z z   for j ≠ k = 1, 2, 3, the values of A1, A2, and A10 take the form 
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For a few sets of the above four correlations, the values of the optimum value 

of μ (i.e., μ0) and percent relative efficiencies E1 and E2 are shown below: 

 

Set 1: 

 
1 2 3 0 1

2

0.3, 0.5, 0.6, 0.4, 0.6004, 382.42,

372.64

yx yz yz yz E

E
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Set 2: 

 1 2 3 0 1

2

0.4, 0.5, 0.6, 0.4, 0.7981, 397.89,

379.44

yx yz yz yz E

E

         


  

 

Set 3: 

 1 2 3 0 1

2

0.5, 0.5, 0.6, 0.4, 0.3807, 449.12,

415.67

yx yz yz yz E

E

         


  

 

Set 4: 

 1 2 3 0 1

2

0.6, 0.5, 0.6, 0.4, 0.6317, 568.19,

505.06

yx yz yz yz E

E

         


  

Conclusion 

1. From Tables 1-2 it is vindicated that: 

a. For the fixed values of yx , 
1 2z z , and 

1yz , the values of μ0 decrease 

and E1 and E2 increase with the increasing values of 
2yz . Similarly, 

for fixed values of yx , 
1 2z z , and 

2yz , the optimum value of μ0 

decrease and E1 and E2 increase with the increasing values of 
1yz . 

These patterns indicate that a smaller fresh sample on the current 

occasion is required if highly correlated auxiliary variables are 

available. 

b. For the fixed values of yx , 
1yz , and 

2yz , the values of μ0, E1, and 

E2 decrease with the increasing values of 
1 2z z ; this means that the 

auxiliary variables are quite sensitive with respect to the relation 

between them. 

2. From Table 3, i.e., when the auxiliary variables are uncorrelated, it has been 

observed that  

a. For fixed values of 
1yz  and 

2yz , the values of E1 and E2 increase 

with increasing value of yx , while no definite patterns are observed 

in μ0. 
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b. For fixed values of yx  and 
1yz , the values of E1 and E2 increase 

with increasing value of 
2yz , while no definite patterns are 

observed in μ0. Similar patterns are visible for the case when the 

values of yx  and 
2yz  are fixed and increasing values of 

1yz  are 

observed. 

3. For p = 3 and when the three auxiliary variables are uncorrelated, for fixed 

values of yx , 
1 2z z , 

2 3z z , 
1 3z z , 

2yz , and 
3yz , the values of μ0 decrease 

while E1 and E2 increase with the increasing values of 
1yz . Similar patterns 

are observed if the case for the increasing values of 
2yz  or 

3yz  is taken 

into account. 

4. For p = 3 and when the three auxiliary variables are mutually correlated, we 

observed that no specific pattern is seen as for so many combinations of 

correlations the optimum values of μ0 do not exist. This behavior suggests 

that the correlation between the auxiliary variable do not play a significant 

role in terms of the proposed estimator. 

5. It could be seen that the results are more appreciable for one and two 

auxiliary variables, while when the number of auxiliary variables increases, 

the expressions become complex due to the increase in the number of 

correlations. Hence, practically, it is more realistic to use two auxiliary 

variables out of several available auxiliary variables. 

 

Thus, it is clear that the use of the auxiliary variables is highly rewarding in 

terms of the proposed estimator. It is also clear that, if the information on highly 

correlated auxiliary variables is used, only a relatively small fraction of the sample 

on the current (second) occasion is desired to be replaced by a fresh sample, which 

reduces the cost of the survey. Hence, it can be recommended for future use. 
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This paper provides a new exponential type estimator in simple random sampling for 
population mean. It is shown that proposed exponential type estimator is always more 
efficient than estimators considered by Bahl and Tuteja (1991) and Singh, Chauhan, 

Sawan, and Smarandache (2009). From numerical examples it is also observed that 
proposed modified ratio estimator performs better than existing estimators. 
 
Keywords: Simple random sampling, Ratio and regression-type estimator, Auxiliary 
information, Mean squared error, Efficiency 

 

Introduction 

The auxiliary information in sampling theory is used for improved estimation of 

parameters enhancing the efficiencies of the estimators. The problem of 

estimating the population mean in the presence of an auxiliary variable has been 

widely discussed in finite population sampling literature. The use of auxiliary 

information is well-known to improve the precision of the estimate of the 

population mean for the study variable. In survey sampling, ratio, product and 

difference methods of estimation are good examples in this context. Ratio method 

of estimation is quite effective when there is high positive correlation between 

study and auxiliary variables. However, if correlation is negative (high), the 

product method of estimation can be employed efficiently. In recent years, a 

number of research papers on ratio-type, exponential ratio-type and regression-

type estimators have appeared, based on different types of transformations. The 

main aspect of the paper is to obtain an estimator to predict the population mean 

http://dx.doi.org/10.22237/jmasm/1478002380
mailto:gamzeozl@hacettepe.edu.tr


NEW EXPONENTIAL TYPE ESTIMATOR FOR THE POPULATION MEAN  

208 

which is more efficient than the ratio, product, exponential estimators of Bahl and 

Tuteja (1991) and Singh et al. (2009). 

Consider a finite population U = U1, U2,…, UN of N units. Let Y and X stand 

for the variable under study and auxiliary variables, respectively. Let (yi, xi), 

i = 1, 2,…, n, denote the n pair of sample observations for the study and auxiliary 

variables, respectively, drawn from the population size N using simple random 

sampling without replacement (SRSWOR). Let X  and Y  be the population 

means of auxiliary and study variables, respectively, and let x  and y  be the 

respective sample means. It is well known that the sample mean y  is an unbiased 

estimator of Y  and under SRSWOR its variance is given by 

 

   2 2

yV y Y C   (1) 

 

where  1 1n f   ,  f n N , 
2 2 2

y yC S Y , and 
2

yS  is the variance of the study 

variable. 

Ratio and product type estimators in the simple random sampling (SRS) 

were considered by Sisodia and Dwivedi (1981), Upadhyaya and Singh (1999), 

Singh and Tailor (2003), Singh, Tailor, Tailor, and Kakran (2004), Singh and 

Tailor (2005), Yadav and Kadilar (2013a), Singh et al. (2009), Singh, Chauhan, 

Sawan, and Smarandache (2011), Yadav and Kadilar (2013b), etc. When 

information is available on X that is positively correlated with Y, the ratio 

estimator is suitable for estimating the population mean and it is given by  

 

 .Ry y X x   

 

The mean squared error (MSE) of this estimator is  

 

   2 2 2MSE 2 ,R y x y xy Y C C C C        (2) 

 

where 2 2 2

x xC S X , and 2

xS  is the variance of the auxiliary variable. 

When there is a negative high correlation between Y and X, the product 

estimator for Y  was defined by Robson (1957) as 

 

 py y x X   

 

and the MSE of the product estimator is given by 
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   2 2 2MSE 2 .p y x y xy Y C C C C        (3) 

 

Bahl and Tuteja (1991) suggested an exponential ratio type estimator for the 

population mean as  

 

 
 
 

expBT

X x
y y

X x

 
  

  

  

 

and the MSE of the estimator is given by 

 

   2 2 2MSE 2 4 .BT y x y xy Y C C C C        (4) 

 

The auxiliary information associated with X such as mean, median, 

coefficient of variation, skewness, kurtosis or correlation coefficient can be used 

to improve the efficiency of the estimators. Singh et al. (2009) defined a modified 

exponential ratio estimator using auxiliary variable information for estimating Y  

as 

 

 
   

   
exp ,

aX b ax b
y y

aX b ax b

   
  

    

  

 

where (a ≠ 0), b are either real numbers or the functions of the known parameters 

of the auxiliary variable such as coefficient of variation (Cx), coefficient of 

kurtosis (β2(x)), and correlation coefficient.  

The MSE of the modified exponential estimator is given by 

 

    2 2 2 2MSE 2 ,S y x x yy Y C C C C       (5) 

 

where  2aX aX b   . 

Suggested Estimator 

Following Bahl and Tuteja (1991) and Singh et al. (2009), a modified exponential 

type estimator is defined for estimating Y  as 
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 exp .PR

x X x
y y

X X x


  

    
   

  (6) 

 

To obtain the MSE of 
1PRy , write  01y Y e   and  11x X e   such that 

   0 1 0E e E e   and  2 2

0 YE e C ,  2 2

1 XE e C ,  0 1 y xE e e C C . 

Expressing (6), in terms of e’s,  

 

 

  
 

 

  

1

0 1

1

1

1 1
0 1

1
1 1 exp

1

1 1 exp 1 .
2 2

PR

X X e
y Y e e

X X e

e e
Y e e






  
    

  

  
     

   

  (7) 

 

Expanding the right hand side of (7) and retaining terms up to the second power 

of e’s,  

 

 

  

 
 

2

1 1 1
0 1

2
2 1 1

0 1 1

1 1 exp 1
2 2 4

1 2
1 1 1

2 2 8

PR

e e e
y Y e e

e e
Y e e e



 


  
       

  

   
        

  

  (8) 

 

From (8),  

 

 
  2 2

2 0 11 1 1
1 1 0 1 0

1 3
.

2 2 2 8 2
PR

e ee e e
y Y Y e e e e e

  
 

 
         

 
  (9) 

 

Squaring (9) and then taking expectation of both sides, the MSE of the estimator 

PRy  is 

 

    2 2 2 2 2 2MSE 4 2 .PR y x x y x y x xy Y C C C C C C C C            (10) 
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Obtain the optimum α to minimize  MSE PRy . Differentiating  MSE PRy  

with respect to α and equating the derivative to zero, optimum value of α is given 

by  

 

  2 2 .opt x y xC C C     

 

Substituting the value of αopt in (10), we get the minimum value of 

 MSE PRy  as 

 

    2 2 2

minMSE 1 .PR yy Y C     (11) 

 

It follows from (11) that the proposed estimator PRy  at its optimum condition is 

equal efficient as that of the usual linear regression estimator.  

Efficiency Comparisons 

In this section, the MSE of traditional estimators y , Ry , Py , Sy , and BTy  are 

compared with the MSE of the proposed estimator PRy . From (1)-(5) and (11),  

 

     2 2

minVar MSE 0,prly y Y    
 

  (12) 

 

      
2

2

minMSE MSE 0,R prl x yy y Y C C     
    (13) 

 

      
2

2

minMSE MSE 0,P prl x yy y Y C C     
    (14) 

 

      
2

2

minMSE MSE 2 0,BT prl x yy y Y C C     
    (15) 

 

      
2

2

minMSE MSE 0,S prl x yy y Y C C      
    (16) 

 

It is observed that PRy  is always more efficient than the traditional 

estimators y , Ry , Py , Sy , and BTy , because the conditions from (12) to (16) are 

always satisfied. 
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Numerical Illustrations 

The appropriateness of the proposed estimator has been verified with the help of 

the following data sets given in Table 1.  
 
 
Table 1. Statistics of populations 
 

Parameters Population 1 Population 2 Population 3 Population 4 
N 80 104 80 10 
n 20 20 20 4 

Y  11.264 6.254 51.826 5.920 

X  51.826 13931.680 2.851 3.590 

ρ 0.941 0.860 0.915 1.680 

Cy 0.750 1.860 0.354 0.144 

Cx 0.354 1.650 0.948 0.128 

β2(x)  0.063 17.516 1.300 0.381 

 
 

The explanation of the data sets in Table 1 from various sources is given as 

follows: 

 

Population 1. Source Murthy (1967): Y is the fixed capital and X is the 

output of the 80 factories.  

Population 2. Source Shabbir, Haq, and Gupta (2014): The study variable 

Y is the level of apple production (in 1000 tons) and the 

auxiliary variable X is the number of apple trees in 104 

villages in 1999.  

Population 3. Source Murthy (1967): The auxiliary variable X is the 

number of workers and the study variable is the output for 80 

factories in a region. 

Population 4. Source Cochran (1977): The auxiliary variable X is the 

number of rooms and the study variable is the number of 

persons. 

 

The Percent Relative Efficiencies (PREs) of different estimators of the 

population mean with respect to the sample mean based on Populations 1-4 are 

given in Table 2.  
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Table 2. PREs of different estimators of population mean with respect to sample mean y . 

 

Estimators 
Population 

1 2 3 4 

y  100.000 100.000 100.000 100.000 

Ry  298.972 382.945 30.586 158.823 

Py  47.369 30.186 7.651 34.089 

BTy  163.521 230.504 292.078 161.440 

Sy  104.054 323.244 319.840 8.197 

1PRy  873.218 384.025 614.345 173.748 

 
 

From the values of Table 2, it is observed that the MSE of the proposed 

estimator is less than the mean squared errors of all the existing estimators. Note 

that Sy  requires the auxiliary variable information, on the other hand, one can 

reach the minimum MSE value using the proposed estimator without auxiliary 

variable information. 

Conclusion 

As an improved exponential ratio estimator for estimating the population mean 

was proposed. The proposed estimator is better than the mentioned existing 

estimators in literature, in the sense of having lesser mean squared error. Hence, 

the proposed estimator is recommended for its practical use for estimating the 

population mean when the auxiliary information is available. 
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Various statistical hypotheses testing for discrete or categorical or binary data have been 

extensively discussed in the literature. A comprehensive review is given for the two-
sample binary or categorical data testing methods on data with or without Stratum Effects. 
The review includes traditional methods such as Fisher’s Exact, Pearson’s Chi-Square, 
McNemar, Bowker, Stuart-Maxwell, Breslow-Day and, Cochran-Mantel-Haenszel, as 
well as newly developed ones. We also provide the roadmap, in a figure or diagram 
format to which methods are available in the literature. In addition, the implementation of 
these methods in popular statistical software packages such as SAS and/or R is also 

presented. This will be helpful for researchers to determine which (categorical-data) 
testing method is available to use in various fields of study such as clinical trials, 
epidemiology, etc., both for the design phase of a study in prospective study, cross-
sectional or retrospective study analysis. 
 
Keywords: Cochran-Mantel-Haenszel (CMH) test, common odds ratio (OR), 
common risk difference (CRD), homogeneous stratum effect (HSE), McNemar’s test, 
paired binary data, stratified data, Bowker’s test, marginal homogeneity, stratified test, 

Stuart-Maxwell’s test, symmetry, Fisher’s exact test, chi-squared test 

 

Introduction 

Many real-world data, such as data in clinical trials, financial data, epidemiology, 

sociology, etc. often use outcome variables that are categorical or binary in nature, 

that is, for example, in binary case, there are two possible outcomes for each 

subject. Without loss of generality (WLOG), these two outcomes are mutually 

exclusive and are categorized as success or failure. A frequent task in many fields 

of study, such as medical statistics (or any other field) is to compare two 

(independent or paired) binomial proportions. It can occur both in randomized 

http://dx.doi.org/10.22237/jmasm/1478002440
mailto:rahardja@gmail.com
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controlled trials and in observational studies. The outcomes of two groups can be 

summarized in a single 2 × 2 contingency table. The number of subjects in each 

group (n1+ and n2+) is assumed to be fixed by the design. Assume that the subjects 

in group 1 have probability of success equal to p1, and that the subjects in group 2 

have probability of success equal to p2. The following Table 1 illustrates a single 

2 × 2 contingency table. 
 
 
Table 1. Comparing 2 groups of binomial data in a single 2 × 2 contingency-table format. 

 

 Success Failure  
Group 1 n11 n12 n1+ 

Group 2 n21 n22 n2+ 

 
 

Let n = {n11, n12, n21, n22} be the observed values as in Table 1. The number 

of successes in group 1 is binomially distributed with parameters n1+ and p1. In a 

similar manner, the number of successes in group 2 is binomially distributed with 

parameters n2+ and p2. The parameters p1 and p2 are estimated by the sample 

proportions  

 

 11 21
1 2

1 2

ˆ ˆand     ,
n n

p p
n n 

    

 

which are the maximum likelihood estimates. 

The followings are the three most common measures to compare between 

two groups in a study. They are, the proportion difference, proportion (risk) ratio, 

and the odds ratio: 

 

Parameter: Notation 

Difference: 1 2
ˆ ˆp p  

Risk ratio: 1 2
ˆ ˆOR p p  

Odds Ratio: 
 

 
1 1

2 2

ˆ ˆ1

ˆ ˆ1

p p

p p




 

 

The two groups being considered can be classified either as independent or 

matched pairs. Independent groups mean that the two samples taken are 
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independent, that is, sample values selected from one population are not related in 

any way to sample values selected from the other population. Matched pairs 

consist of two samples that are dependent or paired outcomes. The two variables 

may be two responses on a single individual or two responses from a matched pair 

(as in matched case-control studies). Table 2 summarizes the outcomes of 

matched pair two groups in a 2 × 2 contingency-table format. 
 
 
Table 2. Matched pair two groups in a 2 × 2 contingency-table format. 

 

Control 
Case Total 

Success Failure  
Success n11 (p11) n12 (p12) n1+ (p1+) 

Failure n21 (p21) n22 (p22) n2+ (p2+) 
Total n+1 (p+1) n+2 (p+2)  

 
 

where p+1 and p1+ are the marginal probabilities of a success response for the case 

and control subjects, respectively.  

In a stratified design (or multiple 2 × 2 contingency tables), the subjects are 

selected from two or more strata which are formed from important covariates such 

as gender, income level, marital status, etc. The number of subjects in each of the 

two groups in each stratum is set (fixed) by the design. A separate 2 × 2 table is 

formed for each stratum. Hence, there are multiple 2 × 2 contingency tables. The 

data can be represented as a set of K 2 × 2 tables as the following Table 3. 
 
 
Table 3. Comparing 2 groups of binomial data in a multiple 2 × 2 contingency-table 
format. 
 

 Success Failure  
Group 1 n11k n12k n1+k 

Group 2 n21k n22k n2+k 

 
 

where k = 1,…, K stratum. 

Thus, the purpose of this review of is to consider the existing testing 

methods in the literatures on the two independent or matched pair samples with 

binary data with or without stratum effects. 
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Hypothesis Testing 

Consider two independent groups without stratum effect (i.e., a single 2 × 2 

contingency table). The hypotheses for two independent proportions can be 

written as H0: p1 = p2 and H1: p1 ≠ p2. A Chi-square test is often used test the 

hypotheses.  

In SAS PROC FREQ, the CHISQ option is used in the TABLES statement 

to obtain the test statistic and its associated p-value. By the famous rule of thumb, 

the Cochran’s rule, the Chi-square test assumes that the expected value for each 

cell is five or higher. However, if this assumption is not met, the Fisher's exact 

test can be used regardless of how small the expected frequency is. The Fisher's 

exact test can be used with the FISHER option on the TABLES statement. 

However, Fisher’s exact test is computationally explosive for large sample size 

and hence the Chi-square test is needed for large sample size approximation. 

When subjects from two groups are independently sampled from two or 

more strata (i.e., with stratum effect; or a multiple 2 × 2 contingency table), the 

null hypothesis of the interest can be to test whether odds ratios are the same 

across strata, that is, H0: OR1 = OR2 = … = ORk (or, homogeneity across strata). 

The Breslow-Day (BD) test (1980) for homogeneous odds ratios across strata can 

be used to test for the stratum effect. If the BD test is rejected, then the treatment 

comparison should be performed by strata; otherwise, the Cochran Mantel 

Haenzel (CMH) test (Cochran, 1954; Mantel & Haenszel, 1959) can be used to 

test whether the common odds ratios across strata is equal to 1, i.e., if all the 

ORi = 1, for i = 1,…, k. In SAS PROC FREQ, the CMH option can be used for 

testing whether the common odds ratios are equal to one. The CMH option also 

provides logit estimates of the common odds ratio and the common relative risks. 

Next, consider binary data collected on matched pairs. The sampling unit is 

not one individual but a pair of related individuals, which could be two parts of or 

two occasions for the same individual. For example, the binary response is a 

voter’s choice from two presidential candidates and the two occasions could be  

two different time points before the presidential election. 

For unstratified paired binary data, McNemar’s test (1947) is commonly 

used to test whether the risk difference is zero. Such a null hypothesis is more 

commonly known as marginal homogeneity or symmetry of the 2 × 2 contingency 

table. This null hypothesis of homogeneity can be written as H0: p1. = p.1, where 

p1. = p11 + p12 and p.1 = p11 + p21, or equivalently, the null hypothesis of symmetry, 

H0: p12 = p21. McNemar’s test can be calculated using AGREE option in PROC 

FREQ. Developed from asymptotic theory, McNemar’s test requires a large 
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number of observations (say 5, by Cochran’s rule) in each cell of discordance. For 

small samples, an exact binomial test can be used to test the null hypothesis of 

symmetry. 

When the paired categorical random variables take K (K > 2) values, 

Bowker’s test (1948) can be used to test the symmetry H0: pij = pji, for all i ≠ j, 

where i, j ∊ {1, 2. …, K}.  

If the test of marginal homogeneity is of the interest, the generalization of 

the McNemar's test, commonly referred to as generalized McNemar's or Stuart-

Maxwell test (1955) can be used, H0: pi. = p.i, where i = 1, 2, …, K. Note that for 

K > 2, the null hypothesis of symmetry is not equivalent to the null hypothesis of 

homogeneity. In fact, rejection of marginal homogeneity implies rejection of 

symmetry, but not vice versa. Therefore, practitioners need to decide which 

hypothesis to test for a particular application. A SAS macro by Sun and Yang 

(2008) has been developed for Stuart-Maxwell statistic. 

Zhao, Rahardja, Wang and Shen (2014) considered a series of independent 

paired binary data in which the series is defined by a stratification factor, the null 

hypothesis of interest is to test the homogeneous stratum effects. In analogy, this 

is similar to the Breslow-Day (BD) test (1980) for homogeneous odds ratios 

across a series of stratified 2 × 2 contingency tables in which the binary data are 

unpaired. The null hypothesis can be written as H0: p1.1 − p.11 = … = p1.K − p.1K, or 

equivalently, H0: p121 − p211 = … = p12K − p21K. The R-code of testing HSE in 

stratified paired binary data is available in the Zhao et al (2014) manuscript. If the 

homogeneous stratum effect (HSE) test is rejected, then the data should be 

analyzed by strata; otherwise the common risk difference (CRD) test for paired 

binary data in Zhao-Rahardja (2013) manuscript can be used to estimate the CRD. 

The test for CRD is analogous to the CMH test when the binary data are unpaired. 

Table 4 summarizes the above discussion. 

Roadmap 

WLOG, the figure/diagram below (see Figure 1) provides the roadmap for 

practitioners to choose a suitable testing method for their categorical data analysis. 

In the Figure 1, the roadmap is provided by whether or not stratification table or 

multiple contingency tables is necessary. 
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Table 4. Listing of Sample Type with the appropriate testing, test statistics, and SAS 

command or R code.  
 

Sample 
Type 

Null Hypothesis (H0) Test statistics 
SAS command or 

other option 

Independent samples: 

Single 2 × 2 
or Single 

K × K table 

H0: p1 = p2 
Fisher’s exact test 

(small sample) 

PROC FREQ using 
/Fisher option 

H0: p1 = p2 
Chi-square test (large 

sample) 

PROC FREQ using 
/Chisq option 

 

Stratified independent samples: 

Multiple 
2 × 2 tables 

H0: OR1 = OR2 = … = ORk 

Breslow-Day test for 
testing common odds 

ratio (OR) across 
strata PROC FREQ using 

/CMH option 
Cochran-Mantel-

Haenszel (CMH) for 
estimating Common 

OR 

 

Dependent/matched pairs: 

Single 2 × 2 
table 

H0: p+1 = p1+ McNemar’s test 
PROC FREQ using 

/Agree option 

Single K × K 

table 

H0: pij = pji 
Bowker test for 

symmetry  
 

H0: pi. = p.i 
Stuart-Maxwell test for 
marginal homogeneity 

SAS macro by Sun 
and Yang (2008) 

 

Stratified dependent/matched pairs: 

Multiple 
2 × 2 tables 

H0: p1.1 − p.11 = … = p1.K − p.1K 

Homogenous stratum 
effect (HSE) test for 

homogeneity 
R-code in Zhao et 

al. (2014) 

H0: p1.1 −  p.11 = … = p1.K − p.1K = 0 

Common risk 
difference(CRD) test 

for estimating common 
risk difference 
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Figure 1. Categorical-Data Roadmap by Stratify or Not 
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Summary 

Categorical Data or most commonly binary or dichotomous outcome (i.e., success 

vs. failure, dead vs. alive, 1 vs. 0) is very common in real-data applications such 

as clinical trials, financial data, epidemiology, sociology, etc. The analysis of such 

categorical outcomes has a long history, beginning with the single 2 × 2 table, 

multiple/stratified 2 × 2 tables, matched/paired 2 × 2 tables, to big table such as 

K × K tables. In this paper, we provide a comprehensive review of the hypothesis 

testing procedures that are available in the literature for various types of 

categorical data. In summary, this review will be helpful for the practitioners in 

various fields of study (such as clinical trials, financial data, epidemiology, 

sociology, etc.) to determine the appropriate method according to the provided 

roadmap in Figure 1. 

Disclaimer 

This research represents the authors own work and opinion. It does not reflect any 

policy nor represent the official position of the U.S. Department of Defense nor 

any other U.S. Federal agency. 
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A major shortcoming of the Bradley-Terry model is that the maximum likelihood 
estimates are infinite-valued in the presence of separation, and may be unreliable when 
data are nearly separated. A well-known solution consists of the addition of Firth's 
penalty term to the log-likelihood function, and solving this penalized likelihood through 
logistic regression. The maximum likelihood estimates with and without Firth's penalty 
are compared in a large and heterogeneous population of table tennis players, showing 

that exact penalized maximum likelihood estimates can be reasonably approximated 
using a well-chosen Minorization-Maximization (MM) algorithm. 
 
Keywords: Bradley-Terry, Firth, MM algorithm, table tennis 

 

Introduction 

Consider the evaluation of the addition of Firth's penalty term to the Bradley-

Terry likelihood function, with an application to a large dataset of table tennis 

players. The problem of rating table tennis players falls into the topic of binary 

paired comparison modeling, provided the victory margin is ignored. A binary 

paired-comparison experiment is used to assess the relative worth of t objects 

even though they can only be compared two at a time, and when the result of such 

a comparison can only be that one of the objects is preferred to the other. Zermelo 

(1929) is generally credited with being the first to address the problem of 

estimating the strengths of players. The model and various parts of the theory 

have been rediscovered over the intervening years and were first described in 

detail by Bradley & Terry (1952). 

Suppose there are m players and define  = (1, …, m)' to be the vector of 

the player’s strengths. The Bradley-Terry model assumes that the probability pij of 

player i defeating player j is: 

http://dx.doi.org/10.22237/jmasm/1478002500
mailto:pmeyvisc@its.jnj.com
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Any constant multiple of the strengths i estimates also satisfy (1), so they can be 

scaled to satisfy an additional constraint such as iI = 1 or I = 1 for sake of 

identifiability. 

If each pair of players i and j plays nij games against each other, with player 

i winning vij times and losing dij times, and all games assumed independent, the 

likelihood takes the form: 
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  , (2) 

 

where vij = dji  and nij = nji. 

As noted by Ford (1957), if it is possible to partition the set of players into 

two groups A and B such that there are never any intergroup comparisons, then 

there is no basis for rating any player in A with respect to any player in B (Hunter, 

2004). It is therefore assumed that the tournament is completely connected, i.e., 

there is a chain of matches which links any given pair of players. In order for the 

maximum likelihood estimates of the strengths to exist, a second condition is 

required which will be further denoted as Ford's Assumption: In every possible 

partition of the players into two nonempty subsets, some player in the second set 

beats some player in the first set at least once (Ford, 1957). As a special case, 

Ford's Assumption is not satisfied if group A consists of only one player who has 

lost or won all games. The maximum likelihood estimate for this player will be 

infinite-valued. 

The likelihood can alternatively be expressed as a function of 

 = (1, …, m)' with i = log(i),  i : 1, …, m. Using (1), the probability pij then 

becomes: 

 

 
 
 

exp
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, (3) 

 

The Bradley-Terry model can hence be solved using logistic regression 

(Agresti, 2002). Details as to how this model can practically be fit are provided by 
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So (1995). The non-existence of maximum likelihood estimates is a well-known 

and understood problem in logistic regression models and has been denoted by 

Albert & Anderson (1984) as separation. 

The log-likelihood takes the form: 

 

    1
12 :

log exp expm

i ij i ij j ij i jj j i
l v d n     

    
   , (4) 

 

Extensions to the Bradley-Terry model have been proposed in the literature 

but are not considered here. Hunter (2004) provides an interesting review. 

Firth’s penalty term 

The phenomenon of separation or monotone likelihood is observed in the fitting 

process of a logistic model if at least one parameter estimate diverges to . It is 

believed that separation is unpredictable because it is primarily caused by random 

variation as it may depend on the outcome of a few matches. Furthermore, it is 

demonstrated by Heinze (2006) that maximum likelihood estimation by logistic 

regression may give questionable results in the presence of so-called nearly 

separated data. This situation occurs when the existence of the maximum 

likelihood estimates depends on the presence of a few particular observations. A 

solution proposed by Heinze & Schemper (2002) and Heinze (2006) to separation 

and near-separation is to penalize the log-likelihood, as described by Firth (1993). 

The basic idea is to introduce a bias term into the standard likelihood function 

which itself goes to zero as n, but for small n operates to counteract the 

O(n−1) bias present here. The penalty function used is Jeffreys invariant prior 

(Jeffreys, 1961). One of the advantages of the addition of Firth's penalization term 

is that no arbitrary data manipulation is involved. It is also justified from the use 

of Jeffreys prior, in the sense that it is non-informative, thereby implying that 

maximal weight is given to the data. It should also be noted that the interpretation 

of the model is not changed in any way. Firth (1993) demonstrated that, for a 

broad class of generalized linear models, this penalized likelihood is 

asymptotically consistent and eliminates the usual small-sample bias found in 

maximum likelihood estimates. 

The suggested penalized log-likelihood function takes the following form: 

 

      * 1
2
logl l I    , (5) 
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where I(θ) is the Fisher Information Matrix of θ. 

Case Study 

The impact of the addition of Firth’s penalty using a motivational (simplified) 

example will be demonstrated. The evaluation will be done on a large data set of 

table-tennis players. The data that are used for analysis consist of all recorded 

match results during the sports season of 2006-2007 of a population of 770 

players from the province of Vlaams-Brabant (Belgium). It is shown in Figure 

1(a) that the population is highly heterogeneous, both in terms of strengths as 

number of matches played. It is noted that, in line with existing rating systems, 

the estimates for  were linearly transformed to fall roughly between 0 and 3,000 

(Glickman, 1995 and 1999) and (Marcus, 2001). 

The transformation used was such that a difference of 100 points between 2 

players corresponds with odds of 2 for the highest rated player to win. The 

median (Q1-Q3) number of matches per player equals 61 (35-78). The primary 

objective is to rate each player in this pool using the penalized and unpenalized 

maximum likelihood estimates, and to provide Wald-based and profile likelihood 

95% confidence intervals. The differences between penalized and unpenalized 

maximum likelihood estimates will be investigated. Additionally, the differences 

between both types of confidence intervals will be discussed. 

Consistent with local regulation, a simplified log-likelihood was used to 

allow the new rating of the ith player,  i : 1, …, m to depend only on the ratings 

of each of his/her opponents, which are by way of simplification (naively) 

considered constant during the season. Therefore,  i : 1, …, m: 

 

    
:

log exp expc c

i ij i ij j ij i jj j i
l v d n    


    
  , (6) 

 

where θj
c indicates the (scalar-valued) rating of the jth player. 

This log-likelihood (6) can, contrary to (4), not be considered a logistic 

regression model but has to be optimized using Newton's Method or through an 

appropriate Minorization Maximization (MM) algorithm. Maximum likelihood 

estimation using (6) will better allow an evaluation of the impact of separation as 

it will, unlike model (4), not depend on a linear combination of regressors. It can 

indeed be verified that monotonicity of the log-likelihood (6) is only to occur 

when a player loses or wins all matches. It is therefore expected that the 

phenomenon of near-separation is more simply expressed as a function of the 
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victory rate. Application of (4) to the same data set will be presented in before the 

conclusion of this article. It can easily be shown that the score function of the 

penalized log-likelihood can be expressed as: 
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where the Fisher Information I(θi) = Σj:j≠i nijpij(1 – pij) is alternatively expressed as 

Σj:j≠i Ij(θi). It should also be noted that pij is equal to the expression in (3) with θj 

replaced by θj
c. 

Rearranging some of the terms and denoting the total number of wins for the 

ith player as Vi  results in 
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This expression has a simple interpretation in terms of data adjustments: add ½ 

match to the players total number of wins and add a fraction of a match to the 

total number of matches played against the jth player.  The fractions to be added 

depend on the unknown θi. 

Prior to fitting the data, note Ford’s Assumption is not satisfied for about 

5% of the players, and hence, the maximum likelihood estimates of these players 

will be infinite-valued. Removing these players from the data by no means 

guarantees the maximum likelihood estimates of the remaining players to exist, as 

some of the latter may have only won matches against those that are removed. To 

solve this problem, two virtual games for every single player are added, i.e., one 

win and one loss against a (virtual) player of equal strength. These virtual players 

are added with their given strengths at the right-hand side of (6). The introduction 

of virtual matches may dilute the difference between penalized and unpenalized 

maximum likelihood estimates for every single player; however, given the size 

and the heterogeneity of the data, the overall relationship between both estimates 

can still reliably be expressed. 

As observed from Figure 1(b), the penalized maximum likelihood (PML) 

estimates are slightly more conservative, i.e., the estimate is pulled towards the 

center. Players with a low victory rate, i.e. 20%, have a PML estimate which is 

slightly higher than the ML estimate. The reverse phenomenon is observed for 
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players with a high, perhaps ≥80%, victory rate. The small-sample bias reduction 

is also evident in the subset of players who have played fewer than 30 matches. 

The shrinkage towards the mean is more pronounced compared to players on 

whom more information is available. 
 
 

 
 
Figure 1. Supporting figures of Case Study 

 

 
 

Although the symmetry of the profile likelihood may be enhanced by the 

addition of a penalization term, it is important to bear in mind that the resulting 

profile likelihood may still be asymmetric, in particular in the presence of near-

separation. Heinze & Schemper (2002) therefore advise against the use of Wald-

based confidence intervals and propose the profile penalized likelihood 

confidence interval as a more suitable solution. The discrepancy between Wald 

and profile likelihood 95% confidence intervals is graphically presented in Figure 

1(c). For this purpose, the percent overlap of both confidence intervals is defined 

as the length of the intersecting interval, divided by the length of its union. It 

shows that both confidence intervals match very well when victory rates are close 
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to 50%. However, as the victory rate is an indicator of the likelihood’s asymmetry, 

it is not surprising that the discrepancy is increased with increasing victory or 

defeat rate. It is also shown that the discrepancy is more pronounced for players 

on whom less data is available. Compared to Wald-based confidence limits, 

profile likelihood confidence limits are slightly shifted towards higher values for 

players with a high victory rate. The reverse phenomenon is observed for players 

with a low victory rate. Finally, it is seen from Figure 1(d) that the length of the 

profile likelihood confidence interval is not only dependent on the number of 

matches played but also on the victory/defeat rate. It may not come as a surprise 

that the precision of the estimates is lowest for extreme victory rates. 

Optimizing the penalized Bradley-Terry log-likelihood 

It was shown by Firth (1993) and Heinze & Schemper (2002) that maximum 

penalized likelihood estimates in logistic regression models are obtained by 

splitting each original observation i into two new observations having response 

values yi and 1 − yi with iteratively updated weights 1 + hi / 2 and hi / 2 

respectively (using their notation). It is also argued that the splitting of each 

original observation into a response and non-response guarantees finite estimates. 

It is further shown that the hi’s are obtained from the ith diagonal elements of the 

hat matrix whose elements are refreshed at every iteration. Mathematical details 

are provided by Firth (1993) and Heinze & Schemper (2002). 

This led to the development of software to allow calculation of Firth-type 

estimates. Direct implementation of the methodology in a SAS macro, S-plus 

library and R package owes to Heinze & Ploner (2004). An additional R package 

to fit the Bradley-Terry logistic model was developed by Firth (2005). 

Implementation in logXact version 8 by Cytel (Cytel, n.d.) has become available 

in 2005. As of 2008, users of SAS version 9.2 can apply Firth's correction as an 

option to the LOGISTIC procedure.  

Because of the recent advancements in software development for logistic 

regression, maximum likelihood estimation using a Minorization-Maximization 

(MM) algorithm seems to be of lesser use from a practical point of view. In 

addition, an MM algorithm method to obtain the maximum penalized likelihood 

estimates has so far not been developed. However, it is important to note that 

some of the extensions to the Bradley-Terry model cannot be fitted using logistic 

regression (Hunter, 2004) and the MM algorithm may need to be used here as an 

alternative. In the next sections, the approximate score equations and an MM 
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algorithm for approximate maximum penalized likelihood estimation will be 

presented. 

Approximating the penalized score equation 

From (4) it follows that 
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, the information matrix I(θ) 

has diagonal elements 
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and off-diagonal elements 
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Differentiation of log | I(θ) | in (5) requires derivatives of a log determinant 

with respect to the vector . To avoid that optimization of the penalized score 

equation would require major matrix operations at every iteration, lengthening the 

computational process and likely making it less stable, suggesting an approximate 

rather that an exact approach. The approximation consists of imposing the score 

function to be of a similar structure as (7) to obtain: 
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The term Ij(θ)ii in the numerator is the jth contribution to I(θ)ii and is equal to 

nijpij (1 − pij). Setting this expression (12) to zero and rearranging some of the 

terms results in: 
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The same reasoning as Firth (1993) is applied, i.e., that each original 

observation xij (i.e., a win or a loss of the ith player against the jth player) can be 

split into 2 new observations having response values xij and 1 − xij with iteratively 

updated weights 1 + gij /2 and gij /2 respectively. Note that the weights gij are an 

approximation to the diagonal elements of the hat matrix introduced earlier if we 

were to express (5) as a logistic regression model. The weights are updated at 

each iteration and depend on the unknown θ. It can then be verified that the 

approximation to the likelihood function l*(θ) can alternatively be expressed as: 

 

  

 

* 1
approx 2 :

1

2 2

log exp exp

ij ij
m

ij ij i ij ij j

j j i
i

ij ij ij i j

g g
v n d n

l

n n g

 


 




    
      

     
      

  (14) 

 

Optimizing (14) for θi, it is easily verified from (8) that 
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Expressions (14) and (15) will allow construction of a MM-algorithm. 

Minorization-Maximization algorithms 

Hunter (2004) demonstrated optimization of the unpenalized log-likelihood 

function is obtained using a specific case of a general class of algorithms referred 

to here as Minorization-Maximization (MM) algorithms and shows that 

convergence is reached provided Ford's Assumption holds. 

An MM algorithm operates by creating at each iteration a surrogate function 

Q(θ) that minorizes the log-likelihood function l(θ).  This is to say Q(θ) ≤ l(θ) 

with equality if and only if θ = θ(k). When now the surrogate function is 

maximized, the log-likelihood is driven uphill. This combination of a 

minorization and a maximization step is repeated until convergence. 
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The strict concavity of the logarithm function implies for positive x and y 

that −log(x) ≥ 1 − log(y) – x / y with equality if x = y.  As shown in Hunter (2004), 

fixing θ(k) and defining the function 
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it can be seen that  *

kQ   minorizes l*
approx(θ) as 
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with equality if θ = θ(k).  

Using (15), optimization of  *

kQ   for θi is now straightforward with 

solution 
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Similarly, minorization and maximization of the unpenalized log-likelihood 

function l(θ) is achieved with 

 

    
     

1

1

:
exp

exp exp

ijk

i i j j i k k

i j

n
V

 







 
 
 
 

  (18) 



PAUL MEYVISCH 

234 

Application 

The same data will be used. Approximate maximum penalized likelihood 

estimates will be produced using (17). In addition equation (17) will be 

generalized such that the ½ match to the player’s total number of wins can be 

modified at both sides of the equation: 
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Comparisons with the exact penalized maximum likelihood estimates obtained 

using logistic regression are compared with the approximate penalized likelihood 

estimates for a = 0.3, 0.5, 0.7 and 1. A comparison between exact penalized 

likelihood estimates and unpenalized likelihood estimates is presented in Figure 

2(a). 

Unlike the results shown in Figure 1(b), the differences between both 

estimates are not only a function of the percentage of wins and of the sample size. 

This is because separation can occur as a result of a non-trivial linear combination 

of regressors, which can potentially occur at any sample size or victory rate. Also 

note the far larger presence of players with low rather than high victory rates in 

the data. It is further shown in Figure 2(b) that unpenalized estimates obtained 

using either logistic regression or by the MM algorithm (18) effectively give the 

same results. An investigation of the effect of the value a for the added match in 

(19) is presented in Figures 2(c) to 2(f). It is shown in Figure 2(c) that the 

approximate penalized ML estimates (for a = 1) strongly differ from the exact 

penalized ML estimates. 

It is also clear from Figures 2(c) and 2(d) that approximations implied by 

values of a larger than 0.5 result in a too strong correction of the unpenalized ML 

estimates, when compared to the exact penalized ML estimates. The reverse 

phenomenon is observed for a = 0.3 (see Figure 2(f)) and for any value of a lower 

than 0.3 (results not shown). For these small values of a, the comparison with the 

exact penalized ML estimates will become more and more similar to the pattern 

observed in Figure 2(a), for a → 0. It is clear from Figure 2(e) that choosing 

a = 0.5 resulted in the best fit. Similar results were obtained through simulations 

(data not shown). A value of a = 0.5 always yielded results that are sufficiently 

close to the exact values. It was observed that the correction implied by the exact 

results, both on the real data as on the simulation, was always slightly larger 
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compared to the approximate results. However, differences between the exact and 

the approximate estimates were always negligible. 
 
 

 
 
Figure 2. Supporting figures of Case Study 

 

 

Conclusion 

The objective of this work was to evaluate the effect of the addition of Firth's 

penalty term to the Bradley-Terry log-likelihood. One of the fundamental 

differences between the current work and earlier applications of strength 

estimation in the literature, such as in Agresti (2002) and Firth (2005), is due to 

the size and degree of imbalance of the data. Application of the implied models to 

a sufficiently large and heterogeneous pool of players allows better 

characterization of the impact of the penalty term. The differences between 

penalized and unpenalized ML estimates were generally more pronounced when 

the number of matches were relatively low or when victory or defeat rates were in 
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the high range. Findings due to Heinze & Schemper (2002) such as the 

recommended use of profile likelihood confidence intervals over Wald-based 

confidence limits, in presence of asymmetric likelihood functions, also carry over 

to the Bradley-Terry model. 

A secondary objective consisted of the development of a MM algorithm for 

optimization of the penalized log-likelihood. Direct application of the MM 

algorithm to this type of data may seem inefficient due to the availability of 

logistic regression software that can easily produce Firth-type maximum 

likelihood estimates. However, some of the extensions of the Bradley-Terry 

model cannot be expressed as a logistic regression model and MM algorithms can 

be used as an alternative as they tend to give fast, simple-to-code iterations, where 

each iteration moves in the right direction. When applied to the full size of the 

data, the MM algorithm converged within an acceptable time frame and behaved 

stably for any set of starting values. Although exact results were not obtained with 

the proposed MM algorithm, the approximate values were shown to be 

sufficiently close to the exact values when applied to the data at hand. The 

applicability of these results may need to be confirmed on other data sets. A 

favorable feature of the proposed MM algorithm is that it is constructed in such a 

way that major matrix operations at every single iteration are avoided. As 

convergence of the algorithm is only obtained after several hundreds of iterations, 

the gain in processing time is expected to be considerable. In a next step, 

approximate MM algorithms will need to be constructed on some of the well-

known extensions of the Bradley-Terry model. This will be a subject for further 

research. 
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A new method to conduct a right-tailed test for the correlation on bivariate non-normal 
distribution is proposed. The comparative simulation study shows that the new test controls 
the type I error rates well for all the distributions considered. An investigation of the power 
performance is also provided. 
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Introduction 

Bivariate data is data that has two variables. In the bivariate case, the study of the 

relationship between the two variables is at least as important as analyzing each 

variable individually. The most popular measure of the strength of the linear 

relation between two variables is the correlation coefficient, denoted by ρ. The 

Pearson product-moment correlation, r, is the most frequently-used estimator for ρ. 

Another widely-used estimator is the Spearman’s rank correlation, denoted by rs. 

Tests Based on Pearson Product-Moment Correlation 

Pearson (1896) developed the initial mathematical formulas for the sample 

correlation coefficient. Let (Xi, Yi), i = 1,…, n be a random sample, the statistic r is 

given by: 
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where sXY is the sample covariance of X and Y, n is the sample size, sX and sY are 

the sample standard deviations, and X̅ and Y̅ are the sample means for the variables 

X and Y, respectively. 

The Pearson product-moment correlation r is the maximum likelihood 

estimator of the parameter ρ when the population has a bivariate normal distribution. 

Although r is a biased estimator, the bias is negligible when the sample size is large. 

Researchers have done intensive work on the distribution of r when the population 

is bivariate normal (Fisher, 1915; Stuart & Ord, 1994). 

r can be used to test H0: ρ = 0 when the population is a bivariate normal 

distribution. The test statistic 
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follows the Student’s t-distribution with n – 2 degrees of freedom under H0. 

r can also be used to test H0: ρ = ρ0, for -1 ≤ ρ0 ≤1. The sampling distribution 

of r is complicated and unstable even when the population is bivariate normal. 

Fisher (1921) introduced a remarkable transformation of r, which tends to 

normality much faster. When the sample size n is moderately large, given 
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the distribution of r* – ρ* approaches to normal with an approximate mean 

 2 1n



 and variance 1

3n 
. Note that n > 50 is an adequate sample size for the 

above approximation (see David, 1938). 

To test H0: ρ = ρ0, the test statistic is: 
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zF has approximately a standard normal distribution under H0. 
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Test Based on Spearman Rank Correlation 

Spearman (1904) proposed a rank correlation which can be used to measure the 

relationship between two variables when the distribution is neither bivariate normal 

nor transformed to a bivariate normal. The Spearman rank correlation, rs, is a non-

parametric version of the Pearson product-moment correlation. Let (R1i, R2i), 

i = 1,…, n be the paired rank data of two variables, rs is given by: 
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where 
1 2R Rs  is the sample covariance of the paired ranks and 

1Rs  and R̅1, 
2Rs  and R̅2 

are the sample standard deviation and the sample mean of the ranks of the two 

variables, respectively. 

The Spearman rank correlation rs can be used to test: 

 

 
0H : there is no association between the rank pairs   

 

The test statistic is 
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which follows the Student’s t-distribution with n – 2 degrees of freedom under H0. 

Other Tests on Correlation 

The test based on r can only be used when the population is bivariate normal or the 

sample size is relatively large. Although the test based on rs is applicable to the 

distribution-free case, it is less powerful and limited to test for zero correlation. 

However, in real world situations, most distributions are not bivariate normal and 

the sample sizes may not be large. Furthermore, a test of non-zero correlation is 

often required. It is desired to develop methods to meet these needs. 

Beasley et al. (2007) proposed two new approaches to test a non-zero by using 

the bootstrapping method. Their methods do not require any knowledge of the 

population. One is the hypothesis-imposed univarite sampling bootstrap (HI) and 

the other one is the observed-imposed univariate sampling bootstrap (OI). Two tests 
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are conducted on populations with various combinations of normal and skewed 

variates with ρ ≥ 0.4 and the sample size n ≥ 10. Their study demonstrated that 

although OI is preferable to HI under the significance level of 0.05, the type I error 

rates are still slightly inflated. Also, the simulated populations are limited to the 

combinations between normal and skewed populations. The methods are not 

evaluated under the situations that both variables are non-normal. Another 

drawback of these two methods is that they are computer-intensive methods. 

Unfortunately, most practitioners do not have the computer programming skills to 

implement these methods. 

Beversdorf and Sa (2011) proposed tests of correlation for bivariate non-

normal data with small sample sizes. The tests investigated are Fisher’s Z 

transformation zF and the saddlepoint approximation rL. They found that zF and rL 

have extremely similar performance which could control the type I error rates well 

when a left-tailed test was performed under all the bivariate non-normal 

distributions considered. Both methods essentially failed to control the type I error 

rates when a right-tailed test is desired.  

The purpose of this study is to develop a new right-tailed test on bivariate 

non-normal distributions with non-zero correlation. The new test statistic is derived 

using the Edgeworth expansion and the Cornish-Fisher inverse expansion. 

Methodology 

Edgeworth Expansion 

The Edgeworth expansion was derived by Edgeworth (1905), and uses a series to 

approximate a probability distribution in terms of its cumulants. Let ̂  be an 

estimator of an unknown parameter θ, and  ˆn    be asymptotically normally 

distributed with mean zero and variance σ2. Hall (1983) developed the Edgeworth 

expansion of the distribution function of  ˆn    as a power series in n . 
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where Φ(u), ϕ(u), and pj(u) denote the standard normal distribution function, its 

density function, and a polynomial function with coefficients depending on 

cumulants of ̂  , respectively. 

The inverse of the Edgeworth expansion, obtained by inverting the formula 

(2), is known as the Cornish-Fisher expansion: 
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where z is the percentile of the standard normal distribution and the pj1 are 

polynomials defined in terms of pjs (Hall, 1992). 

Proposed Test Procedure 

Assume that a bivariate population has finite cumulants and a correlation 

coefficient ρ. Let κ01, κ10, κ02, κ20, κ11,… up to order six be the product cumulants 

for the bivariate population. Then  *r n r    has a limiting normal distribution 

with mean zero and constant variance σ2, where σ2 is of the form (Nakagawa & 

Niki, 1992): 
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Bhattacharya and Ghosh (1978) provided the Edgeworth expansion of R, 

where 
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where Φ(u) and ϕ(u) denote the standard normal distribution function and its 

density function, 1O
n n

 
 
 

 is the big-oh function of order 1
n n

, H1(u), H2(u), 

H3(u), and H5(u) are Hermite polynomials with 
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and ν1, ν2, ν3, and ν4 are parameters such that 
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are the approximate cumulants of R. The explicit forms of ν1, ν2, ν3, and ν4 were 

provided by Nakagawa and Niki (1992). Formulas for calculating ν1 and ν3 are 

listed in Appendix A. Formulas for calculating ν2 and ν4 are not needed in this study. 

Nakagawa and Niki (1992) applied the inverted Edgeworth expansion to the 

distribution of R of order 1/n: 
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If only order 1 n  is required, then (4) can be reduced to a simpler form: 
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To test H0: ρ = ρ0 versus Ha: ρ > ρ0, the intuitive decision rule is: 
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Since negative values of B1 might increase type I errors, the following adjustment 

is proposed: Define 
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The decision rule is adjusted to: 
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All the parameters in (6) and (7) can be written in terms of the product 

cumulants. These product cumulants κij are estimated by their corresponding 

unbiased estimators kij. Detailed formulas are provided in Appendix B. 

For the special case of ρ0 = 0, κ01 = κ10 = 0, κ02 = κ20 = 1, and κpq = 0 for 

p + q ≥5, Nakagawa and Niki (1992) gave the simplified forms for parameters σ2, 

ν1, and ν3 as follows: 
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To test H0: ρ = 0, (6) and (7) are evaluated with the parameters given in (9). 

Again, all the parameters are estimated by their corresponding unbiased 

estimators. 

Simulation Study 

The simulation study was implemented to evaluate type I error rates, to investigate 

the power performance, and to compare with the existing Fisher’s Z transformation 

method on the type I error rates. 

Simulation Description 

Fleishman (1978) proposed a method to generate univariate non-normal random 

variables with desired coefficients of skewness β and kurtosis γ. Vale and Maurelli 

(1983) extended Fleishman’s method to the bivariate non-normal case with a 

specified correlation coefficient. Five parameters, including two sets of skewness 

and kurtosis and one correlation coefficient, are required to generate the bivariate 

non-normal data using Vale and Maurelli method. 

Seven levels of the skewness, -3.0, -1.2, -0.5, 0.0, 0.5, 1.2, and 3.0, and five 

levels of the kurtosis, 0.0, 4.0, 10.0, 14.0, and 25.0, were considered, and 24 

combinations were selected. Moreover, five correlation coefficients, 0.0, 0.5, 0.6, 

0.75, and 0.9, three significance levels, 0.10, 0.05, and 0.01, and two sample sizes, 

15 and 30, were used in the simulation study. 

Two new methods and the Fisher’s Z transformation method were evaluated. 

The method using (6) was denoted by Zb, and the one using (8) was denoted by Zc. 

The Fisher’s Z transformation method (1) was shortened as Zf. Both Zb and Zc 

methods were evaluated with two critical values, zα and t(α,n–2). 

 

The Algorithm of the Test on Correlation: 

 

1. Input the desired ρX,Y and two sets of skewness and kurtosis, (β1, γ1) and 

(β2, γ2). 

2. Generate n bivariate non-normal random variates (X, Y) based on the given 

parameters. 

3. Calculate zF in (1), Zb in (6), and Zc in (8). 

4. Compare the tests with their critical values; count one if the test is rejected. 

5. Repeat (2) – (4) 99,999 times. 
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6. Calculate the type I error rate, the proportion of the false rejection (out of 

100,000) for each test. 

 

In the power study, an extra parameter ρa is input in step (1) and used to generate 

the data as the true population correlation. However, all of the test statistics in step 

(3) are evaluated under ρ0. All fo the simulations were run with Fortran 77 for 

Windows on an IBM T61 Laptop Computer. 

Simulation Results 

Type I Error Rate Comparisons 

Tables 1-3 provide the comparative study of the type I error rates on various 

bivariate non-normal distributions with significance levels 0.10, 0.05, and 0.01 and 

sample size 30. Comparisons were made among the tests Zf, Zb, and Zc with two 

critical values, zα and t(α,n–2), while Zf only used the critical value, zα. The correlation 

coefficients 0.00, 0.50, 0.60, 0.75, and 0.90 were targeted during the simulation 

study. A total of 24 bivariate non-normal distributions with various population 

conditions were examined. 

Table 1 shows the results on testing a zero correlation. It can be observed that 

the Zc method controls the type I error rates well. On the contrary, the Zb method 

do not control type I error rates at all. Almost all of the type I error rates obtained 

by the Zb method are slightly inflated except for a few cases. The Zf method can 

control the type I error rates as long as the skewness and kurtosis are small. Once 

theses parameters increase, Zf becomes unstable and fails to control the type I error 

rates in many cases. 

More specifically, in testing ρ0 = 0 on a distribution which is bivariate normal 

or very close to bivariate normal, Zf controls type I error rates a bit better than Zc. 

However, for the non-normal distributions, Zc is better than Zf in controlling type 

I error rates. 

Tables 2 and 3 give the results for right-tailed tests on the non-zero correlation. 

It is quite interesting to see that the hypothesized value ρ0 actually affects the type 

I error rate performance. When n = 30 and ρ0 = 0.5, both the Zf and Zb methods 

basically fail to control the type I error rates with very few exceptions. The type I 

error rates obtained by the Zc method have better performance. However, the cases 

with controlled type I error rates are restricted to the distributions with small to 

moderate skewness and kurtosis. When ρ0 increases to 0.6, the Zc method 

successfully controls the type I error rates for nearly all the distributions considered 
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with the t critical point. As ρ0 increases, the type I error rates get more conservative. 

This tendency can be observed on both Zb and Zc methods. 

The Zf method fails completely in the right-tailed test on non-zero correlation 

with only a few exceptions. This result confirms with the study by Beversdorf and 

Sa (2011). Their study shows that Zf can properly control the type I error rates on 

the left-tailed test but not on the right-tailed test. Therefore, it is fair to conclude 

that, for the right-tailed test, the only method that can properly control the type I 

error rates is the Zc method with the t critical point. 

Due to the similar results in the study, only the moderate sample size 30 and 

significance levels of 0.05 and 0.01 are reported in the tables. 

Power Results 

The power performance of the proposed test is also evaluated. Tables 4 and 5 

provide the power performance to test ρ0 = 0 when ρa = 0.0, 0.2, 0.4, 0.6, and 0.8 

with significance levels 0.05 and 0.01. Table 6 provides a small-scale investigation 

on the power performance to test ρ0 = 0.55 and ρa = 0.6 and 0.7. 

Both the Zf and Zc methods perform well in testing ρ0 = 0. In testing on an 

exactly- or nearly-normal distribution, the power from Zf and Zc converges to 1 

quickly. When ρa = 0.6, both achieve a power of 0.99; when ρa = 0.8, the power 

rates are essentially 1. For the distributions with large skewness and kurtosis, the 

Zc method, which is the only one with controlled type I error rates, converges to 1 

more slowly but still reasonably well. A small-scale power study to test non-zero 

correlation is presented in Table 6. At significance level 0.10, sample size 30, 

ρ0 = 0.55 versus ρa = 0.6 and 0.7, it is observed that the power of Zc steadily 

increases when ρa moves away from ρ0. 

Conclusions 

This study proposed a new right-tailed test for the correlation of bivariate non-

normal distributions. This new test adapts the inverse Edgeworth expansion for the 

standardized correlation 
 n r

R





  by Nakagawa and Niki (1992). 

This newly proposed test can be conducted without any knowledge of the 

populations. The simulation study shows that this new right-tailed test has the best 

performance in controlling the type I error rates. The proposed method, along with 

the t critical point, can be used to test both ρ0 = 0 and any value of ρ0 when ρ0 > 0.5. 

The power performance of the new test was also evaluated. Zc is as powerful 

as Zf when testing ρ0 = 0. To test non-zero correlations, it is meaningless to 
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compare the two tests since Zf fails to control type I error rates. The power 

examination of the Zc method shows that the power steadily goes up when ρa moves 

away from ρ0. 

The new test does have its own limitations. It cannot control the type I error 

rates well when the population has a small correlation and it is a right-tailed test. In 

order to better control the type I error rates, a higher-order Edgeworth expansion 

may be considered. Unfortunately, this might lead to tedious computations when 

higher-order terms are introduced in the test. 
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Appendix A: Formulae Used in Edgeworth Expansion of R 
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Appendix B: k-Statistics 

Fisher (1930) introduced k-statistics as the unbiased estimator of the mth cumulant 

κm, i.e. E(km) = κm. Define the power sum of a univariate data as: 
1

n m

m ii
s x


 , the 

first six k-statistics in terms of the corresponding κm are ( See Stuart & Ord, 1994): 
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Stuart and Ord (1994) also provided an approach to derive the multivariate k-

statistics. Define 
1

n r t

rt i ii
s x y


 , where (xi, yi), i = 1, 2,…, n are the bivariate 

random observations. The following multivariate k-statistics can be derived: 
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Appendix C: Tables 1 

Table 1. Comparison of type I error rates (ρ0 = 0, n = 30) 2 
 3 

   α = 0.10  α = 0.05  α = 0.01 

β γ CP Zf Zb Zc  Zf Zb Zc  Zf Zb Zc 

0.0 0 zα 0.0985 0.1171 0.1124  0.0491 0.0679 0.0632  0.0102 0.0262 0.0191 

0.0 0 tα  0.1124 0.1079   0.0628 0.0580   0.0227 0.0153 
              

0.0 1 zα 0.0987 0.1268 0.1153  0.0510 0.0755 0.0640  0.0101 0.0306 0.0173 

0.0 1 tα  0.1213 0.1095   0.0697 0.0579   0.0273 0.0137 
              

0.0 10 zα 0.1034 0.1512 0.1061  0.0549 0.0958 0.0476  0.0144 0.0588 0.0083 

0.0 10 tα  0.1453 0.0998   0.0900 0.0413   0.0570 0.0057 
              

0.5 0 zα 0.0988 0.1118 0.1051  0.0508 0.0637 0.0569  0.0110 0.0232 0.0163 

0.5 0 tα  0.1064 0.1021   0.0578 0.0541   0.0195 0.0140 
              

1.0 0 zα 0.1015 0.1014 0.0954  0.0559 0.0541 0.0499  0.0131 0.0164 0.0126 

1.0 0 tα  0.0959 0.0901   0.0488 0.0446   0.0138 0.0098 
              

0.5 1 zα 0.0999 0.1225 0.1117  0.0516 0.0709 0.0604  0.0111 0.0275 0.0162 

0.5 1 tα  0.1168 0.1063   0.0649 0.0548   0.0242 0.0128 
              

1.2 4 zα 0.1055 0.1265 0.1015  0.0562 0.0734 0.0495  0.0143 0.0330 0.0104 

1.2 4 tα  0.1209 0.0958   0.0674 0.0435   0.0304 0.0075 
              

1.2 10 zα 0.1048 0.1433 0.1022  0.0580 0.0927 0.0469  0.0156 0.0539 0.0078 

1.2 10 tα  0.1380 0.0963   0.0871 0.0412   0.0522 0.0056 
 4 
Note: β: skewness; γ: kurtosis; CP: Critical Point 5 
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Table 1 (continued). Comparison of type I error rates (ρ0 = 0, n = 30) 1 
 2 

   α = 0.10  α = 0.05  α = 0.01 

β γ CP Zf Zb Zc  Zf Zb Zc  Zf Zb Zc 

1.2 10 zα 0.1048 0.1433 0.1022  0.0580 0.0927 0.0469  0.0156 0.0539 0.0078 

1.2 10 tα  0.1380 0.0963   0.0871 0.0412   0.0522 0.0056 
              

1.2 25 zα 0.1026 0.1508 0.0913  0.0593 0.1022 0.0361  0.0214 0.0745 0.0046 

1.2 25 tα  0.1456 0.0852   0.0975 0.0304   0.0734 0.0031 
              

-1.2 4 zα 0.1050 0.1262 0.1029  0.0561 0.0720 0.0482  0.0146 0.0322 0.0103 

-1.2 4 tα  0.1208 0.0972   0.0663 0.0429   0.0297 0.0076 
              

-1.2 10 zα 0.1051 0.1446 0.1021  0.0563 0.0915 0.0456  0.0159 0.0543 0.0075 

-1.2 10 tα  0.1386 0.0960   0.0853 0.0393   0.0525 0.0054 
              

-1.2 25 zα 0.1024 0.1507 0.0920  0.0589 0.1030 0.0358  0.0205 0.0739 0.0047 

-1.2 25 tα  0.1450 0.0855   0.0978 0.0303   0.0730 0.0033 
              

1.2 4 zα 0.1057 0.1375 0.1043  0.0579 0.0860 0.0490  0.0145 0.0436 0.0090 

1.2 10 tα  0.1315 0.0984   0.0797 0.0429   0.0416 0.0067 
              

1.2 4 zα 0.1064 0.1498 0.1012  0.0562 0.0947 0.0429  0.0155 0.0599 0.0065 

1.2 25 tα  0.1437 0.0950   0.0888 0.0373   0.0583 0.0045 
              

-1.2 4 zα 0.1047 0.1374 0.1032  0.0563 0.0841 0.0475  0.0143 0.0446 0.0087 

-1.2 10 tα  0.1313 0.0970   0.0781 0.0418   0.0425 0.0063 
              

-1.2 4 zα 0.1052 0.1477 0.1004  0.0575 0.0968 0.0437  0.0162 0.0590 0.0066 

-1.2 25 tα  0.1421 0.0940   0.0908 0.0377   0.0576 0.0050 
 3 
Note: β: skewness; γ: kurtosis; CP: Critical Point 4 
 5 
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Table 1 (continued). Comparison of type I error rates (ρ0 = 0, n = 30) 1 
 2 

   α = 0.10  α = 0.05  α = 0.01 

β γ CP Zf Zb Zc  Zf Zb Zc  Zf Zb Zc 

1.2 4 zα 0.1109 0.1270 0.0877  0.0651 0.0779 0.0372  0.0206 0.0423 0.0055 

3.0 14 tα  0.1213 0.0817   0.0727 0.0323   0.0406 0.0036 
              

1.2 4 zα 0.1100 0.1375 0.0925  0.0623 0.0861 0.0393  0.0183 0.0488 0.0050 

3.0 25 tα  0.1317 0.0862   0.0803 0.0336   0.0472 0.0034 
              

1.2 14 zα 0.1081 0.1466 0.0936  0.0611 0.0974 0.0374  0.0213 0.0656 0.0054 

3.0 25 tα  0.1414 0.0875   0.0922 0.0318   0.0643 0.0037 
              

-1.2 4 zα 0.1127 0.1298 0.0899  0.0630 0.0760 0.0375  0.0206 0.0415 0.0053 

-3.0 14 tα  0.1241 0.0837   0.0711 0.0328   0.0401 0.0034 
              

-1.2 4 zα 0.1108 0.1383 0.0926  0.0607 0.0844 0.0380  0.0188 0.0506 0.0054 

-3.0 25 tα  0.1328 0.0869   0.0789 0.0328   0.0490 0.0034 
              

-1.2 14 zα 0.1041 0.1447 0.0916  0.0631 0.0974 0.0381  0.0204 0.0635 0.0051 

-3.0 25 tα  0.1391 0.0858   0.0924 0.0326   0.0625 0.0035 
              

3.0 25 zα 0.1138 0.1403 0.0843  0.0695 0.0936 0.0336  0.0276 0.0630 0.0040 

3.0 25 tα  0.1354 0.0781   0.0891 0.0287   0.0616 0.0024 
              

-3.0 25 zα 0.1113 0.1374 0.0817  0.0686 0.0923 0.0325  0.0276 0.0638 0.0042 

-3.0 25 tα   0.1328 0.0761     0.0875 0.0275     0.0628 0.0028 
 3 
Note: β: skewness; γ: kurtosis; CP: Critical Point 4 
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Table 2. Comparison of type I error rates (n = 30, α = 0.05) 1 
 2 

   ρ0 = 0.50  ρ0 = 0.60  ρ0 = 0.75  ρ0 = 0.90 

β γ CP Zf Zb Zc   Zf Zb Zc   Zf Zb Zc   Zf Zb Zc 

0.0 0 zα 0.0488 0.0335 0.0155  0.0497 0.0183 0.0053  0.0499 0.0081 0.0007  0.0496 0.0009 0.0000 

0.0 0 tα  0.0320 0.0130   0.0189 0.0047   0.0085 0.0006   0.0009 0.0000 

                  

0.0 1 zα 0.0517 0.0537 0.0221  0.0525 0.0362 0.0092  0.0529 0.0218 0.0025  0.0543 0.0044 0.0002 

0.0 1 tα  0.0522 0.0186   0.0373 0.0083   0.0226 0.0023   0.0044 0.0001 

                  

0.0 10 zα 0.0917 0.1477 0.0502  0.1025 0.1265 0.0302  0.1180 0.1037 0.0153  0.1346 0.0474 0.0045 

0.0 10 tα  0.1476 0.0441   0.1293 0.0277   0.1063 0.0143   0.0478 0.0043 

                  

0.5 0 zα 0.0555 0.0344 0.0158  0.0550 0.0202 0.0058  0.0567 0.0106 0.0011  0.0590 0.0014 0.0001 

0.5 0 tα  0.0330 0.0133   0.0205 0.0052   0.0111 0.0010   0.0014 0.0001 

                  

1.0 0 zα 0.0489 0.0269 0.0121  0.0449 0.0156 0.0037  0.0308 0.0128 0.0010  0.0078 0.0072 0.0000 

1.0 0 tα  0.0256 0.0096   0.0162 0.0033   0.0135 0.0009   0.0073 0.0000 

                  

0.5 1 zα 0.0558 0.0548 0.0225  0.0558 0.0366 0.0087  0.0571 0.0230 0.0028  0.0580 0.0049 0.0002 

0.5 1 tα  0.0534 0.0194   0.0375 0.0079   0.0239 0.0026   0.0050 0.0002 

                  

1.2 4 zα 0.0760 0.0998 0.0386  0.0809 0.0776 0.0198  0.0875 0.0597 0.0083  0.0931 0.0223 0.0016 

1.2 4 tα  0.0982 0.0337   0.0790 0.0179   0.0612 0.0076   0.0224 0.0015 

                  

1.2 10 zα 0.0973 0.1505 0.0529  0.1053 0.1264 0.0309  0.1218 0.1036 0.0162  0.1370 0.0490 0.0044 

1.2 10 tα  0.1501 0.0470   0.1288 0.0282   0.1057 0.0153   0.0494 0.0043 

                  

1.2 25 zα 0.1551 0.2064 0.0770  0.1735 0.1803 0.0533  0.2002 0.1566 0.0337  0.2268 0.0936 0.0137 

1.2 25 tα  0.2065 0.0697   0.1829 0.0492   0.1595 0.0321   0.0943 0.0132 
 3 
Note: β: skewness; γ: kurtosis; CP: Critical Point 4 
 5 
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Table 2 (continued). Comparison of type I error rates (n = 30, α = 0.05) 1 
 2 

   ρ0 = 0.50  ρ0 = 0.60  ρ0 = 0.75  ρ0 = 0.90 

β γ CP Zf Zb Zc   Zf Zb Zc   Zf Zb Zc   Zf Zb Zc 

-1.2 4 zα 0.0762 0.0984 0.0376  0.0803 0.0777 0.0199  0.0864 0.0609 0.0087  0.0926 0.0228 0.0018 

-1.2 4 tα  0.0968 0.0330   0.0790 0.0182   0.0623 0.0082   0.0229 0.0017 

                  

-1.2 10 zα 0.0955 0.1500 0.0515  0.1060 0.1265 0.0320  0.1224 0.1073 0.0170  0.1363 0.0485 0.0050 

-1.2 10 tα  0.1501 0.0458   0.1286 0.0290   0.1097 0.0160   0.0488 0.0049 

                  

-1.2 25 zα 0.1580 0.2076 0.0791  0.1731 0.1791 0.0529  0.1994 0.1570 0.0339  0.2240 0.0939 0.0144 

-1.2 25 tα  0.2068 0.0714   0.1816 0.0490   0.1601 0.0323   0.0947 0.0138 

                  

1.2 4 zα 0.0837 0.1467 0.0511  0.0891 0.1318 0.0304  0.0864 0.0609 0.0087  0.1141 0.0664 0.0044 

1.2 10 tα  0.1470 0.0453   0.1348 0.0277   0.0623 0.0082   0.0667 0.0043 

                  

1.2 4 zα 0.0996 0.2251 0.0668  0.1133 0.2153 0.0450  0.1224 0.1073 0.0170  0.2428 0.1272 0.0119 

1.2 25 tα  0.2269 0.0600   0.2204 0.0418   0.1097 0.0160   0.1274 0.0113 

                  

-1.2 4 zα 0.0836 0.1474 0.0510  0.0884 0.1302 0.0305  0.1994 0.1570 0.0339  0.1120 0.0682 0.0047 

-1.2 10 tα  0.1472 0.0450   0.1329 0.0276   0.1601 0.0323   0.0685 0.0044 

                  

-1.2 4 zα 0.0993 0.2243 0.0685  0.1123 0.2181 0.0480  0.0998 0.1185 0.0150  0.2419 0.1270 0.0117 

-1.2 25 tα  0.2263 0.0618   0.2228 0.0443   0.1213 0.0140   0.1273 0.0111 

                  

1.2 4 zα 0.1037 0.1602 0.0628  0.1097 0.1332 0.0419  0.1360 0.2117 0.0283  0.1731 0.0189 0.0084 

3.0 14 tα  0.1585 0.0560   0.1342 0.0384   0.2149 0.0267   0.0191 0.0082 

                  

1.2 4 zα 0.1134 0.2081 0.0737  0.1220 0.1919 0.0512  0.0993 0.1181 0.0154  0.1694 0.0871 0.0163 

3.0 25 tα  0.2085 0.0669   0.1946 0.0475   0.1210 0.0144   0.0872 0.0155 
 3 
Note: β: skewness; γ: kurtosis; CP: Critical Point 4 
 5 
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Table 2 (continued). Comparison of type I error rates (n = 30, α = 0.05) 1 
 2 

   ρ0 = 0.50  ρ0 = 0.60  ρ0 = 0.75  ρ0 = 0.90 

β γ CP Zf Zb Zc   Zf Zb Zc   Zf Zb Zc   Zf Zb Zc 

1.2 14 zα 0.1364 0.1994 0.0757  0.1533 0.1719 0.0518  0.1363 0.2096 0.0293  0.1960 0.0680 0.0142 

3.0 25 tα  0.1983 0.0683   0.1739 0.0480   0.2133 0.0276   0.0683 0.0137 

                  

-1.2 4 zα 0.1016 0.1565 0.0623  0.1089 0.1298 0.0405  0.1151 0.0949 0.0212  0.1734 0.0194 0.0083 

-3.0 14 tα  0.1550 0.0558   0.1304 0.0369   0.0964 0.0199   0.0196 0.0082 

                  

-1.2 4 zα 0.1115 0.2082 0.0723  0.1239 0.1912 0.0521  0.1419 0.1719 0.0344  0.1682 0.0845 0.0155 

-3.0 25 tα  0.2082 0.0652   0.1942 0.0481   0.1742 0.0325   0.0847 0.0148 

                  

-1.2 14 zα 0.1365 0.1981 0.0733  0.1534 0.1733 0.0526  0.1759 0.1429 0.0344  0.1931 0.0673 0.0141 

-3.0 25 tα  0.1976 0.0659   0.1747 0.0484   0.1453 0.0327   0.0676 0.0136 

                  

3.0 25 zα 0.1648 0.2193 0.0833  0.1852 0.1898 0.0588  0.1147 0.0943 0.0216  0.2290 0.1044 0.0156 

3.0 25 tα  0.2183 0.0755   0.1913 0.0547   0.0958 0.0205   0.1049 0.0150 

                  

-3.0 25 zα 0.1654 0.2186 0.0833  0.1820 0.1922 0.0587  0.1402 0.1696 0.0326  0.2257 0.1068 0.0159 

-3.0 25 tα   0.2172 0.0754     0.1938 0.0543     0.1723 0.0308     0.1074 0.0152 
 3 
Note: β: skewness; γ: kurtosis; CP: Critical Point 4 
  5 
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Table 3. Comparison of type I error rates (n = 30, α = 0.01) 1 
 2 

   ρ0 = 0.50  ρ0 = 0.60  ρ0 = 0.75  ρ0 = 0.90 

β γ CP Zf Zb Zc   Zf Zb Zc   Zf Zb Zc   Zf Zb Zc 

0.0 0 zα 0.0107 0.0352 0.0034  0.0107 0.0272 0.0017  0.0103 0.0137 0.0003  0.0103 0.0013 0.0000 

0.0 0 tα  0.0375 0.0027   0.0297 0.0014   0.0145 0.0002   0.0013 0.0000 

                  

0.0 1 zα 0.0115 0.0627 0.0056  0.0118 0.0526 0.0034  0.0118 0.0315 0.0008  0.0123 0.0049 0.0001 

0.0 1 tα  0.0671 0.0045   0.0562 0.0027   0.0330 0.0007   0.0050 0.0001 

                  

0.0 10 zα 0.0350 0.1768 0.0160  0.0417 0.1615 0.0125  0.0512 0.1263 0.0072  0.0611 0.0501 0.0023 

0.0 10 tα  0.1858 0.0136   0.1694 0.0108   0.1295 0.0062   0.0502 0.0019 

                  

0.5 0 zα 0.0125 0.0359 0.0036  0.0126 0.0285 0.0017  0.0135 0.0158 0.0004  0.0138 0.0017 0.0000 

0.5 0 tα  0.0386 0.0030   0.0308 0.0014   0.0167 0.0004   0.0017 0.0000 

                  

1.0 0 zα 0.0138 0.0274 0.0025  0.0124 0.0245 0.0012  0.0083 0.0201 0.0003  0.0013 0.0093 0.0000 

1.0 0 tα  0.0293 0.0020   0.0265 0.0010   0.0215 0.0002   0.0097 0.0000 

                  

0.5 1 zα 0.0124 0.0612 0.0054  0.0132 0.0513 0.0032  0.0138 0.0310 0.0009  0.0145 0.0057 0.0001 

0.5 1 tα  0.0651 0.0044   0.0543 0.0026   0.0325 0.0008   0.0057 0.0001 

                  

1.2 4 zα 0.0246 0.1114 0.0114  0.0258 0.1011 0.0081  0.0296 0.0753 0.0042  0.0338 0.0236 0.0009 

1.2 4 tα  0.1175 0.0095   0.1060 0.0067   0.0778 0.0037   0.0236 0.0008 

                  

1.2 10 zα 0.0378 0.1754 0.0173  0.0432 0.1597 0.0126  0.0538 0.1259 0.0083  0.0643 0.0528 0.0028 

1.2 10 tα  0.1834 0.0144   0.1662 0.0108   0.1292 0.0073   0.0530 0.0025 

                  

1.2 25 zα 0.0833 0.2346 0.0292  0.0989 0.2168 0.0260  0.1169 0.1826 0.0187  0.1383 0.1010 0.0099 

1.2 25 tα  0.2430 0.0251   0.2238 0.0228   0.1866 0.0169   0.1014 0.0091 
 3 
Note: β: skewness; γ: kurtosis; CP: Critical Point 4 
 5 
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Table 3 (continued). Comparison of type I error rates (n = 30, α = 0.01) 1 
 2 

   ρ0 = 0.50  ρ0 = 0.60  ρ0 = 0.75  ρ0 = 0.90 

β γ CP Zf Zb Zc   Zf Zb Zc   Zf Zb Zc   Zf Zb Zc 

-1.2 4 zα 0.0237 0.1116 0.0110  0.0264 0.1010 0.0075  0.0300 0.0749 0.0039  0.0336 0.0243 0.0008 

-1.2 4 tα  0.1173 0.0092   0.1064 0.0064   0.0774 0.0034   0.0244 0.0006 

                  

-1.2 10 zα 0.0381 0.1780 0.0175  0.0439 0.1605 0.0131  0.0531 0.1241 0.0080  0.0628 0.0519 0.0028 

-1.2 10 tα  0.1860 0.0146   0.1676 0.0113   0.1270 0.0071   0.0521 0.0025 

                  

-1.2 25 zα 0.0833 0.2349 0.0295  0.0977 0.2169 0.0258  0.1206 0.1837 0.0196  0.1363 0.0997 0.0091 

-1.2 25 tα  0.2437 0.0254   0.2240 0.0226   0.1878 0.0178   0.1002 0.0085 

                  

1.2 4 zα 0.0286 0.1740 0.0165  0.0318 0.1676 0.0120  0.0364 0.1403 0.0069  0.0446 0.0689 0.0023 

1.2 10 tα  0.1819 0.0136   0.1752 0.0101   0.1434 0.0061   0.0692 0.0020 

                  

1.2 4 zα 0.0400 0.2715 0.0247  0.0457 0.2683 0.0201  0.0567 0.2376 0.0145  0.0995 0.1277 0.0064 

1.2 25 tα  0.2829 0.0206   0.2774 0.0174   0.2407 0.0126   0.1278 0.0057 

                  

-1.2 4 zα 0.0281 0.1730 0.0161  0.0319 0.1672 0.0125  0.0371 0.1417 0.0072  0.0446 0.0698 0.0023 

-1.2 10 tα  0.1813 0.0133   0.1753 0.0105   0.1448 0.0060   0.0699 0.0020 

                  

-1.2 4 zα 0.0390 0.2699 0.0244  0.0452 0.2660 0.0199  0.0575 0.2371 0.0140  0.1003 0.1284 0.0067 

-1.2 25 tα  0.2813 0.0203   0.2752 0.0172   0.2400 0.0123   0.1285 0.0059 

                  

1.2 4 zα 0.0414 0.1707 0.0213  0.0436 0.1560 0.0166  0.0481 0.1080 0.0108  0.0818 0.0208 0.0059 

3.0 14 tα  0.1777 0.0177   0.1623 0.0142   0.1101 0.0094   0.0211 0.0054 

                  

1.2 4 zα 0.0468 0.2369 0.0275  0.0512 0.2279 0.0234  0.0605 0.1915 0.0182  0.0621 0.0865 0.0089 

3.0 25 tα  0.2463 0.0231   0.2353 0.0204   0.1946 0.0161   0.0866 0.0078 
 3 
Note: β: skewness; γ: kurtosis; CP: Critical Point 4 
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Table 3 (continued). Comparison of type I error rates (n = 30, α = 0.01) 1 
 2 

   ρ0 = 0.50  ρ0 = 0.60  ρ0 = 0.75  ρ0 = 0.90 

β γ CP Zf Zb Zc   Zf Zb Zc   Zf Zb Zc   Zf Zb Zc 

1.2 14 zα 0.0682 0.2232 0.0290  0.0783 0.2079 0.0248  0.0940 0.1625 0.0187  0.1061 0.0709 0.0090 

3.0 25 tα  0.2311 0.0252   0.2145 0.0219   0.1657 0.0165   0.0712 0.0081 

                  

-1.2 4 zα 0.0425 0.1756 0.0223  0.0449 0.1566 0.0171  0.0479 0.1088 0.0107  0.0809 0.0205 0.0062 

-3.0 14 tα  0.1826 0.0192   0.1626 0.0150   0.1108 0.0092   0.0207 0.0059 

                  

-1.2 4 zα 0.0466 0.2365 0.0269  0.0531 0.2306 0.0238  0.0593 0.1913 0.0171  0.0607 0.0880 0.0084 

-3.0 25 tα  0.2454 0.0225   0.2375 0.0209   0.1943 0.0150   0.0882 0.0075 

                  

-1.2 14 zα 0.0671 0.2213 0.0283  0.0779 0.2024 0.0248  0.0939 0.1612 0.0179  0.1071 0.0708 0.0093 

-3.0 25 tα  0.2291 0.0242   0.2098 0.0218   0.1642 0.0163   0.0711 0.0085 

                  

3.0 25 zα 0.0934 0.2429 0.0345  0.1058 0.2221 0.0295  0.1249 0.1873 0.0217  0.1403 0.1080 0.0098 

3.0 25 tα  0.2501 0.0300   0.2285 0.0262   0.1912 0.0197   0.1085 0.0088 

                  

-3.0 25 zα 0.0936 0.2375 0.0345  0.1060 0.2196 0.0290  0.1241 0.1872 0.0206  0.1406 0.1094 0.0098 

-3.0 25 tα   0.2446 0.0301     0.2262 0.0253     0.1907 0.0188     0.1100 0.0090 
 3 
Note: β: skewness; γ: kurtosis; CP: Critical Point 4 
  5 
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Table 4. Power performance for test ρ0 = 0 (n = 30, α = 0.05) 1 
 2 

  ra = 0.0  ra = 0.2  ra = 0.4  ra = 0.6  ra = 0.8 

b g Zf Zb Zc   Zf Zb Zc   Zf Zb Zc   Zf Zb Zc  Zf Zb Zc 

0.0 0 0.0498 0.0683 0.0635  0.2778 0.3148 0.3002  0.7231 0.7376 0.7156  0.9775 0.9785 0.9727  1.0000 1.0000 0.9993 

0.0 0  0.0624 0.0576   0.2976 0.2827   0.7192 0.6950   0.9749 0.9674   1.0000 0.9991 

                     

0.0 1 0.0494 0.0739 0.0626  0.2814 0.3321 0.2964  0.7227 0.7489 0.6980  0.9776 0.9798 0.9546  1.0000 1.0000 0.9840 

0.0 1  0.0681 0.0565   0.3133 0.2778   0.7314 0.6758   0.9768 0.9473   0.9999 0.9815 

                     

0.0 10 0.0553 0.0991 0.0485  0.3030 0.3849 0.2641  0.7436 0.7942 0.6416  0.9809 0.9837 0.8472  1.0000 0.9998 0.8527 

0.0 10  0.0933 0.0427   0.3653 0.2419   0.7772 0.6128   0.9811 0.8330   0.9997 0.8428 

                     

0.5 0 0.0502 0.0625 0.0585  0.2821 0.3074 0.2927  0.7201 0.7334 0.7089  0.9766 0.9771 0.9680  1.0000 0.9999 0.9977 

0.5 0  0.0564 0.0528   0.2888 0.2738   0.7147 0.6882   0.9738 0.9622   0.9998 0.9969 

                     

1.0 0 0.0553 0.0550 0.0511  0.2655 0.2531 0.2377  0.6519 0.6278 0.5973  0.9409 0.9341 0.9147  0.9988 0.9981 0.9957 

1.0 0  0.0493 0.0457   0.2350 0.2193   0.6049 0.5726   0.9254 0.9022   0.9978 0.9948 

                     

0.5 1 0.0514 0.0704 0.0602  0.2832 0.3254 0.2907  0.7209 0.7451 0.6952  0.9763 0.9783 0.9497  1.0000 0.9999 0.9808 

0.5 1  0.0650 0.0548   0.3063 0.2719   0.7263 0.6721   0.9753 0.9419   0.9999 0.9783 

                     

1.2 4 0.0570 0.0744 0.0510  0.2927 0.3284 0.2571  0.7218 0.7473 0.6451  0.9755 0.9765 0.8935  1.0000 0.9994 0.9213 

1.2 4  0.0686 0.0452   0.3090 0.2368   0.7286 0.6192   0.9728 0.8809   0.9994 0.9146 

                     

1.2 10 0.0565 0.0919 0.0467  0.3046 0.3716 0.2568  0.7415 0.7841 0.6343  0.9798 0.9808 0.8440  1.0000 0.9997 0.8543 

1.2 10  0.0863 0.0408   0.3518 0.2342   0.7672 0.6059   0.9780 0.8295   0.9996 0.8442 

                     

1.2 25 0.0597 0.1033 0.0359  0.3213 0.4029 0.2392  0.7433 0.7969 0.5898  0.9736 0.9780 0.7636  0.9999 0.9997 0.7636 

1.2 25  0.0988 0.0311   0.3831 0.2147   0.7802 0.5592   0.9743 0.7470   0.9996 0.7519 

                     

-1.2 4 0.0556 0.0725 0.0493  0.2916 0.3273 0.2562  0.7208 0.7472 0.6445  0.9755 0.9764 0.8931  1.0000 0.9995 0.9211 

-1.2 4  0.0666 0.0436   0.3078 0.2363   0.7282 0.6183   0.9729 0.8809   0.9994 0.9141 

 3 
Note: β: skewness; γ: kurtosis; the “Zf”, “Zb”, and “Zc” results are calculated using the critical points zα and tα as the first and the second number 4 
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Table 4 (continued). Power performance for test ρ0 = 0 (n = 30, α = 0.05) 1 
 2 

  ra = 0.0  ra = 0.2  ra = 0.4  ra = 0.6  ra = 0.8 

b g Zf Zb Zc   Zf Zb Zc   Zf Zb Zc   Zf Zb Zc  Zf Zb Zc 

-1.2 10 0.0578 0.0925 0.0457  0.3050 0.3731 0.2574  0.7384 0.7819 0.6315  0.9790 0.9803 0.8443  1.0000 0.9995 0.8541 

-1.2 10  0.0868 0.0399   0.3534 0.2344   0.7640 0.6029   0.9772 0.8305   0.9994 0.8444 

                     

-1.2 25 0.0597 0.1034 0.0362  0.3217 0.4027 0.2388  0.7440 0.7974 0.5898  0.9731 0.9775 0.7606  0.9999 0.9997 0.7667 

-1.2 25  0.0986 0.0307   0.3836 0.2139   0.7801 0.5588   0.9739 0.7430   0.9996 0.7542 

                     

1.2 4 0.0565 0.0827 0.0472  0.3013 0.3557 0.2615  0.7359 0.7704 0.6452  0.9799 0.9802 0.8731  1.0000 0.9996 0.8910 

1.2 10  0.0768 0.0413   0.3353 0.2396   0.7525 0.6178   0.9774 0.8600   0.9995 0.8821 

                     

1.2 4 0.0577 0.0956 0.0438  0.3152 0.3844 0.2569  0.7635 0.8037 0.6410  0.9864 0.9867 0.8343  1.0000 0.9999 0.8378 

1.2 25  0.0897 0.0378   0.3647 0.2332   0.7874 0.6125   0.9847 0.8206   0.9999 0.8267 

                     

-1.2 4 0.0564 0.0843 0.0489  0.2957 0.3508 0.2590  0.7336 0.7677 0.6426  0.9802 0.9812 0.8737  1.0000 0.9997 0.8895 

-1.2 10  0.0783 0.0433   0.3313 0.2374   0.7494 0.6149   0.9783 0.8608   0.9996 0.8811 

                     

-1.2 4 0.0571 0.0945 0.0431  0.3139 0.3849 0.2559  0.7627 0.8034 0.6414  0.9858 0.9868 0.8364  1.0000 0.9999 0.8388 

-1.2 25  0.0889 0.0370   0.3656 0.2336   0.7867 0.6125   0.9846 0.8227   0.9999 0.8289 

                     

1.2 4 0.0633 0.0766 0.0372  0.3067 0.3263 0.2117  0.7135 0.7313 0.5620  0.9708 0.9731 0.8130  0.9999 0.9996 0.8384 

3.0 14  0.0708 0.0323   0.3084 0.1918   0.7113 0.5319   0.9688 0.7957   0.9995 0.8275 

                     

1.2 4 0.0618 0.0849 0.0384  0.3182 0.3593 0.2356  0.7479 0.7744 0.6102  0.9804 0.9804 0.8228  1.0000 0.9997 0.8327 

3.0 25  0.0792 0.0331   0.3397 0.2134   0.7557 0.5806   0.9775 0.8087   0.9996 0.8220 

                     

1.2 14 0.0629 0.0976 0.0383  0.3200 0.3859 0.2394  0.7464 0.7894 0.6004  0.9769 0.9785 0.7878  1.0000 0.9996 0.7894 

3.0 25  0.0928 0.0330   0.3665 0.2153   0.7716 0.5698   0.9749 0.7715   0.9995 0.7781 

                     

-1.2 4 0.0638 0.0766 0.0369  0.3093 0.3297 0.2151  0.7127 0.7317 0.5633  0.9714 0.9738 0.8133  0.9999 0.9995 0.8377 

-3.0 14  0.0715 0.0317   0.3107 0.1946   0.7123 0.5345   0.9698 0.7967   0.9993 0.8266 

 3 
Note: β: skewness; γ: kurtosis; the “Zf”, “Zb”, and “Zc” results are calculated using the critical points zα and tα as the first and the second number 4 



A NEW TEST FOR CORRELATION 

266 

 1 
Table 4 (continued). Power performance for test ρ0 = 0 (n = 30, α = 0.05) 2 
 3 

  ra = 0.0  ra = 0.2  ra = 0.4  ra = 0.6  ra = 0.8 

b g Zf Zb Zc   Zf Zb Zc   Zf Zb Zc   Zf Zb Zc  Zf Zb Zc 

-1.2 4 0.0622 0.0855 0.0388  0.3186 0.3602 0.2388  0.7484 0.7755 0.6131  0.9806 0.9803 0.8225  1.0000 0.9997 0.8325 

-3.0 25  0.0802 0.0334   0.3403 0.2159   0.7568 0.5834   0.9772 0.8074   0.9996 0.8216 

                     

-1.2 14 0.0618 0.0967 0.0378  0.3200 0.3855 0.2395  0.7459 0.7878 0.5980  0.9776 0.9785 0.7889  1.0000 0.9996 0.7923 

-3.0 25  0.0918 0.0323   0.3662 0.2161   0.7702 0.5681   0.9752 0.7738   0.9996 0.7813 

                     

3.0 25 0.0689 0.0935 0.0331  0.3289 0.3661 0.2129  0.7241 0.7498 0.5456  0.9625 0.9629 0.7458  0.9999 0.9991 0.7631 

3.0 25  0.0889 0.0279   0.3489 0.1918   0.7311 0.5149   0.9574 0.7274   0.9990 0.7509 

                     

-3.0 25 0.0682 0.0919 0.0334  0.3293 0.3686 0.2146  0.7257 0.7508 0.5431  0.9625 0.9629 0.7451  0.9998 0.9992 0.7676 

-3.0 25   0.0875 0.0286     0.3502 0.1926     0.7317 0.5121     0.9573 0.7276    0.9991 0.7556 

 4 
Note: β: skewness; γ: kurtosis; the “Zf”, “Zb”, and “Zc” results are calculated using the critical points zα and tα as the first and the second number 5 
  6 
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Table 5. Power performance for test ρ0 = 0.00 (n = 30, α = 0.01) 1 
 2 

  ra = 0.0  ra = 0.2  ra = 0.4  ra = 0.6  ra = 0.8 

b g Zf Zb Zc   Zf Zb Zc   Zf Zb Zc   Zf Zb Zc  Zf Zb Zc 

0.0 0 0.0103 0.0271 0.0202  0.1037 0.1508 0.1316  0.4585 0.4838 0.4451  0.9084 0.8966 0.8489  0.9996 0.9995 0.9871 

0.0 0  0.0235 0.0161   0.1299 0.1095   0.4305 0.3908   0.8640 0.8044   0.9991 0.9797 

                     

0.0 1 0.0102 0.0319 0.0180  0.1046 0.1572 0.1185  0.4646 0.5000 0.4061  0.9090 0.9038 0.7928  0.9996 0.9995 0.9313 

0.0 1  0.0283 0.0137   0.1348 0.0962   0.4451 0.3492   0.8728 0.7404   0.9990 0.9136 

                     

0.0 10 0.0147 0.0605 0.0087  0.1247 0.2016 0.0717  0.4893 0.5508 0.2901  0.9128 0.9203 0.6149  0.9997 0.9988 0.7141 

0.0 10  0.0586 0.0061   0.1801 0.0525   0.4962 0.2281   0.8931 0.5508   0.9983 0.6823 

                     

0.5 0 0.0114 0.0226 0.0180  0.1074 0.1410 0.1245  0.4594 0.4744 0.4353  0.9026 0.8925 0.8371  0.9996 0.9992 0.9753 

0.5 0  0.0192 0.0140   0.1208 0.1030   0.4210 0.3814   0.8597 0.7936   0.9984 0.9647 

                     

1.0 0 0.0129 0.0169 0.0130  0.1051 0.0961 0.0850  0.4051 0.3352 0.3022  0.8197 0.7457 0.6739  0.9929 0.9834 0.9398 

1.0 0  0.0144 0.0101   0.0794 0.0682   0.2824 0.2524   0.6781 0.6026   0.9732 0.9098 

                     

0.5 1 0.0115 0.0286 0.0172  0.1047 0.1482 0.1134  0.4621 0.4886 0.4020  0.9055 0.8997 0.7877  0.9995 0.9990 0.9279 

0.5 1  0.0249 0.0130   0.1256 0.0913   0.4331 0.3453   0.8665 0.7364   0.9986 0.9107 

                     

1.2 4 0.0148 0.0338 0.0110  0.1203 0.1512 0.0831  0.4721 0.4806 0.3217  0.9012 0.8896 0.6826  0.9996 0.9974 0.8191 

1.2 4  0.0315 0.0082   0.1301 0.0637   0.4247 0.2662   0.8544 0.6223   0.9961 0.7932 

                     

1.2 10 0.0163 0.0544 0.0076  0.1310 0.1918 0.0676  0.4912 0.5330 0.2835  0.9086 0.9087 0.6116  0.9997 0.9980 0.7199 

1.2 10  0.0527 0.0053   0.1706 0.0496   0.4801 0.2235   0.8782 0.5471   0.9972 0.6891 

                     

1.2 25 0.0215 0.0744 0.0047  0.1591 0.2325 0.0478  0.5077 0.5639 0.2222  0.8869 0.8971 0.5045  0.9989 0.9977 0.6111 

1.2 25  0.0733 0.0032   0.2128 0.0316   0.5155 0.1640   0.8670 0.4369   0.9965 0.5767 

                     

-1.2 4 0.0145 0.0328 0.0104  0.1208 0.1503 0.0818  0.4723 0.4783 0.3207  0.9022 0.8890 0.6833  0.9996 0.9973 0.8200 

-1.2 4  0.0303 0.0076   0.1300 0.0630   0.4228 0.2649   0.8541 0.6231   0.9960 0.7939 

 3 
Note: β: skewness; γ: kurtosis; the “Zf”, “Zb”, and “Zc” results are calculated using the critical points zα and tα as the first and the second number 4 
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Table 5 (continued). Power performance for test ρ0 = 0.00 (n = 30, α = 0.01) 1 
 2 

  ra = 0.0  ra = 0.2  ra = 0.4  ra = 0.6  ra = 0.8 

b g Zf Zb Zc   Zf Zb Zc   Zf Zb Zc   Zf Zb Zc  Zf Zb Zc 

-1.2 10 0.0162 0.0538 0.0077  0.1289 0.1910 0.0665  0.4912 0.5327 0.2842  0.9081 0.9079 0.6091  0.9997 0.9980 0.7179 

-1.2 10  0.0521 0.0053   0.1695 0.0482   0.4787 0.2262   0.8785 0.5449   0.9971 0.6858 

                     

-1.2 25 0.0211 0.0747 0.0048  0.1578 0.2318 0.0479  0.5102 0.5645 0.2215  0.8888 0.8984 0.5067  0.9988 0.9977 0.6081 

-1.2 25  0.0740 0.0033   0.2124 0.0316   0.5174 0.1647   0.8695 0.4397   0.9964 0.5752 

                     

1.2 4 0.0156 0.0447 0.0094  0.1249 0.1740 0.0759  0.4840 0.5143 0.3082  0.9113 0.9057 0.6532  0.9998 0.9980 0.7733 

1.2 10  0.0424 0.0065   0.1522 0.0568   0.4598 0.2487   0.8761 0.5924   0.9972 0.7447 

                     

1.2 4 0.0160 0.0586 0.0065  0.1348 0.2032 0.0643  0.5128 0.5580 0.2840  0.9298 0.9304 0.6169  1.0000 0.9994 0.6999 

1.2 25  0.0572 0.0044   0.1807 0.0452   0.5023 0.2219   0.9057 0.5564   0.9991 0.6684 

                     

-1.2 4 0.0142 0.0456 0.0089  0.1245 0.1738 0.0757  0.4854 0.5144 0.3067  0.9111 0.9063 0.6515  0.9998 0.9978 0.7704 

-1.2 10  0.0433 0.0063   0.1513 0.0560   0.4588 0.2477   0.8759 0.5899   0.9969 0.7406 

                     

-1.2 4 0.0157 0.0583 0.0062  0.1342 0.2019 0.0627  0.5101 0.5586 0.2853  0.9308 0.9322 0.6170  1.0000 0.9993 0.7001 

-1.2 25  0.0567 0.0043   0.1801 0.0443   0.5040 0.2234   0.9074 0.5554   0.9991 0.6682 

                     

1.2 4 0.0207 0.0411 0.0050  0.1453 0.1614 0.0501  0.4815 0.4620 0.2219  0.8882 0.8708 0.5494  0.9991 0.9963 0.6948 

3.0 14  0.0392 0.0034   0.1429 0.0350   0.4091 0.1699   0.8296 0.4796   0.9946 0.6610 

                     

1.2 4 0.0186 0.0501 0.0056  0.1423 0.1796 0.0551  0.5095 0.5184 0.2633  0.9139 0.9031 0.5867  0.9999 0.9986 0.6977 

3.0 25  0.0483 0.0036   0.1599 0.0384   0.4641 0.2049   0.8712 0.5225   0.9978 0.6663 

                     

1.2 14 0.0216 0.0661 0.0053  0.1507 0.2115 0.0514  0.5075 0.5454 0.2422  0.8979 0.8984 0.5391  0.9995 0.9978 0.6459 

3.0 25  0.0646 0.0036   0.1920 0.0348   0.4955 0.1849   0.8684 0.4746   0.9969 0.6133 

                     

-1.2 4 0.0194 0.0409 0.0052  0.1433 0.1614 0.0486  0.4814 0.4626 0.2221  0.8886 0.8722 0.5495  0.9991 0.9965 0.6940 

-3.0 14  0.0393 0.0035   0.1428 0.0340   0.4106 0.1699   0.8318 0.4814   0.9947 0.6609 

 3 
Note: β: skewness; γ: kurtosis; the “Zf”, “Zb”, and “Zc” results are calculated using the critical points zα and tα as the first and the second number 4 
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 1 
Table 5 (continued). Power performance for test ρ0 = 0.00 (n = 30, α = 0.01) 2 
 3 

  ra = 0.0  ra = 0.2  ra = 0.4  ra = 0.6  ra = 0.8 

b g Zf Zb Zc   Zf Zb Zc   Zf Zb Zc   Zf Zb Zc  Zf Zb Zc 

-1.2 4 0.0192 0.0501 0.0055  0.1434 0.1806 0.0550  0.5090 0.5181 0.2614  0.9142 0.9036 0.5878  0.9999 0.9983 0.6962 

-3.0 25  0.0483 0.0036   0.1600 0.0385   0.4644 0.2026   0.8726 0.5256   0.9976 0.6636 

                     

-1.2 14 0.0216 0.0659 0.0053  0.1499 0.2138 0.0515  0.5060 0.5448 0.2406  0.9001 0.9015 0.5416  0.9994 0.9978 0.6478 

-3.0 25  0.0648 0.0035   0.1941 0.0358   0.4956 0.1838   0.8722 0.4775   0.9968 0.6163 

                     

3.0 25 0.0277 0.0645 0.0040  0.1702 0.2099 0.0431  0.5080 0.5167 0.2028  0.8724 0.8581 0.4780  0.9978 0.9945 0.6159 

3.0 25  0.0632 0.0025   0.1929 0.0293   0.4710 0.1516   0.8239 0.4133   0.9922 0.5829 

                     

-3.0 25 0.0282 0.0646 0.0044  0.1719 0.2110 0.0424  0.5079 0.5176 0.2031  0.8715 0.8589 0.4801  0.9978 0.9946 0.6142 

-3.0 25   0.0633 0.0028     0.1938 0.0280     0.4734 0.1533     0.8239 0.4151    0.9923 0.5815 

 4 
Note: β: skewness; γ: kurtosis; the “Zf”, “Zb”, and “Zc” results are calculated using the critical points zα and tα as the first and the second number 5 
  6 
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Table 6 Power performance for test ρ0 = 0.55 (n = 30, α = 0.10) 1 
 2 

   ρα = 0.55  ρα = 0.60  ρα = 0.70 

β γ CP Zf Zb Zc  Zf Zb Zc  Zf Zb Zc 

0.0 0 zα 0.0991 0.1275 0.1139  0.3005 0.3038 0.2861  0.6538 0.4908 0.4779 

0.0 0 tα  0.1115 0.0978   0.2632 0.2452   0.4201 0.4073 
              

0.0 1 zα 0.1017 0.1352 0.1142  0.2990 0.3064 0.2795  0.6526 0.4850 0.4678 

0.0 1 tα  0.1219 0.0999   0.2729 0.2452   0.4226 0.4043 
              

0.0 10 zα 0.1483 0.1923 0.1358  0.3445 0.3497 0.2934  0.6604 0.4896 0.4611 

0.0 10 tα  0.1855 0.1253   0.3296 0.2690   0.4502 0.4190 
              

0.5 0 zα 0.1075 0.1312 0.1164  0.3058 0.3037 0.2853  0.6496 0.4919 0.4789 

0.5 0 tα  0.1153 0.1005   0.2662 0.2475   0.4245 0.4114 
              

1.0 0 zα 0.0914 0.1044 0.0918  0.2330 0.2350 0.2156  0.4929 0.4230 0.4030 

1.0 0 tα  0.0938 0.0813   0.2095 0.1901   0.3756 0.3561 
              

0.5 1 zα 0.1046 0.1355 0.1142  0.3026 0.3062 0.2798  0.6517 0.4870 0.4698 

0.5 1 tα  0.1220 0.0997   0.2717 0.2443   0.4259 0.4082 
              

1.2 4 zα 0.1280 0.1656 0.1259  0.3246 0.3255 0.2843  0.6491 0.4795 0.4556 

1.2 4 tα  0.1556 0.1143   0.3011 0.2573   0.4313 0.4057 
              

1.2 10 zα 0.1508 0.1968 0.1387  0.3491 0.3548 0.2969  0.6560 0.4845 0.4546 

1.2 10 tα  0.1889 0.1274   0.3348 0.2727   0.4466 0.4144 

              

1.2 25 zα 0.2114 0.2388 0.1621  0.3977 0.3716 0.3024  0.6554 0.4797 0.4407 

1.2 25 tα  0.2341 0.1523   0.3571 0.2827   0.4537 0.4114 
 3 
Note: β: skewness; γ: kurtosis; CP: Critical Point 4 
 5 
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Table 6 (continued). Power performance for test ρ0 = 0.55 (n = 30, α = 0.10) 1 
 2 

   α = 0.10  α = 0.05  α = 0.01 

β γ CP Zf Zb Zc  Zf Zb Zc  Zf Zb Zc 

-1.2 4 zα 0.1295 0.1656 0.1266  0.3213 0.3262 0.2836  0.6487 0.4781 0.4545 

-1.2 4 tα  0.1558 0.1148   0.2998 0.2550   0.4299 0.4046 
              

-1.2 10 zα 0.1517 0.1972 0.1394  0.3468 0.3545 0.2967  0.6554 0.4886 0.4593 

-1.2 10 tα  0.1899 0.1284   0.3342 0.2726   0.4492 0.4176 
              

-1.2 25 zα 0.2116 0.2375 0.1610  0.3954 0.3696 0.2989  0.6558 0.4755 0.4379 

-1.2 25 tα  0.2328 0.1509   0.3566 0.2803   0.4509 0.4097 
              

1.2 4 zα 0.1359 0.1958 0.1373  0.3357 0.3711 0.3103  0.6653 0.5225 0.4913 

1.2 10 tα  0.1872 0.1255   0.3491 0.2842   0.4801 0.4465 
              

1.2 4 zα 0.1600 0.2497 0.1594  0.3745 0.4387 0.3492  0.7149 0.5731 0.5348 

1.2 25 tα  0.2448 0.1480   0.4216 0.3255   0.5386 0.4972 
              

-1.2 4 zα 0.1358 0.1953 0.1373  0.3366 0.3704 0.3095  0.6645 0.5211 0.4904 

-1.2 10 tα  0.1879 0.1266   0.3486 0.2838   0.4789 0.4458 
              

-1.2 4 zα 0.1570 0.2459 0.1557  0.3746 0.4401 0.3518  0.7164 0.5735 0.5343 

-1.2 25 tα  0.2412 0.1447   0.4239 0.3287   0.5383 0.4955 
              

1.2 4 zα 0.1553 0.1993 0.1414  0.3418 0.3569 0.3005  0.6380 0.4908 0.4662 

3.0 14 tα  0.1937 0.1320   0.3395 0.2798   0.4554 0.4288 
              

1.2 4 zα 0.1724 0.2435 0.1626  0.3790 0.4097 0.3344  0.6958 0.5346 0.5011 

3.0 25 tα  0.2378 0.1515   0.3927 0.3116   0.5009 0.4644 
 3 
Note: β: skewness; γ: kurtosis; CP: Critical Point 4 
 5 
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Table 6 (continued). Power performance for test ρ0 = 0.55 (n = 30, α = 0.10) 1 
 2 

   α = 0.10  α = 0.05  α = 0.01 

β γ CP Zf Zb Zc  Zf Zb Zc  Zf Zb Zc 

1.2 14 zα 0.1942 0.2334 0.1578  0.3843 0.3659 0.3004  0.6628 0.4698 0.4376 

3.0 25 tα  0.2278 0.1479   0.3510 0.2806   0.4415 0.4064 
              

-1.2 4 zα 0.1586 0.2051 0.1459  0.3404 0.3566 0.3006  0.6378 0.4939 0.4685 

-3.0 14 tα  0.1990 0.1363   0.3395 0.2802   0.4584 0.4315 
              

-1.2 4 zα 0.1700 0.2413 0.1599  0.3790 0.4073 0.3333  0.6958 0.5321 0.4995 

-3.0 25 tα  0.2365 0.1498   0.3901 0.3109   0.4983 0.4631 
              

-1.2 14 zα 0.1955 0.2326 0.1588  0.3865 0.3638 0.2994  0.6620 0.4616 0.4303 

-3.0 25 tα  0.2270 0.1484   0.3495 0.2805   0.4329 0.3992 
              

3.0 25 zα 0.2214 0.2517 0.1699  0.3995 0.3760 0.3003  0.6430 0.4740 0.4292 

3.0 25 tα  0.2473 0.1604   0.3630 0.2821   0.4489 0.4009 
              

-3.0 25 zα 0.2210 0.2514 0.1685  0.3996 0.3776 0.3012  0.6411 0.4731 0.4284 

-3.0 25 tα   0.2464 0.1584     0.3644 0.2822     0.4480 0.4001 
 3 
Note: β: skewness; γ: kurtosis; CP: Critical Point 4 
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Through Monte Carlo simulations, the performance of six multivariate nonparametric 
tests for testing the hypothesis of parallelism in profile analysis was studied. In 

conclusion, the tests based on ranks were as efficient as Hotelling's T
2
 under multivariate 

normal distribution. For the heavy tailed distribution, the tests based on signs performed 
best. 
 
Keywords: Monte Carlo simulation, multivariate, nonparametric, profile analysis, 
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Introduction 

Research in many areas of application frequently involves repeated measurements 

in which response from each experimental unit is measured repeatedly over 

different occasions such as time points. The linear mixed model to repeated 

measurements (Laird & Ware, 1982; Ware, 1985) was developed to analyze 

incomplete and unbalanced data. However, the performance of this complex 

approach is highly sensitive to the choice of model for mean function and 

correlation structure for errors (Littell, Pendergast, & Natarajan, 2000; Park, Park, 

& Davis, 2001; Vossoughi, Ayatollahi, Towhidi, & Ketabchi, 2012). Although 

several nonparametric methods have been developed for non-normal responses 

(Azzalini & Bowman, 1991; Singer, Poleto, & Rosa, 2004; Wernecke & Kalb, 

1999; Wernecke & Kaufmann, 2000), model building and software 

implementation of these methods are extremely complicated.  

Due to these difficulties, investigators are often interested in using the 

traditional approaches especially when the circumstances are controlled for 
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obtaining complete data. In this context, the profile analysis method using 

MANOVA tests makes no assumption regarding the correlation structure and 

trend of mean model and hence is widely used. Nevertheless, the MANOVA tests 

perform poorly when the distribution of errors much deviates from multivariate 

normal (Davis, 1980, 1982; Everitt, 1979; Olson, 1974; Um & Randles, 1998).  

Bhapkar (1984) and Sen (1984) discussed asymptotically distribution-free 

analogous of profile analysis. Multivariate extensions of Kruskal-Wallis and 

Brown-Mood median tests based on marginal ranks and signs were discussed in 

Puri and Sen (1971) but suffer from a lack of invariance with respect to affine 

transformations. Several authors provided detailed descriptions of affine invariant 

and non-invariant competitors based on spatial signs and ranks (Hettmansperger, 

Möttönen & Oja, 1998; Hettmansperger & Oja, 1994; Möttönen & Oja, 1995; Oja, 

1999; Oja & Randles, 2004). The asymptotic efficiency of multivariate spatial 

sign and rank tests were studied by Möttönen, Oja, and Tienari (1997), Möttönen, 

Hettmansperger, Oja, and Tienari (1998), Nordhausen, Oja, and Tyler (2006) and 

Oja and Randles (2004). The theory and software implementation of affine 

invariant/non-invariant spatial sign and rank tests were well described by Oja 

(2010). 

The aim of this study is to compare the performance of six nonparametric 

multivariate multi-sample tests with Hotelling’s T
2
in profile analysis for repeated 

measurements. For this propose, Monte Carlo simulations based on broad 

spectrum of scenarios are used to study the empirical type I error rates and powers 

of the tests in testing the hypothesis of parallelism. Affine/non-affine invariant 

multivariate generalizations of multi-sample tests are compared based on spatial 

scores discussed in Oja (2010, Ch. 11) and multivariate generalization of multi-

sample tests based on marginal scores discussed in Chapter 5 of Puri and Sen 

(1971). 

Although the test of group main effect or hypothesis that the two groups are 

at the same level can also be assessed using multivariate multi-sample procedures, 

it was not included in the simulations for three priori reasons. First, rather than 
testing the general multivariate hypothesis µ1 = µ2 = … = µk to assess group main 

effect, summarizing the response vector of each subjects using its individual mean 

and then applying univariate tests is generally implemented in a parametric profile 

analysis (Davis, 2002; Rencher, 1995). Second, the performance of Hotelling's T
2 

and its nonparametric counterparts were studied to test above general hypothesis 

(Möttönen et al., 1998; Nordhausen et al., 2006; Um & Randles, 1998). Finally, 

group main effect has no direct interpretation in the presence of significant 

interaction and hence is not the primary hypothesis of interest in profile analysis. 
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Although the Monte Carlo comparison of methods for the analysis of 

repeated measurements has been an active area of research (Bhapkar & Patterson, 

1978; Marcucci, 1986; Mendoza, Toothaker, & Nicewander, 1974; Park et al., 

2001; Schwertman, Flynn, Stein, & Schenk, 1985; Schwertman, Fridshal, & 

Magrey, 1981), this study has been designed to examine some different aspects. 

First, the performances of recent nonparametric tests based on spatial signs and 

ranks considered here have not yet been studied in the area of profile analysis. 

Second, the effect of various correlation structures for errors has not included by 

most of the previous literature on this subject. Finally, the performance of the 

non-invariant tests under various transformation matrices widely used in the 

profile analysis are examined. 

Methodology 

Parametric profile analysis 

The structure of profile analysis for the analysis of repeated measurements is now 

considered. Suppose that repeated measurements have been taken from k groups 

of subjects at p occasions. Let yij = (yij1,…, yijp)
T
 represent the response vector 

from the jth subject in group i for j = 1,…, nk, i = 1,…, k. The profile analysis 

model is 

 

 ,ij i ij y    (1) 

 

where the vector εij = (εij1,…, εijp)T is the vector of errors for the jth subject in 

group I and μi = (μi1,…, μip)
T is the population mean vector for the ith group. Error 

vectors are assumed to be independent and normally distributed with mean vector 

0 and common covariance matrix Σ. 

Arguably, in the presence of group × occasion interaction, the tests of main 

effects are confounded. Therefore, the primary aim in the profile analysis is to test 

the hypothesis of parallelism of k group profiles. The test of the hypothesis can be 

constructed as  

 

 * *

0 1 1H or ,k k    Cμ μ μ μC   (2) 
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where *

hμ  is the mean of transformed observations, 
*

ij ijy Cy . Here, C is a 

p-1 × p transformation matrix with rank p-1 satisfying C1 = 0, where 1 is the unit 

matrix. For instance, when p = 3, three widely-used matrices are: 

 
C1: Mean difference 

 

2 1 11

1 2 13

  
 
  

 

C2: Adjacent difference 

 

1 1 0

0 1 1

 
 

 
 

 

C3: Last-value difference 

 

1 0 1

0 1 1

 
 

 
 

For example, the analogous hypothesis of parallelism for k = 2 and the 

transformation matrix C2 is 

 

 

12 11 22 21

13 12 23 22

0

1 1, 1 2 2, 1

: .

p p p p

H

   

   

    

    
   

    
   
          

  (3) 

 

Then, one-way multivariate analysis of variance (MANOVA) test statistics 

such as Wilk's Λ (if k > 2) or Hotelling's T
2
 (if k = 2) can be used to assess the 

equality of mean vectors of transformed variables 
*

ijy  or equivalently hypothesis 

of parallelism. Similarly, nonparametric multivariate tests can be applied on the 

transformed observations to assess the equality of population locations when the 

underlying distribution deviates from normality. 

Nonparametric counterparts of MANOVA tests 

A brief overview of six nonparametric multivariate multi-sample tests used for 

profile analysis in the Monte Carlo simulations are now considered. The focus is 

primarily on recent methods that are supplied in standard statistical software 

packages. Here, we assume the p-dimensional data vectors are generated 

independently using model 

 

 ,ij i ij y θ ε   (4) 

 
where θi denotes the p-dimensional location vector for group i which is not 

necessary the corresponding mean vector and εij is the vector of errors from an 
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elliptical multivariate distribution with location vector 0 and scatter matrix Σ. 

When measurements are not normally distributed, nonparametric multi-sample 

multivariate tests can be employed to test the hypothesis of no group × occasions 

interaction effect as 

 

 * *

0 1 ,kH   θ θ   (5) 

 

where *

iθ  indicates the location vector of transformed variables from group i. 

Tests based on spatial signs 

The test statistic based on spatial signs for testing H0 is 

 

  * *

1

c

i i i

i

Q n


 U U   (6) 

 

where *

iU  denotes the sample mean vector of spatial signs transformed using 

inner centering and outer standardization. Although the test is location invariant, 

it is not affine invariant; that is the condition Q (AY) = Q (Y) is not satisfied for 

every nonsingular matrix A with rank p. 

The affine invariant test statistic is 

 

  * *

1

c

i i i

i

Q p n


  U U   (7) 

 

where, here, *

iU  is the sample mean vector of spatial signs transformed using 

inner centering and inner standardization. 

The test statistics are multivariate generalizations of two- and several-

sample Mood's median test and are asymptotically distributed as  
2

1c p



 when H0 

is true. The spatial sign tests are denoted by SS and SSI for the non invariant and 

invariant versions in the simulations, respectively. See Oja (2010) regarding the 

theory and software implementation of spatial sign and rank tests. 

Tests based on spatial ranks 

The constructions of tests based on spatial ranks are essentially the same as the 

spatial sign cases, with the difference that *

iU 's are replaced by the corresponding 



MULTIVARIATE NONPARAMETRIC TESTS IN PROFILE ANALYSIS 

278 

sample mean vector of transformed spatial ranks, *

iR . Due to the fact that the 

spatial ranks are naturally centered, one needs only to standardize them using 

outer or inner approaches to construct non affine or affine invariant versions of 

test statistic. The test statistics using outer and inner standardization are in the 

form of 

 

  
1

c

i i i

i

Q n  



 R R   (8) 

 

and 

 

  
1

,
c

i i i

i

Q p n  



  R R   (9) 

 

respectively. The asymptotic null distribution of both test statistics is  
2

1c p



. The 

non invariant and affine invariant spatial rank tests are denoted by SR and SRI in 

the simulations, respectively. 

Tests based on marginal ranks and signs 

The multivariate multi-sample rank sum test compares the difference between the 

sample average rank vector 
ir  and the combined-data average rank vector r  as 

 

    1

. .

1

.
c

R i i i

i

L n 



   r r V r r   (10) 

 

The test reduces to the Kruskal-Wallis test when p = 1 and to Wilcoxon-

Mann-Whitney test when p = 1 and c = 2. 

The multivariate multi-sample median test uses the corresponding average 

vectors based on sample signs (computed regarding combined-data median 

vector) to test the null hypothesis as 

 

    1

. .

1

.
c

S i i i

i

L n 



   s s V s s   (11) 

 

Write V to denote the sample covariance matrix of marginal ranks and signs 

in LR and LS, respectively. The asymptotic null distribution of both statistics is 
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2

1c p



. The multivariate multi-sample location tests based on the vector of 

marginal signs and ranks were discussed in detail by Puri and Sen (1971). 

The marginal sign and rank tests are denoted by MS and MR, respectively, in 

the simulation. 

Simulation study 

The structure of a Monte Carlo study used to investigate the performances of tests 

according to empirical type I error rates and powers is now discussed. The profile 

model (4) with two groups (k = 2), number of measurements p = 4, 8 and sample 

sizes n = 10, 20 and 30 for each of the two samples was considered. The 

performances of MANOVA test (here Hotelling's T
2
 since k = 2) and the six 

nonparametric counterparts in testing the hypothesis of parallelism were 

compared under various scenarios. In the simulations, Hotelling's T
2
 test was 

denoted by T
2
. 

Consider three types of correlation structures for errors; compound 

symmetry (CS) with ρ = 0.2, first-order autoregressive (AR1) with ρ = 0.5, and an 

unstructured model (UN). The UN structure considered here was an arbitrary 

p × p correlation matrix producing a positive definite covariance matrix. Errors 

were generated from multivariate t with 3 degrees of freedom (denoted by t (3)) as 

a heavy-tailed distribution and multivariate normal distribution with mean vector 

0 and variances 3 for above correlation structures. Therefore the two distributions 

had the same mean vector and covariance matrix and differ only by degrees of 

heaviness of their tails. The MANOVA tests have been shown to have low powers 

when the underlying distribution is heavy-tailed, in particular (see e.g. (Somorčík, 

2006). The reason is that the sample mean vector and covariance matrix would 

not provide proper estimates of location and variation under the presence of 

outliers (see, e.g. Um & Randles, 1998). 

Throughout the simulations, θ1 was considered to be a zero vector. To 

compute the empirical type I error rates, data were simulated under the hypothesis 
of parallelism, H0 : Cθ1 = Cθ2, when θ2 was also considered to be a zero vector. 

However, the hypothesis of interaction or H1 : Cθ1 ≠ Cθ2 was simulated when 

θ2 = (0, 1, 1, 0)T and (0, 0, 1, 1, 1, 1, 0, 0)T for p = 4 and 8, respectively; so that 

the empirical powers were computed. Also considered are the three 

transformation matrices C1 to C3 presented above to evaluate the robustness of 

non affine-invariant tests. 

For each combination of above scenarios, 1000 replications were carried out 

and significance level was considered to be 0.05. All simulations performed using 
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R 3.0.1 (R Development Core Team, 2013). In this respect, the multi-sample tests 

implemented using the R packages MNM, ICSNP, and Hotelling. Multivariate 

normal and t data were generated using the R packages MASS and mvtnorm, 

respectively. 

Results 

Displayed in Tables 1 and 2 are empirical type I error rates of the tests for errors 

generated from multivariate normal and multivariate t (3) distributions, 

respectively. Each value is the proportion of 1000 replications for which the 

hypothesis of parallelism or null hypothesis was incorrectly rejected. In general, 

all tests preserved the nominal 5 percent level under all scenarios. However, for 

p = 8 and smaller sample size n = 10, the type I error rates of nonparametric tests 

were smaller than those of parametric one. 

Displayed in Table 3 are empirical powers of the test for multivariate 

normal distribution. Each power value computed as the proportion of 1000 

replications for which the hypothesis of parallelism was correctly rejected. In 

summary, among the tests, the affine invariant and non-invariant tests based on 

spatial ranks as well as test based on marginal ranks reached a power level fully 

close to that of Hotelling T
2
 in which the differences were considerably negligible 

for all correlation structures. However, for the smaller sample size n = 10 and 

larger number of replication p = 8, the amount of difference somewhat increased. 

The test based on marginal signs performed unsatisfactorily; that is its powers 

were much lower than those of other test statistics for all correlation structures 

and transformation matrices. Interestingly, for all transformation matrices, the 

competitor based on spatial signs dominated the test based on marginal sign and 

was comparable to the best tests in the multivariate normal case. The empirical 

power trends of tests for multivariate normal distribution are visualized in Figure 

1. 

Shown in Table 4 are empirical powers of the test for data generated from 

multivariate t (3) as a heavy tailed distribution. The results showed that the tests 

based on spatial signs and ranks and tests based on marginal ranks fully 

dominated Hotelling's T
2
 for larger sample sizes n = 20 and 30 and any given 

correlation structure. For a fixed sample size, the amount of superiority somewhat 

decreased as p increased. In summary, the tests based on spatial signs yielded the 

greater values than the counterparts based on spatial and marginal ranks. Note that 

for a fixed p, the larger the size of sample, the greater the amount of difference in 

power levels. However, the performance of marginal sign test 



VOSSOUGHI ET AL. 

281 

Table 1. The empirical type I error rates of tests under multivariate normal distribution. 

 
    Correlation structure 

    CS  AR1  UN 
 Matrix C Test  10 20 30  10 20 30  10 20 30 

p
 =

 4
 

 
T

2
  047 044 048  061 047 040  044 049 045 

SRI  046 050 051  057 047 041  045 050 046 

SSI  044 040 044  053 045 043  045 052 044 

              

C1: 

SR  045 048 050  056 046 041  047 049 043 

SS  047 040 045  060 045 044  055 047 037 

MR  048 045 049  048 037 038  054 053 039 

MS  038 046 041  048 037 041  035 040 044 

              

C2: 

SR  046 046 052  059 048 040  045 047 041 

SS  049 047 045  053 045 041  052 049 036 

MR  051 047 045  050 046 043  046 047 049 

MS  040 041 044  055 040 038  042 050 049 
              

C3: 

SR  047 046 050  054 050 042  044 053 047 

SS  047 038 043  050 045 043  046 046 043 

MR  042 040 047  057 048 038  043 040 046 

MS  042 035 040  049 036 036  043 047 049 

               

p
 =

 8
 

 
T

2
  050 051 050  047 052 050  036 054 042 

SRI  018 043 042  016 042 043  015 042 037 

SSI  022 043 045  019 047 046  017 041 035 

              

C1: 

SR  023 045 045  016 040 043  015 043 040 

SS  020 046 046  017 044 044  015 044 034 

MR  015 038 048  017 033 045  015 046 043 

MS  021 045 044  018 036 047  017 044 038 

              

C2: 

SR  021 045 041  016 042 042  016 040 040 

SS  023 046 045  015 045 040  016 040 042 

MR  020 040 048  023 045 047  014 033 039 

MS  023 042 038  016 031 036  011 038 036 

              

C3: 

SR  023 046 048  017 045 045  019 037 038 

SS  020 040 043  016 043 045  012 040 038 

MR  020 040 042  018 032 042  015 041 041 

MS  020 044 040  017 039 037  014 036 033 

 

*Note: The entries within table correspond to empirical type I error rates multiplied by 1000. 

 
 

was unsatisfactory since it was just as efficient as Hotelling T
2
 for some specific 

choices of C. Surprisingly; even the permutation procedure provided no 

additional gain in efficiency for Hotelling's T
2
 under the heavy tailed distribution 

and hence not reported here.  
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Table 2. The empirical type I error rates of tests under multivariate t distribution. 

 
 

   Correlation structure 

   CS  AR1  UN 
Matrix C Test  10 20 30  10 20 30  10 20 30 

p
 =

 4
 

 T
2
  040 036 043  034 045 047  047 046 038 

SRI  051 049 050  048 056 047  057 054 046 

SSI  047 054 051  044 055 047  046 051 061 

              

C1: 

SR  052 046 056  046 056 050  054 052 050 

SS  051 049 060  048 052 050  047 053 054 

MR  046 043 049  047 046 050  048 054 041 

MS  050 049 049  046 057 057  046 051 039 

              

C2: 

SR  048 048 051  047 055 048  053 053 051 

SS  045 052 050  050 052 046  050 054 057 

MR  048 048 055  043 047 050  052 056 052 

MS  049 044 049  040 048 062  050 045 043 

              

C3: 

SR  046 050 046  048 057 050  054 055 050 

SS  048 058 044  053 051 042  044 054 062 

MR  042 055 051  042 047 047  050 055 055 

MS  043 047 046  049 049 041  047 055 059 

               

p
 =

 8
 

 T
2
  044 033 033  037 034 051  034 028 044 

SRI  022 036 029  013 031 051  021 031 041 

SSI  019 036 038  019 040 044  031 034 046 

              

C1: 

SR  019 034 027  010 030 049  020 030 045 

SS  015 031 039  019 043 041  018 035 049 

MR  018 028 038  014 026 029  021 030 045 

MS  020 038 038  015 035 038  013 029 036 

              

C2: 

SR  018 035 027  011 032 053  019 029 042 

SS  017 039 038  017 041 046  025 032 041 

MR  021 037 032  019 030 044  014 033 047 

MS  015 037 039  015 034 045  018 031 049 

              

C3: 

SR  020 027 026  012 033 046  019 028 042 

SS  014 030 040  012 039 044  020 033 047 

MR  012 022 022  013 042 048  018 032 038 

MS  020 037 038  012 038 043  018 026 044 
 

*Note: The entries within table correspond to empirical type I error rates multiplied by 1000. 

 
 

Although not reported in the tables, additional simulations demonstrated that the 

superiority of nonparametric tests was not attained until n reached 15. Figure 2 

shows the empirical power trends of tests for the heavy tailed distribution. 
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Table 3. The empirical powers of tests under multivariate normal distribution. 

 
 

   Correlation structure 

   CS  AR1  UN 
Matrix C Test  10 20 30  10 20 30  10 20 30 

p
 =

 4
 

 
T

2
  178 323 487  226 470 669  183 366 585 

SRI  172 325 478  220 450 659  181 361 562 

SSI  166 283 409  216 400 585  176 323 510 

              

C1: 

SR  172 326 483  218 450 649  186 359 561 

SS  157 283 416  198 402 582  168 313 490 

MR  154 311 460  210 422 631  170 323 528 

MS  113 174 288  131 282 402  121 187 294 

              

C2: 

SR  169 332 481  218 455 658  183 367 567 

SS  170 292 419  198 412 598  175 329 500 

MR  153 308 471  210 439 650  171 357 541 

MS  100 185 307  131 276 460  110 226 314 

              

C3: 

SR  170 326 473  216 450 656  180 367 554 

SS  172 272 409  185 409 578  167 315 502 

MR  162 306 458  188 435 617  175 365 551 

MS  117 194 291  138 267 372  128 222 349 

               

p
 =

 8
 

 
T

2
  175 421 655  154 388 613  154 398 626 

SRI  90 382 619  82 354 560  78 355 594 

SSI  86 359 577  76 338 535  85 344 567 

              

C1: 

SR  92 386 618  85 353 564  83 360 605 

SS  101 378 592  95 344 522  93 353 578 

MR  72 357 592  62 333 558  70 310 575 

MS  55 191 332  47 193 333  46 186 351 

              

C2: 

SR  80 376 612  84 355 566  81 349 590 

SS  78 341 579  87 344 535  75 316 553 

MR  65 316 556  72 326 537  72 286 532 

MS  47 117 216  45 198 307  54 123 236 

              

C3: 

SR  84 378 611  78 353 567  86 346 587 

SS  86 351 569  72 336 503  80 321 539 

MR  70 342 567  59 309 517  67 306 546 

MS  60 165 302  48 165 247  60 157 274 
 

*Note: The entries within table correspond to empirical powers multiplied by 1000.  
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Table 4. The empirical powers of tests under multivariate t distribution. 

 
 

   Correlation structure 

   CS  AR1  UN 
Matrix C Test  10 20 30  10 20 30  10 20 30 

p
 =

 4
 

 
T

2
  261 480 653  344 607 779  273 527 691 

SRI  294 623 822  397 736 919  321 668 872 

SSI  309 654 856  427 782 946  336 700 900 

              

C1: 

SR  293 620 823  395 728 920  314 667 871 

SS  317 648 840  414 771 940  328 689 889 

MR  264 587 788  370 713 915  263 601 816 

MS  180 410 582  287 511 721  176 391 602 

              

C2: 

SR  293 616 818  402 735 918  322 674 872 

SS  315 653 846  424 782 946  342 691 891 

MR  276 591 802  380 720 922  286 643 846 

MS  180 401 636  263 537 795  179 387 661 

              

C3: 

SR  287 635 826  397 733 918  326 670 863 

SS  303 658 841  401 756 939  343 695 893 

MR  278 591 793  359 711 903  294 630 847 

MS  219 432 642  263 544 759  212 495 723 

               

p
 =

 8
 

 
T

2
  317 632 822  267 590 773  296 607 799 

SRI  194 709 917  169 661 893  184 669 902 

SSI  196 761 953  170 716 934  180 731 940 

              

C1: 

SR  201 717 920  175 676 900  195 682 911 

SS  233 776 954  205 729 931  212 743 945 

MR  176 681 893  145 638 868  166 653 878 

MS  108 444 718  112 405 695  113 439 722 

              

C2: 

SR  200 709 916  172 678 899  183 669 906 

SS  190 760 947  195 730 931  172 719 939 

MR  151 607 870  149 635 866  149 578 840 

MS  101 268 504  099 378 632  102 257 496 

              

C3: 

SR  200 711 917  161 667 901  178 672 902 

SS  218 765 946  176 693 923  197 718 930 

MR  171 634 890  135 601 836  154 608 859 

MS  119 414 694  100 349 606  126 379 645 
 

*Note: The entries within table correspond to empirical powers multiplied by 1000.  
 

Except for the test based on marginal sign, the performances of other non 

invariant tests were relatively robust with respect to different choices of 

transformation matrix C to test parallelism. There was not a unique choice for C 

which corresponded to the best performance of the tests. Figure 3 illustrates the 

degree of stability in power values for the 4 non-invariant tests for the three 
transformation matrices C1 - C3 when n = 30. 
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Σ (a): p = 4 (b): p = 8 

CS 

  

AR1 

 
 

UN 

  

 
 

*Note: For purpose of better illustration, the powers of non-invariant tests are displayed only for the matrix C
2
. 

 
Figure 1. The empirical powers of tests under multivariate normal distribution. 
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Σ (a): p = 4 (b): p = 8 

CS 

  

AR1 

  

UN 

  

 
 

*Note: For purpose of better illustration, the powers of non-invariant tests are displayed only for the matrix C
2
. 

 
Figure 2. The empirical powers of tests under multivariate t (3) distribution. 
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Σ (a) (b) 

CS 
 

  

AR1 

 
 

UN 

  
symbol key: ●: C1, ○: C2, and ▼: C3 

 
Figure 3. The empirical powers of non-invariant tests for n = 30 for various 

transformation matrices under multivariate normal (a) and t (b) distributions 
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Conclusion 

The results of the study revealed that the tests based on spatial and marginal ranks 

could serve as efficient tools for profile analysis since they performed notably 

better than Hotelling's T
2
 for the heavy tailed distribution and were as efficient as 

it under normality. Similar results reported in simulation studies by Nordhausen et 

al. (2006) and Möttönen et al. (1998) only in the context of two sample 

comparison of locations for normal and t distributions. Interestingly, even for 

moderate tailed t distributions, the tests based on ranks were superior to 

Hotelling's T
2
 in both studies. Um and Randles (1998) also reported that the multi 

sample extensions of multivariate rank tests proposed by Randles and Peters 

(1990) were more efficient than Lawly-Hotelling’s U for light-tailed and heavy-

tailed distributions. However, the results revealed that when there was sufficient 

evidence to conclude that the underlying distribution was heavy tailed, the tests 

based on spatial signs were the best choices to profile analysis. Similarly, this 

aspect was reported in the study by Nordhausen et al. (2006) and for a different 

sign test by Um and Randles (1998). It should also be noted that above studies 

conducted in areas not involving repeated measurements and various correlation 

structures for errors. The simulations also illustrated that when the number of 

replication was large (here p = 8) the mentioned nonparametric tests outperformed 

Hotelling's T
2
 only for larger sample sizes (n ≥ 10). The panel (b) of Figure 2 

illustrated this issue for which Hotelling's T
2
 performed slightly better than any 

nonparametric counter parts for p =  8 even if the underlying distribution was 

heavy-tailed. The effect of sample size relative to the number of measurements 

has been not reported yet and hence further research in this area is necessary. 

In the context of two sample comparison (as our study), Hotelling’s T
2
 and 

all the MANOVA tests (Wilks’ Λ, Pilla’s V, Lawley-Hotelling’s U and Roy’s θ) 

are functions of each other and give equivalent results; see Rencher (1998). The 

power of the MANOVA tests has been compared by several authors. However, 

they are asymptotically equivalent for sufficient sample sizes (Olson, 1974). 

Therefore it is implied the nonparametric alternatives can be confidently applied 

in place of MANOVA tests in profile analysis regardless of the nature of 

underlying distribution. Park et al. (2001) investigated the performance of profile 

analysis using Hotelling's T
2
 and mixed model approach to test group and 

interaction effects. Also, Vossoughi et al. (2012) compared the performance of 

profile analysis, linear mixed model and summary measure approach in repeated 

measurements generated from a linear mixed model setting. Similarly, both 

studies showed that the profile analysis preserved the nominal significance level 
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and performed relatively robust to the underlying correlation structure but 

provided less power values than the competitors, in general. 

Marcucci (1986) demonstrated that profile analysis using Hotelling's T
2
and 

exclusively univariate split-plot analysis with d.f. adjustments gave type I error 

rates closest to the nominal level, but not one of which was most powerful along 

various correlation structures and patterns of means. The interested reader is also 

referred to Schwertman et al. (1985), Boik (1991) and Davidson (1972) for further 

assessment on this issue. 

Thought not reported here, we conducted additional simulations for a variety 

type of the location trend over occasions such as linear trend as 

θ2 = (0.25, 0.5, 0.75, 1)'. The larger number of measurements p = 8 and sample 

size n = 50 in each group were also considered. However, the similar results were 

yielded and hence not further included in the study. 

In conclusion, the findings implied that the use of some nonparametric 

multivariate tests in place of the parametric counterparts can considerably 

improve the result of profile analysis for heavy-tailed distributions. Accordingly, 

the tests based on spatial and marginal ranks are severe competitors for parametric 

tests in profile analysis since they performed as well as Hotelling's T
2 under 

multivariate normal distribution and dominated it under heavy-tailed distribution. 

Moreover, the simulation results revealed that the tests based on spatial signs 

under heavy tailed distributions, were more efficient than the MANOVA tests for 

the analysis of repeated measurements. 
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Introduction 

In classical sampling theory, the finite population under study is assumed to be a 

fixed vector of dimension N, where N is the number of population members. If U 

denotes the population set and Y the variable of interest, the population vector can 

be denoted as U = {Y1, Y2, …, YN}, and is assumed to be fixed but is in general 

unknown. The superpopulation approach in sampling from a finite population is 

assumed in this work. According to this approach, the finite set of measurements 

U is a realization of a sample of size N drawn from an infinite population with 

common distribution ξ. 

The superpopulation model was introduced by Cochran (1946 and 1977, 

1953) and further developed by Godambe (1955), Cassel et al. (1977), Tam 

(1984), Blight (1973), Mukerjee & Sengupta (1989, 1990) and Bolfarine & Zacks 

(1992), among others. The problem of finding optimum sampling schemes under 

a superpopulation model is discussed by several authors including Blight (1973), 

Papageorgiou & Karakostas (1998), Arnab (1992), Mukerjee & Sengupta (1989, 

1990), Nayak (2003) and Chao (2004). The superpopulation model assumes the 

population measurements are comprised of a deterministic and a non-

http://dx.doi.org/10.22237/jmasm/1478002680
mailto:ioulia@aueb.gr
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deterministic element that can be attached to a variable. More analytically, the 

superpopulation model in its general form is 

 

 
  
Y

i
= m

i
+ e

i
, i = 1,2,..., N  (1) 

 

where μi is constant, representing the deterministic part, while εi are random 

variables also called errors. The random vector ε = (ε1, ε2, …, εΝ)  is assumed to 

have zero mean and variance covariance matrix V. Various special models to 

describe more specific or realistic population assumptions can be derived from (1) 

by making assumptions on matrix V and relationships among μi. For example, 

model 
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where the errors are uncorrelated and with constant variance is the model that 

describes a finite population with uncorrelated measurements and different 

superpopulation mean. 

Another special case is the model where 
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according to which the population units are correlated with a constant correlation 

ρ and constant superpopulation parameter of mean μ. 

A more realistic autocorrelated superpopulation model results if one 

assumes that the degree of correlation among two population units depends on 

between-unit distance. This is also known as serial correlation. Populations that 

exhibit this characteristic can be encountered in applications where an order is 

assigned to each of the population members. The ordering can be according to 

time, space, magnitude or the serial number in a production line. The model with 

serial correlation was first introduced by Cochran (1946) and it can be written in 

mathematical terms as 
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x
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j( ) =s 2r i - j( ) (2) 
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where ρ(h) is the autocorrelation function of the population model for units at 

distance h. 

All above models can also be seen as special cases of the more general 

superpopulation regression model where the deterministic part μ has been 

modeled as linear functions of a set of auxiliary nonstochastic variables that may 

be available for the population vector (Bolfarine and Zacks, 1992). 

Madow & Madow (1944), Cochran (1977), Royall (1970), Blight (1973), 

Ramakrishnan (1975), Bellhouse & Rao (1975) and Graubard & Korn (2002), 

among others, assumed (2) or a special case of this. The results available from the 

literature aim to answer two questions: first, to estimate the superpopulation 

parameter μ; and second, to determine the optimal sampling design. The optimal 

sampling design is the selection process according to which the sample units are 

drawn from the population so that the derived estimate will achieve an assumed 

optimality criterion, such as minimum variance. Sampling strategy is the pair of 

the sampling design and estimator used towards the estimation problem (see for 

example Ramakrishnan, 1975). Often in practice, certain properties are attached 

to the autocorrelation function ρ(h) such as positive, decreasing or convex. An 

outline of related results from the literature is presented in the following section. 

In this current work the assumptions made on function ρ(h) are extended. 

More specifically, ρ(h) can be the autocorrelation function of any random process 

with second-order stationarity. The proposed methodology aims to determine the 

optimal allocation of the sampling units for a sample of size n, when the least 

squared estimator of the superpopulation mean is used as a criterion of optimality. 

The optimum is defined with respect to the mean squared error (mse) of the 

estimate. The proposed optimal sampling strategy is completed by providing the 

statistical inference of the assumed estimate when the sample is selected, 

according to the derived optimal sampling scheme. Both the derived optimal 

sample allocation and its mse depend on ρ(h) and therefore take into account the 

specific autocorrelation of the population under study. 

General notation and brief review 

Denote by  
1 2
, , ,

nj j js Y Y Y  the sample of size n that is selected from the 

complete vector U. Indexes ji (i = 1, 2, …, n) in the notation indicate the positions 

of the selected units in the population U. 
1

N

ii
Y


 , the population sum, is 

considered as the parameter of interest. θ is a linear function of the population 

measurements. Dealing with the estimation of θ is equivalent with the estimation 
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of population mean 
1

/
N

ii
Y Y N


 , as the two quantities differ only by a constant 

coefficient. 

The aim of the sampling procedure is to estimate θ based on a set of 

measurements, s, selected from U. The assumption of selection without 

replacement is made, but sampling with replacement is equally possible. The 

sampling design is determined by the probability p(s) that is assigned to each of 

all possible samples s selected from the population. Let Pn denote this set of all 

possible samples of size n. Important probabilities related to the design p(s) are 

the first and second order inclusion probabilities πi and πij respectively, defined as 

 

 

  

p
i
= p s( )

s'i

å  and p
ij

= p s( )
s'i, jå .  

 

By making use of this notation, simple random sample (that is, the simplest 

sampling design) is the design that assigns equal probability p(s) = 1/

 

N

n

æ

è
ç

ö

ø
÷  in 

every sample s that belongs in Pn, where Pn is the selection of all the possible 

combinations of n measurements chosen from U in this case. For the systematic 

scheme, the probabilities of selection are also equal, p(s) = 1/k, where k = N/n. 

The number of samples that belong in Pn is also k in the systematic case and if 

si, i = 1, 2, …, k is a representative sample, then si = (Yi, Yi+k, Yi+2k, …, Yi+(n−1)k), 

i = 1, 2, …, k (see for example Cochran, 1977). If N ≠ nk, a slight complication 

and need for modification arises, but the effect is negligible (Yates, 1960, 1948 

1st ed.). The samples generated by a systematic procedure are equally spaced, and 

moreover if the start Yi is chosen with i such that 2i = N + 1 − (n − 1)k, the sample 

is a centrally located systematic sample (Blight, 1973). In this last case Pn 

contains only one sample s with p(s) = 1. 

Blight in the previously mentioned work assumes that the deviations of 

population values from the superpopulation mean μ are generated by an 

autoregressive model of order one, AR(1), e.g. 

 

 
  
Y

i
- m = l Y

i-1
- m( )+ e

i
. (3) 

 

where εi is uncorrelated normally distributed series with zero mean and constant 

variance σ2. This yields ρ(h) = λh at lag h (h = 1, 2, …, N−1). Employing the 

sample mean as the estimator of the corresponding population mean, the effect of 

the autocorrelation is studied and the optimal sampling design when λ is positive 
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or negative is obtained. The optimality criterion is the conditional variance 

 |
ij

Var Y Y s  . The sign of λ controls the monotonicity shape of ρ(h) = λh and, 

as expected, the resulting optimal design is remarkably different among the two 

cases. More specifically, for λ > 0 the optimal sample is the centrally located 

systematic and for λ < 0 the optimal sampling design is concentrated towards the 

two ends of the population. This also verifies the fact that the optimal solution for 

the sampling scheme is not unique, but depends on the specific type of the 

autocorrelation. However, when the autocorrelation function ρ(h) is not only 

λh, h > 0, but in general any positive, decreasing and convex function, the same 

result holds and the centrally located systematic design is the optimal 

(Papageorgiou & Karakostas, 1998). 

Function ρ(h) is defined in all positive integer numbers and therefore ρ(h) is 

decreasing if ρ(h + 1) − ρ(h) ≤ 0 (Δρ(h) ≤ 0), while convexity holds when 

 

 
  
D2r h( ) = r h + 2( )- 2r h +1( )+ r h( ) ³ 0 for h = 0,1,2,...  

 

Denote by К the class of all autocorrelation functions that satisfy the 

aforementioned properties (positive, decreasing and convex). AR(1) model 

assumed in (3) has an autocorrelation function that belongs in К when λ > 0 and 

since the optimality of the centrally located systematic scheme holds for the 

whole class К it also holds for this occasion as a special case. In fact, class К 

includes a wide range of correlation functions (Bellhouse, 1984). 

Although the question about the optimum sampling scheme seems to have a 

unique answer when ρ(h)К and it is closely related to the systematic scheme, 

under almost any combination of estimators and optimality criterions considered, 

the problem remains when ρ(h) does not belong in К. The optimum sampling 

scheme in this case can be quite far from the systematic and it varies depending 

on the specific type of ρ(h). In other words, there is no uniquely defined optimum 

sampling scheme that can cover any random process with respect to the sampling 

problem. In this direction, a practical and easy-to-implement methodology, that 

suggests the optimum sampling procedure once the specific type of ρ(h) or V is 

provided, is proposed in this paper.  

A related work is provided by Chao (2004), where a general known matrix 

V is assumed, and a similar to principal component analysis method is suggested 

in order to obtain the sampling procedure. More specifically, the idea is to choose 

as sampled units those population units pointed from the n most important 

components or the largest eigenvalues of matrix V. Two algorithms are proposed, 
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called Design I and Design II, with the second being a slight modification of the 

former. Design I makes use of the n eigenvectors e1, e2, …, en of V that 

correspond to the n first-in-magnitude eigenvalues of the matrix. If 

ei = (ei1, ei2, …, eiN) is such an eigenvector and j, (j = 1, …, N) is the index with 

the largest-in-absolute-magnitude component in ei, the population unit that 

corresponds in position j is the one selected in the sample according to this design. 

If the unit is already in the sample, the second-in-absolute-magnitude component 

is selected. Design II works in the same principle, with the difference that the sign 

of the components is also taken into account. From each eigenvector two 

components are selected, the largest-in-absolute-magnitude and the second-largest 

with opposite sign of the first. The approach for both designs is rather intuitive 

and the resulting designs do not hold any optimality criterion. Their performance 

is measured by the relative efficiency over the simple random sample as a general 

sampling scheme. They indicate improved efficiency with respect to the simple 

random most of the times, but their performance is not stable and the simple 

random sample itself is usually far from the optimal when a correlation exists. 

Before dealing with the problem and proposing the solution of the optimal 

sampling design, a list of possible applications is provided. The range of 

applications is wide, and they cover any scientific area where the framework 

includes correlated measurements and a sample is selected from the population. A 

typical application of sampling from autocorrelated populations where the 

autocorrelation is not necessarily decreasing and convex is seen in the context of 

statistical process control in monitoring manufacture and industrial production 

lines. A variety of control charts or other statistical instruments can be constructed 

based on a set of measurements selected from the process, and help practitioners 

to derive information or warning if the process is out of control. Traditionally the 

statistical theory behind the control charts is based on the assumption that the 

sample measurements are independent. It is however quite common in practice—

and especially in continuous manufacture or production lines—that this 

assumption is violated, and this produces misleading and unreliable control charts 

(Alwan, 1992; Montgomery and Mastrangelo, 1991) with tighter control limits 

than the true ones. A lot of attention has been drawn lately to this area of research; 

see for example Alwan and Roberts (1988), Harris and Ross (1991), Mastrangelo 

and Montgomery (1995), Apley and Lee (2003) and Lu and Reynolds (1999, 

2001), and all proposed approaches make use of the present autocorrelation to 

either modify the existing control limits, or to model the process, identify the 

autocorrelation, and use the independent errors instead of the measurements for 

constructing any statistical tool. The models that have been assumed are AR(1) 
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(Autogregressive), MA(1) (Moving Average) and ARMA(1,1) (Autoregressive 

Moving Average) (Wardell et al., 1992) and efficiency in sampling and therefore 

construction of the control limits provided can be improved further if the specific 

type of correlation is taken into account. 

Similarly, geostatistical data in spatial statistics very often exhibit a small-

scale variation, typically a strong correlation between data at neighboring 

locations (Watson, 1972). If the population mean is the parameter of interest, 

failure to realize the presence of positive correlation in the data leads to very 

narrow confidence interval (Cressie, 1993), a result similar with this in quality 

control charts. The superpopulation model is therefore extensively used in 

modeling geostatistical data in order to accommodate this correlation (Cressie, 

1993). In this context, let sℝd be the data location in d-dimensional Euclidean 

space and Y(s) the measured data, assumed random, at location s. Assuming that s 

takes values over an index set Dℝd, the superpopulation model results as a 

realization {y(s): sD} from the multivariate random field {Y(s): sD}. Land 

and agricultural surveys, ground-water monitoring, environmental statistics and 

socio-economic habitat surveys are some of the sampling applications in two 

dimensions with spatial dependence among population units. 

Other applications of sampling from correlated populations include genetics 

and ecological statistics. In particular, the superpopulation model is often used to 

explain genetic or ecological patterns where the covariance in the genetic makeup 

of individuals or in the growth of populations can be assumed to be a function of 

the spatial distance separating the units (Lande, 1991; Bjørnstad et al., 1999). 

Clustered data, often found in social, educational, psychometric and 

behavioral studies, also represent an application of sampling from correlated 

populations. Clustered data may result either because of repeated measurements 

in time such as in longitudinal studies or because of sub-sampling from a large 

primary unit: for instance, sampling graduates from the same educational institute 

or the same region/country for a large scale study. The existing intra-class 

correlation has to be taken into account during the analysis and the statistical 

inference in order to produce valid results (Neuhaus and Kalbfleisch, 1998). 

Moreover the knowledge of the intra-class correlation can contribute at the 

selection stage of the sub-sampling. 

Another application of sampling in time series, apart from the serial 

correlation and the typical applications described already, is the use of composite 

marginal likelihoods in order to estimate the parameters of the model (Cox and 

Reid, 2004; Varin, 2008). Pairwise likelihoods, based only on the bivariate joined 

distributions of the measurements, produce estimates very close to those under the 
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full likelihood with respect to the dimension. The benefit of pairwise likelihood is 

on the computational demand that is required for the optimization. Moreover, 

further improvement in this direction can be achieved if not all possible pairs but 

only a selection of them will be used instead. Current work in this context shows 

that the same accurate estimates can be obtained if the correlation between 

observations is taken into account towards the selection procedure: for example, 

pairwise likelihood of order m (Hjort and Varin, 2008). 

The general problem 

Model (2) describes the population and ρ(h) is assumed to be any autocorrelation 

function. Moreover,  q̂ , the least squared estimator for the parameter θ, is assumed 

as the optimality criterion. The aim is to determine the sampling design p or the 

sample s that minimizes the mean square error of  q̂  under this model. The least 

squared estimator of the population mean is the sample mean and it is unbiased 

under model (2) (see Karakostas, 1984), which yields that 
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The mean square error of  q̂  when a sample  
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given by 
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Let V be the variance covariance matrix of the complete population vector under 

(2). The partition of matrix V according to the sampled part, s, is considered next 

and let Vs denote the part of V that corresponds to the sampled units and Vs,U the 

n × N matrix of V where its rows correspond to the sampled units while the 

columns to the whole population U. Under this notation the mse can be written as 
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where 1'
j stands for the j–dimension vector of units. For the sampling problem it is 

necessary to minimize mse( ) with respect to the sample s, or equivalently to find 

the minimum 

 

  , ,min 2N
n s U n n s U nn

s
  1 1 1 1V V  (6) 

 

For any sample  
1 2
, , ,

nj j js Y Y Y  let hi = ji+1 – ji, 1, 2, …, n – 1 denote the 

distances of two successive sampled units with moreover h0 = j1 – 1 and hN = N−jn 

the two end distances. Under this notation any sample s can also take the form 

 
0 1 0 1 1 01 1 1, , ,

nh h h h h hs Y Y Y
        and uniquely represented by the vector of 

distances h = (h0, h1, h2, …, hn) with hi,i = 0,1,…,n to be integers with 

h0 + h1 + … + hn = N – 1. Using this equivalent notation for the sample s the 

minimization expression can finally be written as 

 

   

 

or equivalently 
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n
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where 

 

 q̂
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   (7) 

 

Finding the optimum sample (s) is now a constrained minimization problem of 

minimizing (7) with respect to the unknowns hi,i = 0,1,…,n. The parameter 

constrains, that mainly result from their definition, are 

 

 0 ≤ h0 ≤ N – 1 

 0 < hi ≤ N – 1, i = 1,2,…,n − 1 

 0 ≤ hn ≤ N – 1 and 

 h0 + h1 + … + hn = N – 1 (8) 

 

Therefore, the sampling problem is mathematically formulated as a constrained 

minimization problem. However the mathematical solution is not straightforward, 

due to the unknown integer function ρ(h) involved in Q. Unless certain properties 

are assumed for ρ(h) the problem cannot be solved in its general case. The 

difficulty is mainly caused from the upper bounds of the summations in the 

second parenthesis of Q that depend on the unknowns hi and make the number of 

the terms in those summations a variable itself. 

Methodology 

A Solution Based On The Continuous Approximation 

The objective function Q given by (7) is in general a sum of values of the function 

ρ(h). Function ρ(h) on the other hand represents the autocorrelation function of 

the population series and takes values at lag h,h = 0,1,2,…,N − 1, being therefore 

an integer defined function. The integer feature of ρ(h) leads to the summations 

appearing in Q that in turn prevent from its minimization. 

The idea is to use an approximate, but approachable towards its 

minimization expression instead of Q. The approximation consists of two stages, 

first to approximate every sum that appears in the second parenthesis of Q by an 
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integral and secondly to approximate the integer function ρ(h) with a continuous 

function. Approximating a sum with an integral is a known practice in literature 

and departs from the Euler-Maclaurin formula. The aim is to use Euler-Maclaurin 

formula in order to obtain a continuous approximation of the objective function 

and provide bounds for the error in the approximation. Note however that the 

derivation of the point(s) (h0, h1, h2, …, hn) where the minimum is attained will 

suffice the sampling problem and will provide with the optimal sample. Once the 

optimal sample is determined the corresponding for the estimate exact mse under 

the optimal sample can be calculated by a single substitution in (5) and not 

through its continuous approximation. In other words, the approximate and the 

true versions of Q need only to share the same monotonicity and not coincide. 

The second condition is stronger and guarantees the first. 

Euler-Maclaurin formula is a mathematical tool, an equality, where a finite 

sum of values of a function f at the left side part is expressed as a finite integral of 

the same function f plus an error term at the right side part. The error term 

involves all consecutive derivatives of f, the Bernoulli numbers and Bernoulli 

polynomials. More analytically, it holds 
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where 
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Bk, k = 1, 2, … stands for the Bernoulli numbers and Bm({x}) is the 

Bernoulli polynomial with {x} = x − ⌊x⌋ the fractional part of x. Rm is the 

remainder and m is chosen accordingly. Euler-Maclaurin expression is a 

fundamental result in algebra providing a link between a sum and the 

corresponding integral. A number of other important results can be derived from 

this formula. For more details see Graham et al, 1994, p. 469. 

The integer number m that can be chosen accordingly in (9) will affect the 

remainder and consequently the error in this continuous approximation. The 

Bernoulli numbers are closely related with this choice. Recall the first few values: 
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For m = 3, for example, the Euler-Maclaurin equation (9) for a function f studied 

in the interval [a, b] is 
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The remainder in general must always be considered, as often it diverts, 

depending on function f (Graham et al, 1994). Function ρ(h) is playing the role of 

function f in this present application of Euler-Maclaurin. Consequently, the 

second stage of approximation in Q consisted of a continuous approximation of 

ρ(h), and is also related to the remainder calculation. Such an approximation is 

needed because of the integer nature of ρ(h) and the presence of integrals at the 

right hand side of formula (9). 

Because equation (9) involves all the successive-in-order derivatives of f, a 

continuous extension of ρ(h) through a spline interpolating technique is proposed. 

If the spline is selected within the broad group of cubic polynomial splines, the 

third derivative can always be constant and the fourth or higher equal to zero. 

There are a few alternative splines that preserve the cubic characteristics, with 

most popular (i) the piecewise cubic shape-preserving hermite interpolation and 

(ii) the cubic spline, both implemented in Matlab with routines pchip and csaps 

respectively. The characteristics that these two alternatives share in common are 

that they both produce a polynomial which passes though the provided data points, 

they are piecewise three degree polynomials and they have continuous first 

derivatives. The differences between them is that the pchip produces a function 

that in order to reserve the shape of the data has discontinuous second derivatives, 

while csaps leads to a smoother function with continuous second derivatives. 

Moreover, csaps allows a smoothing parameter p to be chosen, either manually or 

by default, which controls the smoothness of the resulting curve in contrast with 

how close this curve will be to the data points to which it will be fitted. 

Let r(h) denote a continuous piecewise cubic interpolation of ρ(h), obtained 

by either pchip or csaps. Applying next Euler formula for m = 4 to a typical 

summation of those contained in Q, it can take the form 
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This last expression is an equality and not an approximation because R4 = 0 since 

r(x) is a polynomial of third order and therefore r(4)(x). Moreover B3 = 0 and also 

r(3)(x) is constant, not depending on x, and therefore it adds to zero when 

evaluated at the two ends of the interval. The only limitation for the exact 

equivalent and not an approximate expression is r(x) = ρ(x) for all the discrete 

points between a and b. In other words, r has to be a continuous extension of ρ(x). 

Under these conditions the error term in Euler-Maclaurin formula is zero and the 

two functions Q and the corresponding continuous will coincide for all possible 

points of (h0, h1, h2, …, hn). 

Summarizing, the steps of the proposed methodology in order to determine 

the optimal sampling allocation and inference about the population parameter are 

 

Step 1.  Use (11) for every summation in the second parenthesis of Q in (7) 

and obtain the continuous equivalent expression given by 
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Step 2.  Minimize Qc with respect to (h0, h1, h2, …, hn) and constrains (8), 

where n is the sample size. Numerical constrained optimization can be used since 

function Qc is easily programmed. Function r(h) is calculated by a cubic 

interpolation on the original discrete function ρ(h). 

 

Step 3.  If  * * * *

0 1, , , nh h hh  is the vector where the minimum in step 2 is 

attained and  0 1, , , nh h h  is its closest integer vector, the optimal sample is the 

collection of units at positions 

 

 
1 0 2 0 1 3 0 1 2 0 1 1, 1, 1, , 1n nh h h h h h h h h                   

 

Step 4.  The mse of the population mean estimate calculated on the optimal 

sample  
1 2
, , ,

n
s Y Y Y     is derived from (5) by single substitution. 

 

For a small numerical example, a set of simulated N observations from a 

Moving Average (MA) process of order 2, with parameters −0.4 and 0.5 are 

assumed to represent the population. The autocorrelation function of the assumed 

MA model within the population range is listed in the first part of Table 1. The 

resulting set of values forming the population is U = (−0.52, −1.33, 0.19, 1.70, 

−1.37, −1.35, −0.22, −0.16) and let the aim of the experiment to be the selection 

of a sample of size n = 3 that minimizes the mse. The set of all possible samples 

Pn contains 56 samples, and in order to obtain the optimal s = (h0, h1, h2, h3), the 

quantity Q needs to be minimized with respect to (h0, h1, h2, h3). Function Q given 

by (7) for this example is 
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and the corresponding Qc is 
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Note the complexity of Qc does not depend on N. The number of the 

unknowns and consequently the efficiency of the numerical minimization depends 

only on n. Sizes N and n have been chosen small in order to proceed in an 

exhaustive enumeration of all samples in Pn and confirm both the approximation 

of Q and its minimum. Minimizing Qc (h0, h1, h2, h3) yields 

(h0, h1, h2) = (0, 1.80, 1.91) and h3 = N – 1 − (h0, h1, h2). The closest discrete 

solution is (h0, h1, h2) = (0, 2, 2) and this corresponds to the sample s = (Y1, Y3, Y5). 
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Table 1a. Numerical example for a population with N = 8 generated from MA(2) 

 

i Yi lag h ρ(h) r(h) 

1 -0.52 0 1.00 1.00 

2 -1.33 1 -0.06 -0.06 

3 0.19 2 -0.66 -0.66 

4 1.70 3 0.02 0.02 

5 -1.37 4 0.21 0.21 

6 -1.35 5 0.02 0.02 

7 -0.22 6 -0.03 -0.03 

8 -0.16 7 0.00 0.00 

 
 
Table 1b. Numerical example for a population with N = 8 generated from MA(2) 

 

sample Q Hermite Qc Spline Qc     sample Q Hermite Qc Spline Qc 

(0,1,1) 2.4533 2.4308 2.4531 
 

  (1,2,3) 3.3185 3.2853 3.3069 

(0,1,2) 2.8326 2.8135 2.8284 
 

  (1,2,4) 3.8756 3.8564 3.8714 

(0,1,3) 6.9570 6.9379 6.9528 
 

  (1,3,1) 8.1837 8.1634 8.1842 

(0,1,4) 6.9570 6.9345 6.9568 
 

  (1,3,2) 3.3185 3.2853 3.3069 

(0,1,5) 4.6993 4.6638 4.6870 
 

  (1,3,3) 6.1985 6.1794 6.1943 

(0,1,6) 4.4978 4.4764 4.4929 
 

  (1,4,1) 7.0637 7.0271 7.0561 

(0,2,1) 3.9526 3.9464 3.9605 
 

  (1,4,2) 3.8756 3.8530 3.8754 

(0,2,2) 2.0089 2.0027 2.0168 
 

  (1,5,1) 4.6993 4.6638 4.6870 

(0,2,3) 4.3319 4.3223 4.3437 
 

  (2,1,1) 4.8000 4.7960 4.8085 

(0,2,4) 3.8756 3.8530 3.8754 
 

  (2,1,2) 5.1793 5.1719 5.1918 

(0,2,5) 3.0104 3.0020 3.0176 
 

  (2,1,3) 8.1837 8.1634 8.1842 

(0,3,1) 8.0770 8.0742 8.0809 
 

  (2,1,4) 8.0770 8.0709 8.0849 

(0,3,2) 4.3319 4.3257 4.3397 
 

  (2,2,1) 5.1793 5.1719 5.1918 

(0,3,3) 6.1985 6.1794 6.1943 
 

  (2,2,2) 2.1156 2.0953 2.1160 

(0,3,4) 7.1348 7.1298 7.1380 
 

  (2,2,3) 4.3319 4.3257 4.3397 

(0,4,1) 8.0770 8.0709 8.0849 
 

  (2,3,1) 8.1837 8.1600 8.1182 

(0,4,2) 3.8756 3.8564 3.8714 
 

  (2,3,2) 4.3319 4.3223 4.3437 

(0,4,3) 7.1348 7.1298 7.1380 
 

  (2,4,1) 6.9570 6.9345 6.9568 

(0,5,1) 5.8193 5.7967 5.8191 
 

  (3,1,1) 4.8000 4.7960 4.8085 

(0,5,2) 3.0104 3.0020 3.0176 
 

  (3,1,2) 4.0593 4.0424 4.0557 

(0,6,1) 4.4978 4.4764 4.4929 
 

  (3,1,3) 8.0770 8.0742 8.0809 

(1,1,1) 3.6800 3.6597 3.6805 
 

  (3,2,1) 4.0593 4.0390 4.0597 

(1,1,2) 4.0593 4.0390 4.0597 
 

  (3,2,2) 2.0089 2.0027 2.0168 

(1,1,3) 8.1837 8.1600 8.1882 
 

  (3,3,1) 6.9570 6.9379 6.9528 

(1,1,4) 7.0637 7.0271 7.0561 
 

  (4,1,1) 3.6800 3.6597 3.6805 

(1,1,5) 5.8193 5.7967 5.8191 
 

  (4,1,2) 3.9526 3.9464 3.9605 

(1,2,1) 4.0593 4.0424 4.0557 
 

  (4,2,1) 2.8326 2.8135 2.8284 

(1,2,2) 2.1156 2.0953 2.1160     (5,1,1) 2.4533 2.4308 2.4531 

 
 

Table 1b provides a comparison of the arithmetic values of Q and Qc for 

every sample in Pn. The 56 samples of Pn consist of all possible vectors 
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(h0, h1, h2) that fulfill constrains (8); h3 = 7 − h0 − h1 − h2 and is not given. Two 

versions of Qc are presented for the example, the first one using piecewise cubic 

hermite interpolation to construct r, noted as Hermite Qc, and the second using 

smooth spline, noted as Spline Qc. The differences compared to the true function 

Q are in the second decimal place, while the range of values is between 2.0089 

and 8.1837. The differences among the function values are due to the use of 

numerical instead of analytical integration. It is also verified that the minimum 

mse value is achieved for the same sample s = (0, 2, 2) for all methods, and agrees 

with the one derived from the numerical minimization. Since the optimal sample 

is found, the exact mse can be calculated from (5) and is 6.0267. 

The smoothness characteristic of the spline r(∙) improves the performance of 

the numerical integration and produces numerical values closer to the true ones. 

The smoothing parameter for the csaps routine, which has been used for this 

example, was chosen as 1. This means that a priority to the exact matching of the 

spline values with the initial was given, rather than the smoothness. 

Experiments and Applications 

Experiments with Simulated Data 

Three numerical examples follow, with simulated data generated from three 

different ARMA models to represent the population values under study. The 

justification for the ARMA model is that its autocorrelation function is general 

enough to cover a wide range of types for the serial correlation, depending on the 

specific values of their order and parameters. The aim of the experiment is to 

obtain the optimal sampling allocation following the proposed methodology, and 

compare its efficiency with other competitive sampling designs, chosen for either 

their broad use, because they are standard sampling designs, or because the 

literature suggests their application is appropriate to the case of correlated 

populations. More specifically, the sampling designs chosen are simple random 

sampling (srs), systematic sampling (sy), an optimal design for correlated 

populations with positive correlation, and Designs I and II proposed by Chao 

(2004) for correlated populations. 

A range of values for the sample size is taken in every population case for a 

more complete view of the sampling design performance. The corresponding 

mean square errors of the estimates are calculated for all examined sampling 

designs by simulation and assuming normality. More specifically, if K realizations 

from each population model are generated, and ˆd

j  is the estimate for the 
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population total at the jth realization according to the sampling design d, the mse 

for the estimate will be calculated by 
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The number of iterations for each experiment is 15,000, while the common 

variance σ2 is assumed unity. The optimal allocation of samples is derived by 

implementing the proposed methodology as previously described in Steps 1 to 5. 

For the numerical optimization, twenty different starting values have been used 

for each application and the smooth spline with p = 1 has been used as the 

interpolation function of ρ. The performance of the examined sampling designs is 

evaluated by the relative efficiency to the srs, defined as the ratio of the mse 

obtained with a sampling design to that obtained with the srs. Values of relative 

efficiency greater than one indicate efficiency of the examined design. 

 

Model 1.  The population measurements are generated from an 

ARMA(1,1) model with autocorrelation function plotted in Figure 1a. The degree 

of correlation is moderate for the assumed population occasion with the sign to 

alternate because of the negative sign of the parameter φ, the autoregressive part 

of the process. For population size N = 80 and sample size that ranges from n = 3 

to n = 12 the calculated efficiencies of the examined designs compared to srs are 

plotted in Figure 1b. For better illustration the reciprocal of the design effect is 

plotted in Figure 1b. Systematic, Design I and Design II are comparable with srs 

with respect to their mse, while the optimal allocation derived by the proposed 

methodology is clearly more efficient. 

As a specific example, for n = 12 the optimal sample determined from the 

solution of the numerical minimization problem is 

s = [1  2  3  59  60  61  62  63  64  78  79  80]. Sample s has the sampling units 

separated into three groups, two groups located at the two ends of the population 

and one in the middle. Moreover neighbor units of the population are selected 

within the groups. Its mean square error by using simulation is 113.79, and its 

exact value from expression (5) is 113.87. Design II, the second best with respect 

to the mean square error in this example, has mse of 441.87. 
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Figure 1. Relative efficiencies using the empirical autocorrelation function on Model 1 

 

 
 

 
 
Figure 2. Relative efficiencies using the theoretical autocorrelation function on Model 1 

 

 
 

The empirical autocorrelation function calculated from the population of 

size N = 80 has been used for implementing the methodology in this first example. 

If not the empirical but the exact autocorrelation function according to the 

assumed ARMA(1,1) model is used, the two resulting plots (corresponding to 

those in Figure 1) are presented in Figure 2. The sampling allocation according to 

the proposed method remains efficient. The assumed theoretical ARMA model 

has a negative φ parameter as it can be seen from Figure 2a and the sign of the 
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ACF alternates. For such cases, the systematic sampling is far from the optimal, 

and plots in Figures 1b and 2b verify this result from the literature. 

 

Model 2.  N = 80 is assumed for this example. The population vector, 

U, is generated from an ARMA(2,1) model with autocorrelation function plotted 

in Figure 3a. The serial correlation is not strong in this model, but the sign 

alternates and therefore it cannot be characterized as a positive, convex function. 

Following the same steps as in Model 1, the corresponding plot that presents the 

relative efficiencies of the sampling schemes under study with srs are presented in 

Figure 3b. 

The optimal sample derived by the proposed methodology implemented 

here is the most efficient sample along all examined sample sizes, as shown in 

Figure 3b. The three other samples proposed from the remaining techniques 

exhibit similar performance, faintly better if not comparable with the srs. The 

comparable to srs performance of sy is explained from the fact that the correlation 

between observations is low. It is known in sampling literature that sy and srs are 

equivalent with respect to accuracy when the population measurements do not 

present a trend or correlation (Cochran, 1977). Figure 3b demonstrates that the 

efficiency of the optimal sample is increased as the sample size increases. 
 
 

 
 
Figure 3. Relative efficiencies using the autocorrelation function on Model 2 

 

 
 

Model 3.  Assume N = 50 and population values generated from an 

ARMA(2,4) model with autocorrelation function plotted in Figure 4a. The 
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autocorrelation in this model is not strong and alternates in sign. Again for sample 

size ranging between n = 3 and n = 12, the relative efficiencies are plotted in 

Figure 4b. The optimal sample as derived by the proposed methodology is clearly 

the sample with the minimum mse. Its relative efficiency is between 0.207 and 

0.48, indicating a significant improvement in accuracy with respect to srs 

sampling scheme. Among the remaining competitive designs, Design II compares 

better than the srs, although not consistently, followed by Design I and systematic 

sampling, which produce higher than the srs mse and are not appropriate for this 

population case. 
 
 

 
 
Figure 4. Relative efficiencies using the autocorrelation function on Model 3 

 

 

An application in Statistical Process Control 

Consider an application of the proposed methodology in Statistical Process 

Control (SPC) based on a real data set. The data include 204 consecutive 

measurements of electrical resistance of insulation in megaohms and was first 

presented in Shewhart (1931, p. 20). The data set often serves as a typical 

example in SPC, where the existing autocorrelation can lead to incorrect 

conclusions about a process if it has not been detected or handled properly. The 

implementation of sampling in SPC happens during the construction of the 

statistical charts, which aim to provide some warning limits for the production 

line and detect a deviation in mean or variance of the process. Many forms of 

statistical charts are available, but the common basis for any chart is a sample 
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taken at an initial stage from the production line. Shewhart's control chart is one 

of the best known statistical control charts, and its basic components are presented 

during this application. Any statistical control chart can be evaluated by 

calculating the expected probability of false positive or negative alarms. 

Shewhart's control chart of the X , the mean of a sample taken from the 

process, was originally constructed for the electrical measurements and presented 

by taking successive groups of four. The resulting 51 subsamples were used to 

estimate the mean and the variance of the population towards the construction of 

the upper and lower control limits. The control limits provide a reference interval 

for a mean of a sample of four selected from the process if this is in control. The 

two limits are in mathematical terms 
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where x  is the mean of the means of the 51 subsamples and is used as an 

estimate of the population mean, ̂  is the estimate of σ, the square root of the 

process units variance, and k is the size of the sub-samples. For k = 4 and the total 

of 51 subsamples in the data, the resulting control limits for the mean of the 

process are plotted in Figure 5, solid line. The means of the 51 samples are plotted 

together in the same Figure, and a large percentage of those means are outside the 

limits an indication that the process is not in control. The process is however in 

statistical control, as subsequent analyses of the same data set concluded (see for 

example, Alwan and Roberts, 1995). The variation that the data exhibit can be 

explained from the present autocorrelation not taken into account in the first 

application, and is not due to a special cause. 

Yang and Hancock (1990) introduced the autocorrelation into the 

calculation of the control limits for Shewhart's control chart. The new control 

limits suggested by their methodology are given by 
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where rij are the i, j elements of matrix R if assumed that the variance 

covariance matrix V of a sample can be written as V = σ2R. Implementing this 

approach for the electrical measurements and using all 51 samples of four, the 
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resulting control limits are wider, as expected, and include all 51 sub-sample 

means, as can be seen in Figure 5 (dotted line). 

Alternatively, the control limits can be calculated by implementing the 

methodology proposed in Steps 1–4. The implementation is possible in both 

stages of sampling. For the first stage of sub-samples of four, formula (5) can be 

used to estimate the variance of the sample mean. The resulting estimate is more 

accurate than the average correlation ρ because the exact matrix V according to 

the model, and not an average ρ, is used. For the second stage of the 51 sub-

samples, either complete enumeration or sampling is possible. Sampling is more 

realistic in practice and can also be applied to continuous processes. Both 

scenarios are presented here using the proposed methodology to choose the 

sample in the case of sampling at the level of sub-samples. Moreover, in a real 

situation application, a sample instead of successive measurements could also be 

the case for the first stage of SPC. 

A first-order autoregressive model has been fitted to the data with parameter 

φ equal to 0.549 (Alwan & Roberts, 1995), and this is the model used for the 

implementation. When all sub-samples are taken into account and the variance of 

the mean with sub-sample is calculated by (5), the resulting control limits are 

plotted in Figure 5 (dashed line). The use of the exact form of the model that 

describes the population units allows control limits that are wider than in the first 

analysis, but not as much as according to Yang and Hancock methodology. Note 

that too wide control limits lead to an increase of the probability of falsity in 

control conclusions. 

If a sample of seven sub-samples is selected according to the proposed 

methodology, and the estimates of the mean as well as their standard errors in 

both stages are calculated from expression (4) and (5) respectively, the resulting 

control limits are plotted in Figure 5 (dash-dot line), and compare closely to the 

ones derived from the complete population of Ν = 51 sub-samples. 

Therefore, identifying the model correctly and fully incorporating this 

information in the selection of samples procedure and the statistical inference 

allows us to accurately construct control limits using only 28 measurements 

instead of 204. 
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Figure 5. Control limits for electrical measurements. 

 

 
 

The optimal sample of size seven for this application was found not to be 

equally spaced. An equally spaced scheme in SPC, also called fixed distance 

sampling, corresponds to a systematic design and is often the choice for selecting 

the sub-samples during the second stage for SPC applications, especially in cases 

where a positive correlation is detected. However, it has been verified that 

variable distance outperforms fixed distance sampling. The comparison has been 

conducted with simulation studies that calculate the average time to signal (ATS), 

a measure of efficiency of control charts. The advantage of variable distance 

sampling depends on the degree and type of correlation (Prybutok, et al., 2007). 

Within the same framework, other models, more general than the AR, can 

also be treated with the proposed methodology. 

Conclusion 

A continuous approach was proposed for an intractable otherwise discrete 

optimization problem with primary application in sampling. During the process of 
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sampling from correlated populations, the specific type of the autocorrelation 

function ρ(h) among the populations’ units affects both the choice of the sample 

and the inference about the population parameters. If ρ(h) has certain properties, 

such as constant, positive, decreasing, convex, etc., it is possible to derive 

conclusions about the optimal sampling designs even if ρ(h) is not known in its 

exact form. In cases of a more general type of correlation (for example, a 

realization of a time series process), characterizing the optimal sampling designs 

or the class of the optimal samples is not possible and the results depend closely 

on the specific type of ρ(h). A feasible and accurate way of deriving a sample that 

belongs to the class of optimal samples in such cases is proposed here. The 

estimate with its mse is also provided. The proposed technique uses continuous 

approximation of a finite sum from an integral. A continuous interpolation 

function r(h) based on ρ(h) is an important component for its implementation, and 

when r(h) holds certain properties it is shown that the proposed approach is not an 

approximation but exact. 

The method can be used in any case of correlated population, or not.  It is 

fast, easily programmed and implemented, and computationally efficient. The 

dimensionality coincides with the sample size and therefore the computational 

efficiency remains unaffected from the population size. As a general approach, it 

can find applications in other than sampling context and facilitate the solution of a 

mathematical problem that depends on a function with a discrete nature. 

The benefit for estimation is significant. Ignoring or incorrectly specifying 

the existing correlation within a population set can lead to misleading results, 

especially regarding the accuracy of the derived parameter estimate. The proposed 

methodology suggests a more sophisticated and informative sampling procedure, 

specialized for the population under study. This specialization has been 

incorporated into the mse calculation of the assumed estimator and the minimum 

mse is the criterion for the sampling procedure derivation. Therefore, the 

suggested sample is optimal with respect to the accuracy of the resulting estimate, 

and the improvement in mse is significant when compared to other known and 

widely used sampling schemes. Moreover, the simulation experiments suggest 

that the inclusion of the population model towards the correct calculation of the 

mse is necessary, and has a considerable impact on efficiency even if a small 

degree correlation occurs. Finally, the actual arithmetic value of both the estimate 

and its exact mse implemented for the optimal sampling allocation are provided. 

The extension of the proposed methodology to continuous stationary 

processes is straightforward. The assumption of other than the least squared 

estimator is also possible. The least squared estimator for the population 
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parameter has been considered here because of its frequent use in practice, due to 

its simplicity and ease of implementation. Assumption of the best linear unbiased 

or the best unbiased estimators are some possible extensions, along with the 

assumptions of model (2). The constant mean parameter μ may be assumed 

dependent on population unit i. Under this model the least squared estimator (4) is 

not unbiased for the population total. The bias depends on the sample s, but not on 

the type of autocorrelation. The new expression of the estimator's mse needs to be 

minimized following a procedure similar to that proposed here. 
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Finite mixture distributions consist of a weighted sum of standard distributions and are a 
useful tool for reliability analysis of a heterogeneous population. They provide the 
necessary flexibility to model failure distributions of components with multiple failure 
models. The analysis of the mixture models under Bayesian framework has received 

sizable attention in the recent years. However, the Bayesian estimation of the mixture 
models under doubly censored samples has not yet been introduced in the literature. The 
main objective of this paper is to discuss the Bayes estimation of the inverse Weibull 
mixture distributions under doubly censoring. Different priors and loss functions were 
assumed for the posterior estimation. The performance of the different estimators has been 
compared in terms of posterior risks. 
 
Keywords: Inverse transformation method, mixture model, doubly censoring, loss 

functions, Bayes estimator 

 

Introduction 

In survival analysis, data are subject to censoring. The most common type of 

censoring is right censoring, in which the survival time is larger than the observed 

right censoring time. In some cases, however, data are subject to left as well as right 

censoring. When left censoring occurs, the only information available to an analyst 

is that the survival time is less than or equal to the observed left censoring time. A 

more complex censoring scheme is found when both initial and final times are 

interval-censored. This situation is referred as double censoring, and the data with 

both right and left censored observations are known as doubly censored data. 

http://dx.doi.org/10.22237/jmasm/1478002740
mailto:sindhuqau@gmail.com
mailto:navidferoz@gmail.com
mailto:aslamsdqu@yahoo.com
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Analysis of doubly censored data for simple (single) distribution has been 

studied by many authors. Fernandez (2000) investigated maximum likelihood 

prediction based on type-II doubly censored exponential data. Fernandez (2006) 

has discussed Bayesian estimation based on trimmed samples from Pareto 

populations. Khan, Provost, and Singh (2010) studied predictive inference from a 

two-parameter Rayleigh life model given a doubly censored sample. Kim and Song 

(2010) have discussed Bayesian estimation of the parameters of the generalized 

exponential distribution from doubly censored samples. Khan, Albatineh, 

Alshahrani, Jenkins, and Ahmed (2011) studied sensitivity analysis of predictive 

modeling for responses from the three-parameter Weibull model with a follow-up 

doubly censored sample of cancer patients. Pak, Parham, and Saraj (2013) proposed 

the estimation of Rayleigh scale parameter under doubly type-II censoring from 

imprecise data. 

A mixture distribution is signified as a convex fusion of other probability 

distributions. It can be used to model a statistical population with subpopulations, 

where the constituents of mixture probability densities are the densities of the 

subpopulations. Mixture distribution may appropriately be used for certain data sets 

where the subsets of the whole data set possess different properties that can best be 

modeled separately. They can be more mathematically manageable, because the 

individual mixture components are dealt with more ease than the overall mixture 

density. The families of mixture distributions have a wider range of applications in 

different fields such as fisheries, agriculture, botany, economics, medicine, 

psychology, electrophoresis, finance, communication theory, geology, and zoology. 

Soliman (2006) derived estimators for the finite mixture of Rayleigh model 

based on progressively censored data. Sultan, Ismail, and Al-Moisheer (2007) have 

discussed some properties of the mixture of two inverse Weibull distributions. 

Saleem and Aslam (2008) presented a comparison of the Maximum Likelihood 

(ML) estimates with the Bayes estimates assuming the Uniform and the Jeffreys 

priors for the parameters of the Rayleigh mixture. Kundu and Howalder (2010) 

considered the Bayesian inference and prediction of the inverse Weibull 

distribution for type-II censored data. Saleem, Aslam, and Economou (2010) 

considered the Bayesian analysis of the mixture of Power function distribution 

using the complete and the censored sample. Shi and Yan (2010) studied the case 

of the two parameter exponential distribution under type-I censoring to get 

empirical Bayes estimates. Eluebaly and Bouguila (2011) have presented a 

Bayesian approach to analyze finite generalized Gaussian mixture models which 

incorporate several standard mixtures, widely used in signal and image processing 

applications, such as Laplace and Gaussian. Sultan and Al-Moisheer (2012) 
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developed approximate Bayes estimation of the parameters and reliability function 

of mixture of two inverse Weibull distributions under type-II censoring. 

Model and Likelihood Function 

If the probability density function (pdf) of the Weibull distribution is 

 

    1
f , , expi i

i ij i i ij i ijy y y
    

   

 

with yij > 0, i = 1, 2, and j = 1, 2,…, ni, then the random variable xij = 1/yij has the 

inverse Weibull distribution with pdf 

 

      1
f , , expi i

i ij i i ij i ijx x x
    

  
    (1) 

 

with xij > 0, i = 1, 2, and j = 1, 2,…, ni, and where θi > 0 and τi > 0 are shape and 

scale parameters, respectively. 

The cumulative distribution function (cdf) of the distribution is 

 

    F , , exp , , , 0, 1,2, 1,2, ,i

i ij i ij ij i i ix x x i j n
    

       (2) 

 

A density function for the mixture of two components densities with mixing 

weights (p1, 1 – p1) is given by 

 

        1 1 1 2 1f f 1 f , 0 1x p x p x p       (3) 

 

The cdf for the mixture model is: 

 

        1 1 1 2F F 1 Fx p x p x     (4) 

 

Consider a random sample of size n from the inverse Weibull distribution, 

and let xr, xr+1,…, xs be the ordered observations that can only be observed. The 

remaining r – 1 smallest observations and the n – s largest observations have been 

assumed to be censored. Now based on causes of failure, the failed items are 

assumed to come either from subpopulation 1 or from subpopulation 2; so the 

1 11 1,r sx x  and 
2 22 2,r sx x  failed items come from first and second subpopulations, 

respectively. 
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The rest of the observations which are less than xr and greater than xs have 

been assumed to be censored from each component, where  
1 21, 2,max ,s s sx x x  

and  
1 21, 2,min ,r r rx x x . Therefore, m1 = s1 – r1 +1 and m2 = s2 – r2 +1 number of 

failed items can be observed from first and second subpopulation, respectively. The 

remaining n – (s – r + 2) items are assumed to be censored observations, and 

s – r + 2 are the uncensored items, where r = r1 + r2, s = s1 + s2, and m = m1 + m2. 

Then the likelihood function for the type-II doubly censored sample 

    
1 1 2 21 1 2 2, , , , ,r s r sx x x xx , assuming the causes of the failure of the left 

censored items are identified, can be written as 

 

 

            

       

1 2

1 2

1 2

1 2

1 1 2

1 2 1 1 1 2 1 2

1 1 1 1 2 21 2

L , , | F , F , 1 F , ,

f , 1 f ,

r r n

sr r

s s

i i

i r i r

p x x x

p x p x

     

 

  

 

 

    
   
    
 

x

  (5) 

 

 

         

      

 
 

  

   
 

  

1 2
1 2

1 2

1 2

1 2

1

1 1

1

2

2 2

2

1 1

1 2 1 1 2

2

1 1 2 2

1

1 1 1 11 1

1

1 2 2 22 2

L , , | exp exp

1 exp exp

exp

1 exp

r r

r r

n

r r

s

i i

i r

s

i i

i r

p x x

p x p x

p x x

p x x

 

 

 

 

   

 

  

  

 
 


 

  



  



  

    

  
  
  

  
   
  





x

  (6) 

 

Assuming the shape parameter to be known, the likelihood function (6) reduces to 
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where 
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Bayes Estimation 

The simple estimation of the scale parameter often pre-assumes the knowhow of 

the shape parameter (for more detail, see Panaitescu, George, Cozma, & Popa, 

2010; Zanakis, 1979; Kundu & Howaldar, 2010; Shi & Yan, 2010; etc.). For the 

Bayesian estimation, let us assume that the parameters τi, i = 1, 2, and p1 are 

independent random variables, and then consider the following priors for different 

parameters. 

Bayesian Estimation using Conjugate Prior 

The prior for the rate parameters τi for i = 1, 2, is assumed to be the gamma 

distribution, with the hyperparameters ai and bi given by 

 

  
 

 1
f exp , , 0

i
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i
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b a b
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  (8) 

 

The prior for p1 is the beta distribution, whose density is given by 
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  (9) 

 

From equations (8)-(9), the following joint prior density of the vector 

Θ = (τ1, τ2, p1) is proposed: 

 

       11
11 1

1 1 1 1 1g exp 1 , 0 1, , , , 0i
da c

i i i i ib p p p a b c d 
      Θ   (10) 

 

By multiplying equation (10) and equation (7), the joint posterior density for the 

vector Θ, given the data, becomes 
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and ξi(xij) = γi(xij) + bi for i = 1, 2. Marginal distributions of τi, i = 1, 2, and p1 can 

be obtained by integrating the nuisance parameters. 

Bayesian Estimation using Inverse Levy Prior 

The prior for the rate parameters τi for i = 1, 2, is assumed to be the inverse Levy 

distribution, with hyperparameter vi, given by 
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2 2i
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  (12) 

 

The prior for p1 is the beta distribution, whose density is given by 
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  (13) 

 

From equation (12)-(13), we propose the following joint prior density of the vector 

Θ = (τ1, τ2, p1): 

 

     22
111/2
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i ip p p c d

 
 

  
     

 
Θ   (14) 

 

By multiplying equation (14) with equation (7), the joint posterior density for the 

vector Θ, given the data, becomes 
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and ψi(xij) = γi(xij) + νi/2. Marginal distributions of τi, i = 1, 2, and p1 can be 

obtained by integrating the nuisance parameters. 

Bayes Estimation of the Vector of Parameters Θ 

The Bayesian point estimation is connected to a loss function in general, signifying 

the loss is induced when the estimate ̂  differs from the true parameter θ. Because 

there is no specific rule that helps to identify the appropriate loss function to be 

used, we can use the K-loss function (KLF), which is particularized as 

 

  
 

2
ˆ

ˆl ,
ˆ

 
 




   

 

is proposed by Wasan (1970), and is well-fitted for a measure of inaccuracy for an 

estimator of a scale parameter of a distribution defined on  0,   . The Bayes 

estimator and posterior risk under KLF are     
1 2

1ˆ E | E |  


 x x  and 

      1ˆ 2 E | E | 1     x x , respectively. In Bayesian analysis, a widely used 

loss function is the quadratic loss function given by    
2

ˆ ˆl , w     ; if w = 1, 

it reduces to the squared error loss function (SELF) and, for w = θ–2, it becomes 

   
2

2ˆ ˆl ,      . This is known as the minimum expected loss function 
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(MELF),  and is introduced by Tummala and Sathe (1978) in their study. The Bayes 

estimator and posterior risk under MELF are    1 2ˆ E | E |    x x  and 

      
2

1 2ˆ 1 E | E |      x x , respectively. 

The respective marginal distribution of each parameter is used to derive the 

Bayes estimators and posterior risks of τ1, τ2, and p1 under KLF and MELF. The 

Bayes estimators and their posterior risks of the parameters τ1, τ2, and p1 for the 

conjugate (gamma and beta) priors using the KLF and MELF functions are given 

in the Appendix. Thus, expressions for Bayes estimators and their posterior risks 

under the inverse Levy can be obtained with little alteration. 

Elicitation 

The elicitation of opinion is a crucial step. It helps to make it easy for us to 

understand what the experts believe in, and what their opinions are. In statistical 

inference, the characteristics of a certain predictive distribution proposed by an 

expert determine the hyperparameters of a prior distribution. In this article, we 

focused on a method of elicitation based on prior predictive distribution. The 

elicitation of hyperparameters from the prior p(λ) is a difficult task. The prior 

predictive distribution is used for the elicitation of the hyperparameters, which are 

compared with the experts' judgment about this distribution and then the 

hyperparameters are chosen in such a way so as to make the judgment agree as 

closely as possible with the given distribution. Readers desiring more detail may 

refer to: Grimshaw, Collings, Larsen, and Hurt (2001), O’Hagan et al. (2006), 

Jenkinson (2005) and Leon, Vazquez-Polo, and Gonzalez (2003). According to 

Aslam (2003), the preferred method of elicitation is to compare the prior predictive 

distribution with experts’ assessment about this distribution, and then to choose the 

hyperparameters that make the assessment agree closely with the member of the 

family. The prior predictive distributions under all the priors are derived using the 

following formula: 

 

      p p | py y d 
Θ

Θ Θ Θ   

Elicitation under Gamma Distribution 

The prior predictive distribution using gamma prior is 
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  (16) 

 

Assume (θ1, θ2) = (1, 1) for convenience in calculations. For the elicitation of the 

six hyperparameters, six different intervals are considered. From equation (16), the 

experts’ probabilities/assessments are supposed to be 0.10 for each case. The six 

integrals for equation (16) are considered with the following limits of the values of 

random variable Y: (0, 10), (10, 20), (20, 30), (30, 40), (40, 50), and (50, 60) 

respectively. For the elicitation of hyperparameters, a1, a2, b1, b2, c1, and d1, these 

six integrals are solved simultaneously through computer program developed in 

SAS package using the command of PROC SYSLIN. Thus the values of 

hyperparameters obtained by applying this methodology are: a1 = 4.982587, 

a2 = 3.356211, b1 = 0.987542, b2 = 0.46523, c1 = 1.45987, and d1 = 0.05690. 

Elicitation under Inverse Levy Prior 
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Now, to elicit four hyperparameters, consider the four integrals. The expert 

probabilities are assumed to 0.15 for each integral with the following limits of the 

values of random variable Y: (0, 15), (15, 30), (30, 45), and (45, 60). Using a 

similar kind of program as discussed above, we have the following values of the 

hyperparameters: ν1 = 0.062138, ν2 = 0.19136, c2 = 0.895777, and d2 = 0.63889. 

Simulation Study and Comparisons 

A simulation study was conducted to compare the performance of the discussed 

estimators on the basis of generated samples from the inverse Weibull mixture 

distribution using doubly censored data. Assume (θ1, θ2) = (1, 1) for convenience 

in calculations. Take random samples of sizes n = 20, 40, and 80 from the two 

component mixture of inverse Weibull distributions with following choice of 

parametric values: (τ1, τ2) ∈ {(0.1, 0.15), (10, 15), (0.1, 15), (10, 0.15)}, p1 = 0.45 

and 0.6. To develop a mixture data, we adopt the probabilistic mixing model with 
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probability p1 and (1 – p1). A uniform number u is generated n times and, if u < p1, 

the observation is taken randomly from F1 (the inverse Weibull distribution with 

parameter τ1), and is otherwise taken from F2 (the inverse Weibull with parameter 

τ2). Hence, the parameters to be estimated are known to be (τ1, τ2) and p1. The choice 

of the censoring time is made in such a way that the censoring rate in the resultant 

sample is to be approximately 20%. The simulated data sets have been obtained 

using following steps: 

 

Step 1: Draw samples of size n from the mixture model 

Step 2: Generate a uniform random number u for each observation 

Step 3: If u ≤ π, take the observation from first subpopulation; otherwise, 

take the observation from the second subpopulation 

Step 4: Determine the test termination points on left and right, that is, 

determine the values of xr and xs 

Step 5: The observations which are less than xr and greater than xs have been 

considered to be censored from each component 

Step 6: Use the remaining observations from each component for the 

analysis 

 

To avoid an extreme sample, simulate 10,000 data sets, each of size n. The 

Bayes estimates and posterior risks (in parenthesis) are computed using 

Mathematica 8.0. The average of these estimates and corresponding risks are 

reported in Tables 1-8. The abbreviations used in the tables are: BEs: Bayes 

estimators; PRs: Posterior risks; GP: Gamma prior; ILP: Inverse Levy prior. 

The simulation study has revealed some interesting properties of the Bayes 

estimates. It is worth mentioning that in each case the posterior risks of estimates 

of lifetime parameters are decreasing as the sample size increases. The posterior 

risks of the estimates of τ1, τ2 have been assessed to be quite large when the values 

of the parameters are large, and entirely small for rather smaller values of τ1, τ2. 

Another interesting point regarding the posterior risks of the estimates of 

parameters τ1, τ2 is that by increasing (decreasing) the proportion of the component 

in mixture reduces (increases) the posterior risk of the concerned τ parameter’s 

estimate. 
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Table 1. BEs and their PRs under GP for (τ1, τ2, p1) = (0.10, 0.15, 0.45) and 

(0.10, 0.15, 0.60) 
 

 K-Loss Function  

n τ̂
1
 τ̂

2
 p̂

1
 τ̂

1
 τ̂

2
 p̂

1
 

20 0.153042 0.217287 0.488886 0.149162 0.243873 0.652455 
 (0.161568) (0.166297) (0.118884) (0.127883) (0.227595) (0.060474) 

40 0.130631 0.181089 0.461140 0.126142 0.188513 0.635182 
 (0.101929) (0.091817) (0.069768) (0.076355) (0.131665) (0.034437) 

80 0.113720 0.171546 0.449263 0.115099 0.182363 0.627186 

  (0.074710) (0.063162) (0.049079) (0.054635) (0.092332) (0.024224) 

       

 Minimum Expected Loss Function  

n τ̂
1
 τ̂

2
 p̂

1
 τ̂

1
 τ̂

2
 p̂

1
 

20 0.152631 0.194781 0.445046 0.136376 0.200732 0.621717 
 (0.080798) (0.083651) (0.066112) (0.064041) (0.114609) (0.033749) 

40 0.123116 0.167329 0.447311 0.118357 0.168123 0.618551 
 (0.051022) (0.046079) (0.036942) (0.038252) (0.066219) (0.018267) 

80 0.113790 0.161134 0.447937 0.113935 0.162226 0.610625 
 (0.037331) (0.031706) (0.025748) (0.027277) (0.046496) (0.012683) 

 
 
Table 2. BEs and their PRs under GP for (τ1, τ2, p1) = (10, 15, 0.45) and (10, 15, 0.60) 

 

 K-Loss Function  

n 
τ̂

1
 τ̂

2
 p̂

1
 τ̂

1
 τ̂

2
 p̂

1
 

20 7.2322300 11.9032000 0.4851680 7.8576700 10.4070000 0.6564870 
 (0.1628030) (0.165620) (0.1206010) (0.1274380) (0.2306880) (0.0594520) 

40 8.0121000 13.7528000 0.4556190 8.7621200 12.0339000 0.6369690 
 (0.1029490) (0.0908861) (0.0709860) (0.0763040) (0.1328160) (0.0342290) 

80 8.4481100 14.0172700 0.4465120 8.7865800 12.9782000 0.6284630 

  (0.0750960) (0.0628280) (0.0493037) (0.0546180) (0.0929030) (0.0217830) 

       

 Minimum Expected Loss Function  

n τ̂
1
 τ̂

2
 p̂

1
 τ̂

1
 τ̂

2
 p̂

1
 

20 6.2983400 10.8209000 0.4383870 7.0637800 8.8599400 0.6246390 
 (0.0817250) (0.0830211) (0.0675390) (0.0639590) (0.1158660) (0.0334390) 

40 7.3851200 2.3639000 0.4397130 8.2515200 11.2008100 0.6191910 
 (0.0514960) (0.0456430) (0.0375050) (0.0382830) (0.0665690) (0.0182460) 

80 7.7764800 13.1101000 0.4473950 8.6210200 12.9293400 0.6068140 
 (0.0378730) (0.0316780) (0.0327710) (0.0272560) (0.0466960) (0.0129840) 
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Table 3. BEs and their PRs under GP for (τ1, τ2, p1) = (0.10, 15, 0.45) and (0.10, 15, 0.60) 

 

 K-Loss Function  

n τ̂
1
 τ̂

2
 p̂

1
 τ̂

1
 τ̂

2
 p̂

1
 

20 0.1533410 12.5483000 0.4483640 0.1397540 11.7884000 0.5905870 
 (0.1669040) (0.1504220) (0.1273990) (0.1334790) (0.1951910) (0.0685210) 

40 0.1193940 14.5209000 0.4489700 0.1107460 13.6061000 0.5978991 
 (0.1053590) (0.0823310) (0.0740830) (0.0800540) (0.1096810) (0.0388500) 

80 0.1114640 15.0405000 0.4511250 0.1057960 14.6865000 0.5986610 

  (0.0771020) (0.0565920) (0.0432290) (0.0580370) (0.0777460) (0.0048650) 

       

 Minimum Expected Loss Function  

n τ̂
1
 τ̂

2
 p̂

1
 τ̂

1
 τ̂

2
 p̂

1
 

20 0.140090 11.354900 0.404051 0.133802 10.261200 0.567283 
 (0.083452) (0.075235) (0.070580) (0.066740) (0.097732) (0.037961) 

40 0.112806 13.171700 0.419673 0.109543 12.681400 0.567551 
 (0.052679) (0.041176) (0.039065) (0.040027) (0.054874) (0.020488) 

80 0.108045 14.175500 0.429351 0.103915 13.796700 0.587920 
 (0.038552) (0.028369) (0.031335) (0.028531) (0.038394) (0.022886) 

 
 
Table 4. BEs and their PRs under GP for (τ1, τ2, p1) = (10, 0.15, 0.45) and (10, 0.15, 0.60) 

 

 K-Loss Function  

n τ̂
1
 τ̂

2
 p̂

1
 τ̂

1
 τ̂

2
 p̂

1
 

20 7.789440 0.206080 0.544287 8.052190 0.224464 0.695652 
 (0.144196) (0.176093) (0.086478) (0.118203) (0.239330) (0.044531) 

40 8.918560 0.166512 0.522777 8.909610 0.175136 0.681657 
 (0.087638) (0.098245) (0.049039) (0.069216) (0.139309) (0.024854) 

80 9.274560 0.155907 0.515036 9.687610 15.652800 0.652686 

  (0.062971) (0.068130) (0.033541) (0.049070) (0.098428) (0.001594) 

       

 Minimum Expected Loss Function  

n τ̂
1
 τ̂

2
 p̂

1
 τ̂

1
 τ̂

2
 p̂

1
 

20 7.007170 0.175346 0.507474 7.329860 0.187362 0.671009 
 (0.072105) (0.088049) (0.047976) (0.059115) (0.119666) (0.024700) 

40 8.392620 0.148824 0.503235 8.052989 0.155773 0.668620 
 (0.043817) (0.049123) (0.025863) (0.034608) (0.069655) (0.013108) 

80 8.850450 0.151859 0.495015 9.424450 0.151359 0.661397 
 (0.031496) (0.034063) (0.017918) (0.024634) (0.049023) (0.024360) 
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Table 5. BEs and their PRs under ILP for (τ1, τ2, p1) = (0.10, 0.15, 0.45) and 

(0.10, 0.15, 0.60) 
 

 K-Loss Function  

n τ̂
1
 τ̂

2
 p̂

1
 τ̂

1
 τ̂

2
 p̂

1
 

20 0.107446 0.174887 0.454348  0.108630 0.172018 0.620560 
 (0.256954) (0.215458) (0.136335) (0.180738) (0.336696) (0.069258) 

40 0.104352 0.164206 0.441143  0.104008 0.154266 0.618750 
 (0.133538) (0.104548) (0.075409) (0.133544) (0.104585) (0.036939) 

80 0.098973 0.158185 0.436433  0.102810 0.151531 0.617152 

  (0.090341) (0.068909) (0.045525) (0.062284) (0.106620) (0.025056) 

       

 Minimum Expected Loss Function  

n τ̂
1
 τ̂

2
 p̂

1
 τ̂

1
 τ̂

2
 p̂

1
 

20 0.092775 0.147587 0.407706 0.097211 0.134592 0.586746 
 (0.128863) (0.108963) (0.075846) (0.090791) (0.171009) (0.038768) 

40 0.096182 0.147725 0.416953 0.099533 0.142006 0.600375 
 (0.066809) (0.052609) (0.039818) (0.046432) (0.081512) (0.019661) 

80 0.096554 0.149812 0.429139 0.102130 0.146210 0.600153 
 (0.045175) (0.034586) (0.027256) (0.031126) (0.053686) (0.014347) 

 
 
Table 6. BEs and their PRs under ILP for (τ1, τ2, p1) = (10, 15, 0.45) and (10, 15, 0.60) 

 

 K-Loss Function  

n 
τ̂

1
 τ̂

2
 p̂

1
 τ̂

1
 τ̂

2
 p̂

1
 

20 9.985290 14.431300 0.456402 10.696500 13.981300 0.625004 
 (0.255990) (0.216752) (0.135572) (0.179341) (0.341694) (0.068025) 

40 10.643800 14.798400 0.443693 10.480710 14.656400 0.620334 
 (0.132816) (0.105192) (0.074823) (0.092251) (0.163078) (0.036711) 

80 10.122700 14.845100 0.453762 10.174900 14.854300 0.617783 

  (0.090007) (0.069232) (0.051825) (0.062220) (0.106884) (0.025106) 

       

 Minimum Expected Loss Function  

n τ̂
1
 τ̂

2
 p̂

1
 τ̂

1
 τ̂

2
 p̂

1
 

20 9.277410 11.474100 0.412225 9.321530 9.642290 0.593112 
 (0.127923) (0.110266) (0.074962) (0.089785) (0.173529) (0.037767) 

40 9.637820 14.223600 0.417554 9.502120 12.713300 0.601931 
 (0.066774) (0.052724) (0.039748) (0.046313) (0.081862) (0.019531) 

80 9.729790 14.560200 0.428610 9.999100 13.616000 0.601586 
 (0.045118) (0.034705) (0.027784) (0.031143) (0.053736) (0.013452) 
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Table 7. BEs and their PRs under ILP for (τ1, τ2, p1) = (0.10, 15, 0.45) and 

(0.10, 15, 0.60) 
 

 K-Loss Function  

n τ̂
1
 τ̂

2
 p̂

1
 τ̂

1
 τ̂

2
 p̂

1
 

20 0.0995060 15.8176000 0.4191220 0.1019610 16.6349000 0.5696700 
 (0.2666630) (0.1911270) (0.1435660) (0.1904710) (0.2689990) (0.0772190) 

40 0.0957830 15.7349000 0.4315360 0.0972550 15.9842000 0.5698800 
 (0.1379300) (0.0932430) (0.0788790) (0.0975590) (0.1298730) (0.0413270) 

80 0.0925177 15.3503000 0.4450500 0.0931070 15.5486000 0.5765170 

  (0.0929980) (0.0616730) (0.0448390) (0.0655840) (0.0856100) (0.0268270) 

       

 Minimum Expected Loss Function  

n τ̂
1
 τ̂

2
 p̂

1
 τ̂

1
 τ̂

2
 p̂

1
 

20 0.078252 14.237100 0.372592 0.089637 12.991000 0.535129 
 (0.133332) (0.095557) (0.079529) (0.095236) (0.134672) (0.042776) 

40 0.084029 14.501970 0.380824 0.090933 14.232200 0.545625 
 (0.068965) (0.046618) (0.041602) (0.048779) (0.064944) (0.021795) 

80 0.086764 14.687900 0.403030 0.091828 15.480600 0.548745 
 (0.046508) (0.030839) (0.030867) (0.032782) (0.042834) (0.019410) 

 
 
Table 8. BEs and their PRs under ILP for (τ1, τ2, p1) = (10, 0.15, 0.45) and 

(10, 0.15, 0.60) 
 

 K-Loss Function  

n τ̂
1
 τ̂

2
 p̂

1
 τ̂

1
 τ̂

2
 p̂

1
 

20 11.639900 0.143830 0.516704 10.857400 0.143796 0.667442 
 (0.212306) (0.235279) (0.096294) (0.160525) (0.363626) (0.050583) 

40 11.407900 0.144247 0.508186 10.697180 0.148710 0.665794 
 (0.108873) (0.114281) (0.051895) (0.081860) (0.173910) (0.026553) 

80 10.967200 0.143250 0.501879 10.568890 0.149423 0.636676 

  (0.073551) (0.075455) (0.014772) (0.054934) (0.114285) (0.017568) 

       

 Minimum Expected Loss Function  

n τ̂
1
 τ̂

2
 p̂

1
 τ̂

1
 τ̂

2
 p̂

1
 

20 10.949000 0.122689 0.477731 9.730160 0.112718 0.640643 
 (0.106221) (0.117641) (0.053440) (0.080295) (0.181814) (0.028050) 

40 1.033170 0.123964 0.468809 10.421800 0.121727 0.653162 
 (0.054432) (0.057141) (0.027368) (0.040932) (0.086955) (0.014005) 

80 10.185800 0.132493 0.450288 10.186800 0.125570 0.650629 
 (0.036673) (0.037766) (0.027487) (2.748000) (0.057149) (0.011849) 
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It was observed that for the relatively smaller value of τ, i.e. (0.10, 0.15), the 

performance of the minimum expected loss function and the gamma prior is better 

than their counterparts, as the amounts of posterior risks are smaller than those in 

case of their counterparts. However, the inverse Levy prior produces some closer 

estimates to the true value of parameters. Estimates of mixing proportion are found 

to be underestimated using inverse Levy prior when p1 = 0.45, but they are pretty 

good under gamma prior. When we consider the estimation of comparatively larger 

value of τ, i.e. (10, 15), again under estimation is observed of the estimates of 

parameters under both priors and loss functions. But the extent of underestimation 

is higher under the minimum expected loss function using gamma prior. 

Nonetheless, this underestimation is due to the random procedure and is tolerable. 

Further, this problem can be faced off by using lager sample sizes. As far as 

the efficiency of the prior is concerned, gamma is found to be the efficient than 

inverse Levy prior. Moreover, on assessing the behavior of estimates, in the case of 

the extremely different value of the parameters (τ1 < τ2 and τ1 > τ2) = (0.10, 15 and 

10, 0.15), i.e. one is small and other is hundred fold large, it is noticed that the 

parameters are once again underestimated, and this underestimation is higher at 

every point using the minimum expected loss function under both priors. However, 

the use of the K-loss function has exhibited pretty good estimates with few 

exceptions (in terms of convergence). In general, the estimates under gamma prior 

using the minimum expected loss function are the best, as the amounts of posterior 

risks associated with these estimates are the least in almost all cases. 

Real Data Analysis 

Real data sets are considered to illustrate the methodology discussed in previous 

sections. In order to show the usefulness of the proposed mixture model, consider 

survival times (in days) of guinea pigs, injected with different doses of tubercle 

bacilli, in Table 9. This data set was discussed by Kundu and Howlader (2010). 

Singh, Singh, and Sharma (2013) also analyzed this data set. The regimen number 

is the common logarithm of the number of bacillary units in 0.5 mL of challenge 

solution; e.g., regimen 6.6 corresponds to 4.0 *106 bacillary units per 0.5 mL. 

Corresponding to regimen 6.6, there are 72 observations listed below. Further, the 

Kolmogorov-Smirnov and chi-square tests are used to see if the data follow the 

inverse Weibull distribution. These tests say that the data follow the inverse 

Weibull distribution at 5% level of significance with p-values 0.1361 and 0.1290, 

respectively. We have assumed (θ1, θ2) = (1, 1) for convenience in calculations. 
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Table 9. Survival times (in days) of guinea pigs injected with different doses of tubercle 

bacilli 
 

12 15 22 24 24 32 32 33 34 38 38 43 44 48 52 
53 54 54 55 56 57 58 58 59 60 60 60 60 61 62 
63 65 65 67 68 70 70 72 73 75 76 76 81 83 84 
85 87 91 95 96 98 99 109 110 121 127 129 131 143 146 

146 175 211 233 99 258 258 263 297 341 341 376    

 
 

Consider the case when the data are doubly Type II censored. Data are 

randomly grouped into two sets when p1 = 0.45. It is assumed that we observe 33 

data points belonging to population I and 39 data points belonging to population II. 

To implement censored samplings, the 
1 11 1, ,r sx x  and 

2 22 2, ,r sx x  failed items 

come from the first and second subpopulations, respectively. The rest of the 

observations, which are less than xr and greater than xs, have been assumed to be 

censored from each component. Here, m1 = s1 – r1 + 1 and m2 = s2 – r2 + 1 numbers 

of failed items can be observed from the first and second subpopulations, 

respectively. The remaining n – (s – r + 2) items are assumed to be censored 

observations, and s – r + 2 are the uncensored items, where r = r1 + r2, s = s1 + s2, 

and m = m1 + m2. The detail of the censored mixture data can be found in Table 10. 

The following characteristics are extracted from the censored data for the 

analysis of the mixture model: 
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Similar methodology was employed when 

 

 

   

1 1 2 2

1 2

1 2

1 2

1 1 2 1 2 1 2

1 2

1 2

0.60, 72, 8, 5, 3, 64, 39, 25, 44, 28

0.5, 33, 211, 32, 175

4.16450, 3.21392

r s r s

s s

i i
i r i r

p n r r r s s s n n

x x x x

x x
 

 

 

 

         

     

  

  

 
 
 
 



TWO-COMPONENT MIXTURE OF INVERSE WEIBULL DISTRIBUTIONS  

338 

Table 10. Doubly-censored mixture real life data 

 

Population I  Population II 

61 12 24 60 24 32 65  15 131 87 143 91 95 175 

34 68 38 43 67 72 48  110 121 127 297 341 60 62 

54 73 76 55 81 83 58  65 63 70 96 211 98 258 

84 233 341 263 146 175 129  258 70 75 76 59 60 57 

146 109 99 35 376    56 58 53 54 44 52 43 
        38 33 32 22    

 
 
Table11. BEs and their PRs under minimum expected loss function and K-loss function 

for the real data set 
 

Priors K-loss function  Minimum expected loss function 

p1 = 0.45 τ̂
1
 τ̂

2
 p̂

1
   τ̂

1
 τ̂

2
 p̂

1
 

Gamma 7.023900 7.914180 0.453725  6.699360 7.600860 0.439455 

 (0.062637) (0.053542) (0.041482)  (0.031384) (0.026819) (0.021459) 

Inverse 
Levy 

7.613170 7.918130 0.446087  7.206180 7.583200 0.431593 

(0.072641) (0.058103) (0.042864)  (0.036424) (0.029113) (0.022179) 

        

p1 = 0.60 τ̂
1
 τ̂

2
 p̂

1
  τ̂

1
 τ̂

2
 p̂

1
 

Gamma 7.400650 6.984160 0.610524  7.142880 6.603080 0.600336 

 (0.047031) (0.074187) (0.021878)  (0.023548) (0.037188) (0.011324) 

Inverse 
Levy 

7.923470 6.899140 0.602689  7.616030 6.478070 0.592309 

(0.052462) (0.083158) (0.022581)   (0.026276) (0.041710) (0.011689) 

 
 

The results in Table 11 indicate that the Bayes estimates under gamma prior 

are better than those under inverse levy prior under both loss functions. Similarly, 

in the comparison of the loss functions, it has been assessed that the performance 

of the minimum expected loss function is better than the K-loss function. The larger 

values of the mixing parameter (p1) impose a positive impact on the performance 

of the estimation of the first component of the mixture. Hence the analysis of real-

life data endorsed the findings of the simulation study, suggesting the preference of 

gamma prior along with minimum expected loss function. 
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Graphical Representation of Posterior Risks under Different Loss 

Functions, Various Priors 

Risks of the estimators are empirically evaluated based on a Monte-Carlo 

simulation study of samples. A number of values of unknown parameters are 

considered. Sample size is varied to observe the effect of small and large samples 

on the estimators. Different combinations of parameters are considered in studying 

the change in the estimators and their risks. The results are summarized in Figures 

1-4. The risk of the estimators will be a function of sample size, population 

parameters, and hyperparameters of the prior distribution. After an extensive study 

of the results, the conclusions are drawn regarding the behavior of the estimators, 

which are summarized below. (Due to space restrictions, all results are not shown 

in the graphs.) As sample size increases, the risk of all the estimators decrease, as 

indicated in Figures 1-4. The effect of variation of parameters on the risks of the 

estimator has also been studied. The risk of the estimators increases when the value 

of parameters increases. 
 
 

 
 
Figure 1. Posterior risks of τ1 for (τ1,τ2, p1) = (0.10, 0.15, 0.45) 
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Figure 2. Posterior risks of τ2 for (τ1,τ2, p1) = (0.10, 0.15, 0.45) 

 

 
 

 
 
Figure 3. Posterior risks of τ1 for (τ1,τ2, p1) = (10, 15, 0.45) 
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Figure 4. Posterior risks of τ2 for (τ1,τ2, p1) = (10, 15, 0.45) 

 

Conclusion 

The Bayesian inference of inverse Weibull mixture distribution based on doubly 

type-II censored data was considered. The prior belief of the model is represented 

by the independent gamma, beta priors and inverse Levy, beta priors on the scale, 

and mixing proportion parameters. Numerical results of the simulation study 

presented in Tables 1-8 exposed salient properties of the proposed Bayes estimators. 

The parameters of the mixture distributions have been over/under estimated in 

different cases. In general, the larger values of the parameters have been 

overestimated and smaller values of the parameters have been underestimated in 

the majority of cases. However, it is nice to observe that the estimated values 

converge to the true values and the amounts of the posterior risks tend to decrease 

by increasing the sample size. 

This indicates that the proposed estimators are consistent. The smaller (larger) 

values of the parameter representing one component of the mixture impose a 

positive (negative) impact on the estimation of the parameter representing the other 

component of the mixture distribution. The larger values of the mixing parameter 

(p1) impose a positive impact on the performance of the estimation of the first 

component of the mixture. This may be due to the fact that the lager values of the 

mixing parameter incorporate more values for the analysis of the first component. 
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Bayes estimators performed better under the minimum expected loss function than 

under the K-loss function under both priors. In addition, the performance of the 

estimates under gamma prior is better than those under inverse levy prior using both 

loss functions. However, in the case of gamma prior, the estimates under both loss 

functions are comparatively more underestimated, though this problem is less 

severe in the larger samples. Therefore, on the basis of the above discussion, we 

can recommend the use of the gamma prior under minimum expected loss function 

for the analysis of the inverse Weibull mixture distribution under the Bayesian 

framework. 

However, when such a mixture model was used in real-life, the prior may be 

chosen as well as the loss function according to the need. In case of loss functions, 

if lower posterior risk is desired than in the present scenario, the minimum expected 

loss function should be given importance. If compromise on risk is affordable then 

one can easily select to use the K-loss function. Also, the informative gamma prior 

can easily be preferred over the other informative prior as shown by results. It may 

be mentioned here that, because of space restriction, only selected results are 

included and presented graphically. The findings of real life example are in 

accordance with the simulation study. The findings of the paper are useful for the 

analysts (from different fields) in dealing with the Bayesian analysis of the time to 

failure data when causes of the failure are more than one, and the data is doubly 

censored. 
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Appendix 

The Bayes estimators of τ1, τ2, and p1 under KLF, assuming gamma prior are: 
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The posterior risks of τ1, τ2, and p1 under KLF using gamma prior are: 
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The Bayes estimators of τ1, τ2, and p1 under MELF, assuming gamma prior are: 
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The posterior risks of τ1, τ2, and p1 under KLF using gamma prior are: 
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Generally, in empirical financial studies, the determination of the true conditional 
variance in GARCH modelling is largely subjective. In this paper, we investigate the 
consequences of choosing a wrong conditional variance specification. The methodology 
involves specifying a true conditional variance and then simulating data to conform to the 

true specification. The estimation is then carried out using the true specification and other 
plausible specification that are appealing to the researcher, using model and forecast 
evaluation criteria for assessing performance. The results show that GARCH model could 
serve as better alternative to other asymmetric volatility models. 
 
Keywords: Forecasts, GARCH, misspecification, specification 

 

Introduction 

Since the seminal articles of Engle (1982) and Bollerslev (1986), the class of 

Generalized Autoregressive Conditionally Heteroscedasticity (GARCH) models 

has been a key model in financial industries. Due to wide applications of this 

model in financial industries and related areas, Lee and Hansen (1994) referred to 

the model as the workhouse of the industry. Considered here is the 

misspecification of variants of GARCH models. The variants include the GARCH 

model of Bollerslev (1986), Exponential GARCH model of Nelson (1991), 

Glosten Jagannathan and Runkle-GARCH (GJR-GARCH) model of Glosten, 

Jagannathan and Runkle (1993) and Asymmetric Power ARCH (APARCH) 

model of Ding, Granger and Engle (1993). Using model and forecast evaluation 

http://dx.doi.org/10.22237/jmasm/1478002800
mailto:oe.olubusoye@ui.edu.ng
mailto:os.yaya@ui.edu.ng
mailto:daruu208075@yahoo.com
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criteria, both correctly specified and the misspecified model performances are 

judged. 

Specification of the form of GARCH model depends on the behavior and 

properties of the series. For example, there are asymmetric GARCH specifications 

which are preferred for the asymmetric series. Unlike Smooth Transition 

Autoregressive (STAR) model of Teräsvirta (1994) which allows selection of 

model between the Exponential STAR (ESTAR) and Logistic STAR (LSTAR) 

model based on the model specification tests, GARCH model is yet to develop 

such tests which selects among many alternatives. A particular GARCH model is 

often considered on the asset returns/residuals based on the properties of the series. 

The GARCH specification is a parametric model in which a particular structure is 

imposed at a time, and therefore, it is important to perform misspecification tests 

to check for the consequence of choosing a wrong model structure. Engle and Ng 

(1993) and Li and Mak (1994) proposed an adequacy test using the squared 

standardized error process. Recently, Lundbergh and Teräsvirta (2002) proposed 

tests for remaining ARCH in standardized errors, linearity and parameter 

constancy. None of the specification tests were designed to select or reject a 

particular GARCH specification. 

Misspecification of GARCH model may pose serious problem to forecast 

values hence it deserves to be investigated. Wang (2002) affirmed that spurious 

and inefficient inference is expected when pure GARCH models are misspecified, 

this as well may affect the Quasi Maximum Likelihood Estimates (QMLEs) of the 

misspecified model. The QMLE of a pure GARCH (1,1) model indicates that the 

ARCH parameter is small, GARCH parameter is close to unity and the sum of 

both parameters approaches unity as the sampling frequency increases (Engle & 

Bollerslev, 1986; Bollerslev & Engle, 1993; Baillie, Bollerslev, & Mikkelsen, 

1996; Ding & Granger, 1996; Andersen & Bollerslev, 1997 and Engle & Patton, 

2001). This fact is reflected in the Integrated GARCH (IGARCH) model of Engle 

and Bollerslev (1986). More recent paper by Jansen and Lange (2010) shows that 

in a GARCH (1,1) model, the estimates of 
1̂  and 1̂  tend to 0 and 1, respectively 

as the sampling frequency increases, which is an IGARCH effect. 

In a situation whereby the GARCH series is fitted to any other variants of 

the model, particularly those ones with asymmetric effect, do we still expect this 

IGARCH convergence? This paper therefore considers the misspecification of 

GARCH models using simulation approach. The model and forecast evaluation 

criteria are used to judge the alternative models. 
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Variants of GARCH model 

The (GARCH) model predicts the volatility in the residuals εt of the mean 

equation 

 

 
0 1 1t t ty y       (1) 

 

where yt is the time series or returns series under investigation, ϕ0 and ϕi are the 

constant and Autoregressive (AR) parameters of the model. In volatility 

modelling, autoregressive order is usually less than 3 and in some cases 

autoregression as well as constant may not be significant, which is the case of a 

pure GARCH process. The residuals of this model often violate normality 

assumption and are serially correlated. In that case, the non-normal residuals εt are 

modelled using variance equation. 

Engle (1982) proposed the first variance equation for predicting volatility in 

the asset returns/innovations εt, and this has been the origin of other volatility 

models in the literature. Bollerslev (1986) proposed using lags of the conditional 

volatility in the model specification. The GARCH (1,1) model, proposed in 

Bollerslev (1986) is, 

 

 2 2 2

1 1 1 1t t t          (2) 

 

where εt are the log-returns series of the financial asset. The residuals relates to 

the volatility as εt = σt zt with zt ≈ N(0, 1). The σt is the unconditional standard 

deviation expressed by the variance equation (GARCH model). The parameter is 

conditioned as w > 0, 
1 ≥ 0 and 

1 ≥ 0 in order to ensure positive definite 

variance. These 
1  and 

1 are the ARCH and GARCH parameters for the ARCH 

term 2

1t 
 and GARCH term 2

1t 
, respectively while the stationarity imposition on 

the GARCH (1,1) is that the sum of the ARCH and GARCH parameters should be 

less than unity, that is 
1 +

1 < 1. Then, combining the AR model in (1) with 

GARCH model in (2) gives AR (1)-GARCH (1,1) model. 

The Exponential GARCH (EGARCH) model is given in Nelson (1991). 

This model was developed based on the fact that GARCH (1,1) model of 

Bollerslev (1986) uses the magnitude of the innovations to predict future volatility 

but do not consider the effect of the positivity or negativity of the innovations on 

the volatility. The positive constraint imposed on the intercept ω often poses 

serious estimation problems. In that case, Nelson (1991) considered the 
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GARCH (1,1) model as symmetric type while the EGARCH (1,1) is asymmetric 

in the sense that it assumes different conditional volatility responses for either 

positive or negative innovations. The simplest EGARCH (1,1) specification is 

 

 
2 21 1

1 1 1 1

1 1

log logt t
t t

t t

 
     

 
 



 

 
     

 
  (3) 

 

This model can also be re-specified as, 

 

  2 2

1 1 1 1 1 1log logt t t tz z             (4) 

 

because εt = σt zt. Here, there is good news if εt-1 > 0 and bad news if εt-1 < 0 which 

have different effect on the conditional variance. The response of either good 

news or bad news on the conditional volatility is then measured by the 

asymmetric parameter, 
1 . 

The Asymmetric Power ARCH (APARCH) model is proposed in Ding et al. 

(1993) with power specification δ. The proposition was based on modelling 

standard deviation instead of the variance as in the case of GARCH and 

EGARCH models. This ideas was earlier considered in Taylor (1986) and 

Schwert (1989). The power parameter is estimated simultaneously with other 

parameters in the model. The specification of the APARCH (1,1) model is, 

 

  1 1 1 1 1logt t i t t

                (5) 

 

where δ > 0 and |γ1| ≤ 1. At δ = 2 and γ1 = 0, the APARCH (1,1) model reduces to 

GARCH (1,1) model. 

Estimation and Forecasts Evaluation 

Estimation of GARCH model is often carried out by numerical derivatives. 

Numerical derivatives are used in GARCH estimation since the model lacks 

closed form estimation (Xekalaki & Degiannakis, 2010). The derivatives 

simplifies and maximises the QML log likelihood function 

 

  
2

2

2
1 1

1
log 2 log

2

N N
t

t t

t tt

L N


 
 

 
    

 
    (6) 



MISSPECIFICATION OF STATIONARY GARCH VARIANTS 

354 

where εt are the innovations from the initial AR model, 2

t  are the conditional 

volatility realized from the variance equation and N is the sample size. Berndt, 

Hall, Hall and Hausman (BHHH) algorithm of Berndt, Hall, Hall and Hausman 

(1974) is often preferred to other numerical derivatives such as Marquadt and 

Gauss Newton, since it uses only the first derivatives of the likelihood function to 

estimate the parameter values. The algorithm is 
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   (7) 

 

with initial parameter set as ψ(0), the parameter set which maximizes the 

likelihood function is denoted as ψ(i+1) and the log-likelihood Lt as given in (6) 

above. The number of iteration is denoted by i, and the iteration stops once there 

is no further improvement in the likelihood function. Ideally, EViews software 

allows setting the number of iteration and the level of precision for the estimation. 

Forecast evaluation criteria considered are the Root Mean Squares Forecast 

Error (RMSFE), Mean Absolute Forecast Error (MAFE), Mean Absolute 

Percentage Forecast Error (MAPFE) and Theil Inequality of Theil (1961; 1966). 

The MSFE is defined as, 
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where 2ˆ
t  is the predicted in-sample conditional variances, and this depends on 

the scale of the variance series, 2

t . The square root of MSFE is the RMSFE, 
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The MAFE and MAPFE are obtained by taking the absolute differences of 

the predicted conditional volatilities and the observed volatilities as, 
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The Theil inequality is given as, 
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  (12) 

 

The inequality coefficient is time invariant and always lies between 0 and unity. 

The smaller these forecast evaluation criteria, the better the candidate model 

represents well the data. 

Monte Carlo Experiment, Results and Discussion 

The Monte Carlo experiment is set up using the Data Generating Processes 

(DGPs) in (13)-(16) below. The AR (1) DGP in (12) is the mean equation, with 

ϕ0 = 0.15 and ϕ1 = 0.5, setting the process at the stationarity level.  

 

 
10.15 0.5t t ty y      (13) 

 

The error distribution εt = σt zt, zt ~ N(0, 1) for each of the variance equations,  

 

 2 2 2

1 10.02 0.25 0.60
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1.21.2 1.2

1 1 10.02 0.25 0.10 0.60logt t t t           (16) 

 

representing GARCH (1,1), EGARCH (1,1) and APARCH (1,1) models, 

respectively. The parameters of the models were generated by arbitrarily fixing 

values for them making sure the parameters of the ARCH and GARCH terms are 

in stationarity range, and this realizes positive definite stationary non-explosive 
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conditional variance. These parameter values are fixed in the three models. The 

AR (1) DGP is combined with each variance equations in (14), (15) and (16) 

giving AR (1)-GARCH (1,1), AR (1)-EGARCH (1,1) and AR (1)-APARCH (1,1) 

DGPs, respectively. The asymmetric parameter in EGARCH and APARCH 

models are fixed at γ1 = -0.10 and the power parameter in APARCH model fixed 

at 1.2. The misspecification of each model is considered and the behaviour of the 

realized conditional variance is examined using the model and forecast evaluation 

criteria. Sample sizes are N = 2000, 4000 and 6000 each with 25% of samples as 

in-sample forecasts. 

The results of the Monte Carlo experiment are presented here as Scenarios 

1-3, where both parameter and forecasts evaluation estimates are given. 

 

Scenario 1: When the true model is GARCH 
 
 
Table 1. Model parameter estimates 
 

Sample 
size 

Estimated Model 
0̂  (0.15) 1̂  (0.50) ŵ  (0.02) 1

̂  (0.25) 
1

̂  (0.60) 

2000 GARCH 0.1480 0.4839 0.0169 0.2110 0.6596 
4000 GARCH 0.1517 0.4724 0.0173 0.2049 0.6590 
6000 GARCH 0.1475 0.4750 0.0180 0.2052 0.6503 

       2000 EGARCH 0.1480 0.4839 0.0169 0.2110 0.6596 
4000 EGARCH 0.1517 0.4724 0.0173 0.2049 0.6590 
6000 EGARCH 0.1475 0.4750 0.0180 0.2052 0.6503 

       2000 APARCH 0.1464 0.4875 0.0405 0.1988 0.0184 
4000 APARCH 0.1488 0.4741 0.0412 0.1947 0.0633 
6000 APARCH NA NA NA NA NA 

 
 

The results presented in Scenario 1 is when GARCH simulated series is used to 

estimate EGARCH, APARCH as well as GARCH model and the parameter and 

in-sample forecasts estimates presented in Tables 1 and 2, respectively. The 

parameter estimates for the three models are very close to the real values but these 

are not consistent with sample sizes. This is expected since we do not expect the 

least squares estimates to be consistent in the presence of serial correlation and 

heteroscedasticity of the residuals. We also noted the similarity in the results 

obtained for GARCH and EGARCH models, across the sample sizes. The 

APARCH estimation posed serious problem at very high sample sizes due to 

tendencies of the simulator to realize some non-positive volatility and the power 

estimates of these cannot be obtained. 
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Table 2. Forecast evaluation estimates 

 

Sample size Estimated Model RMSFE MAFE MAPFE Theil  
2000 GARCH 0.000271 0.011228 48.09666 0.0289 
4000 GARCH 0.000174 0.010415 44.88254 0.0257 
6000 GARCH 0.000139 0.010104 49.58554 0.0287 

      2000 EGARCH 0.002067 0.085482 617.9674 0.1772 
4000 EGARCH 0.001301 0.078142 645.6404 0.1688 
6000 EGARCH 0.001165 0.084255 639.2407 0.1798 

      2000 APARCH 0.000520 0.021537 94.48200 0.1077 
4000 APARCH 0.000344 0.020411 93.54733 0.0974 
6000 APARCH NA NA NA NA 

 
 

From the forecasts evaluation results in Table 2 of Scenario 1, the estimates 

obtained for GARCH and EGARCH models are different. Actually the RMSFE 

and MAFE for the models across different sample sizes are very low but the 

MAPFE vary significantly. The RMSFE, MAFE, MAPFE and Theil inequality 

coefficient for the GARCH models are the lowest, followed by that of APARCH 

models. This is expected since the DGP is GARCH. The MAPFE estimates vary 

significantly, about 50% for GARCH, 600% for EGARCH and 90% for 

APARCH models. It is clear to see that GARCH model forecasts are better than 

EGARCH and APARCH model forecasts in terms of RMSPE and Theil 

inequality when GARCH model is the DGP. 

 

Scenario 2: When the true model is EGARCH 
 
 
Table 3. Model parameter estimates 

 

Sample 
size 

Estimated 
Model 0̂  (0.15) 1̂  (0.50) ŵ  (0.02) 1

̂  (0.25) 
1

̂  (0.60) 

2000 GARCH 0.1320 0.4998 0.2037 0.0078 0.7817 
4000 GARCH 0.1441 0.5067 0.4191 0.0058 0.5268 
6000 GARCH 0.1212 0.4737 0.1355 -0.0101 0.8559 

       2000 EGARCH 0.1320 0.4998 0.2037 0.0078 0.7817 
4000 EGARCH 0.1293 0.4806 0.1915 -0.0094 0.7933 
6000 EGARCH 0.1212 0.4737 0.1355 -0.0101 0.8559 

       2000 APARCH 0.1679 0.4765 0.5952 -0.0823 1.0000 
4000 APARCH NA NA NA NA NA 
6000 APARCH NA NA NA NA NA 

 
 

In Scenario 2 of Table 3, the true series follows EGARCH process. The 

parameter estimates are not consistent with sample sizes. Here, both the estimates 
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of the mean and variance equations are very far from the real values. Even with 

EGARCH DGP to estimate EGARCH model, the estimates seem not to improve 

when compared with that of the misspecified GARCH model. Estimates of 

APARCH model for all the sampled points in the simulations could not be 

computed except for sample 2000, the estimation was very slow at samples 4000 

and 6000 and the estimation process crashed unexpectedly.  
 
 
Table 4. Forecast evaluation estimates 

 

Sample size Estimated Model RMSFE MAFE MAPFE Theil  

2000 GARCH 0.009880 0.412570 79.28039 0.2282 
4000 GARCH 0.006603 0.389932 69.61645 0.2152 
6000 GARCH 0.005286 0.381419 69.51897 0.2158 

      2000 EGARCH 0.028755 1.224082 210.8467 0.4251 
4000 EGARCH 0.010901 0.642821 138.9766 0.3230 
6000 EGARCH 0.006889 0.495946 107.6174 0.2687 

      2000 APARCH 0.065849 2.763889 372.1500 0.9589 
4000 APARCH NA NA NA NA 
6000 APARCH NA NA NA NA 

 
 

In Table 4 of Scenario 2, forecast estimates for the three models are different, 

with estimated GARCH models presenting better forecasts than the estimated 

EGARCH and APARCH model at corresponding sample sizes. 

 

Scenario 3: When the true model is APARCH 
 
 
Table 5. Model parameter estimates 

 

Sample 
size 

Estimated 
Model 0̂  (0.15) 1̂  (0.50) ŵ  (0.02) 1

̂  (0.25) 
1

̂  (0.60) 

2000 GARCH 0.1514 0.4795 0.0037 0.2240 0.6188 
4000 GARCH 0.1459 0.5028 0.0046 0.2567 0.5399 
6000 GARCH 0.1526 0.4721 0.0039 0.2110 0.6157 

       2000 EGARCH 0.1514 0.4795 0.0037 0.2240 0.6188 
4000 EGARCH 0.1438 0.5052 0.0046 0.2514 0.5526 
6000 EGARCH 0.1526 0.4721 0.0039 0.2110 0.6157 

       2000 APARCH 0.1476 0.5164 0.0260 0.2753 -0.0012 
4000 APARCH 0.1395 0.5345 0.0188 0.2371 -0.0800 
6000 APARCH NA NA NA NA NA 
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Scenario 3, Table 5 presents the case where APARCH series is assumed. 

The APARCH model is more complex in structure than the GARCH and 

EGARCH models, therefore estimating APARCH model from the series at very 

high sample size posed serious problems. For samples 2000 and 4000, estimates 

of parameters were computed. 
 
 
Table 6. Forecast evaluation estimates 

 

Sample size Estimated Model RMSFE MAFE MAPFE Theil  
2000 GARCH 8.20E-06 0.000341 54.08614 0.0053 
4000 GARCH 5.98E-06 0.000401 56.20084 0.0057 
6000 GARCH 4.25E-06 0.000307 54.36182 0.0054 

      2000 EGARCH 0.000347 0.014360 3191.426 0.0925 
4000 EGARCH 0.000480 0.028411 5535.569 0.1344 
6000 EGARCH 0.000187 0.013544 31268.40 0.0910 

      2000 APARCH 2.33E-05 0.000955 85.89381 0.0182 
4000 APARCH 9.13E-06 0.000538 94.78748 0.0181 
6000 APARCH NA NA NA NA 

 
 

In Scenario 3, Table 6, the simulated forecasts for GARCH, EGARCH and 

APARCH models from APARCH DGP are presented. Closer look still showed 

that GARCH forecasts are the best in terms of forecast evaluation criteria. 

Followed after GARCH is the APARCH model and EGARCH is the least. 

Conclusion 

The misspecification of some GARCH models were considered using parameter 

and forecast evaluation estimates as criteria. It was found that a correctly 

specified EGARCH and APARCH models actually, in the real sense, did not give 

better parameter estimates and forecasts when compared with that of GARCH 

model. These results are not consistent with sample sizes. The results obtained in 

this paper therefore support the seminal work of Hansen and Lunde (2005) titled: 

"A Forecast Comparison of Volatility Models: Does Anything Beat a 

GARCH(1,1)", which was their argument with Andersen and Bollerslev (1998). 

Great care should be taken wherever volatility model are being specified for 

assets returns, since misspecified model could cause great loss in model 

information criteria and forecasts. This work, therefore re-popularize the use of 

symmetric GARCH (1,1) model of Bollerslev (1986) and Taylor (1986) in 

empirical analysis and simulations. 
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This paper introduces a new estimator, of ridge parameter k for ridge regression and then 
evaluated by Monte Carlo simulation. We examine the performance of the proposed 
estimators compared with other well-known estimators for the model with 
heteroscedastics and/or correlated errors, outlier observations, non-normal errors and 
suffer from the problem of multicollinearity. It is shown that proposed estimators have a 
smaller MSE than the ordinary least squared estimator (LS), Hoerl and Kennard (1970) 
estimator (RR), jackknifed modified ridge (JMR) estimator, and Jackknifed Ridge 

M-estimator (JRM). 
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Introduction 

In multiple linear regressions the estimation of parameters is a common interest 

for many users. It is well known that an LS estimator has been treated as the best 

unbiased estimator for a long time since it has minimum variance. 

Multicollinearity, linear or near-linear dependency among the explanatory 

variables in the regression model, is an important problem faced in applications. If 

multicollinearity or the ill-conditioned design matrix in linear regression model is 

present, the LS estimator is sensitive to number ‘errors’, namely, there is an 

‘explosion’ of the sampling variance of the estimators. Moreover, some of the 

regression coefficients may be statistically insignificant with wrong sign and 

meaningful statistical inference becomes impossible for practitioners.  

To overcome multicollinearity various biased estimators were put forward in 

the literature. The Ridge Regression (RR) estimator proposed by Hoerl and 

http://dx.doi.org/10.22237/jmasm/1478002860
mailto:adorugade@rediffmail.com
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Kennard (1970) is the most popular biased estimator. However, RR estimator has 

some disadvantages; mainly it is a nonlinear function of the ridge parameter (or 

biasing constant) k. Currently there are various methods for determination and 

much of the discussions on ridge regression concern the problem of finding or 

selecting good empirical value of k. Our primary aim in this article is overcome 

this problem by suggesting new estimator for ridge parameter and then evaluate 

its performance when model defined in linear regression exhibits with not only 

multicollinearity but also heteroscedastics and/or correlated errors, non-normal 

errors and outliers, respectively. 

Much of the discussions on ridge regression concern the problem of finding 

better alternative to the LS estimator. Some popular numerical techniques to deal 

with multicollinearity are the ridge regression due to Singh and Chaubey (1987), 

Batah, Ramnathan, and Gore (2008), Yang and Chang (2010) and others. Most of 

the estimation procedures are obtained results when specific assumptions like 

elements of the random vector ε were independent and identically distributed 

random variables are achieved. But if these assumptions are violated, these 

methods do not assure the desirable results. Involving such problems as 

heteroscedasticity and autocorrelation few methods including Trenkler (1984), 

Firinguetti (1989), Bayhan and Bayhan (1998), Özkale (2008), Alheety and 

Kibria (2009) are available in the present literature. Recently, Li and Yang (2011) 

suggested Jackknifed Modified Ridge Estimator (JMRE) and show that it superior 

to the generalized least squares estimate, the generalized modified ridge estimator 

and the generalized jackknifed ridge estimator, to overcome multicollinearity in 

the presence of a linear regression model with correlated or heteroscedastic errors. 

Apart from the problem of multicollinearity in real life situation, outliers 

and departure from the normality assumption are common problems in regression. 

These also produce undesirable effects on the LS estimator. This fact is pointed 

out by many researchers. Many researchers have pointed out that M-estimator is 

better than LS estimator in the presence of outliers (Huber, 1981; Rousseeuw & 

Leroy, 1987; Birkes & Dodge, 1993). In standard text like Birkes and Dodge 

(1993) and Montgomery, Peck, and Vining (2001) have given detail description. 

Recently, Jadhav and Kashid (2011) gives Jackknifed Ridge M-estimator (JRM) 

and show that it performs better than LS, ridge and M-estimator in the presence of 

both outliers and multicollinearity. Hence our secondary aim in this article is to 

provide an alternative method to combat both the problem of outliers and 

heteroscedastics and/or correlated errors, respectively in linear regression model 

in the presence of multicollinearity. 
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Model and Estimators 

Consider, widely used linear regression model  

 

 Y X     (1) 

 

where Y is an n × 1 random vector of response variables, X is a known n × p 

matrix with full column rank,  is the vector of errors E() = 0 and Cov() = σ2In., 

 is a p × 1 vector of unknown regression parameters and σ2 is the unknown 

variance parameter. For the sake of convenience, we assume that the matrix X and 

response variable Y are standardized in such a way that X X  is a non-singular 

correlation matrix and X Y  is the correlation between X and Y. 

Let   and T be the matrices of eigenvalues and eigenvectors of X X , 

respectively, satisfying  1 2diagonal , , , pT X XT         where λi being the ith 

eigenvalue of X X  and T T TT Ip   . We obtain the equivalent model 

 

 ,Y Z     (2) 

 

where Z = XT, it implies that Z Z   , and T   (see Montgomery et al., 

2001). 

Then LS estimator of α is given by 

 

  
1 1ˆ

LS Z Z Z Y Z Y
        (3) 

 

Therefore, LS estimator of β is given by 

 

 ˆ ˆ
LS LST    

 

Ridge Regression Estimator (RR)  

To overcome multicollinearity under ridge regression, Hoerl and Kennard (1970) 

suggested an alternative estimate by adding a ridge parameter k to the diagonal 

elements of the least square estimator. It is given as:  

 

  
1

ˆ ˆ
RR LSI k kI 

   
 

  (4) 
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Therefore, RR estimator of β is given by 

 

 ˆ ˆ
RR RRT    

 

and mean square error of ˆ
RR  is 

 

      
2 22 2 2

1 1

ˆ ˆˆMSE
p p

RR i i i i

i i

k k k     
 

       (5) 

 

Observe when k = 0 in (5), MSE of LS estimator of α is recovered. Hence, 

 

   2

1

ˆ ˆMSE 1
p

LS i

i

  


    (6) 

 

Jackknifed Modified Ridge Estimator (JMR) 

Li and Yang (2011) introduced a jackknifed modified ridge (JMR) estimator an 

alternative method to overcome multicollinearity in the presence of a linear 

regression model with correlated or heteroscedastic errors. With the assumptions 

E() = 0 and Cov() = σ2V, where V is a known n × n symmetric positive definite 

(pd) matrix there exists a nonsingular symmetric matrix P such that 
1V P P   

and σ2 > 0 is the unknown variance parameter. Then the linear model given in (2) 

can be written as 

 

 ,Y Z     (7) 

 

where, Y PY , P   and Z PZ  with a prior mean 
1

ˆ
p

iLS

i

c p


  and k > 0 

is the ridge parameter (see Li & Yang, 2011). The JMR estimator of α is given as 

 

      
2 1 2

2 2ˆ
JMR I k Z Z kI Z Z Z Y k Z Z kI c

          
  

  (8) 

 

 ˆ ˆ
JMR JMRT    
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Hoerl, Kennard, and Baldwin (1975) suggested the value of ‘k’ should be chosen 

small enough so the mean squared error of ridge estimator is less than the mean 

squared error of LS estimator. Among the various methods here, the ridge 

parameter was used to compute ˆ
RR  and ˆ

JMR  given by Hoerl et al. (1975), given 

as 

 

 2 2

1

ˆˆ
p

HKB i

i

k p 


    (9) 

 

where ˆ
i  is the ith element of ˆ

LS , i = 1, 2,…, p and 
2̂  is the LS estimator of 

2  i.e. 

 

 2 ˆ
ˆ .

1

LSY Y Z Y

n p




  


 
  

 

Jackknifed Ridge M-Estimator (JRM) 

Jadhav and Kashid (2011) gave Jackknifed Ridge M-estimator (JRM) which takes 

into account the presence of both multicollinearity and outlier problems 

simultaneously. 

It is given as: 

 

  *2 2ˆ ˆ
JRM MI k A     (10) 

 

Where, ˆ
M  is an M-estimator of  , which is obtained by solving the following 

equations 

 

  
1

ˆ 0,
n

ij i i M

i

v Y z 


    

 

where ψ(.) is some function (see Huber (1981), Hampel, Ronchetti, Rousseeuw, 

and Stahel (1986)). Therefore, JRM estimator of β is given by 

 

 ˆ ˆ ,JRM JRMT    

 



A V DORUGADE 

367 

where, ridge parameter says k* can be estimated using robust estimates of σ2 and α 

respectively given by s and ˆ
M , it is obtained by 

 

 
2

* ,
ˆ ˆ

M M

ps
k

 



  

 

where  11.4826 is median e median e   and ei is ith residual obtained by using 

LS estimator. 

Proposed Ridge Parameter 

The existence of multicollinearity may cause to have wide confidence interval for 

individual parameters or linear combination of the parameters, may give estimates 

with wrong signs. Ridge regression is a concept proposed in the sixties to combat 

the multicollinearity in regression problems. After then, many new versions of 

this method have been studied to extended Hoerl and Kennard (1970) original 

estimator. It has been made a more definite comparison of these various versions 

of the biased estimators versus the unbiased LS estimator. The constant, k > 0 is 

known as ridge parameter which plays an important role in ridge regression. As k 

increases from 0 and continues upto ∞ the regression estimates tend towards 0. In 

ridge regression our interest lies in finding a value of k such that the reduction in 

the variance term is greater than the increase in the squared bias. Though these 

estimators result in biased, for certain value of k, they yield minimum mean 

squared error (MMSE) compared to the LS estimator (see Hoerl & Kennard, 

1970). In the last decades, researchers concentrated on estimating the shrinkage 

ridge parameter k in different ways and under different situations, and then 

compared the results with those obtained by applying the LS estimators. Much of 

the discussions on ridge regression concern the problem of finding good empirical 

value of k. 

Ridge regression estimator of Hoerl and Kennard (1970) was proposed as 

alternative to the least squares estimator in the presence of multicollinearity. It 

depends on the biasing parameter k which is the Lagrange multiplier used in the 

objective function although proposing the estimator. To compute the ridge 

regression estimator, the analyst must know the value of k. Therefore, various 

estimators of k were proposed. Many different techniques for estimating k have 

been proposed or suggested by different researchers Hoerl et al. (1975), Lawless 

and Wang (1976), Kibria (2003), Khalaf and Shukur (2005), Alkhamisi and 
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Shukur (2007), Muniz and Kibria (2009), Dorugade and Kashid (2010), 

Al-Hassan (2010), Muniz, Kibria, Mansson, and Shukur (2012) to mention a few. 

The well known of them is obtained by minimizing the mean square error of the 

ridge regression estimator and it depends on the variance of the regression model, 

σ2, and the parameter vector β. Since σ2 and β are unknown, the analyst have to 

use estimates of these parameters. In this article we propose estimator of k 

depends on the variance of the regression model, σ2 only. Even though this 

approach is quite straightforward and simple, to the best of our knowledge, it has 

not been considered in the literature at all. 

We denote our ridge parameter by 
Rk  and given by 

 

 ,Rk    (11) 

 

where error variance 
2 , replaced by its LS estimator 

2̂  i.e.  

 

 2 ˆ
ˆ

1

LSY Y Z Y

n p




  


 
  

 

The RR estimator based on 
Rk  is given as 

 

  
1*ˆ ˆ .RR R R LSI k k I 
   

 
  (12) 

 

Therefore, RR estimator of β is given by 

 

 
* *ˆ ˆ
RR RRT    

 

and using (5) mean square error of *ˆ
RR  is 

 

  
 

 
2

* 2

2
1

ˆ
ˆ ˆMSE

ˆ

p

RR i i

ii


  

  

 


   (13) 

 

Comparison Between the ˆ*

RRα  and ˆ
RRα  

Using (5) and (13), consider the following difference 
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2 2 2 2

* 2

2 2
1 1

2 22 2 2

2

2 2 2
1 1

ˆ ˆˆ
ˆ ˆ ˆ

ˆ

ˆ ˆˆ
ˆ

ˆ

p p
i i i i

RR RR

i ii i

p p
i i i i i i

i ii i i

k
MSE MSE

k

k k

k k

    
  

  

      


   

 

 

    
     

       

    
  
   
 

 

 

  

 

From above equation, the difference    *ˆ ˆ
RR RRMSE MSE   can be positive 

because 

 

      
2 2 2

1 1

ˆˆ .
p p

i i i i i

i i

k     
 

       

 

Thus,    *ˆ ˆ
RR RRMSE MSE   

Simulation Study 

Consider the behavior of the proposed parameter estimators via a simulation study. 

Most of the researchers compare the performance of their suggested ridge 

parameter in the sense of smaller MSE compared to LS and other well-known 

existing ridge parameters via ridge regression estimators. But, we evaluate the 

performance of our suggested ridge parameter by considering following different 

situations in linear regression when data exhibits with multicollinearity. 

 

Case I. Data generated using normal errors. 

Case II. Data generated using heteroscedastic errors. 

Case III. Data generated using outlier observations. 

Case IV. Data generated using outlier observations and heteroscedastic 

errors. 

Case V. Data generated using non-normal errors. 

 

Consider the average MSE (AMSE) of the ˆ
LS , ˆ

RR , ˆ
JMR , ˆ

JRM  and 
*ˆ
RR  

estimators for different degrees of multicollinearity. We consider the true model 

as Y = Xβ + ε. Following McDonald and Galarneau (1975) the explanatory 

variables are generated by 
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1 2

21 ,     1,2, ,    1,2, , ,ij ij ipx u u i n j p        

 

where uij are independent standard normal pseudo-random numbers and ρ is 

specified so that the theoretical correlation between any two explanatory variables 

is given by ρ2. In this study, to investigate the effects of different degrees of 

multicollinearity on the estimators, we consider two different correlations, 

ρ = 0.85, 0.90, 0.95 and 0.99. β parameter vectors are chosen arbitrarily for p = 4, 

respectively. We assumed samples of size of 25, 60 and 100. Estimators ˆ
LS , ˆ

RR , 

ˆ
JMR , ˆ

JRM  and *ˆ
RR  are computed and obtained the average MSE (AMSE) of 

estimators. The experiment is repeated 1500 times using the following expression. 

 

    
1500 2

1 1

1ˆ ˆ
1500

p

ij i

i j

AMSE   
 

    

 

where, ˆ
ij  denote the estimator of the ith parameter in the jth replication and βi, 

i = 1, 2,…, p are the true parameter values. Consider the method that leads to the 

minimum AMSE to the best from the MSE point of view. 

 

Case I. Here  follows a normal distribution N (0, σ2In). The variance of the 

error terms is taken as σ2 = 1, 5, 10 and 25. Firstly, we computed the AMSE 

values for ˆ
LS , ˆ

RR , ˆ
JMR , ˆ

JRM  and *ˆ
RR  for various values of triplet (ρ, n, σ2) for 

p = 4 and reported in Table 1. 
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Table 1. AMSE of LS and various ridge estimators (p = 4 and β = (5, 3, 4, 2)′) 
 

ρ Estimator 
n = 25  100 

σ2 = 1 5 10 25  1 5 10 25 

0.85 

ˆ
LS

  3.38 93.73 394.86 2451.82 
 

0.59 12.36 46.85 297.86 

ˆ
RR

  2.77 33.84 125.85 726.46 
 

0.57 7.86 20.38 98.82 

ˆ
JMR

  2.50 45.32 203.00 1202.44 
 

0.68 7.34 24.22 152.46 

ˆ
JRM

  3.00 50.99 192.95 1146.93 
 

0.58 9.87 28.98 153.65 

*ˆ
RR

  2.03 14.21 34.35 138.08 
 

0.50 5.27 12.93 54.74 

           

0.90 

ˆ
LS

  19.20 526.30 1694.80 12498.50 
 

2.90 90.30 281.50 2202.30 

ˆ
RR

  10.66 172.23 468.04 3571.36 
 

2.54 37.88 86.29 717.45 

ˆ
JMR

  11.01 273.95 810.47 6158.55 
 

2.49 47.82 132.76 1196.13 

ˆ
JRM

  13.65 241.76 740.49 5369.88 
 

2.78 52.35 140.80 1046.13 

*ˆ
RR

  4.14 12.58 22.72 82.23 
 

1.80 8.29 11.38 38.41 

           

0.95 

ˆ
LS

  163.00 5120.00 19151.00 
129866.0

0 

 
31.00 968.00 3581.00 17759.00 

ˆ
RR

  47.40 1659.60 4884.20 34858.20 
 

15.20 308.10 1047.60 4582.80 

ˆ
JMR

  68.60 2273.70 7997.70 51354.00 
 

19.80 447.40 1576.00 7899.10 

ˆ
JRM

  74.20 2619.40 8863.60 65176.40 
 

16.50 507.60 1777.80 8105.60 

*ˆ
RR

  4.72 7.17 12.51 49.62 
 

4.03 5.98 6.76 17.48 

           

0.99 

ˆ
LS

  1804.00 48622.00 
220824.0

0 
1400590.

00 

 
320.00 7592.00 30461.00 

213251.0
0 

ˆ
RR

  470.00 14008.00 76100.00 
387524.0

0 

 
84.00 2015.00 8000.00 61836.00 

ˆ
JMR

  717.00 21406.00 
105437.0

0 
573785.0

0 

 
144.00 3306.00 12875.00 90558.00 

ˆ
JRM

  840.00 23485.00 
119862.0

0 
722312.0

0 

 
141.00 3514.00 14124.00 

104016.0
0 

*ˆ
RR

  5.05 6.94 10.52 47.23 
 

4.93 5.28 6.75 13.24 

 
 

From Table 1, we observe that performance of our proposed estimator 
*ˆ
RR  

is better than ˆ
LS , ˆ

RR , ˆ
JMR  and ˆ

JRM  for various values of triplet (ρ, n, σ2). 

Because ˆ
RR , ˆ

JMR  gives better performance than ˆ
LS  and ˆ

JRM  for various 

values of triplet (ρ, n, σ2). Particularly for increasing degree of multicollinearity, 
*ˆ
RR  gives significantly smaller AMSE values as compare to other estimators.  
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Case II. Consider the problem of heteroscedasticity. Assume that the 

elements of the random vector  were not independent and identically distributed 

random variables. To introduce heteroscedastics and/or correlated errors in the 

model given in (2) and converted into model given in (7) matrix V will be 

estimated by method suggested by Firinguetti (1989). In the present study we 

choose ρ = 0.95 and consider matrix V is estimated as below 
 
 

Table 2. AMSE of LS and various ridge estimators (p = 4 and β = (5, 7, 3, 1)′) 
 

ρ Estimator 
n = 25  100 

σ2 = 1 5 10 25  1 5 10 25 

0.85 

ˆ
LS

  20.10 596.90 2180.80 12215.10 
 

8.60 297.80 928.00 6097.90 

ˆ
RR

  17.31 451.55 1648.97 9146.44 
 

8.48 264.17 802.37 5347.04 

ˆ
JMR

  18.34 481.14 1786.08 9709.46 
 

8.53 270.53 835.75 5524.28 

ˆ
JRM

  17.30 501.90 1819.30 10198.20 
 

8.83 275.20 846.90 5609.70 

*ˆ
RR

  13.62 333.51 1186.55 6739.84 
 

7.40 181.94 568.38 3582.63 

           

0.90 

ˆ
LS

  78.80 1723.70 6451.40 46119.30 
 

26.60 693.50 2406.00 18390.80 

ˆ
RR

  55.80 1002.10 3739.50 27348.40 
 

24.20 545.10 1839.00 14318.50 

ˆ
JMR

  61.50 1139.30 4336.70 32280.90 
 

24.70 580.30 1974.20 15252.90 

ˆ
JRM

  61.80 1263.50 4713.30 34289.70 
 

26.80 607.50 2074.60 16102.30 

*ˆ
RR

  20.50 334.41 1069.86 7534.85 
 

12.05 153.74 695.38 4277.38 

           

0.95 

ˆ
LS

  669.00 15446.00 68939.00 393609.00 
 

176.00 4798.00 20237.00 135777.00 

ˆ
RR

  378.00 8964.00 37083.00 216822.00 
 

130.00 3306.00 13954.00 95154.00 

ˆ
JMR

  448.00 10472.00 43461.00 255218.00 
 

141.00 3630.00 15264.00 105690.00 

ˆ
JRM

  490.00 11207.00 50079.00 279251.00 
 

142.00 3893.00 16606.00 112258.00 

*ˆ
RR

  21.14 339.32 1065.06 8295.32 
 

12.41 125.99 492.23 2897.20 

           

0.99 

ˆ
LS

  5874.00 156068.00 599010.00 4373664.00 
 

2221.00 56796.00 240541.00 1323948.00 

ˆ
RR

  3093.00 77901.00 333494.00 2335520.00 
 

1635.00 41391.00 164114.00 958398.00 

ˆ
JMR

  3773.00 93485.00 394200.00 2770590.00 
 

1777.00 45134.00 185561.00 1038487.00 

ˆ
JRM

  4072.00 106393.00 441980.00 3111729.00 
 

1881.00 48157.00 198360.00 1115227.00 

*ˆ
RR

  17.44 277.09 1282.84 6875.21 
 

9.27 143.95 531.16 3250.81 
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The AMSE was computed for various values of combination (ρ, n, V, σ2) for p = 4 

and reported in 

From the results reported in Table 2, observe ˆ
RR , ˆ

JMR  gives equivalently 

better performance than ˆ
LS  and ˆ

JRM  for various values of triplet (ρ, n, σ2). 

However performance of *ˆ
RR  is better than ˆ

LS , ˆ
RR , ˆ

JMR  and ˆ
JRM  for various 

values of triplet (ρ, n, σ2). 

 

Case III. The same simulation experiment is repeated for 1500 times for all 

combinations of ρ, n, and σ2 by introducing one and two outliers for different 

model specifications. For p = 4 we computed the AMSE for various values of 

combination (ρ, n, V, σ2) for one and two outliers and reported in Table 3 and 4 

respectively. 

Results in Table 3 and 4, shows that ˆ
JRM  gives better performance than 

ˆ
LS , ˆ

RR  and ˆ
JMR  for all combinations of ρ, n, and σ2. However, proposed 

estimator *ˆ
RR  gives better performance than ˆ

LS , ˆ
RR  and ˆ

JMR  including ˆ
JRM  

for various values of triplet (ρ, n, σ2). 

 

Case IV. With respect to our secondary aim of the proposed work in this 

article, here we evaluate the performance of proposed estimator 
*ˆ
RR  against ˆ

LS , 

ˆ
RR , ˆ

JMR  and ˆ
JRM  for the simulated data exits with one or multiple outliers and 

heteroscedastics and/or correlated errors, in linear regression model in the 

presence of multicollinearity. We introduce respectively one and two outliers in 

the simulated data with heteroscedastics and/or correlated errors, where 

heteroscedastics and/or correlated errors are introduced using the same method as 

given in Case II with the help of matrix V at ρ = 0.95. The simulation experiment 

is repeated for 1500 times for all combinations of ρ, n, σ2 and V and computed 
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AMSE values for one and two outliers respectively, for p = 4 are reported in 

Tables 5 and 6. 
 
 
Table 3. AMSE of LS and various ridge estimators (With one outlier, p = 4 and 

β = (10, 3, 4, 1)′) 
 

ρ Estimator 
n = 25  100 

σ2 = 1 5 10 25  1 5 10 25 

0.85 

ˆ
LS

  63093.50 51479.90 56809.70 52816.70 
 

1780.00 1744.00 1845.80 2164.60 

ˆ
RR

  19398.90 13650.00 16861.10 14144.10 
 

510.70 519.20 540.70 569.40 

ˆ
JMR

  28805.10 22122.40 28174.90 22578.70 
 

858.20 861.20 864.90 951.70 

ˆ
JRM

  6261.57 4513.43 5729.10 4750.19 
 

159.57 167.09 177.22 174.30 

*ˆ
RR

  3544.36 3922.95 4084.13 3994.31 
 

299.85 268.90 283.91 283.74 

           

0.90 

ˆ
LS

  324191.00 308106.00 304710.00 335486.00 
 

9945.00 9611.00 9304.00 11664.00 

ˆ
RR

  95866.80 91106.00 78611.80 90283.00 
 

2893.40 2593.80 2465.90 3214.60 

ˆ
JMR

  146348.00 138431.00 119726.00 138150.00 
 

4469.00 4023.00 3873.00 4911.00 

ˆ
JRM

  28132.50 25922.10 20062.80 24722.10 
 

768.80 636.50 603.70 873.00 

*ˆ
RR

  2163.99 2379.11 1851.32 2123.19 
 

165.03 169.74 171.49 208.08 

           

0.95 

ˆ
LS

  3563590.00 3754264.00 3331604.00 3317982.00 
 

101439.00 109183.00 102304.00 129443.00 

ˆ
RR

  1013175.00 1025041.00 818990.00 941995.00 
 

26462.00 30554.00 25880.00 38298.00 

ˆ
JMR

  1569621.00 1638275.00 1360205.00 1409372.00 
 

41486.00 45617.00 39268.00 58030.00 

ˆ
JRM

  277101.00 276193.00 214808.00 251716.00 
 

6206.00 7271.00 6163.00 10128.00 

*ˆ
RR

  1244.35 1248.52 1174.22 1319.63 
 

65.37 62.37 63.64 75.89 

           

0.99 

ˆ
LS

  36409135.00 33502778.00 28002957.00 33771993.00 
 

1177860.00 1021218.00 968594.00 1107336.00 

ˆ
RR

  9715560.00 8705724.00 6824202.00 8129113.00 
 

295078.00 249096.00 230598.00 295623.00 

ˆ
JMR

  15072802.00 13295260.00 10408403.00 12343872.00 
 

473153.00 397830.00 375101.00 482420.00 

ˆ
JRM

  2534630.00 2280994.00 1725382.00 1839086.00 
 

62366.00 53576.00 50324.00 71652.00 

*ˆ
RR

  1121.53 1109.93 1258.06 1247.55 
 

50.70 47.03 48.06 59.10 
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Table 4. AMSE of LS and various ridge estimators (With two outlier, p = 4 and 

β = (3, 3, 8, 1)′) 
 

ρ Estimator 
n = 25  100 

σ2 = 1 5 10 25  1 5 10 25 

0.85 

ˆ
LS

  96023.00 103032.00 140414.00 114534.00 
 

3048.00 3267.00 3679.00 3899.00 

ˆ
RR

  29822.20 31245.50 51089.80 34497.80 
 

916.70 1170.50 1264.30 1230.90 

ˆ
JMR

  46684.60 50507.30 71186.90 51338.00 
 

1479.80 1809.00 1828.50 1904.30 

ˆ
JRM

  11177.50 10682.10 19345.00 12368.40 
 

329.40 463.90 454.20 431.70 

*ˆ
RR

  6494.94 7297.01 8536.97 7910.10 
 

493.91 571.06 563.61 626.35 

           

0.90 

ˆ
LS

  589009.00 649515.00 531514.00 565691.00 
 

16516.00 15254.00 17831.00 20356.00 

ˆ
RR

  170930.00 201753.00 154311.00 162987.00 
 

4617.00 3778.00 4867.00 5477.00 

ˆ
JMR

  265753.00 297287.00 221441.00 254970.00 
 

7301.00 6493.00 7623.00 8377.00 

ˆ
JRM

  47232.60 54401.30 46217.10 43368.10 
 

1252.50 956.60 1282.50 1436.80 

*ˆ
RR

  5099.35 4651.04 4997.34 4731.34 
 

340.98 329.05 324.26 354.44 

           

0.95 

ˆ
LS

  6581935.00 6082993.00 6188108.00 5363832.00 
 

188136.00 201837.00 167767.00 193081.00 

ˆ
RR

  1936566.00 1645660.00 1869023.00 1084286.00 
 

51291.00 58167.00 37254.00 48946.00 

ˆ
JMR

  2791415.00 2505398.00 2695831.00 1824673.00 
 

76196.00 90786.00 68680.00 78656.00 

ˆ
JRM

  510121.00 462091.00 545257.00 221990.00 
 

12362.00 15340.00 8067.00 11273.00 

*ˆ
RR

  3329.23 3610.92 3343.09 3315.94 
 

160.60 164.00 159.19 169.48 

           

0.99 

ˆ
LS

  57371428.00 59252077.00 56364293.00 63635854.00 
 

1909329.00 1609903.00 2052240.00 2219103.00 

ˆ
RR

  14545081.00 16779217.00 15804173.00 16298348.00 
 

466721.00 354639.00 503548.00 615258.00 

ˆ
JMR

  23238145.00 25256656.00 25038333.00 25397750.00 
 

733936.00 639763.00 798444.00 963890.00 

ˆ
JRM

  3842991.00 4420227.00 4316709.00 4018464.00 
 

106047.00 76237.00 108351.00 145024.00 

*ˆ
RR

  3300.96 3350.57 3304.98 3206.13 
 

135.45 134.47 140.39 154.87 
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Table 5. AMSE of LS and various ridge estimators (With one outlier, p = 4 and 

β = (7, 3, 1, 2)′) 
 

ρ Estimator 
n = 25  100 

σ2 = 1 5 10 25  1 5 10 25 

0.85 

ˆ
LS

  9600.90 8815.80 10990.80 18945.10 
 

164.90 382.60 1120.40 6778.00 

ˆ
RR

  3220.50 3195.20 4573.30 10069.10 
 

92.40 279.70 881.30 5778.20 

ˆ
JMR

  4746.10 4343.20 5937.50 11893.60 
 

108.80 305.20 937.50 6059.80 

ˆ
JRM

  1690.05 1820.80 2773.62 7195.41 
 

61.33 225.06 673.48 4722.61 

*ˆ
RR

  1325.28 1417.28 2279.12 6087.94 
 

66.49 218.87 580.02 3822.50 

           

0.90 

ˆ
LS

  30584.90 33646.90 44180.40 69210.60 
 

391.30 1197.60 2950.30 19979.50 

ˆ
RR

  8051.80 9919.30 13989.70 27391.40 
 

116.60 632.70 1839.80 15375.60 

ˆ
JMR

  11883.10 14706.20 19874.50 35823.80 
 

171.30 738.40 2094.40 16489.40 

ˆ
JRM

  2702.40 3636.80 5393.60 13457.10 
 

48.60 335.00 1032.20 10209.30 

*ˆ
RR

  897.59 1639.73 2314.36 6054.40 
 

39.43 167.23 444.88 3598.33 

           

0.95 

ˆ
LS

  392845.00 443548.00 444798.00 792065.00 
 

4038.00 11303.00 29083.00 167873.00 

ˆ
RR

  97097.00 124982.00 123019.00 313791.00 
 

917.00 5086.00 16915.00 117076.00 

ˆ
JMR

  156817.00 186855.00 183490.00 412848.00 
 

1495.00 6407.00 19801.00 127461.00 

ˆ
JRM

  25807.00 31123.00 36186.00 110867.00 
 

242.00 1862.00 8229.00 65067.00 

*ˆ
RR

  1150.97 1179.11 1994.33 8665.58 
 

40.57 149.42 635.75 3323.51 

           

0.99 

ˆ
LS

  3271226.00 3741131.00 3216915.00 7165352.00 
 

43951.00 95120.00 223294.00 1713269.00 

ˆ
RR

  735792.00 978962.00 840373.00 2303451.00 
 

10190.00 42328.00 123189.00 1177989.00 

ˆ
JMR

  1132082.00 1446732.00 1262678.00 3179624.00 
 

17044.00 52675.00 144926.00 1303063.00 

ˆ
JRM

  178739.00 238836.00 220975.00 701483.00 
 

2432.00 17802.00 55416.00 649813.00 

*ˆ
RR

  1058.07 1119.13 2085.34 4880.42 
 

45.91 129.29 431.40 2756.36 
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Table 6. AMSE of LS and various ridge estimators (With two outlier, p = 4 and 

β = (5, 8, 4, 1)′) 
 

ρ Estimator 
n = 25  100 

σ2 = 1 5 10 25  1 5 10 25 

0.85 

ˆ
LS

  41261.00 41176.10 48149.30 43909.90 
 

772.00 1011.90 1660.60 6055.50 

ˆ
RR

  14889.10 13985.10 17189.10 17160.50 
 

435.00 598.70 1099.70 4683.20 

ˆ
JMR

  20563.80 20032.50 24093.60 23708.50 
 

497.90 698.30 1243.60 4979.50 

ˆ
JRM

  7908.00 7977.00 10424.80 12221.80 
 

341.00 457.20 823.40 3597.20 

*ˆ
RR

  6332.80 6256.90 9736.60 11913.90 
 

320.10 436.00 773.30 3101.60 

           

0.90 

ˆ
LS

  145383.00 152150.00 171664.00 216624.00 
 

3410.00 3734.00 6045.00 20448.00 

ˆ
RR

  33303.10 33452.10 47627.60 67027.20 
 

1361.90 1626.20 3080.40 13200.30 

ˆ
JMR

  52887.70 58909.10 70394.90 93015.60 
 

1760.80 2070.50 3715.10 14821.50 

ˆ
JRM

  11866.90 12645.60 17357.20 28180.90 
 

569.60 799.60 1567.10 7411.50 

*ˆ
RR

  5511.50 6470.50 8104.90 14333.30 
 

291.80 477.70 817.90 2695.30 

           

0.95 

ˆ
LS

  1980295.00 1955972.00 1546191.00 2190932.00 
 

27950.00 29444.00 45744.00 178431.00 

ˆ
RR

  509210.00 459140.00 326485.00 605908.00 
 

8348.00 9357.00 18715.00 107883.00 

ˆ
JMR

  792571.00 745312.00 548092.00 918717.00 
 

12725.00 13522.00 24832.00 124177.00 

ˆ
JRM

  137224.00 105464.00 76545.00 176526.00 
 

2448.00 2937.00 6655.00 50663.00 

*ˆ
RR

  6753.40 5063.10 7185.50 10095.80 
 

285.20 389.60 917.90 3859.40 

           

0.99 

ˆ
LS

  15458210.00 15216186.00 15121157.00 18711248.00 
 

289717.00 365075.00 439706.00 1939908.00 

ˆ
RR

  3941721.00 3719049.00 3121535.00 4240048.00 
 

81054.00 127113.00 181203.00 1214587.00 

ˆ
JMR

  6116418.00 6002584.00 5272954.00 6857110.00 
 

116202.00 181722.00 236596.00 1377073.00 

ˆ
JRM

  1104532.00 1048186.00 735478.00 1104213.00 
 

20517.00 38537.00 63692.00 611190.00 

*ˆ
RR

  5809.60 6557.80 9078.90 15027.20 
 

284.50 419.00 660.70 3859.90 

 
 

From AMSE values reported in Tables 5 and 6, ˆ
JRM  gives better 

performance than ˆ
LS , ˆ

RR  and ˆ
JMR . However, proposed estimator 

*ˆ
RR  gives 

better performance than ˆ
LS , ˆ

RR  and ˆ
JMR  including ˆ

JRM  for all combinations 

of ρ, n, σ2 and V. Particularly, 
*ˆ
RR  having the significantly less AMSE values as 

compare to other estimators for all combinations of ρ, n, σ2 and V. 
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Case V. As with heteroscedastic and/or correlated errors, departure from the 

normality assumption is also one of` the common problems in regression. Assume 

 follows a non-normal distribution. To examine the robustness of all estimators 

under consideration, random numbers are generated for the error terms () from 

each of the t, F, Chi-square and exponential distributions respectively. The AMSE 

was computed for various values of triplet (ρ, n, distribution of ) for p = 4 and 

reported in Table 7. 
 
 
Table 7. AMSE of LS and various ridge estimators (p = 4 and β = (6, 3, 5, 3)′) 
 

ρ Estimator 
n = 25  100 

 ~ Chi(6) F(2,3) T(8) Exp(4)  Chi(6) F(2,3) T(8) Exp(4) 

0.85 

ˆ
LS

  76.24 89.45 4.61 108.34 
 

52.91 93.15 62.91 871.96 

ˆ
RR

  64.27 35.53 3.59 38.46 
 

20.91 68.10 60.16 330.95 

ˆ
JMR

  64.32 45.86 3.37 51.85 
 

25.30 71.55 59.56 463.09 

ˆ
JRM

  68.43 49.71 4.05 56.37 
 

32.26 75.46 61.46 486.09 

*ˆ
RR

  58.16 17.56 2.58 15.95 
 

8.35 56.71 57.78 173.11 

           

0.90 

ˆ
LS

  189.40 494.30 30.00 607.00 
 

254.00 290.20 97.60 4609.90 

ˆ
RR

  99.40 159.70 14.30 157.20 
 

72.80 124.30 71.70 1286.50 

ˆ
JMR

  122.50 255.90 15.90 263.70 
 

108.90 168.50 75.10 2153.00 

ˆ
JRM

  119.90 233.70 19.60 257.90 
 

124.40 162.30 78.90 2053.30 

*ˆ
RR

  59.43 16.93 4.59 13.71 
 

10.56 57.36 59.62 170.73 

           

0.95 

ˆ
LS

  1597.00 4623.00 325.00 6546.00 
 

3147.00 2834.00 609.00 48742.00 

ˆ
RR

  516.00 1162.00 89.00 1678.00 
 

722.00 876.00 224.00 12090.00 

ˆ
JMR

  862.00 2160.00 157.00 3054.00 
 

1344.00 1506.00 325.00 22501.00 

ˆ
JRM

  737.00 1830.00 138.00 2679.00 
 

1223.00 1238.00 296.00 19425.00 

*ˆ
RR

  57.66 12.49 5.11 9.28 
 

5.74 54.17 59.05 121.59 

           

0.99 

ˆ
LS

  19447.00 47712.00 4916.00 64387.00 
 

39836.00 27943.00 5447.00 526282.00 

ˆ
RR

  6080.00 13278.00 1596.00 15450.00 
 

11031.00 6690.00 1575.00 136786.00 

ˆ
JMR

  10382.00 23410.00 2852.00 27852.00 
 

19415.00 12269.00 2660.00 243775.00 

ˆ
JRM

  8360.00 20304.00 2286.00 23779.00 
 

16420.00 11426.00 2313.00 210271.00 

*ˆ
RR

  57.04 11.86 5.05 9.27 
 

5.41 53.30 58.91 113.13 
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From Table 7, *ˆ
RR  gives better performance than ˆ

LS , ˆ
RR , ˆ

JMR  and ˆ
JRM  

for various values of triplet (ρ, n, distribution of ). This indicates *ˆ
RR  is not 

sensitive to the departure from the normality assumption of error terms. 

From Case I to V in above simulation study, it is observed that ˆ
LS  is 

sensitive in each above case and produces unreliable results. Among estimators

ˆ
RR , ˆ

JMR  and ˆ
JRM  no any estimator is better in each of the above cases. But 

*ˆ
RR  is superior than other estimators in each of the above cases for different 

combinations of size of the sample (n), level of multicollinearity (ρ), variance of 

the error term (σ2), number of predictors (p), matrix V and number of outliers. The 

novel feature of the proposed estimator is that it can be used without any 

modification in the proposed estimator it is better alternative to combat one or 

more than one problems among multicollinearity, outliers, heteroscedastics and/or 

correlated errors and departure from the normality assumption.  

Conclusion 

A new estimation method for the ridge parameter and hence the ridge regression 

estimator *ˆ
RR  was introduced. A simulation study indicated *ˆ

RR  gave better 

performance than other estimators used when the model defined in linear 

regression exhibits multicollinearity and heteroscedastic and/or correlated errors, 

non-normal errors, and outliers. The proposed estimator performed well compared 

with the alternatives considered, and should be useful for practitioners. 
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Introduction 

Decision making is paramount to any organization. Making a good decision 

depends largely on predicting future events and conditions. The basic assumption 

made when forecasting is that there is always an underlying pattern which describes 

the event and conditions, and that it repeats in the future. A time series is a 

chronological sequence of observations on a particular variable. Hence, there are 

two major goals of time series analysis: (1) identifying the nature of the 

phenomenon represented by the sequence of observations; and (2) forecasting 

(predicting future values of the time series variable). Identification of the pattern 

and choice of model in time series data is critical to facilitate forecasting. Thus, 

both of these goals of time series analysis require that the pattern of observed time 

series data is identified and described. Two patterns that may be present are trend 

and seasonality. In order to understand the effectiveness of identification of patterns 

of observed time series data, it is important to first identify what a time series 

http://dx.doi.org/10.22237/jmasm/1478002920
mailto:nwoguec@yahoo.com
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consists of. In time series analysis, it is assumed that the data consists of a 

systematic pattern (usually a set of identifiable components) and random noise 

(error). Most time series patterns can be described in terms of four basic classes of 

components: The systematic pattern includes the trend (denoted as Tt), seasonal 

(denoted as St), and cyclical (denoted as Ct) components. The irregular component 

is denoted as It or et, where t stands for the particular point in time. These four 

classes of time series components may or may not coexist in real-life data. 

The two main goals of a time series analysis are better achieved if the correct 

model is used. The specific functional relationship among these components can 

assume different forms. However, the possibilities are that they are combined in an 

additive (additive seasonality) or a multiplicative (multiplicative seasonality) 

fashion, but can also take other forms such as pseudo-additive/mixed (combining 

the elements of both the additive and multiplicative models) model. 

The additive model (when trend, seasonal and cyclical components are 

additively combined) is given as: 

 

 , 1,2, ,t t t t tX T S C I t n       (1) 

 

The multiplicative model (when trend, seasonal and cyclical components are 

multiplicatively combined) is given as: 

 

 , 1,2, ,t t t t tX T S C I t n       (2) 

 

and the Pseudo-Additive/Mixed Model (combining the elements of both the 

additive and multiplicative models) is given as: 

 

 , 1,2, ,t t t t tX T S C I t n       (3) 

 

Cyclical variation refers to the long term oscillation or swings about the trend, and 

only long period sets of data will show cyclical fluctuation of any appreciable 

magnitude. If short periods of time are involved (which is true of all examples in 

this study), the cyclical component is superimposed into the trend (Chatfield, 2004) 

and then the trend-cycle component is denoted by Mt. In this case, (1), (2), and (3) 

may, respectively, be written as: 

 

 , 1,2, ,t t t tX M S I t n      (4) 
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 , 1,2, ,t t t tX M S I t n      (5) 

 

 , 1,2, ,t t t tX M S I t n      (6) 

 

The pseudo-additive model is used when the original time series contains very 

small or zero values. However, this work will discuss only the additive and 

multiplicative models. 

As long as the trend is monotonous (consistently increasing or decreasing), 

the identification of the trend component is not very difficult. Tests for trend are 

given in Kendall and Ord (1990). The cyclical component exhibits variation at 

periods that may be fixed or not fixed, but which are predictable. Many time series 

exhibit a variation which repeats itself in systematic intervals over time and this 

behavior is known as seasonal dependency (seasonality). The seasonal component, 

St, is associated with the property that S(i–j)s+j = Sj, i = 1, 2,…. The difference 

between a cyclical and a seasonal component is that the latter occurs at regular 

(seasonal) intervals, although cyclical factors have usually a longer duration that 

varies from cycle to cycle. 

In some time series data, the presence of a seasonal effect in a series is quite 

obvious and the seasonal periods are easy to find (e.g., 4 for quarterly data, 12 for 

monthly data, etc.). Seasonality can be visually identified in the series as a pattern 

that repeats every k elements. The following graphical techniques can be used to 

detect seasonality: (1) a run sequence plot (Chambers, Cleveland, Kleiner, & Tukey, 

1983); (2) a seasonal sub-series plot (Cleveland, 1993); (3) multiple box plots 

(Chambers et al., 1983); and (4) the autocorrelation plot (Box, Jenkins, & Reinsel, 

1994). Both the seasonal subseries plot and the box plot assume that the seasonal 

periods are known. If there is significant seasonality, the autocorrelation plot should 

show spikes at multiples of lags equal to the period, the seasonal lag (Box et al., 

1994). For quarterly data, we would expect to see significant spikes at lag 4, 8, 12, 

16, and so on. Iwueze, Nwogu, Ohakwe, and Ajaraogu (2011) pointed out that 

seasonality in time series can be identified from the time plot of the entire series by 

regularly spaced peaks and troughs which have a consistent direction and 

approximately the same magnitude every period/year, relative to the trend. 

In some cases the presence of a seasonal effect in a series is not quite obvious 

and, therefore, testing is required in order to confirm the presence of the seasonal 

effect in a series. Davey and Flores (1993) proposed a method which adds statistical 

tests of seasonal indexes for the multiplicative model that helps identify seasonality 

with greater confidence. Tests for seasonality are also given in Kendall and Ord 
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(1990). Chatfield (2004) suggested the use of the Buys Ballot table for inspecting 

time series data for the presence of trend and seasonal effects. Fomby (2008) 

presented various graphs suggested by the Buys Ballot table for inspecting time 

series data for the presence of seasonal effects. Fomby (2010), in his study of Stable 

Seasonal Pattern (SSP) models, gave an adaptation of Friedman’s two-way analysis 

of variance by ranks test for seasonality in time series data. Several statistics have 

also been proposed to test for seasonality. They can be broken down into three 

groups: the Chi-Square (χ2) Goodness-of-Fit test and the Kolmogorov-Smirnov 

type statistic, the Harmonic analyses based on the Edwards’ type statistic (Edwards, 

1961), and the Nonparametric Tests. 

The χ2 goodness-of-fit test is relatively popular for detecting seasonality 

because of its simple mathematical theory, which makes it easy to calculate and 

understand (Hakko, 2000). The test is on whether the empirical data can be a sample 

of a certain distribution with sampling error as the only source of variability 

(McLaren, Legler, & Brittenham, 1994). This test requires a sample from a 

population with an unknown distribution function F(x) and a certain theoretical 

distribution function F0(x). Although there is no restriction on the underlying 

distribution, usually the hypothetical distribution is a uniform distribution. 

For seasonality studies, the frequency Oi, i = 1, 2,…, k is the observed value 

at the ith season, while the frequency Ei, i = 1, 2,…, k is the expected cell frequency 

at the ith season. Under the null hypothesis that there is no seasonal effect (i.e., F0(x) 

is a uniform distribution), then E1 = E2 =…= Ek and the statistic 

 

 
 

2

1

k
i i

i i

O E
T

E

 
  

  
   (7) 

 

is asymptotically distributed as χ2 with ν = k − 1 degrees of freedom (Horn, 1977). 

The χ2 goodness-of-fit test for seasonality has been recently used for the analysis 

of seasonality in suicide, myocardial infarction, diarrhoea, pneumonia, and overall 

mortality (Flisher, Parry, Bradshaw, & Juritz, 1996; Herring & Hoppa, 1997; 

Rihmer, Rutz, Pihlgren, & Pestiality, 1998; Sheth, Nair, Muller, & Yusuf, 1999; 

Underwood, 1991; Villa, Guisecafré, Martinez, & Muñoz, 1999). 

In his article, Edwards (1961) explicitly mentions the possibility to estimate 

cyclic trends by considering the ranking order of the events which are above or 

below the median number. This idea was used by Hewitt, Milner, Csima, and 

Pakula (1971) but did not use a binary indicator as suggested by Edwards (1961), 

instead using all of the ranking information. Rogerson (1996) made an attempt to 
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generalize this test by relaxing the relatively strict assumption of Hewitt et al. 

(1971) that seasonality is only present if a six-month peak period is followed by a 

six-month trough period. Rogerson (1996) allowed that the peak period can also 

last three, four, or five months. Rau (2005) further relaxed these assumptions and 

allows total flexibility for the basic time duration as well as for the length of the 

peak period. 

The Kolmogorov-Smirnov goodness-of-fit test (KS-Test) is comparable to 

the χ2 goodness-of-fit test because both approaches are designed to test if a sample 

drawn from a population fits a specified distribution. However, the KS-Test does 

not compare observed and expected frequencies at each season, but rather the 

cumulative distribution functions between the ordered observed and expected 

values (Rau, 2005). 

For seasonality studies, if FN(t), t = 1, 2,…, s, is the empirical distribution 

function based on the observed frequencies at each season and F0(t) is the 

corresponding distribution function under the null hypothesis that there is no 

seasonal effect, the test-statistic used is: 

 

          0 0
1 12 1 12
max F F max F FN N N

t t
T V N t t t t

   

     
  

  (8) 

 

The statistic T does not follow any of the known distributions (e.g. χ2, N(µ, σ2), 

etc.). The distribution of T was determined empirically by Freedman (1979) using 

Monte Carlo simulations and tabulated in Freedman’s article. Freedman’s modified 

KS-Type Test has been used for the study of seasonality (Verdoux, Takei, Cassou 

de Saint-Mathurin, & Bourgeois, 1997). 

In all these tests for the presence of seasonal effect in a time series data, the 

model structure (i.e. whether Additive or Multiplicative models) and nature of the 

trending curve (Linear, Quadratic, Exponential, etc.) were not taken into 

consideration. However, Iwueze and Nwogu (2014) have shown that, for precise 

detection of presence of seasonal effect in a series the model, structure and trending 

curves are necessary. Some of the questions that come to mind are: “How does the 

model structure affect the detection of presence of seasonal effect in a time series 

data?”; “How does the nature of the trending curves affect the test for presence of 

seasonal effect in a series?” These and other related questions are what this study 

intends to address. 

Therefore, the ultimate objective of this study is to develop tests for 

seasonality in a series which take into account the nature of the model structure and 
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trending curves for precise detection of the presence of seasonal effect in a series 

where it exists. The specific objectives are to: 

 

(a) Review the Buys Ballot procedure for selected trending curves, 

(b) Construct test(s) for the detection of presence of seasonal effect in a series 

using the row, column, overall means and variances of the Buys-Ballot table, 

and 

(c) Assess the performance of the developed test statistics in detection of the 

presence of seasonal effects in a series using empirical examples. 

 

Based on the results, recommendations are made. 

The rationale for this study is to fill the gap in the existing tests for seasonality 

by providing analyst with objective test for the detection of the presence of seasonal 

effect in a series when it exists. 

The Buys-Ballot procedure was developed by Iwueze and Nwogu (2004) for 

short period data in which trend and cyclical components are jointly estimated; the 

tests developed in this study are based on this assumption. In their results, on the 

basis of which the proposition for choice of appropriate model was made, Iwueze 

and Nwogu (2014) showed that, for the selected trending curves, the column 

variances depend only on the trend parameters for the additive model and on both 

trend parameters and seasonal indices for the multiplicative model. Therefore, if 

the seasonal/column variances are functions of the trend parameters, only then is 

Additive the appropriate model. However, if the seasonal/column variances are 

functions of both the trend parameters and seasonal indices, then the appropriate 

model is Multiplicative. It is the presence of the seasonal effect in the 

seasonal/column variances that makes the model multiplicative. In other words, 

once the seasonal/column variances indicate that the appropriate model is 

Multiplicative, it also indicates that the series contains seasonal effects. Therefore, 

in this study, tests for detection of the presence of seasonal effect in a time series 

data are developed for the additive model only. 

For the additive model and all trending curves studied, the row variances 

contain both the trending parameters and the seasonal component, while the column 

variances do not contain the seasonal component. Therefore, the parameters of the 

trending curves have been varied in order to see their effects on the powers of the 

tests. In particular, the slope parameter b of the linear trend has been assigned the 

values b = 0.02, 0.20, and 2.00 to check its effect on the test(s). 
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Furthermore, the power of the tests will be measured by considering the 

percentages of the total simulations in which the test correctly detected the presence 

of seasonal effect when it exists. 

Methodology 

The summary of the row variances for the additive model derived by Iwueze and 

Nwogu (2014) are shown in Table 1 for the selected trending curves, with 
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Tests for seasonality in the Additive model are constructed by applying the tests for 

the matched pairs of data to the row variances of the Buys-Ballot table. 
 
 
Table 1. Summary of row variances of the Buys-Ballot table for the additive model and 

the selected trending curves 
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Source: Iwueze and Nwogu (2014). 

 
 

For the matched pairs of data, (Ui, Vi), i = 1, 2,…, n, define 

 

 i i id U V    (9) 
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where, for the ith observation unit, Ui and Vi denote measures on two characteristics. 

For the variable di, any of these test statistics: (a) the Student’s t-distribution; (b) 

the sign test; or (c) the Wilcoxon Signed-Rank; can be used to test the null 

hypothesis that the two characteristics have the same mean or median. 

Student t-Distribution 

The statistic 

 

 0
c

d

d d
t

S n


   (10) 

 

is known to follow the Student’s t-distribution with n – 1 degrees of freedom under 

the null hypothesis that the two characteristics have the same mean or median (or 

are drawn from a population with the same median), where 
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and d0 (usually assumed zero under H0: d = d0) is the value of the man or median 

of the deviations under the null hypothesis. The null hypothesis (H0) is rejected at 

α level of significance if |tc| > t1–α/2, where t1–α/2 is the 100(1 − α) percentile of the 

Student’s t-distribution with n − 1 degrees of freedom. 

Sign Test 

The test statistic for the sign test is k, the smaller of the number of positive signs n+ 

and the number of negative signs n-. That is 

 

  min ,k n n    (11) 

 

Under the null hypothesis that the medians of the two variates are equal, the random 

variable k follows the binomial distribution with parameters n and p = 0.5. That is, 

the number of positive signs (n+) and negative (n-) signs are expected to be equal. 

For smaller sample sizes (i.e., 0 < n < 25), the observed value of k is 

compared with the critical value (kα) and the null hypothesis (H0) is rejected at α 

level of significance if k < kα, where kα is computed from the binomial probability 

function as 
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   (12) 

 

where p = 0.5 and k    is the “floor” under kα, i.e., the greatest integer less than or 

equal to kα (Corder & Foreman, 2014). 

For larger sample sizes (i.e., n ≥ 25), Corder and Foreman (2014) 

recommended the use of zc, given as 

 

 
 0.5 0.5
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   (13) 

 

where k' = max(n+, n-). This approximately follows the standard normal 

distribution under the null hypothesis. The null hypothesis (H0) is rejected at α level 

of significance if k' > zα and accepted otherwise. 

Wilcoxon Signed-Ranks Test 

For small sample sizes (i.e., n ≤ 30), the Wilcoxon Signed-Ranks test statistic is 

given by 

 

 
1 1

Min ,
i i

n n

c d d
i i

T R R
 

 

 

 
  

 
    (14) 

 

where 
1 i

n

di
R




  is the sum of the positive ranks of non-zero differences and 

1 i

n
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  is the sum of the absolute values of the negative ranks of non-zero 

differences. If the null hypothesis (H0) is true, these sums are expected to be equal. 

For large sample sizes (i.e., n > 30), the Wilcoxon Signed-Ranks test statistic 

is given by Corder and Foreman (2014) as 
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where n is the number of matched pairs of data for which their differences is not 

zero and 
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i.e., the mean and standard deviation of Tc, respectively, under the null hypothesis. 

The null hypothesis (H0) is rejected at α level of significance if zc < zα and accepted 

otherwise. 

When the usual parametric assumptions (difference scores are normally and 

identically distributed in the population from which the sample was drawn and that 

they are measured on at least an interval scale) are met, the Student’s t-distribution 

is used. The sign test and the Wilcoxon signed-ranks test are used when the usual 

assumptions of parametric tests are not met. It is important to note that the sign test 

and Wilcoxon signed-ranks test require only that the distribution of the study data 

be symmetric. 

For detection of the presence of seasonal effect in a time series data, we let Ui 

denote the row variance in the presence of the seasonal effect and Vi denote row 

variance in the absence of the seasonal effect. 

For example: 

(a) For the linear trend-cycle component, in the presence of seasonal effect, 

the row variance is 
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When there is no seasonal effect, Sj = 0 ∀j = 1, 2,…, s, and so 
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and 
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    (18) 

 

which is zero under null hypothesis (H0: Sj = 0). 

(b) For the Quadratic trend-cycle component, in the presence of seasonal 

effect, the row variance is 
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When there is no seasonal effect, Sj = 0 ∀j = 1, 2,…, s, 2

1 2 1
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which is zero under null hypothesis (H0: Sj = 0). 

(c) For the Exponential trend-cycle component, in the presence of seasonal 

effect, the row variance is 
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When there is no seasonal effect, Sj = 0 ∀j = 1, 2,…, s, 2

1 1
e 0

s s cj

j jj j
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   . 

Hence 
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Which again is zero under the null hypothesis (H0: Sj = 0). 

It is clear from di = Ui – Vi (see (18), (21), and (24)) that when the trend 

dominates the series, the presence of the seasonal effect in a series will be difficult 

to detect. Therefore, it is advisable to isolate the trend before embarking on test for 

presence of seasonal effect in a series. It is important to note that the di represented 

by (18), (21), and (24) for linear, quadratic, and exponential curves respectively are 

functions of the seasonal components only when the trend is removed. 

Empirical Examples 

This section presents some empirical examples to illustrate the application of the 

tests for seasonality in time series data discussed previously, and to compare the 

powers of the tests in the detection of the presence of seasonal effects in a series. 

The data used consists of 106 data sets of 120 observations each, simulated using 

the MINITAB software from: (a) Xt = (a + bt) + St + et with a = 1 and b = 0.02, 

0.20, and 2.00, for the linear trend-cycle component; (b) Xt = (a + bt +ct2) + St + et 

with a = 1, b = 2.0, and c = 3 for the Quadratic trend-cycle component; and 

(c) Xt = (bect) + St +et with b = 10 and c = 0.02 for exponential trend-cycle 

component. In each case it is assumed that et ~ N(0, 1) and Sj, j = 1, 2,…, 12 are as 

shown in Table 2. Meteorological data were collected from the meteorlogical 

station in Owerri, southeastern Nigeria, for the period of 1990-2010 with the 

assistance of the computer unit of the Federal Meteorological Centre Oshodi, Lagos. 

The weather parameters collected are mean monthly values of air temperature, 

relative humidity, and rainfall. Data on monthly U.S. male (16 to 19 years) 

unemployment figures (in thousands) for the period 1948 to 1981, monthly gasoline 

demand Ontario (gallon millions) for the period 1960 to 1975, monthly production 

of Portland cement (thousands of tons) for the period 1956 to 1970, and monthly 

milk production (pounds per cow) for the period 1962 to 1975, sourced from 

Hyndman (2014), were used to further illustrate the application of the proposed 

tests for seasonality in real life time series data. 
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Table 2. Seasonal indices used for simulation 

 

j 1 2 3 4 5 6 7 8 9 10 11 12 

Sj -0.89 -1.22 0.10 -0.15 -0.09 1.16 2.34 1.95 0.64 -0.73 -2.14 -0.97 

 
 
Table 3. Summary results of tests for seasonality when b = 0.02, 0.20, and 2.00 for linear 

trend curve 
 

  1% (0.01)  5% (0.05)  10% (0.10) 

Slope Test Statistic %Pass %Fail   %Pass %Fail   %Pass %Fail 

b = 0.02 t-test 100.00 0.00  100.00 0.00  100.00 0.00 

 S-R test 100.00 0.00  100.00 0.00  100.00 0.00 
 Sign test 84.91 15.09   99.06 0.04   99.06 0.04 
          

b = 0.20 t-test 100.00 0.00  100.00 0.00  100.00 0.00 

 S-R test 74.53 25.47  100.00 0.00  100.00 0.00 
 Sign test 76.41 23.59   99.06 0.04   99.06 0.04 
          

b = 2.00 t-test 67.92 32.62  74.53 25.47  82.08 17.92 

 S-R test 60.38 39.62  74.53 25.47  80.11 19.81 
 Sign test 47.17 52.83   65.09 34.91   65.09 34.91 

 
 

The summary of the results of the application of the three tests for the 

presence of seasonal effects in the simulated series are shown in Table 3 when the 

trend-cycle component is present for linear trend curve and Table 4 when trend-

cycle component is absent for linear, quadratic, and exponential trend curves. 

As Table 3 shows, when the slope b is 0.02, the t-test and Wilcoxon signed-

ranks test performed equally well (100% of the time) in detecting the presence of 

seasonal effect at the three chosen levels of significance (i.e. 1%, 5%, and 10%). 

The sign test was able to detect the presence of seasonal effect from at least 84.91% 

of the time at 1% level of significance to about 99.06% of the time at both 5% and 

10% levels of significance. When the slope b is increased to 0.20, the t-test was 

able to detect the presence of seasonality 100% of the times at the three chosen 

levels of significance. The Wilcoxon signed-ranks test was able to detect the 

presence of seasonality 100% of the time at 5% and 10% levels of significance and 

less than 75% of the time at 1% levels of significance. The sign test, on the other 

hand, was able to detect the presence of seasonal effect about 99.06% of the time 

at both 5% and 10% levels of significance but at about 76.41% of the time at 1% 

level of significance. For b = 2.00, all three tests did not perform as well in detection 

of the presence of seasonal effects in a series. 
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Table 4. Summary results of tests for seasonality for the de-trended series for linear, 

quadratic, and exponential trend curves 
 

Trend 
Component 

 1%  5%  10% 

Test Statistic %Pass %Fail   %Pass %Fail   %Pass %Fail 

Linear: t-test 100.00 0.00  100.00 0.00  100.00 0.00 

a = 1.0, S-R test 85.85 14.15  100.00 0.00  100.00 0.00 

b = 2.0 Sign test 85.85 14.15  99.06 0.04  99.06 0.04 
          

Quadratic: t-test 100.00 0.00  100.00 0.00  100.00 0.00 

a = 1.0, b = 2.0, S-R test 100.00 0.00  100.00 0.00  100.00 0.00 

c = 3.0 Sign test 84.91 15.09  99.06 0.04  99.06 0.04 
          

Exponential: t-test 100.00 0.00  100.00 0.00  100.00 0.00 

b = 10, S-R test 100.00 0.00  100.00 0.00  100.00 0.00 

c = 0.02 Sign test 96.23 4.77  100.00 0.00  100.00 0.00 

 
 

The best, the t-test, was able to detect the presence of seasonal effects at most 

82% of the time at 10% level of significance and less than 75% of the time at 1% 

and 5% levels of significance. 

In summary, the performances of all the tests (t-test, Wilcoxon signed-ranks 

test, and sign test) appear to have decreased with increasing dominance of the trend- 

cycle component in the simulated series and increased with increasing levels of 

significance. The t-test was observed to have performed better than the other two 

statistical tests applied while the Sign test appears to be trailing behind others. 

The results also appear to support the claim made by Iwueze and Nwogu 

(2014) that it is necessary to de-trend time series data before conducting test for 

seasonality. This claim was supported by results of (18), (21), and (24). In other to 

assess the authenticity of this claim, the three tests (t-test, Wilcoxon signed-ranks 

test, and sign test) were applied to the de-trended series from the simulated series 

with b = 2.0. The results of these are shown in Table 4. 

The results in Table 4 show that the t-test and Wilcoxon signed-ranks test are 

equal and perfect in performance (100% all through) in detecting the presence of 

seasonal effects, although the sign test has performance percentages of about 

85.85% at 1% level of significance and 99.06% at both 5% and 10% significance 

levels. These are in line with the results obtained when the slope b = 0.02, and 

supports the claim that dominance of a series by trend can obscure the presence of 

seasonal effect in a series. 
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Table 5. Results of tests for seasonality using real life time series data 

 

 t-Test Wilcoxon S-R Test Sign Test 

Weather Parameter P-Value Sig. (2-tailed) 

Air Temperature 0.003 0.001 0.000 

Relative Humidity 0.000 0.000 0.000 

Rain Fall 0.000 0.000 0.000 

US Male (16-19 years) Unemployment 0.000 0.003 0.006 

Gasoline Demand 0.000 0.002 0.000 

Production of Portland Cement 0.004 0.008 0.006 

Milk Production 0.000 0.002 0.000 

 
 

The summary of the results of the application of the three tests for presence 

of seasonal effect in the real life time series are shown in Table 5. The three 

proposed tests (t-test, Wilcoxon signed-ranks test, and sign test) performed well in 

the detection of the presence of seasonal effects in all the real life time series data 

used, even at 1% significance level. 

Concluding Remark 

In this study, three tests (t-test, Wilcoxon signed-ranks test, and sign test for paired 

sample data) for detection of seasonal effects in a time series data have been 

proposed. The tests were developed using the row variances of the Buys-Ballot 

table when the model structure is additive, and for selected trending curves. The 

performances of the tests were assessed using simulated series with different 

trending curves and at different levels of significance, and with real life time series 

data. 

The results of the analysis from the simulated series show that the 

performances of all three tests to have decreased with increasing dominance of the 

trend-cycle component in the simulated series, and increased with increasing levels 

of significance. The t-test was observed to have performed better than the other two 

statistical tests applied, while the sign test appears to be trailing behind others. 

When the tests were applied to the de-trended series from a trend dominated 

series (simulated series with b = 2.00), the results are in line with the results 

obtained when the slope b is 0.02. This supports the claim by Iwueze and Nwogu 

(2014) that dominance of a series by trend can obscure the presence of seasonal 

effect in a series and that it is necessary to de-trend a time series data before 

conducting test for seasonality. 
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In view of these results, it has been recommended that the Student’s t-test and 

Wilcoxon signed-ranks test be used for the detection of the presence of seasonal 

effects in time series data when the model structure is additive until further studies 

prove otherwise. It has also been recommended that the tests be applied to the de-

trended series when a series is dominated by trend. Preliminary assessments like 

the time plot of the study series can offer a guide to determining when a series is 

dominated by the trend. 

Furthermore, when real life time series data were used, the three proposed 

tests (t-test, Wilcoxon signed-ranks test, and sign test) performed well in detection 

of the presence of seasonal effect even at 1% significance level. 
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One of the main goals of the multiple linear regression model, Y = Xβ + u, is to assess the 
importance of independent variables in determining their predictive ability. However, in 
practical applications, inference about the coefficients of regression can be difficult 
because the independent variables are correlated and multicollinearity causes instability 
in the coefficients. A new estimator of ridge regression parameter is proposed and 
evaluated by simulation techniques in terms of mean squares error (MSE). Results of the 

simulation study indicate that the suggested estimator dominates ordinary least squares 
(OLS) estimator and other ridge estimators with respect to MSE. 
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Introduction 

Consider the general linear regression model 

 

 01Y X u     (1) 

 

where Y is an (n × 1) vector of observations on the dependent variable, β0 is a 

scalar intercept, 1 is an (n × 1) vector with all components equal to unity, X is an 

(n × p) matrix of regression variables of full rank p, β is the unknown parameter 

vector of regression coefficients, and u ~ N(0, σ2I) is an (n × 1) vector of 

unobservable errors. Because the interest is in estimating β, omit the constant term 

β0 in order to keep the notation simple. 

The OLS estimator for the regression parameters is given by 

 

  
1ˆ X X X Y


   (2) 
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If any X's are highly correlated (or, multicollinear), the matrix becomes non-

orthogonal, the inversion unstable and the inverse or estimated fractions highly 

sensitive to random error, and therefore, the OLS solution in (2) has inflated 

values of the coefficients of regression. Such a regression can be used for 

prediction, but is worthless in the analysis and interpretation of the individual 

predictors role in the model. In practice, multicollinearity almost always exists but 

is typically overlooked or ignored. The following overview stages the later 

proposed approaches. 

Multicollinearity 

Multicollinearity is a high degree of correlation among several independent 

variables. It commonly occurs when a large number of independent variables are 

incorporated in a regression model. Only existence of multicollinearity is not a 

violation of the OLS assumptions. However, a perfect multicollinearity violates 

the assumption that the X matrix is full ranked, making OLS, given by (2), 

impossible, because when the model, defined by (1), is not full ranked, then the 

inverse of X cannot be defined, there can be an infinite number of least squares 

solutions. Symptoms of multicollinearity may be observed in the following 

situations: 

 

1. Small changes in the data produce wide swings in the parameters 

estimates. 

2. Coefficients may have very high standard errors and low 

significance levels even though they are jointly significant and the R2 

for the regression is high. 

3. Coefficients may have the wrong sign or implausible magnitude, 

Green (2000). 

 

The consequences of multicollinearity are that the variance of the model (i.e. 

the error sum of squares) and the variances of coefficients are inflated. As a result, 

any inference is not reliable and the confidence interval becomes wide. Hence, 

even though the OLS estimator of β is the minimum variance unbiased estimator, 

its MSE will still be large if multicollinearity exists among the independent 

variables. 

To detect multicollinearity, in fact there is no clear-cut criterion for 

evaluating multicollinearity of linear regression models. We may compute 
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correlation coefficients of independent variables. But high correlation coefficients 

do not necessarily imply multicollinearity. We can make a judgment by checking 

related statistics, such as variance inflation factor (VIF) and condition number 

(CN), where 

Variance Inflation Factor 

The VIF is given by 

 

 
2

1
, 1,2, ,

1 i

VIF i p
R

 


 (3) 

 

and 2

iR  represents the squared multiple correlation coefficients when Xi (the ith 

column of X) is regressed on the remaining (p – 1) regressor variables. 

The VIF shows how multicollinearity has increased the instability of the 

coefficient estimates (Freund and Littell, 2000). In other words, it tells us how 

inflated the variance of the coefficient is, compared to what it would be if the 

variable were uncorrelated with any other variable in the model (Allison, 1999). 

However, there is no formal criterion for determining the bottom line of the VIF. 

Some argue that VIF greater than 10 roughly indicates significant 

multicollinearity. Others insist that magnitude of model's R2 be considered 

determining significance of multicollinearity. Klein (1962) suggested an 

alternative criterion that 2

iR  (the coefficient of determination for regression of the 

ith independent variable) exceeds R2 of the regression model. In this vein, if VIF is 

greater than 1/(1 − R2), then multicollinearity can be considered statistically 

significant. 

Condition Number 

To quantify the seriousness of multicollinearity, computation of the eigenvalues, 

λi, of the matrix X'X is recommended, because the degree of collinearity of any 

data set is indicated the CN, which is given by 

 

 1

p

CN



  (4) 

 

where λ1 is the largest eigenvalue of the matrix X'X and λp is the smallest 

eigenvalue of X'X. 



KHALAF & IGUERNANE 

403 

A set of eigenvalues of relatively equal magnitudes indicates that there is 

little multicollinearity (Freund and Littell, 2000). A zero eigenvalue means perfect 

collinearity among independent variables and very small eigenvalues implies 

severe multicollinearity. In other words, an eigenvalue close to zero (less than 

0.01, say) or CN greater than 50 indicates significant multicollinearity. Belsley et 

al. (1980) insist 10 to 100 as a beginning, and maintains that collinearity affects 

estimates. 

There are several ways to solve the problem of multicollinearity. Some of 

them are 

 

1. Changing specification by omitting or adding independent variables. 

2. Obtaining more data (observations) if problems arise because of a 

shortage of information. 

3. Transforming independent variables by taking logarithmic or 

exponential. 

4. Trying biased estimated methods such as ridge regression estimation. 

The ridge regression estimator has a covariance matrix smaller than 

that of OLS (Judge, et al., 1985) 

Ridge Regression and a New Proposed Ridge Parameter  

Although the OLS estimator is BLUE, it is not necessarily closest to β, because 

linearity and unbiasedness are not irrelevant for closeness, particularly when the 

input matrix of the design is multicollinear. For orthogonal data, the OLS 

estimator for β in the linear regression model is strongly efficient (getting 

estimates with minimum MSE). But in the presence of multicollinearity, the OLS 

efficiency can be reduced and hence an improvement upon it would be necessary 

and desirable. Thus it is natural to look at biased estimator for an improvement 

over the OLS estimator because it is meaningful to focus on small MSE as the 

relevant criterion, if a major reduction in variance can be obtained as a result of 

allowing a little bias. This is precisely what the ridge regression estimator can 

accomplish. 

Ridge regression, due to Hoerl and Kennard (1970), amounts to adding a 

small positive quantity, say k, to each of the diagonal elements of the matrix X'X. 

The resulting estimator is 

 



MULTICOLLINEARITY AND A RIDGE PARAMETER ESTIMATION  

404 

    
1ˆ k X X kI X Y


    (5) 

 

where k is a positive scalar. When k = 0, (5) reduces to the unbiased OLS 

estimator given by (2). 

Considering  ˆ k  with regards to MSE 

 

         
   

2 2
2 2

2 2
1 1

ˆ ˆ ˆ
p p

i i

i ii i

k
MSE k Var k Bias k

k k

 
   

  

   
 

    

 

It is known that, as k increases from zero, the MSE initially decreases to a 

minimum, and then increases with increasing k. Hence, there always exists a 

minimum. Thus it is quite helpful allowing a small bias in order to achieve the 

main criterion of keeping the MSE small. 

When using ridge estimates, the choice of k in (5) is important and several 

methods have been proposed for this purpose (see, e.g., Hoerl & Kennard, 1970; 

McDonald & Galarneau, 1975; Nomura, 1988; Hag & Kibria, 1996; Khalaf & 

Shukur, 2005; Muniz & Kibria, 2009; Khalaf, 2011; Khalaf, 2013; Khalaf & 

Iguernane, 2014). 

Hoerl and Kennard (1970) suggested that the best method for achieving an 

improved estimate (with respect to MSE) is by choosing 

 

 
2

2

max

ˆˆ
ˆ

k



  (6) 

 

where max̂  denote the maximum of βi and 
2  is the usual estimate of σ2, defined 

by 

 

 
   

2

ˆ ˆ

ˆ
1

Y X Y X

n p

 



 


 

  

 

and referred to henceforth as the HK estimator. They proved that there exists a 

k > 0 such that the sum of the MSEs of all  ˆ
i k  is smaller than the 

corresponding term of ˆ
i , the OLS estimator, i.e. 
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      2 1

1

ˆ ˆ ˆ
p

i

i

MSE k MSE   



     

 

Khalaf and Shukur (2005) suggested a new method of estimating k as a 

modification of equation (6), as follows 

 

 
 

2

max

2 2

max max

ˆˆ
ˆˆ

KSk
n p

 

  


 
 (7) 

 

where λmax is the largest eigenvalue of the matrix X'X. They concluded the ridge 

estimator using (7) performed very well and was substantially better than any 

estimators included in their study. 

In the light of above, which indicates the satisfactory performance of ˆ
KSk  

with the potential for improvement, modification of the ridge estimator using ˆ
KSk  

(the KS estimator) by taking its square root is suggested. This proposed estimator 

(the KSM estimator) is 

 

 ˆ ˆ
KSM KSk k  (8) 

 

To investigate the performance, relative to the OLS and other ridge 

estimators given by (6) and (7), of the new ridge estimator given by (8), we 

calculate the MSE using the following equation 

 

 

   
1

ˆ ˆ
R

i
iMSE

R

   



 




 (9) 

 

where ̂  is the estimator of β obtained from OLS or other ridge estimators, and R 

equals 5000 which corresponds to the number of replicates used in the simulation. 

Simulations  

Consider the true model Y = Xβ + u. Here u ~ N(0,σ2I) and the independent 

variables are generated from 
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1
221 , 1,2, , , 1,2, ,ij ij ipx z z i n j p       (10) 

 

where zij are generated using the standard normal distribution. Here, we consider 

four values of ρ corresponding to 0.7, 0.9, 0.95 and 0.99. The dependent variable 

is then determined by 

 

 0 1 1 , 1,2, ,i i p ip iy x x u i n         (11) 

 

where n is the number of observations, ui are i.i.d. pseudo-random numbers, and 

β0 is taken to be zero. Parameter values are chosen such that 2

1

1
p

j

j




 , which is a 

common restriction in simulation studies (McDonald and Galarneau, 1975; Muniz 

and Kibria, 2009). Sample sizes selected are n = 10, 25, 50, 85, 200 and 1000, 

with 4 or 7 independent variables. The variance of the error terms is taken as 

σ2 = 0.01, 0.1, and 0.5.  Ridge estimates are computed using the different ridge 

parameters given in (6) and (7). Because the proposed estimator (8) is a 

modification of (7), this estimator is included for purposes of comparison. The 

MSE of the ridge regression parameters is obtained using (9). This experiment is 

repeated 5000 times. 

Result  

All factors chosen to vary in the design of the experiment affect the estimated 

MSE. As expected, increasing the degree of correlation leads to a higher 

estimated MSE, especially when n is small and σ2 = 0.01. This increase is much 

greater for OLS than for ridge regression estimators. 
 
 
Table 1a. Estimated MSE when p = 4 and ρ = 0.7 

 

 
σ2=0.01 

 
σ2=0.1 

 
σ2=0.5 

n OLS HK KS KSM   OLS HK KS KSM   OLS HK KS KSM 

10 16114 5236 6140 31 

 

156.00 52.00 60.00 7.00 

 

6.320 3.030 3.220 1.850 

25 3799 1242 2153 27 

 

39.00 15.00 23.00 5.90 

 

1.560 1.170 1.240 0.990 

50 1722 597 1248 32 

 

17.00 7.00 12.00 5.00 

 

0.690 0.600 0.620 0.560 

85 988 344 806 36 

 

9.70 4.60 8.00 4.10 

 

0.390 0.360 0.370 0.340 

200 399 141 363 42 

 

4.00 2.40 3.60 2.60 

 

0.161 0.156 0.157 0.153 

1000 77 28 76 35   0.77 0.67 0.75 0.70   0.032 0.031 0.031 0.031 
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Table 1b. Estimated MSE when p = 4 and ρ = 0.9 

 

 

σ2=0.01 

 

σ2=0.1 

 

σ2=0.5 

n OLS HK KS KSM   OLS HK KS KSM   OLS HK KS KSM 

10 46391 14512 15254 41 

 

478.0 149.0 156.0 8.0 

 

18.000 6.700 7.000 2.500 

25 11854 3692 4695 29 

 

114.0 37.0 46.0 5.7 

 

4.700 2.500 2.700 1.600 

50 5179 1678 2607 27 

 

52.0 18.0 27.0 5.3 

 

2.120 1.480 1.560 1.170 

85 2967 969 1778 25 

 

29.0 11.0 18.0 4.9 

 

1.190 0.950 0.990 0.820 

200 1184 380 885 26 

 

12.0 5.1 9.2 4.0 

 

0.482 0.439 0.446 0.410 

1000 233 75 216 36   2.3 1.6 2.2 1.7   0.094 0.092 0.093 0.090 

 
 
Table 1c. Estimated MSE when p = 4 and ρ = 0.95 

 

 
σ2=0.01 

 
σ2=0.1 

 
σ2=0.5 

n OLS HK KS KSM   OLS HK KS KSM   OLS HK KS KSM 

10 99744 29610 30311 51 

 

957.00 282.00 289.00 9.00 

 

39.000 12.000 13.000 3.000 

25 24979 7538 8527 32 

 

240.00 74.00 84.00 6.00 

 

9.000 4.100 4.400 2.000 

50 10642 3290 4305 26 

 

108.00 36.00 46.00 5.40 

 

4.330 2.380 2.570 1.570 

85 6109 1945 2925 23 

 

60.00 20.00 29.00 5.00 

 

2.480 1.650 1.760 1.250 

200 2498 802 1543 22 

 

24.00 9.00 15.00 4.60 

 

1.010 0.830 0.858 0.724 

1000 494 163 426 31   4.82 2.60 4.21 2.64   0.192 0.185 0.186 0.179 

 
 
Table 1d. Estimated MSE when p = 4 and ρ = 0.99 
 

 
σ2=0.01 

 
σ2=0.1 

 
σ2=0.5 

n OLS HK KS KSM   OLS HK KS KSM   OLS HK KS KSM 

10 533881 156406 157056 84 

 

5352.0 1605.0 1612.0 12.0 

 

218.0 67.0 67.3 5.0 

25 130105 39322 40154 46 

 

1325.0 417.0 425.0 7.4 

 

54.0 16.0 17.0 3.0 

50 59142 18290 19221 32 

 

593.0 189.0 199.0 6.5 

 

23.0 8.0 8.4 2.5 

85 33685 10461 11481 25 

 

330.0 105.0 160.0 5.7 

 

13.0 5.1 5.4 2.1 

200 13727 4394 5464 17 

 

137.0 43.0 54.0 5.1 

 

5.4 2.7 3.0 1.6 

1000 2637 814 1575 16   26.0 9.0 16.0 4.4   1.0 0.8 0.9 0.7 

 
 
Table 2a. Estimated MSE when p = 7 and ρ = 0.7 

 

 
σ2=0.01 

 
σ2=0.1 

 
σ2=0.5 

n OLS HK KS KSM   OLS HK KS KSM   OLS HK KS KSM 

10 74818 24592 25042 110 

 

768.00 238.00 242.00 19.00 

 

29.00000 10.00000 11.00000 4.20000 

25 8804 3457 4423 46 

 

89.00 37.00 46.00 10.00 

 

3.54000 2.76000 2.81000 2.13000 

50 3618 1508 2367 48 

 

36.00 17.00 24.00 8.70 

 

1.44000 1.31000 1.32000 1.17000 

85 1998 848 1506 52 

 

19.00 10.00 15.00 7.40 

 

0.78300 0.74400 0.74800 0.69900 

200 795 337 691 63 

 

7.90 5.50 7.00 4.80 

 

0.31700 0.31100 0.31200 0.30300 

1000 152 67 148 60   1.52 1.39 1.48 1.35   0.06110 0.06094 0.06096 0.06060 
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Table 2b. Estimated MSE when p = 7 and ρ = 0.9 

 

 

σ2=0.01 

 

σ2=0.1 

 

σ2=0.5 

n OLS HK KS KSM   OLS HK KS KSM   OLS HK KS KSM 

10 235966.0 68291.0 68644.0 136.0 

 

2224.0 658.0 661.0 27.0 

 

91.0000 28.1000 28.2000 6.4000 

25 26871.0 10240.0 11090.0 49.0 

 

273.0 105.0 113.0 12.0 

 

10.0000 6.2000 6.3000 3.5000 

50 10990.0 4275.0 5224.0 39.0 

 

110.0 45.0 54.0 10.0 

 

4.3800 3.2900 3.3400 2.3900 

85 6112.0 2430.0 3321.0 38.1 

 

59.0 25.0 33.0 8.8 

 

2.4200 2.0500 2.0700 1.6700 

200 2430.0 966.0 1624.0 40.0 

 

23.0 11.0 16.0 7.0 

 

0.9790 0.9120 0.9170 0.8300 

1000 466.0 185.0 410.0 57.0   4.6 3.5 4.2 3.1   0.1878 0.1852 0.1854 0.1816 

 
 
Table 2c. Estimated MSE when p = 7 and ρ = 0.95 

 

 
σ2=0.01 

 
σ2=0.1 

 
σ2=0.5 

n OLS HK KS KSM   OLS HK KS KSM   OLS HK KS KSM 

10 516796 152429 152764 171 

 

4818.0 1430.0 1434.0 35.0 

 

192.000 62.400 62.600 9.300 

25 57214 21072 21887 55 

 

582.0 219.0 227.0 15.0 

 

23.000 10.000 11.000 4.500 

50 22961 8791 9736 41 

 

231.0 91.0 100.0 12.0 

 

9.200 5.600 5.800 3.300 

85 12508 4916 5857 35 

 

126.0 50.0 59.0 10.0 

 

5.000 3.600 3.700 2.500 

200 5037 1977 2795 34 

 

50.0 21.0 29.0 8.4 

 

2.010 1.730 1.740 1.430 

1000 985 396 771 49   9.8 6.1 8.0 4.7   0.389 0.377 0.378 0.361 

 
 
Table 2d. Estimated MSE when p = 7 and ρ = 0.99 
 

 
σ2=0.01 

 
σ2=0.1 

 
σ2=0.5 

n OLS HK KS KSM   OLS HK KS KSM   OLS HK KS KSM 

10 2501132 764126 764446 235 

 

25773 7976 7979 62 

 

1019.0 289.3 289.4 18.0 

25 314693 115277 116046 72 

 

3077 1107 1115 21 

 

126.0 48.4 48.7 8.7 

50 128529 48265 49173 48 

 

1259 475 484 17 

 

50.0 20.4 20.7 6.0 

85 67913 25511 26492 38 

 

691 262 272 15 

 

28.0 12.8 13.0 5.0 

200 27914 10645 11673 31 

 

271 102 112 11 

 

11.0 6.3 6.5 3.6 

1000 5479 2117 2922 32   53 22 29 8   2.1 1.7 1.8 1.4 

 

Conclusion 

Based on the result from the simulation study, some recommendations are 

warranted.  The KSM is usually among the estimators with the lowest estimated 

MSE, especially when ρ = 0.95 and p = 7. Also, regardless of the degree of 

correlations, KSM is the best among the considered ridge estimators, followed by 

HK, and then KS, specifically when the sample size is high, n = 1000, and 

σ2 = 0.5.  
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Several procedures for constructing ridge estimators have been proposed in 

the literature. These procedures aim at establishing a rule for selecting the 

constant k in equation (5). Nevertheless, to date there is no rule for choosing k that 

assures that the corresponding ridge estimator is better than OLS estimator. 

The proposed choice of k, the ridge regression parameter defined by (8), was 

shown through simulation to yield a lower MSE than ̂  for all β, as noted in 

Tables 1 and 2. The estimators HK and KS, which were evaluated in other 

simulation studies, also performed well. However, the superiority of the suggested 

estimator KSM over the estimators HK and KS was observed, especially at the 

large values of n and σ2. In general, the OLS estimator has larger estimated MSE 

values than all estimators considered, and the proposed estimator given by (8) 

performs very well and has the lowest MSE when compared with the other ridge 

estimators. This is to say that ridge estimators are more helpful when high 

multicollinearity exists, especially when σ2 is not too small.  
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In this paper, we derived and investigated the Adjusted Network Information Criterion 
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Introduction 

In choosing an appropriate model to characterize the sample data, it is ideal to be 

guided by scientific theory, as well as be well served by a data-driven selection 

method. Akaike (1973, 1974) introduced the Akaike information criterion, AIC, 

which endeavors discern the closeness of a fitted model is to the generating or 

true model. Akaike's work stimulated many other approaches to model selection, 

leading to the development of criteria such as SIC (Schwarz, 1978), BIC (Akaike, 

1978), and HQ (Hannan, & Quinn 1979). Sugiura (1978) extended Akaike's 

original work by proposing AICc, a corrected version of AIC justified in the 

context of linear regression with normal errors.  

The development of AICc was motivated by the need to adjust for AIC's 

propensity to favor high-dimensional models when the sample size is small 

relative to the maximum order of the models in the candidate class. Hurvich and 

http://dx.doi.org/10.22237/jmasm/1478003040
mailto:cg.udomboso@gmail.com
mailto:go.amahia@ui.edu.ng
mailto:ikedontwi@hotmail.com
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Tsai (1989) show that AICc dramatically outperforms AIC in small-sample 

regression settings, and further extend AICc to include univariate Gaussian 

autoregressive models. Hurvich, Shumway, and Tsai (1990) generalize AICc to 

encompass univariate Gaussian autoregressive moving-average models, and 

Hurvich and Tsai (1993) handle the vector Gaussian autoregressive case.  

The purpose of this study is to consider the selection of Statistical Neural 

Network model using the proposed method by Murata, Yoshizawa, and Amari 

(1994), which is the NIC. The NIC is observed to be sample biased, as it does not 

account for sample sizes. The selection of a model from a set of fitted candidate 

models requires objective data-driven criteria. The criterion we shall use in this 

study is that designed to be an asymptotically unbiased estimator of the expected 

Kullback-Leibler information of a fitted model (Akaike, 1973). 

Methodology 

Adjusted Network Information Criterion (ANIC): 

We note that 

 

 
*  Y HW U   (true model) (1) 

 

 
*  Y HW e   (estimated model) (2) 

 

Anders (1996) noted that should the network exactly map the true function 

F, then the asymptotic relationship, G = 2Bσ2, so that tr (GB-1) = 2σ2 tr(I) = 2σ2 k. 

Thus, NIC becomes AIC as proposed by Amemiya (1980): 

 

 2AIC 2
k

MSE
n

    (3) 

 

Therefore, in deriving an alternative NIC, we assume that the estimates network 

model includes the true network model, and the approach shall use the corrected 

AIC based on Kullback’s systematic divergence as used by Hafidi and Mkhadri 

(2006). 

We recall that 

 

  NIC ,D q p 
 

W   (4) 
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2

2

1
, , .

2
opt opt opt opt

opt

D q p D q p
      

   
W W W W W W

W
  (5) 

 

Kullback (1968) defined the discrepancy between the true model and the 

estimated model as 

 

          , , , , ,J D D D D         0 0 0 0 0            (6) 

 

where θ0 is the true and unknown parameter vector, θ is the parameter vector of 

the candidate model. Also, f (Y|θ0) and f (Y|θ) denote the densities for the true 

and estimates models. 

Note that the second term does not depend on θ. Thus, Cavanaugh (1997, 

1999), in order to discriminate among various models, proposed another form of 

Kullback’s symmetric divergence as 

 

        , , , ,K D D D        0 0 0          (7) 

 

Given that the estimated model includes the true model, we can define the 

improved NIC as  

 

  ANIC ,D T W W   (8) 

 

which is asymptotically an unbiased estimator of 

 

    , ,d E N  
 WW W W   (9) 

 

where T is some value that improves the NIC, d is the dimension of W , and is 

given as  

 

 1d p    (10) 

 

and  ,N W W  is the NIC. 
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Proof: 

 

         , , ,d E D D D    
 WW W W W, W W W   (11) 

 

But the true model is given as 

 

  * 2         0, ,nN I Y HW U U   (12) 

 

and the estimated model is  

 

 
*  Y HW e   (13) 

 

where Y* is an n × 1 observation, H is an n × p observations,W = W* is an p × 1 

observation. Assume that H is twice continuously differentiable in W. Let 

 t   HW . Then, the log-likelihood of the estimated model is given as 

 

        * 2 * *

2

1
ln ln 2

2 2

n
f t t  




   Y W Y Y   (14) 

 

Approach the second term of (1) by considering two hypothetical estimators 

1w  and 2w , such that  

 

    
1

*

1 2 2, ln
w

D w w E f Y w 
 

  (15) 

 

      
1

2 * *

2 2 22

2

1
ln 2

2 2w

n
E Y t Y t  



 
     

 
  (16) 

 

 

     

         
1

2 * *

2 1 12

2

1 2 1 2

1
ln 2

2 2
w

n
Y t Y t

E

t t t t

  


   

 
    

  
     

  (17) 

 

          2 2

2 1 1 2 1 22

2

1
ln 2 .

2 2

n
n t t t t     



        
  (18) 
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Expand  ,D W W  as  

 

            2 2

2

1 ˆ ˆ, ln 2
2 2

n
D n t t t t     



 
      

 
W W

W

W W   (19) 

 

Expanding  ˆt   in order one at ̂  , 

 

      ˆ ˆ
ˆ

t
t t   




  


  (20) 

 

This results in 

 

        

     

2

2

2

ln 2

ˆ1 2, ˆ1
2

ˆ
ˆ

n

t
t tD

t
t t



    



   



 
 

              
  

           

W

W

W

W W   (21) 

 

    
2

2

2

1 1 ˆ ˆln 2 2
ˆ ˆ2

t t
n      

  

                         

WW

W

  (22) 

 

Similarly, 

 

            2 2

2

1 ˆ ˆ ˆ ˆ, ln 2
2 2

n
D n t t t t     



 
      

 
W W

W

W W   (23) 

 

  
21

ln 2
2

n n  W   (24) 

 

Thus, the second term of (11) becomes 
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2 ln 2
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ˆ
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W

W

W

W

W W W W  (25) 

 

 

   

2

2

2

2

2

ln 2

1

2 1 ˆ ˆ ln 2
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t t
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W

W

W

W
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  (26) 
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2
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ln 2 ln 2

1

2
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n n
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W
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W
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  (27) 

 

 

   

2
2

2 2

2

2
ln

21

2
1 ˆ ˆ

ˆ ˆ

n

t t
n

 



   
  

  
   
  

  
   

                     

WW

WW

W

  (28) 

 

 

   

2
2

2 2

2

ln

1

2
1 ˆ ˆ

ˆ ˆ

n

t t
n

 



   
  

  
   
  

  
   

                     

WW

WW

W

  (29) 

The distribution of  

 



UDOMBOSO ET AL. 

417 

 

2

2

2
n p







W

W

  

 

and 

 

    2

1 ˆ ˆ
ˆ ˆ p

t t
    

  

               
 W

  

 

Therefore, 

 

 

     
2

2

1
, , ln

2
D D n n p p n





  
       

  

W

W

W W W W

  (30) 

 

 
2

2

1
ln

2
n





  
   

  

W

W

  (31) 

 

Taking expectation, the above becomes 

 

    
2

2

1
, , ln

2
E D D E n





           

W

W

W W W W   (32) 

 

Bickel and Doksum (1977) noted that by taking a second order expansion of 

ln df  about df and evaluating the expectation of the result, the following relation 

ensues, 

 

 
 

2

1 1
ln lndfE df o

df df


 
       

  

  (33) 

 

where df is degrees of freedom. Write 
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2 2

2 2
ln ln ln

n
E n nE n n

 

 

   
    

      

W W

W W

  (34) 

 

By Bickel and Doksum (1977) relation, and according to Cavanaugh (1997, 1999), 

 

  
 

2

2 2

1 1
ln ln lnE n n n p o n n

n p n p





     
        

         

W

W

  (35) 

 

The first-order expansion of ln (n – p) is  

 

  
2

ln ln
p p

n p n o
n n

 
     

 
  (36) 

 

Thus, 

 

 
 

22

2 2

1 1
ln lnn ln

p p
E n n o o n n

n n n p n p





      
          

          

W

W

  (37) 

 

 
n

p
n p

 
   

 
  (38) 

 

 
2np p n

n p

  
  

 
  (39) 

 

Putting this result back in (32), 

 

    
21

, ,
2

np p n
E D D

n p

               
W W W W   (40) 

 

 
 

2

2

np p n

n p

 



  (41) 

 

Thus, the alternative NIC becomes 
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2

ANIC NIC
2

np p n

n p

 
 


  (42) 

 

which is a correction for the biased NIC. 

Results 

Illustrative Examples: 

The following illustrations demonstrate the power of the adjusted network 

information criterion in accounting for sample size. Anders (1996) proposed a 

statistical neural network model given as 

 

  ,f X wy u   (43) 

 

where y is the dependent variable, X = (x0 ≡ 1, x1,…, xI) is a vector of 

independent variables, w = (α, β, γ) is the network weight: ‘α’ is the weight of the 

input unit, ‘β’ is the weight of the hidden unit, and ‘γ’ is the weight of the output 

unit, and ui is the stochastic term that is normally distributed (that is, 

ui ~ N (0, σ2In)). 

f (X, w) is the artificial neural network function, expressed as  

 

    1 0
, ,

H I

ih i
f g

 
  X w X h hi x     (44) 

 

where g (.) is the transfer function. 

The proposed convoluted form of the artificial neural network function used 

in this study is 

 

      1 21 0 0
, ,

H I I

hi ih i i
f g g x

  

  
    X w X h hi ix      (45) 

 

and thus, the form of the statistical neural network model proposed is 

 

    1 21 0 0
,

H I I

hi ih i i
g g x

  

   
    X h hi i i jy x u u      (46) 
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where y is the dependent variable, X = (x0 ≡ 1, x1,…, xI) is a vector of 

independent variables, w = (α, β, γ) is the network weight: ‘α’ is the weight of the 

input unit, ‘β’ is the weight of the hidden unit, and ‘γ’ is the weight of the output 

unit, ui and uj are the stochastic terms that are normally distributed (that is, 

ui, uj ~ N (0, σ2In)), and g1(.) and g2(.) are the transfer functions. 

The choice of the transfer functions used was based on preliminary 

investigations of the fifteen (15) transfer functions which uses hidden neurons that 

included 2, 5, 10, 50, and 100 at 1000 iterations. Best performances came from 

Hyperbolic Tangent transfer function (TANH), Hyperbolic Tangent Sigmoid 

transfer function (TANSIG), and Symmetric Saturating Linear transfer function 

(SATLINS), respectively. Similarly, further investigation was conducted on the 

choice of convolution, and it was found out that best performance was obtained in 

the convolution of the Symmetric Saturating Linear transfer function and the 

Hyperbolic Tangent transfer function (SATLINS_TANH), followed by the 

convolution of the Symmetric Saturating Linear transfer function and the 

Hyperbolic Tangent Sigmoid transfer function (SATLINS_TANSIG). The data 

used for the analyses used in this research were split into two – 2 and 3. The 

hidden neurons used include 2, 5, 10, 20, 40, 60, 80, and 100, while the sample 

sizes include 10, 20, 40, 60, 80, 100, 125, 150, 175, 200, 250, 300, and 400. 

Based on two (2) variables, it is shown in Table 1 that the values of NIC 

across samples, while Table 2 shows the values of ANIC across the samples. It is 

shown in Table 3 that the sample points at which the values of NIC and ANIC are 

low in each heterogeneous models in comparison to the root (homogeneous) 

models. 
 
 
Table 1. Model Selections across Samples based on NIC (2 Variables) 

 

NIC 

n =  10 20 40 60 80 100 125 150 175 200 250 300 400 

SATLINS 0.0038 0.0026 0.0239 0.0021 0.0002 0.0007 0.0013 0.0011 0.0044 0.0039 0.0012 0.0031 0.0068 

TANH 0.0054 0.0217 0.0016 0.0006 0.0113 0.0003 0.0005 0.0021 0.0023 0.0021 0.0017 0.0029 0.0045 

TANSIG 0.0031 0.0120 0.0017 0.0047 0.0023 0.0003 0.0113 0.0011 0.0038 0.0024 0.0017 0.0052 0.0044 

SATLINS_TANH 0.0066 0.0227 0.0028 0.0008 0.0110 0.0001 0.0007 0.0004 0.0011 0.0024 0.0024 0.0023 0.0037 

SATLINS_TANSIG 0.0049 0.0125 0.0056 0.0010 0.0013 0.0003 0.0018 0.0019 0.0050 0.0039 0.0007 0.0041 0.0043 
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Table 2. Model Selections across Samples based on ANIC (2 Variables) 

 

ANIC 

n =  10 20 40 60 80 100 125 150 175 200 250 300 400 

SATLINS 1.6217 1.5581 1.5500 1.5154 1.5130 1.5107 1.5091 1.5069 1.5048 1.5046 1.5043 1.5051 1.5080 

TANH 1.6073 1.5261 1.5224 1.5154 1.5015 1.5095 1.5083 1.5078 1.5064 1.5046 1.5045 1.5178 1.5248 

TANSIG 1.5627 1.5185 1.5199 1.5093 1.5099 1.5193 1.5164 1.5080 1.5063 1.5050 1.5076 1.5056 1.6102 

SATLINS_TANH 1.6025 1.5245 1.5215 1.5149 1.5012 1.5091 1.5080 1.5059 1.5071 1.5039 1.5201 1.5252 1.5119 

SATLINS_TANSIG 1.5257 1.5260 1.5151 1.5120 1.5089 1.5074 1.5062 1.5039 1.5066 1.5056 1.5047 1.5961 1.5706 

 
 
Table 3. Sample points at which NIC and ANIC are low in each heterogeneous model in 

comparison to the root models (2 Variables) 
 

Model 
Sample Size n 
NIC ANIC 

SATLINS_TANH 100,150,175,400 10,20,40,60,80,100,125,150,200 

SATLINS_TANSIG 100,250,400 10,40,80,100,125,150 

 
 

 
 
Figure 1. Graph of NIC based on Sample Sizes (2 Variables) 
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Figure 2. Graph of ANIC based on Sample Sizes (2 Variables) 

 

 

Correspondingly based on two (2) variables, Figure 1 is the graph of NIC 

across samples, while Figure 2 is the graph of ANIC across samples. The models 

in ANIC are almost parallel between sample number 10 and 150 inclusive. 

Similarly, based on three (3) variables, Table 4 shows the values of NIC 

across samples, while Table 5 shows the values of ANIC across the samples. 

Table 6 shows the sample points at which the values of NIC and ANIC are low in 

each heterogeneous models in comparison to the root (homogeneous) models. 
 
 
Table 4. Model Selections across Samples based on NIC (3 Variables) 

 

NIC 

n = 10 20 40 60 80 100 125 150 175 200 250 300 400 

SATLINS 0.4682 0.0306 0.0196 0.0363 0.0210 0.0561 0.0090 0.0166 0.0154 0.0139 0.0203 0.0230 0.0436 

TANH 0.3184 1.0532 0.0301 0.0350 0.0197 0.0158 0.0141 0.0228 0.0154 0.0213 0.0195 0.0225 0.0736 

TANSIG 0.3115 0.1102 0.0216 0.0537 0.0160 0.0189 0.0149 0.0213 0.0173 0.0254 0.0165 0.0206 0.0489 

SATLINS_TANH 0.3540 0.0274 0.0245 0.0159 0.0193 0.0137 0.0159 0.0471 0.0159 0.0192 0.0112 0.0179 0.0462 

SATLINS_TANSIG 0.0517 0.0784 0.0601 0.0198 0.0201 0.0282 0.0193 0.0206 0.0180 0.0176 0.0143 0.0192 0.1375 
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Table 5. Model Selections across Samples based on ANIC (3 Variables) 

 

ANIC 

n = 10 20 40 60 80 100 125 150 175 200 250 300 400 

SATLINS 2.1172 2.1083 2.0572 2.0269 2.0405 2.0684 2.0209 2.0230 2.0215 2.0186 2.0227 2.0229 2.0349 

TANH 2.4044 3.1075 2.0372 2.0144 2.0388 2.0276 2.0142 2.0199 2.0177 2.0238 2.0203 2.0109 2.0039 

TANSIG 2.0076 2.1847 2.0383 2.0748 2.0338 2.0344 2.0248 2.0159 2.0216 2.0234 2.0156 2.0145 2.0223 

SATLINS_TANH 2.2510 2.0752 2.0464 2.0383 2.0349 2.0261 2.0243 1.9935 2.0207 2.0258 2.0116 2.0170 1.9995 

SATLINS_TANSIG 2.1847 2.1356 2.0093 2.0413 2.0368 2.0312 2.0248 2.0223 2.0168 2.0140 2.0086 2.0192 1.8820 

 
 
Table 6. Sample points at which NIC and ANIC are low in each heterogeneous model in 
comparison to the root models (3 Variables) 
 

Model 
Sample Size n 

NIC ANIC 

SATLINS_TANH 20,60,80,100,250,300 20,100,150,250,400 

SATLINS_TANSIG 60,250,300 40,175,200,250,400 

 
 

 
Figure 3. Graph of NIC based on Sample Sizes (3 Variables) 
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Figure 4. Graph of ANIC based on Sample Sizes (3 Variables) 

 

 

Correspondingly based on three (3) variables, Figure 3 is the graph of NIC 

across samples, while Figure 4 is the graph of ANIC across samples. The models 

in ANIC became almost parallel from around sample number 20 and 40 up till 

sample number 400. 

A test shows significant difference between the homogeneous and 

heterogeneous models (p < 0.05). Rates of selection for the heterogeneous models 

are respectively 72.9%, and 72.1% using NIC, against 66.9%, 55.9% and 65.1% 

respectively for the homogeneous models, while with ANIC the heterogeneous 

models have rates of selection respectively as 66.9% and 66.8%, against 66.7%, 

66.2%, and 66.6 for the respective homogeneous models. The results of the ANIC 

demonstrate the high precision of SNN models at large samples. 
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Figure 5. Overall Rates of Efficiency and Selection of the SNN Models: SATLINS_TANH, 

SATLINS_TANSIG, SATLINS, TANH, TANSIG 

 

 

Conclusion 

An ANIC criterion was derived, based on Kullback’s symmetric divergence, for 

model selection in some Statistical Neural Network models. The analyses show 

that on a general note, the ANIC improves model selection in more sample sizes 

than does the NIC. Because neural network is a data-driven model, then more 

attention should be paid to the sample size when determining the model to be 

selected. 
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The Burr type X distribution is considered as a life time random variable of a product 
whose lots are to be decided for acceptance or otherwise on the basis of sample lifetimes 
drawn from the lot. The sample is divided into various groups in order to develop a group 
sampling plan in such a way that the life testing experiment is terminated as soon as the 
first failure in each group is observed. The acceptance criterion based on the theory of 
order statistics is proposed and is shown to be more economical than a criterion proposed 
in the earlier similar works. 
 

Keywords: Single sampling, lot acceptance, group sampling plan, truncated life tests, 
reliability test plans, order statistics 

 

Introduction 

Acceptance sampling is concerned with inspection and decision making regarding 

products. Life tests are experiments carried out on sample products in order to 

assess the life time of an item (time to its failure or the time it stops working 

satisfactorily). A common practice in life test is to terminate the test at a prefixed 

time and record the number of failures that occurred during that time period or 

when a prefixed number of failures is realised. The former termination is 

generally called truncated life tests/time censored life test and the latter is called a 

failure censored life test. If the quality of a product is measured through the life 

time, sampling plans to determine acceptability of a product with respect to life 

time are called Reliability Sampling Plans. 

In life test sampling plans a common constraint is the duration of total time 

spent on testing. Sampling plans based on time truncated life tests would address 

this constraint to some extent. When the life time random variable is assumed to 

http://dx.doi.org/10.22237/jmasm/1478003100
mailto:kantam.rrl@gmail.com
mailto:msrk.raama@gmail.com
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follow a specific continuous probability distribution, sampling plans are 

developed by various researchers covering a wide spectrum of probability models. 

Epstein (1954) was one of the foremost works about acceptance sampling 

plans based on truncated life tests with the exponential distribution as the 

probability model. Other researchers in this direction are as follows: Goode and 

Kao (1961) worked with the Weibull model which includes the exponential 

distribution as a particular case. Gupta and Groll (1961) and Gupta (1962) 

considered the gamma and log-normal distributions, respectively. More recently, 

the studies of Kantam, Rosaiah, and Srinivasa Rao (2001), Baklizi (2003), Baklizi 

and El-Masri (2004), Rosaiah and Kantam (2005), Balakrishanan, Lieva and 

López (2007), Aslam and Kantam (2008), Srinivasa Rao, Ghitany, and Kantam 

(2009), Rosaiah, Kantam, and Srinivasa Rao (2009), Srinivasa Rao and Kantam 

(2010), Lio, Tsai, and Wu (2009), Lio, Tsai, and Wu (2010), Lu (2011), Kantam, 

Sriram, and Suhasini (2012), Srinivasa Rao, Kantam, Rosaiah, and Pratapa Reddy 

(2012), Srinivasa Rao and Kantam (2013), Kantam and Sriram (2013), Subba Rao, 

Prasad, and Kantam (2013), Kantam, Sriram, and Suhasini (2013), Rosaiah, 

Kantam, Rama Krishnan, and Siva Kumar (2014), Subba Rao, Naga Durgamamba, 

and Kantam (2014) and the references therein, are related to construction of 

acceptance sampling plans based on truncated life tests with different probability 

models. In all these works, given the termination time of a life test, the 

construction of the sampling plan consists of determining the minimum number of 

sample items that are to be life-tested and the acceptance number beyond which 

the observed failures out of the life-tested items of the sample lead to rejection of 

the submitted lot, conditioned on pre specified producer’s and consumer’s risks. 

However, if a failure censored life test is under consideration, one has to 

wait till a pre specified number of failures out of the sample items that are being 

tested is realised. Sometimes the life of product might be quite long possibly 

resulting in even a failure censored life-testing plan to be long time consuming. 

Johnson (1964) proposed a sampling plan in which the experimenter can decide to 

group the test units into several groups and then conduct the life-tests on all the 

groups simultaneously until the first failure in each group is realised. Based on the 

recorded first failure time in each group if a decision process about the 

acceptance/rejection of submitted lot is developed the procedure may be named as 

Limited Failure Censored Life Test Sampling Plan (LFCLTSP). Balasooriya 

(1995) developed such a sampling plan for the two parameter exponential 

distribution though the specific name is not given as LFCLTSP. Wu and Tsai 

(2000), Wu, Tsai, and Ouyang (2001), Jun, Balamurali, and Lee (2006) have 

proposed LFCLTSP when the underlying lifetime random variable follows 
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Weibull distribution, with respective distinct approaches in working out the 

parameters of the sampling plan. The scheme of life testing and termination 

process of LFCLTSP is named by some researchers as ‘Sudden death testing’ (for 

example Pascual & Meeker, 1998; Jun et al., 2006). ‘Limited failure censored life 

tests’ is the name proposed by Wu et al. (2001). Our suggested name is Limited 

Failure Censored Life Test Sampling Plan (LFCLTSP). Thus, the purpose of this 

study is to develop LFCLTSPs for one of the models of Burr (1942) – Burr type X 

distribution on lines of Jun et al. (2006). A new criterion is also suggested that is 

more economical. 

Construction of LFCLTSP (Jun et al. 2006) 

The purpose of proposing LFCLTSP is to reduce testing time. The total number of 

products to be tested, say N is divided into groups of equal size according to the 

number of available experimental testers. Thus there are n items in each group 

and a total of m groups may be considered for this grouping so that N = m × n. 

The items in each group are tested identically and simultaneously on different 

testers. The first group of items is run until the first failure occurs. At this point 

the surviving items are suspended and removed from testing. An equal set of new 

items numbering n is next tested until the first failure. This process is repeated 

until one failure is generated from each of the m groups. In the end, m failures are 

observed while (n – 1) m items are suspended. Wu et al. (2001) named this testing 

process as “limited failure censored life test”. The sample information so obtained 

can be utilized for deciding upon the acceptance of the lot from which the original 

sample of N is put for testing. According to the characteristics of testers a group 

size n is usually specified but the total number of groups m should be determined. 

For that a variable sampling plan is proposed by Jun et al. (2006) with the 

following assumptions/specifications 

 

 The life time X follows a Weibull distribution with a known shape 

parameter (k). 

 There is a lower specification limit (L) regarding the life time. 

 p0 is a desirable lot quality level (proportion of non conformities) at 

the pre specified producer’s risk α. 

 p1 (> p0) is an undesirable lot quality level (proportion of non 

conformities) at the pre specified consumer’s risk β. 
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Sampling Plan 

The cumulative distribution function (cdf) of the base line distribution (Weibull) 

is given by 

 

    1 exp kF x x     (1) 

 

The fraction non-conforming or unreliability is expressed by  

 

    Prp X L F L     (2) 

 

If p is given, the corresponding L is obtained from 

 

  ln 1 .kw L p      (3) 

 

The proposed sampling plan of Jun et al. (2006) is as follows: 

 

(i) Draw a random sample of size N = m × n and allocate n items to 

each of the m groups. 
(ii) Observe Yi the time to the first failure in the ith group (i = 1, 2,…., m). 

(iii) Calculate the quantity 
1

m k

ii
V Y


 . 

(iv) Accept the lot if V ≥ cLk and reject the lot otherwise (c may be called 

acceptability constant - a concept similar to the acceptance number 

in time truncated reliability test plans). 

 

The number of groups m and the acceptability constant c are called the 

parameters of the sampling plan and will be determined by the following 

procedure: 

Since Yi is the first order statistic in a sample of size n from Weibull 

distribution with shape parameter k its cdf is given by  

 

    Pr 1 exp ,k

iY y ny      (4) 

 

which is the cdf of a Weibull distribution with shape parameter k and scale 

parameter 1 kn . Therefore the variables k

iY  follow i.i.d exponential with scale 

parameter n and as such 
1

m k

ii
V Y


  follows a gamma distribution with shape 
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parameter m and scale parameter n. Thus the quantity 2nV follows a chi-square 

distribution with 2m degrees of freedom so that the probability of acceptance of 

the lot for a lot quality level p is given by  

 

        2Pr Pr 2 2 1 2 ,k k

a mP p V cL p nV ncL p G ncw        (5) 

 

where w is the solution of equation (3) and Gl is the cdf of a chisquare variate 

with l  degrees of freedom. As in Fertig and Mann (1980), the probability of 
acceptance should be at least (1 - α) at the desirable/acceptable lot quality level p0 

where α is producer’s risk. Similarly, the probability of acceptance should not be 

more than β at the undesirable/tolerance lot quality level p1, where β is 

consumer’s risk. These two remarks lead to the following two inequalities 

 

  2 01 2 1mG ncw      (6) 

 

 

  2 11 2 ,mG ncw     (7) 

 

If 
2

,q l  denotes the percentile point of tail probability q in the chi-square 

distribution with l degrees of freedom then, from (6), (7), 

 

 
2

0 1 ,22 mncw     (8) 

 

 
2

1 ,22 mncw    (9) 

 

which jointly lead to  

 

 

2

1 ,20

2

1 ,2

.
m

m

w

w










   (10) 

 

Therefore, m can be obtained by the smallest integer satisfying (10). The 

acceptability constant c can be obtained from the equality case in either of the 

expressions (8), (9). It can be noticed that the number of groups m is determined 

independently of the group size n and also of the shape parameter k. Jun et al. 
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(2006) have evaluated m, nc for α = 0.05 and β = 0.1 at selected combinations of 

p0, p1. The corresponding table is reproduced below: 

 
 
Table 1. Design parameters of sampling plans (α = 0.05, β = 0.1) 

 

p0 p1 g rk 

0.001 

0.002 18.7 12201.0 
0.004 5.1 2025.6 
0.005 3.9 1308.0 

0.010 2.1 408.5 

0.050 1.0 44.4 
0.100 0.8 18.6 

 

0.005 

0.010 18.6 2417.6 
0.015 7.7 757.7 
0.020 5.1 399.3 
0.025 3.9 256.5 

0.05 2.1 79.0 
0.25 0.9 7.6 

    

0.01 

0.02 18.5 1195.3 
0.04 5.0 196.0 
0.05 3.8 125.7 
0.10 2.1 37.8 
0.15 1.6 20.0 

0.3 1.1 7.0 

    

0.05 

0.1 17.4 217.7 
0.2 4.6 33.5 

0.25 3.5 20.7 
0.3 2.8 14.3 
0.5 1.8 5.1 

    

0.1 
0.2 16.1 95.9 
0.4 4.0 13.2 
0.5 3.0 7.7 

 
 

For the sake of convenience in presentation, this procedure of Jun et al. (2006) is 

called Method-I and adopts the same for Burr type X distribution to construct 

LFCLTSP below. 

LFCLTSP for Burr type X distributed Lifetimes: Method-I 

Let the life time of a product be given by Burr type X distribution with shape 

parameter k so that cdf is given by 

 

    
2

1
k

xF x e    (11) 
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Let L denote the pth quantile of a Burr type X variate. 

 

  i.e.,   F L p   (12) 

If p is given, the corresponding L is obtained from 

 

  1ln 1 kw L p      (13) 

 

Product with life time less than L is considered nonconforming. Suppose the 

producer and the consumer have an agreement that lots with nonconforming 

fraction less than or equal to p0 are presumed to be good and have to be accepted 

with probability of at least 1 - α. Here α is called producer’s risk. Furthermore 

suppose that lots with non conforming fraction greater than p1 (> p0) are not 

acceptable to the consumer and should be rejected with a probability of at least 

1 - β. Here β is called consumer’s risk. 

If a random sample of N items grouped into m groups of size n each is put to 

test, an LFCLTSP on lines of Jun et al. (2006) can be constructed with the 

following decision process. 

 

 Observe Yi the time to the first failure in the ith group (i = 1, 2,…, m). 

 Calculate the quantity
1

m

ii
V Y


 . 

 Accept the lot if V ≥ cL and reject the lot otherwise (c may be called 

acceptability constant - a concept similar to the acceptance number 

in time truncated reliability test plans). 

 

In order to get the plan parameters m and c, the percentiles of the sampling 

distribution of V are needed, which is the sum of m i.i.d observations on the first 

order statistic in a random sample of size n modelled by Burr type X distribution 

with shape parameter k. In view of the mathematical structure of the Burr type X 

model the sampling distribution of V cannot be analytically tractable. Hence, 

consider the empirical sampling distribution of V for various known values of the 

shape parameter k and tabulated the percentiles of V for k = 1.5(0.5)3; m = 2(1)10; 

n = 5,10 in Tables 2 through 5. 
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Table 2. Percentiles of 
1

m

ii
V Y


  at k = 1.5 

 

m 
p 
n 

0.99865 0.995 0.99 0.975 0.95 0.90 0.10 0.05 0.025 0.01 0.005 0.00135 

2 
5 2.177892 2.004307 1.895265 1.754279 1.641112 1.511261 0.726597 0.628004 0.545044 0.454419 0.400317 0.308623 

10 1.575851 1.49449 1.445218 1.351926 1.27116 1.170157 0.569494 0.490655 0.429326 0.363279 0.321958 0.276647 

              

3 
5 2.831163 2.706339 2.58504 2.437557 2.313499 2.17402 1.198332 1.071406 0.970376 0.87162 0.801438 0.695547 

10 2.197636 2.064846 1.995025 1.881046 1.78807 1.684527 0.935104 0.839882 0.758188 0.671293 0.62377 0.559463 

              

4 
5 3.647301 3.449295 3.310793 3.12908 2.97969 2.80371 1.67707 1.5263 1.389551 1.26126 1.149709 1.052957 

10 2.826993 2.664092 2.570817 2.413215 2.301425 2.173745 1.315808 1.197378 1.098862 0.997235 0.92406 0.81006 

              

5 
5 4.350084 4.118747 3.969957 3.7743 3.612841 3.416829 2.170072 2.013894 1.878884 1.720819 1.618063 1.444002 

10 12.35316 10.94002 10.13745 8.904167 7.859382 6.615174 1.765038 1.607898 1.474932 1.27609 1.109361 0.734325 

              

6 
5 5.034357 4.809434 4.648151 4.403913 4.239143 4.02923 2.640285 2.47937 2.336891 2.162175 2.042361 1.836678 

10 3.875745 3.709052 3.602054 3.436095 3.28752 3.127581 2.081978 1.947834 1.82679 1.704452 1.610753 1.434844 

              

7 
5 5.753342 5.502226 5.357075 5.07924 4.8843 4.659395 3.158127 2.937147 2.796224 2.619996 2.491437 2.274716 

10 4.474 4.197021 4.080527 3.92798 3.770507 3.610251 2.466902 2.325082 2.18972 2.048043 1.969056 1.812718 

              

8 
5 6.395463 6.164418 5.99307 5.723568 5.509403 5.256372 3.66206 3.466886 3.297804 3.083538 2.943184 2.722184 

10 4.958382 4.753225 4.612685 4.430195 4.271718 4.088844 2.869967 2.709541 2.575134 2.42246 2.313287 2.101565 

              

9 
5 7.094235 6.772925 6.588319 6.343406 6.142674 5.868219 4.172239 3.952084 3.755656 3.52943 3.368455 3.118947 

10 5.431611 5.218219 5.081496 4.902999 4.740855 4.549297 3.260287 3.085957 2.930402 2.757371 2.63884 2.414776 

              

10 
5 7.802554 7.440521 7.246377 7.000981 6.743447 6.488565 4.678347 4.460186 4.265542 4.0395 3.91871 3.691152 

10 5.922311 5.721521 5.599249 5.377788 5.224957 5.021406 3.664299 3.467201 3.329653 3.15404 3.027771 2.857264 
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Table 3. Percentiles of 
1

m

ii
V Y


  at k = 2 

 

m 
p 
n 

0.99865 0.995 0.99 0.975 0.95 0.90 0.10 0.05 0.025 0.01 0.005 0.00135 

2 
5 2.334626 2.197253 2.107378 2.00437 1.890244 1.755955 0.951999 0.85061 0.770884 0.6691 0.598262 0.491655 

10 1.837277 1.740968 1.683879 1.590693 1.515541 1.422791 0.789355 0.707058 0.634459 0.559604 0.508588 0.425463 

              

3 
5 3.22835 3.041119 2.953291 2.801527 2.669792 2.521244 1.532702 1.404577 1.304342 1.169315 1.108815 0.998243 

10 2.586898 2.426711 2.357428 2.246726 2.15384 2.038838 1.267581 1.165772 1.08047 0.985238 0.921347 0.830126 

              

4 
5 4.09782 3.860049 3.758922 3.59698 3.446504 3.272358 2.134587 1.979105 1.851842 1.715081 1.636566 1.496763 

10 3.25933 3.113185 3.03314 2.910781 2.797988 2.658206 1.760559 1.64645 1.540285 1.430059 1.356785 1.208283 

              

5 
5 4.910748 4.690049 4.535921 4.355348 4.197799 4.015986 2.767222 2.597823 2.436065 2.270212 2.149996 1.928493 

10 3.926676 3.772913 3.676726 3.525628 3.403761 3.260695 2.254587 2.118493 1.990416 1.882084 1.787045 1.662601 

              

6 
5 5.68631 5.456727 5.323453 5.119146 4.942976 4.743159 3.364193 3.188782 3.028525 2.861073 2.750664 2.51819 

10 4.67039 4.4496 4.342586 4.163724 4.019068 3.85217 2.755476 2.61692 2.470129 2.328519 2.238464 2.092608 

              

7 
5 6.450999 6.221178 6.119936 5.888118 5.703747 5.487192 3.98455 3.782213 3.615684 3.414431 3.27489 3.007482 

10 5.301514 5.121319 4.957179 4.764079 4.625306 4.454871 3.270242 3.11377 2.977862 2.836983 2.716608 2.564213 

              

8 
5 7.257875 7.028246 6.920731 6.647952 6.453962 6.211597 4.620773 4.419366 4.24421 4.02282 3.883549 3.6345 

10 5.884038 5.674714 5.559945 5.374511 5.222974 5.03431 3.783271 3.616054 3.472336 3.30749 3.207673 3.001297 

              

9 
5 8.09619 7.859907 7.663112 7.404836 7.185362 6.929384 5.234979 4.991544 4.793696 4.601039 4.480408 4.229538 

10 6.522471 6.308458 6.216781 6.005329 5.845744 5.63685 4.29928 4.11053 3.946653 3.751242 3.63625 3.409376 

              

10 
5 9.004663 8.570265 8.405551 8.140922 7.901065 7.642368 5.878805 5.634311 5.412461 5.177099 5.016886 4.7515 

10 7.219127 6.952429 6.825122 6.602637 6.428021 6.218982 4.822058 4.635115 4.473158 4.275834 4.119699 3.913186 
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Table 4. Percentiles of 
1

m

ii
V Y


  at k = 2.5 

 

m 
p 
n 

0.99865 0.995 0.99 0.975 0.95 0.90 0.10 0.05 0.025 0.01 0.005 0.00135 

2 
5 2.468259 2.346736 2.268899 2.159342 2.055733 1.933521 1.140584 1.035646 0.945613 0.842214 0.761873 0.664364 

10 2.049563 1.941881 1.874171 1.777782 1.69742 1.610381 0.98222 0.892383 0.825022 0.747394 0.686008 0.581007 

              

3 
5 3.477266 3.304669 3.206421 3.074597 2.947724 2.798189 1.828369 1.705361 1.589362 1.444766 1.362453 1.234796 

10 2.848432 2.708178 2.635159 2.524335 2.429885 2.322525 1.53788 1.434265 1.346467 1.240148 1.178894 1.081697 

              

4 
5 4.34472 4.233665 4.130113 3.943907 3.803379 3.636949 2.516907 2.364628 2.225065 2.067376 1.964329 1.693457 

10 3.63085 3.47622 3.37126 3.252098 3.147937 3.019605 2.132412 2.012767 1.904756 1.774562 1.705587 1.610282 

              

5 
5 5.302715 5.14715 5.013002 4.815496 4.644212 4.463374 3.226286 3.05078 2.913382 2.749309 2.649468 2.465423 

10 4.419297 4.238808 4.137307 3.99215 3.860642 3.724371 2.719253 2.578875 2.445154 2.309705 2.210798 2.077999 

              

6 
5 6.310054 6.046179 5.863146 5.671537 5.510671 5.306801 3.914177 3.734768 3.566162 3.40839 3.280709 3.105496 

10 5.149388 4.954964 4.874275 4.727925 4.583576 4.420357 3.322092 3.177341 3.050563 2.894142 2.764584 2.559992 

              

7 
5 7.205234 6.949778 6.813811 6.554688 6.356546 6.131491 4.652032 4.439628 4.251104 4.045369 3.886589 3.644996 

10 5.871197 5.708455 5.592766 5.429955 5.273217 5.110513 3.931232 3.779749 3.646526 3.489141 3.375452 3.204921 

              

8 
5 7.984277 7.757269 7.597745 7.367686 7.159602 6.938196 5.367689 5.141553 4.930601 4.724564 4.605638 4.358607 

10 6.67911 6.430736 6.31225 6.143098 5.980323 5.790149 4.524136 4.356781 4.203633 3.990518 3.874942 3.713165 

              

9 
5 8.985175 8.649383 8.484864 8.252281 8.020122 7.76861 6.08215 5.845327 5.649002 5.409941 5.242056 4.959961 

10 7.448108 7.168401 7.019431 6.843368 6.664836 6.467801 5.140985 4.959848 4.799899 4.579462 4.474995 4.237564 

              

10 
5 9.800283 9.510817 9.340881 9.026834 8.817583 8.572455 6.806433 6.554773 6.34551 6.116703 5.947915 5.690806 

10 8.165481 7.897884 7.751006 7.536716 7.355737 7.151375 5.737844 5.531289 5.360084 5.169283 5.035914 4.815527 
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Table 5. Percentiles of 
1

m

ii
V Y


  at k = 3 

 

m 
p 
n 

0.99865 0.995 0.99 0.975 0.95 0.90 0.10 0.05 0.025 0.01 0.005 0.00135 

2 
5 2.608441 2.473904 2.411283 2.292199 2.192362 2.077583 1.297579 1.197155 1.109135 1.004346 0.939656 0.829669 

10 2.165301 2.075306 2.019814 1.919237 1.84604 1.757886 1.134309 1.045123 0.968032 0.883864 0.833268 0.742663 

              

3 
5 3.683211 3.521215 3.433714 3.297114 3.164566 3.024332 2.054279 1.929827 1.817847 1.703655 1.628594 1.463765 

10 3.070413 2.948811 2.859479 2.751485 2.647107 2.544672 1.77378 1.669841 1.579924 1.480296 1.418421 1.302424 

              

4 
5 4.664032 4.523223 4.389786 4.229283 4.108187 3.939568 2.82075 2.675108 2.546479 2.380471 2.26397 2.127763 

10 3.873799 3.754457 3.677123 3.566902 3.458809 3.32237 2.444186 2.319325 2.200637 2.067358 2.005182 1.859126 

              

5 
5 5.748489 5.546665 5.401009 5.195914 5.022025 4.837675 3.599143 3.430413 3.281878 3.119621 3.007574 2.832034 

10 4.792635 4.623547 4.509994 4.37538 4.249666 4.103716 3.108066 2.963333 2.845844 2.706644 2.627772 2.482635 

              

6 
5 6.69915 6.489924 6.349406 6.138978 5.953869 5.751055 4.376599 4.196276 4.034022 3.858248 3.724574 3.472215 

10 5.630339 5.43406 5.32593 5.184179 5.043455 4.883834 3.791391 3.629649 3.505016 3.354572 3.259626 3.033245 

              

7 
5 7.676058 7.437145 7.273444 7.065268 6.877302 6.656454 5.167565 4.962574 4.780826 4.583857 4.456209 4.271837 

10 6.379116 6.22337 6.107936 5.950745 5.80989 5.641027 4.463186 4.289654 4.148583 3.983681 3.881626 3.707637 

              

8 
5 8.597227 8.333983 8.168087 7.933648 7.749028 7.53491 5.966976 5.74813 5.543404 5.322675 5.162271 4.849312 

10 7.229972 7.069915 6.958532 6.73594 6.591474 6.399465 5.142293 4.971053 4.82937 4.649567 4.553311 4.325541 

              

9 
5 9.592283 9.262802 9.095726 8.845289 8.653274 8.412515 6.770802 6.530221 6.326654 6.088762 5.95204 5.680317 

10 7.980247 7.808114 7.680098 7.476421 7.340753 7.151641 5.819063 5.618981 5.458145 5.287944 5.141031 4.962647 

              

10 
5 10.65452 10.25902 10.07409 9.798465 9.57316 9.320885 7.579234 7.356013 7.111197 6.872162 6.685894 6.374154 

10 8.888584 8.627152 8.485921 8.290417 8.122677 7.916383 6.519429 6.308877 6.138436 5.943742 5.811467 5.586315 

 



KANTAM & RAVIKUMAR 

439 

If G(.) stands for the cdf of the random variable V, the percentiles in Tables 

2 through 5 are the values of G-1(p). If  1

kG q
 stands for the qth percentile of V 

with the shape parameter k the following inequalities are parallel to the 

expressions (6) through (10). 

 

  0kG ncw    (14) 

 

  1 1kG ncw     (15) 

 

  1

0 1kncw G     (16) 

 

  1

1 kncw G    (17) 

 

which jointly lead to 

 

 
 

 

1

0

1

1

1
.

k

k

Gw

w G










   (18) 

 

Therefore, m can be obtained by the smallest integer satisfying (18). The 

acceptability constant c can be obtained from the equality case in either of the 

expressions (16), (17). We have tabulated the values of m and c determined for 

the same combinations of p0, p1 as chosen by Jun et al. (2006) and are presented 

in Tables 6 through 9 for k = 1.5(0.5)3. 
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Table 6. Design parameters of LFCLTSP (α = 0.05, β = 0.1, k = 1.5) 

 

p0 p1 m 
c 

n = 5 n = 10 

0.001 

0.002 ----- ----- ----- 

0.004 7 29.29783 23.19252 

0.005 5 20.08845 16.03866 

0.010 3 10.6872 8.377761 

0.050 2 6.264294 4.894248 

0.100 2 6.264294 4.894248 

     

0.005 

0.010 ---- ----- ----- 

0.015 10 25.891 20.12681 

0.020 6 14.39253 11.30701 

0.025 5 11.69048 9.333712 

0.05 2 3.64551 2.848211 

0.25 2 3.64551 2.848211 

     

0.01 

0.02 ----- ----- ----- 

0.04 6 11.37282 8.934676 

0.05 5 9.237692 7.375396 

0.10 2 2.880642 2.250625 

0.15 2 2.880642 2.250625 

0.3 2 2.880642 2.250625 

     

0.05 

0.1 ---- ----- ----- 

0.2 5 5.273139 4.210088 

0.25 4 3.996433 3.13519 

0.3 3 2.805348 2.19913 

0.5 2 1.644353 1.284721 

     

0.1 

0.2 19 18.30972 ---- 

0.4 4 3.098573 2.430822 

0.5 3 2.175083 1.705062 
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Table 7. Design parameters of LFCLTSP (α = 0.05, β = 0.1, k = 2) 

 

p0 p1 m 
c 

n = 5 n = 10 

0.001 

0.002 ----- ----- ----- 

0.004 8 24.65361 20.1723 

0.005 6 17.78875 14.59859 

0.010 3 7.835488 6.503305 

0.050 2 4.745161 3.944351 

0.100 2 4.745161 3.944351 

     

0.005 

0.010 ----- ----- ----- 

0.015 11 23.02939 ----- 

0.020 7 13.96657 11.49821 

0.025 5 9.592978 7.822957 

0.05 3 5.18668 4.304845 

0.25 2 3.141047 2.610952 

     

0.01 

0.02 ----- ----- ----- 

0.04 7 11.65218 9.592849 

0.05 5 8.003328 6.526616 

0.10 3 4.327196 3.59149 

0.15 2 2.620545 2.178292 

0.3 2 2.620545 2.178292 

     

0.05 

0.1 ----- ----- ----- 

0.2 5 5.163768 4.21099 

0.25 4 3.933925 3.272697 

0.3 3 2.791919 2.317239 

0.5 2 1.690782 1.40544 

     

0.1 

0.2 19 18.27998 ----- 

0.4 4 3.209982 2.670436 

0.5 3 2.278134 1.890807 
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Table 8. Design parameters of LFCLTSP (α = 0.05, β = 0.1, k = 2.5) 

 

p0 p1 m 
c 

n = 5 n = 5 

0.001 

0.002 ----- ----- ----- 

0.004 8 22.8966 19.42811 

0.005 6 17.39037 14.80557 

0.010 3 6.680032 5.618128 

0.050 2 4.056706 3.495534 

0.100 2 4.056706 3.495534 

     

0.005 

0.010 ----- ----- ----- 

0.015 11 24.39888 ----- 

0.020 7 14.37326 12.17942 

0.025 5 10.44058 8.882286 

0.05 3 4.767352 4.009501 

0.25 2 2.895158 2.494665 

     

0.01 

0.02 ----- ----- ----- 

0.04 7 10.68762 9.099074 

0.05 5 7.344211 6.208183 

0.10 3 4.105354 3.452738 

0.15 2 2.493134 2.148254 

0.3 2 2.493134 2.148254 

     

0.05 

0.1 ----- ----- ----- 

0.2 5 6.232243 5.302059 

0.25 4 3.945877 3.358724 

0.3 3 2.845752 2.393372 

0.5 2 1.728192 1.489128 

     

0.1 
0.2 19 19.32857 ----- 

0.4 4 3.318712 2.824882 

0.5 3 2.393443 2.012965 
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Table 9. Design parameters of LFCLTSP (α = 0.05, β = 0.1, k = 3) 

 

p0 p1 m 
c 

n = 5 n = 5 

0.001 

0.002 ----- ----- ----- 

0.004 9 20.11819 17.31086 

0.005 7 15.28861 13.21549 

0.010 4 8.241426 7.145336 

0.050 2 3.688174 3.219797 

0.100 2 3.688174 3.219797 

     

0.005 

0.010 ----- ----- ----- 

0.015 14 24.21504 ----- 

0.020 8 13.2736 11.47917 

0.025 6 9.690052 8.381595 

0.05 3 4.456362 3.856001 

0.25 2 2.764474 2.413401 

     

0.01 

0.02 ----- ----- ----- 

0.04 8 11.6694 10.09184 

0.05 6 8.518946 7.368625 

0.10 3 3.917781 3.389978 

0.15 2 2.430369 2.121726 

0.3 2 2.430369 2.121726 

     

0.05 

0.1 ----- ----- ----- 

0.2 6 6.19041 5.354513 

0.25 4 3.94636 3.421503 

0.3 3 2.84691 2.463375 

0.5 2 1.766061 1.541781 

     

0.1 

0.2 20 19.35645 ----- 

0.4 4 3.386708 2.936284 

0.5 3 2.443176 2.114032 

 
 

It may be noted that m is solved as integer values only and m, c depend on the 

shape parameter k of the Burr type X distribution. 

LFCLTSP for Burr type X distributed Lifetimes: Method-II 

The statistic 
1

m

ii
V Y


  introduced for the decision process of the sampling plan 

seems to have been considered as the total test time to get the limited failure 

censored sample – Y1, Y2,…, Ym which are m first order statistics in m independent 

random samples of size n each. If Z denotes the maximum of Y1, Y2,…, Ym it may 

also be viewed as the total test time/experimental time as opined by Kantam and 

Srinivasa Rao (2004). Hence, larger realized value of Z can be considered as an 

indication that the products in the submitted lot have longer life prompting one to 
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consider the lot as a good lot for acceptability. In other words “Z > cL” can be 

taken as a criterion of acceptance of the lot. Thus, for Method-II the following 

decision rule is proposed: 

 

(i) Draw a random sample of size N = m × n and allocate n items to 

each of the m groups. 

(ii) Observe Yi the time to the first failure in the ith group (I = 1, 2,…., m). 

(iii) Identify the quantity Z = Max (Y1, Y2, Y3,…,Ym). 

(iv) Accept the lot if Z ≥ cL and reject the lot otherwise (c may be called 

acceptability constant - a concept similar to the acceptance number 

in time truncated reliability test plans). 

 

Using the theory of order statistics, the cdf of Z may be obtained in a closed 

form as long as the cdf of the base line distribution is in a closed form. Hence, the 

percentiles of Z can be used to get the design parameters 𝑚, 𝑐 analytically. For the 

focal distribution, Burr type X distribution with shape parameter k, the following 

is the analytical procedure of calculating design parameters of LFCLTSP by 

Method-II. 

The cdf of Burr type X with shape parameter k is  

 

    
2

1 .
k

xF x e    (19) 

 

Let X1, X2, X3,…,Xn be a random sample of size n from (19) The cdf of least 

of X1, X2, X3,…,Xn is given by 
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That is, 
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  (21) 

 

Y1, Y2, Y3,…,Ym of the limited failure censored test are now a random sample 

of size m from F(1)(x). Hence, the cdf of Z – the largest of Y1, Y2, Y3,…,Ym is given 

by 
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As a corollary if k = 1 then RHS of (23) becomes 
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which correspondents to the cdf of Z when the base line distribution is the well 

known Rayleigh distribution which in turn is a special case of Weibull 

distribution. The design parameters m and c of LFCLTSP are obtained with the 
help of percentiles of G(m)(z) given in (23). If α and β are respectively the 

producer’s and consumer’s risks for desirable/acceptable lot quality level p0, 

undesirable/lot tolerance quality level p1 then m and c are the solutions of the 

following two inequalities. 
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where w0 and w1 are as defined above. 

The inequalities (25), (26) respectively imply  
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which jointly lead to  
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Therefore, m can be obtained by the smallest integer satisfying (29). The 

acceptability constant c can be obtained from the equality case in either of the 

expressions (27), (28). The values of m and c were analytically determined for the 

same combinations of p0, p1 as chosen by Jun et al. (2006) and are presented in 

Tables 10 through 13 for k = 1.5(0.5)3 along with the values of the design 

parameters of LFCLTSP of Method-I also for the sake of comparison. The values 

of m obtained for Method-II can be seen to be consistently smaller than or equal 

to those of Method-I, thus indicating less number of items to be put to life test in 

Method-II and hence giving a preference to Method-II over Method-I. 
 
 
Table 10. Design parameters of LFCLTSP of Methods –I and II at k = 1.5, α = 0.05 and 

β = 0.1 
 

p0 p1 

m c 

n = 5 n = 10 n = 5 n = 10 

I II I II I II I II 

0.001 

0.002 ----- 7 ----- 6 ----- 6.321585 ----- 4.706341 

0.004 7 3 7 3 29.29783 4.679569 23.19252 3.666006 

0.005 5 3 5 3 20.08845 4.679569 16.03866 3.666006 

0.010 3 2 3 2 10.6872 3.791998 8.377761 2.981762 

0.050 2 2 2 2 6.264294 3.791998 4.894248 2.981762 

0.100 2 2 2 2 6.264294 3.791998 4.894248 2.981762 

          

0.005 

0.010 ---- 7 ---- 6 ----- 3.678851 ----- 2.738859 

0.015 10 4 10 4 25.891 3.066907 20.12681 2.396384 

0.020 6 3 6 3 14.39253 2.723279 11.30701 2.133435 

0.025 5 3 5 2 11.69048 2.723279 9.333712 1.735239 

0.05 2 2 2 2 3.64551 2.206756 2.848211 1.735239 

0.25 2 2 2 2 3.64551 2.206756 2.848211 1.735239 

          

0.01 

0.02 ----- 7 ----- 6 ----- 2.906987 ----- 2.164216 

0.04 6 3 6 3 11.37282 2.151905 8.934676 1.685816 

0.05 5 3 5 2 9.237692 2.151905 7.375396 1.371166 

0.10 2 2 2 2 2.880642 1.743754 2.250625 1.371166 

0.15 2 2 2 2 2.880642 1.743754 2.250625 1.371166 

0.3 2 2 2 2 2.880642 1.743754 2.250625 1.371166 

          

0.05 

0.1 ---- 6 ---- 5 ----- 1.586625 ----- 1.16773 

0.2 5 3 5 3 5.273139 1.228369 4.210088 0.962312 

0.25 4 2 4 2 3.996433 0.995385 3.13519 0.782701 

0.3 3 2 3 2 2.805348 0.995385 2.19913 0.782701 

0.5 2 2 2 2 1.644353 0.995385 1.284721 0.782701 

          

0.1 

0.2 19 6 19 5 18.30972 1.230166 ----- 0.905382 

0.4 4 3 4 2 3.098573 0.952397 2.430822 0.606855 

0.5 3 2 3 2 2.175083 0.771756 1.705062 0.606855 
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Table 11. Design parameters of LFCLTSP of Methods-I and II at k = 2, α = 0.05 and 

β = 0.1 
 

p0 p1 
m c 

n = 5 n = 10 n = 5 n = 10 

I II I II I II I II 

0.001 

0.002 ----- 7 ----- 6 ----- 4.222746 ----- 3.322232 

0.004 8 3 8 3 24.65361 3.307038 20.1723 2.722404 

0.005 6 3 6 2 17.78875 3.307038 14.59859 2.314123 

0.010 3 2 3 2 7.835488 2.796218 6.503305 2.314123 

0.050 2 2 2 2 4.745161 2.796218 3.944351 2.314123 

0.100 2 2 2 2 4.745161 2.796218 3.944351 2.314123 

          

0.005 

0.010 ----- 7 ----- 5 ----- 2.795235 ----- 2.101985 

0.015 11 4 11 3 23.02939 2.409381 ----- 1.802088 

0.020 7 3 7 3 13.96657 2.189085 11.49821 1.802088 

0.025 5 3 5 2 9.592978 2.189085 7.822957 1.531827 

0.05 3 2 3 2 5.18668 1.850949 4.304845 1.531827 

0.25 2 2 2 2 3.141047 1.850949 2.610952 1.531827 

          

0.01 

0.02 ----- 6 ----- 5 ----- 2.247727 ----- 1.753666 

0.04 7 3 7 3 11.65218 1.826332 9.592849 1.503464 

0.05 5 2 5 2 8.003328 1.544228 6.526616 1.277988 

0.10 3 2 3 2 4.327196 1.544228 3.59149 1.277988 

0.15 2 2 2 2 2.620545 1.544228 2.178292 1.277988 

0.3 2 2 2 2 2.620545 1.544228 2.178292 1.277988 

          

0.05 

0.1 ----- 6 ----- 5 ----- 1.450239 ----- 1.13147 

0.2 5 3 5 2 5.163768 1.178354 4.21099 0.824562 

0.25 4 2 4 2 3.933925 0.99634 3.272697 0.824562 

0.3 3 2 3 2 2.791919 0.99634 2.317239 0.824562 

0.5 2 2 2 2 1.690782 0.99634 1.40544 0.824562 

          

0.1 

0.2 19 6 19 5 18.27998 1.183358 ----- 0.92325 

0.4 4 2 4 2 3.209982 0.812988 2.670436 0.672821 

0.5 3 2 3 2 2.278134 0.812988 1.890807 0.672821 
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Table 12. Design parameters of LFCLTSP of Methods-I and II at k = 2.5, α = 0.05 and 

β = 0.1 
 

p0 p1 
m c 

n = 5 n = 10 n = 5 n = 10 
I II I II I II I II 

0.001 

0.002 ----- 6 ----- 5 ----- 3.226744 ----- 2.606892 

0.004 8 3 8 2 22.8966 2.698795 19.42811 1.995706 

0.005 6 2 6 2 17.39037 2.340102 14.80557 1.995706 

0.010 3 2 3 2 6.680032 2.340102 5.618128 1.995706 

0.050 2 2 2 2 4.056706 2.340102 3.495534 1.995706 

0.100 2 2 2 2 4.056706 2.340102 3.495534 1.995706 

          

0.005 

0.010 ----- 6 ----- 5 ----- 2.302837 ----- 1.860466 

0.015 11 4 11 3 24.39888 2.091057 ----- 1.632736 

0.020 7 3 7 2 14.37326 1.926055 12.17942 1.42428 

0.025 5 2 5 2 10.44058 1.670065 8.882286 1.42428 

0.05 3 2 3 2 4.767352 1.670065 4.009501 1.42428 

0.25 2 2 2 2 2.895158 1.670065 2.494665 1.42428 

          

0.01 

0.02 ----- 6 ----- 5 ----- 1.983063 ----- 1.60212 

0.04 7 3 7 2 10.68762 1.658601 9.099074 1.226503 

0.05 5 2 5 2 7.344211 1.438159 6.208183 1.226503 

0.10 3 2 3 2 4.105354 1.438159 3.452738 1.226503 

0.15 2 2 2 2 2.493134 1.438159 2.148254 1.226503 

0.3 2 2 2 2 2.493134 1.438159 2.148254 1.226503 

          

0.05 

0.1 ----- 6 ----- 4 ----- 1.374621 ----- 1.05379 

0.2 5 2 5 2 6.232243 0.996904 5.302059 0.850188 

0.25 4 2 4 2 3.945877 0.996904 3.358724 0.850188 

0.3 3 2 3 2 2.845752 0.996904 2.393372 0.850188 

0.5 2 2 2 2 1.728192 0.996904 1.489128 0.850188 

          

0.1 

0.2 19 5 19 4 19.32857 1.10974 ----- 0.886299 

0.4 4 2 4 2 3.318712 0.838454 2.824882 0.715058 

0.5 3 2 3 2 2.393443 0.838454 2.012965 0.715058 
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Table 13. Design parameters of LFCLTSP of Methods-I and II at k = 3, α = 0.05 and 

β = 0.1 
 

p0 p1 
m c 

n = 5 n = 10 n = 5 n = 10 
I II I II I II I II 

0.001 

0.002 ----- 6 ----- 5 ----- 2.769706 ----- 2.290677 

0.004 9 2 9 2 20.11819 2.082676 17.31086 1.811738 

0.005 7 2 7 2 15.28861 2.082676 13.21549 1.811738 

0.010 4 2 4 2 8.241426 2.082676 7.145336 1.811738 

0.050 2 2 2 2 3.688174 2.082676 3.219797 1.811738 

0.100 2 2 2 2 3.688174 2.082676 3.219797 1.811738 

          

0.005 

0.010 ----- 6 ----- 5 ----- 2.076035 ----- 1.716979 

0.015 14 3 14 3 24.21504 1.770461 ----- 1.530374 

0.020 8 2 8 2 13.2736 1.561071 11.47917 1.357989 

0.025 6 2 6 2 9.690052 1.561071 8.381595 1.357989 

0.05 3 2 3 2 4.456362 1.561071 3.856001 1.357989 

0.25 2 2 2 2 2.764474 1.561071 2.413401 1.357989 

          

0.01 

0.02 ----- 6 ----- 5 ----- 1.825133 ----- 1.509471 

0.04 8 2 8 2 11.6694 1.372406 10.09184 1.193868 

0.05 6 2 6 2 8.518946 1.372406 7.368625 1.193868 

0.10 3 2 3 2 3.917781 1.372406 3.389978 1.193868 

0.15 2 2 2 2 2.430369 1.372406 2.121726 1.193868 

0.3 2 2 2 2 2.430369 1.372406 2.121726 1.193868 

          

0.05 

0.1 ----- 5 ----- 4 ----- 1.278518 ----- 1.047212 

0.2 6 2 6 2 6.19041 0.997278 5.354513 0.86754 

0.25 4 2 4 2 3.94636 0.997278 3.421503 0.86754 

0.3 3 2 3 2 2.84691 0.997278 2.463375 0.86754 

0.5 2 2 2 2 1.766061 0.997278 1.541781 0.86754 

          

0.1 

0.2 20 5 20 4 19.35645 1.097205 ----- 0.898702 

0.4 4 2 4 2 3.386708 0.855849 2.936284 0.74451 

0.5 3 2 3 2 2.443176 0.855849 2.114032 0.74451 

 
 

When k = 1 Burr type X is a Rayleigh distribution which is a Weibull 

distribution with shape parameter = 2. Jun et al. (2006) observed that their 

LFCLTSP for Weibull distribution is invariant of its shape parameter. As matter 

of comparison, design parameters of LFCLTSP of Method-II were computed for 

Burr type X at k = 1 also, so that these become the parameters of LFCLTSP for 

Weibull distribution with shape 2. These are given Table 14. 
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Table 14. Design parameters of LFCLTSP of Method-II at k = 1, α = 0.05 and β = 0.1 

 

p0 p1 
m c 

n = 5 n = 5 n = 5 n = 10 

0.001 

0.002 5 4 12.6215 7.999934 

0.004 2 2 7.112941 5.029608 

0.005 2 2 7.112941 5.029608 

0.010 2 2 7.112941 5.029608 

0.050 2 2 7.112941 5.029608 

0.100 2 2 7.112941 5.029608 

      

0.005 

0.010 5 4 5.63885 3.574094 

0.015 3 2 4.281842 2.247055 

0.020 2 2 3.177816 2.247055 

0.025 2 2 3.177816 2.247055 

0.05 2 2 3.177816 2.247055 

0.25 2 2 3.177816 2.247055 

      

0.01 

0.02 5 4 3.982257 2.524089 

0.04 2 2 2.244231 1.586911 

0.05 2 2 2.244231 1.586911 

0.10 2 2 2.244231 1.586911 

0.15 2 2 2.244231 1.586911 

0.3 2 2 2.244231 1.586911 

      

0.05 

0.1 5 4 1.762744 1.117287 

0.2 2 2 0.993408 0.702445 

0.25 2 2 0.993408 0.702445 

0.3 2 2 0.993408 0.702445 

0.5 2 2 0.993408 0.702445 

      

0.1 

0.2 5 3 1.229931 0.660398 

0.4 3 2 0.933944 0.490122 

0.5 2 2 0.693137 0.490122 

 
 

Comparison of Tables 1 and 14 also indicate that Method-II is preferable to 

Method-I in constructing LFCLTSP for Rayleigh distributed life times. 

Illustration 

The quality assurance in a bearing manufacturing process states that p0 = 0.01, 

p1 = 0.04, α = 0.05, β = 0.1 the number of test positions (size of each 

group, n) = 10. For this information Table – 2.1 of Jun et al. (2006) suggests 

m = 5, c = 196. Accordingly a random sample of size N = 50 items are put to test 

in five groups with 10 items in each group. The observed first failure times in the 

five groups are Y1 = 120, Y2 = 200, Y3 = 185, Y4 = 55, Y5 = 265. Assuming that the 

life times follow Weibull distribution with shape parameter 2 and a lower 
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specification of L = 100 they have calculated 
5 2

1
161875ii

V Y


   and the 

acceptability constant cL2 = 196000 since V < cL2 they decided the submitted lot 

to be rejected. 

Adopting the same information to Burr type X distribution we take the 

shape parameter of Burr type X namely k = 1. Then it becomes the Rayleigh 

distribution which is also a Weibull with shape parameter 2. For the sake of 

comparison with the sampling plan of Jun et al. (2006), at the above p0, p1, α, β, 

n = 10, we get from Table 14 as m = 2, and acceptability constant c = 1.586911 

then cL = 158.6911. Z = the maximum of 55,120 = 120. Since Z < cL. 

i.e., 120 < 158.691, the lot is to be rejected.  

From this example, the approach reached the decision of rejecting the lot by 

conducting limited failure censored life test for only two groups of 10 items each, 

whereas that of Jun et al. (2006) required the experiment to be conducted for 5 

groups of 10 items each resulting in higher cost of experimentation and larger 

number of destructions. In that way, the Method-II is preferable to the Method-I 

proposed by Jun et al. (2006). Moreover, it may be recalled that V, Z are defined 

as 

 

 
1

m

ii
V Y


   

 

  1 2, , , .mZ Max Y Y Y   

 

If c is the acceptability constant and L is the lower specification, Z > cL ⇒ V > cL. 

That is acceptance by Method-II implies acceptance by Method-I, so that as far as 

acceptance decision is considered Method-II gives a stronger conclusion implying 

the same decision by Method-I. 
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We examine models that relax proportionality in cumulative ordered regression models. 
Something fundamental arising from ordered variables and stochastic ordering implies a 
partitioning. Efforts to relax proportionality also relax the ability to collapse an inherently 
multidimensional problem to a partitioning of the (unidimensional) real line. It is surprising 

and unfortunate to find that deviations from proportionality are sufficient to generate 
internal contradictions; undecidable propositions must exist by relaxing proportional odds 
without other relevant and significant changes in the underlying model. We prove a single 
theorem linking continuous support and partitions of a latent space to show that for these 
two characteristics to be simultaneously satisfied, the model must be the proportional-odds 
model. Conditioning on the adjacency that is closely related to the partitioning is fruitful, 
but at this point we join the class of continuation-ratio models. Alternatively, Anderson’s 

(1984) stereotype model is quite general and nests ordered and unordered choice models, 
but again we have left the domain of cumulative models. Adopting multidimensional 
cumulative models or imposing covariate-specific thresholds are the only certain methods 
for avoiding these troubles in the cumulative framework. It is generically impossible to 
generalize the cumulative class of ordered regression models in ways consistent with the 
spirit of generalized cumulative regression models. Monte Carlo studies also demonstrate 
the general principles. 

 
Keywords: Proportional odds models, partial proportional odds models, Monte Carlo 
simulation 

 

Introduction 

Generalizations of common cumulative models for ordered phenomena are 

considered. The parallelism inherent to cumulative models such as the 

(proportional odds) ordered logit/probit model (McKelvey & Zavoina, 1975; 

McCullagh, 1980) is seen as limiting and workers in numerous statistical literatures 

have worked on generalizations.1 According to Google Scholar, 407 papers cited 

http://dx.doi.org/10.22237/jmasm/1478003160
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Peterson and Harrell’s (1990) presentation of a partial proportional-odds model and 

478 cited the work by Brant (1990) on testing proportional odds as of March 6, 

2015; the generalization appears in McCullagh and Nelder (1989) and Agresti 

(2002). Test statistics have been proposed for testing this specification as null 

hypothesis against a more general specification (Brant, 1990) and software for Stata 

(Williams, 2006) and Yee’s (2010) library for R (R Development Core Team, 2009) 

allow these models to be estimated. 

Following Peterson and Harrell (1990), Cox (1995), and numerous others in 

medical statistics, social science has used these models for ordered scales related to 

social policy and racial attitudes (Branton & Jones, 2005); Fullerton (2009) presents 

a sociological analysis of income quartiles; Gannon (2009) examines self-reported 

disability status using this generalization. A spate of articles in the Journal of 

Modern Applied Statistical Methods (e.g., O’Connell & Liu, 2011; Liu & Koirala, 

2012) developed diagnostics for the model and deployed the model for educational 

outcomes. The model received some attention in the field of health economics 

(Lindeboom & van Doorslaer, 2004). Generalized threshold models (Maddala, 

1983; Terza, 1985) are similar and the general argument applies to the class of 

location-scale models. To our surprise, there is no obvious way to generalize the 

model while retaining two basic assumptions that motivate cumulative models. It 

is cumulative in both probabilistic foundations and in name. 

Given the widespread attention to generalizations of the cumulative model, it 

is surprising to find that the model only sensibly exists in the presence of 

proportional odds or the parallel equivalent. Partitioning a unidimensional latent 

space uniquely with functions of covariates is constrained by the requirement that 

everything match at the boundaries of any two adjacent partitions with cumulative 

probabilities. Defining a model and finding conditions where optima exist can be 

quite different from a model with sensible statistical microfoundations; these two 

ideas diverge when generalizing the cumulative ordered regression model. When 

models are employed for describing and estimating physical, social, or biological 

processes, internal contradictions pose significant difficulties because it is not clear 

how we return the parameters to their substantive context in a way that is consistent 

with the assumptions that facilitate estimation. 

The Argument 

Anderson (1984) distinguished ordered variables that are grouped continuous – 

ordered groupings of an unobserved continuous outcome – from assessments – 

judgments or grades somehow combining (possibly) multiple inputs. Ordered 
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responses can represent a coarsened latent variable, as in income quartiles, Likert 

scales (in many cases), feeling thermometers, and grades given to things ranging 

from diamonds to dairy products. Although the continuous variable cannot be 

observed, the groupings – partitions – may be observed as an ordered outcome. The 

ordered outcome can be inverted to a partition of the latent scale and differences on 

this scale are often of substantive interest; many seemingly ordered phenomena do 

not obviously present for finer measurement but the latent measure remains 

substantively interesting. Nevertheless, an ordered variable can be an assessed or 

judged outcome. 

 

A variable of the second type is generated by an assessor who possesses an 

indeterminate amount of information before producing his judgment of the 

grade of the ordered variable. For example, Anderson and Philips (1981) refer 

to the “extent of pain relief after treatment”: worse, same, slight improvement, 

marked improvement or complete relief. In principle, there is a single, 

unobservable, continuous variable related to this ordered scale, but in practice, 

the doctor making the assessment will use several pieces of information in 

making his judgment on the observed category. For example, he might use 

severity of pain, kind of pain, consistency in time and degree of disability. We 

will refer to these variables of the second type as “assessed” ordered 

categorical variables and argue that, in general, a different approach to 

modelling regression relationships is appropriate for the two types. (Anderson, 

1984, p. 2) 

 

Anderson’s argument suggested that the presence of multiple inputs requires 

a model that need not assume an underlying order but instead allows order to 

emerge (or not) as a special case of a more general model. The arguments 

underlying the stereotype model of Anderson (1984) are precisely focused on 

dimensionality (the number of latent dimensions), ordering (and whether or not it 

obtains), and distinguishability (do covariates distinguish categories?) with a model 

that can assess each in a null hypothetical framework. The model derives from 

category probabilities rather than a cumulative scale. Though, the outcome variable 

itself, y, can also be represented by sets of ratios of cumulative probabilities with 

some assumed distribution, the statistical principles that are engaged require a 

sensible probability model and the cumulative framework becomes quite limiting. 

At some point, the cumulative approach requires a well-defined cumulative 

distribution; this is deeply constraining and leads to an internal contradiction in 

“generalizations” of cumulative ordered regression models.  
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Consider a J > 2 category ordinal variable yi observed on units i ∈ N. The 

canonical distribution for such outcomes is the multinomial. Frequently, analysts 

employ the notion of a latent variable, 
*

iy , crossing thresholds defined by the J + 1 

vector τ, with τ0 = -∞ and τJ = ∞. A key component to cumulative models is a 

partition linking an observation rule and a latent unidimensional continuous 

variable. We define such a rule as Assumption 1. 

 

Assumption 1: Mutually exclusive and exhaustive partition: 

 

 
*

1if and only ifi j i jy jif y       (1) 

 

for 

 

  1,2, , , , pr 1
j J

j J i N y j


      

 

Equivalently, τ could be viewed as a function so that τ: y* → y. It is many-to-one, 

but it is special because it is an ordered partition. The ordering can be inverted to 

imply a unique set of inequality relations that must apply to y*. Though we have 

yet to define y*, we will place some structure on randomness. 

 

Assumption 2: ϵi are independent and identically distributed with probability 

density function f and cumulative distribution F such that supp(ϵ) = ℝ and μ(ϵ) = 1 

(measure one). 

The errors will ultimately give a distribution to the random variable of 

interest; the random variable will inherit the distribution of ϵ conditional on a true 

model consisting of covariates. Of a driving force in the statistical logic, the latent 

variable, as a function of covariates X, requires structure. This leads to Definition 

1. 

 

Definition 1: Proportional Odds: Linearity in latent variables. 

 

 
*

i i iy  X β   (2) 

 

where Xi is a (row) vector of centered covariates for i, β is a (column) vector of 

parameters of interest with (XTX) – 1 existing.2 This is the source of our notion of 

“parallelism”. The latent variable is a linear function of covariates and parameters 
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and this yields a set of parallel planes. When the covariates are bounded, the 

randomness in the latent variable is then inherited from ϵ.3 We will assume 

independence between the covariates and random errors. 

The argument will apply equally to commonly used F with continuous support 

(normal, logistic, cloglog (Gumbel), Cauchy) on ℝ. Substituting (2) into (1) yields 

(for all j ∈ J), for a general cumulative distribution function F determined by the 

assumed distribution of ϵi, 

 

      * *

F 1

1 1

Ind ln F F
N J

i j j j i

i j

y j y y  

 

      
    (3) 

 

One appealing feature of this proportional odds model is the ease of use. It is 

intuitively pleasing to link ordered categories to some underlying continuum that is 

determined by covariates and to allow the marginal effects to be well defined across 

all outcomes. In effect, we have a linear regression for ordered outcomes that does 

not impose an (likely fallacious) interval-scale interpretation. It is also intuitively 

restrictive. 

The “partial-proportional odds” model (Brant, 1990; McCullagh & Nelder, 

1989; Peterson & Harrell, 1990) employs subscripted β with the implicit idea that 

some (or all) regressors have varying impacts that depend on the comparison, as in 

Definition 2. 

 

Definition 2: Partial/Non Proportional Odds: Conditionally (on j) linear in 

the latent variable. 

 

 
*

i i j iy  X β
  (4) 

 

The proportional-odds assumption is that F = Λ or that ϵi are i.i.d. logistic and that 

β1 = β2 = … = βJ–1; this model can be estimated by maximizing (3) with (2) under 

general conditions owing to properties illuminated by Pratt (1981) or by employing 

generalized linear models with conditional mean function as implied by (2). Insert 

(4) into (3) to yield 

 

      F 1 1

1 1

Ind ln F F
N J

i j i j j i j

i j

y j    

 

      
  X β X β   (5) 
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It is straightforward to identify the parameters as deviations (βj = β1 + δj) from 

a base parameter with a simple view toward whether or not proportional odds 

obtains in Wald statistics, score tests, or approximating the likelihood ratio.4 At first 

glance, (5) is a very useful generalization because the underlying linear structure of 

the proportional odds type model seems excessively limiting even with creative 

functional forms for the covariates. Generalizing the model maintains the 

significant intuitive appeal of the cumulative model for parameters that it is sensible 

to believe map linearly onto the latent scale with the flexibility of altering 

relationships in a way that uniquely leverages the adjacency of ordered data. There 

is obvious gain to the exercise that is quite appealing by retaining the simplicity of 

unidimensionality; at what cost? The unidimensional cumulative foundation, if the 

model is an appropriate partition of the latent space, requires that this hold for each 

i ∈ N. 

In the literature on partial proportional odds models, much has been made of 

conditions for sensible estimates. Estimating the model is distinct from requiring 

predicted responses to be nonnegative. Conditions must hold on βj and τ for 

estimates to exist (the parameters and thresholds are jointly bounded) and these 

conditions are weaker than those required for nonnegative category probabilities.5 

The latter is the usual criterion for assessing the model. Unfortunately, the set of 

models we can estimate is itself a proper subset of models that contradict their own 

probabilistic foundations. Put simply, models may be estimated with nonnegative 

probabilities for each ordered category that have no well-behaved latent variable 

satisfying Assumptions 1 and 2 with Definition 2; this is the central demonstration 

of Theorem 1. Research has remained focused on testing (Brant, 1990), estimating 

(Peterson & Harrell, 1990), and generalizing (Maddala, 1983; Terza, 1985; Cox, 

1995; Williams, 2006) ordered regression models using Definition 2 for which no 

such generalization exists. 

 

Theorem 1: Assumption 1 and Assumption 2 avoid internal contradiction 

if and only if observational equivalence holds between Definition 1 and Definition 

2 ((2) and (4)). 

 

Proof: 

 

1. Suppose that Assumption 2 holds and (2) ≠ (4). (4) generically 

requires ∃j: βj ≠ βj–1 and, perhaps more importantly that 
* *

1j jy y  . 

Assumption 2, recalling parameters to scale, allows us to write, 
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βj = βj/σ which then scales y* = y*/σ. With the assumption that X is 

centered, there must be an x to which one of the following two 

conditions apply because no column of x can fail to have support on 

both sides of the center without contradicting full rank. 

 

Case (a): Suppose βj > βj–1 in (4). σ is fixed under Assumption 2.6 

Consider 
*

j jy   which is justified by the support of ϵ on ℝ. Under the 

supposition, 
* *

1j j jy y    (because βj > βj–1 ⇒  βjx > βj–1x) in (4). y is 

undefined; invoking Assumption 1 yields 
* 1jy j   while 

*

1jy j  . 

 

Case (b): Suppose βj–1 > βj. Consider 
*

1j jy    which is justified by 

the support of ϵ on ℝ. Under the supposition, 
* *

1j j jy y    (because 

1 1j j j jx x       ) in (4). y is undefined; invoking Assumption 1 yields 

*

1 1jy j    while 
*

jy j . 

 

2. Suppose that Assumption 1 holds and (2) ≠ (4). Assumption 1 allows 

us to write the probability that y = j sums to one, the logic will follow 

the above. That all of the observations sum to one will contradict 

continuous support. To show this, generically write 

 

    
   

  
   

  
1

Pr f
j i

j i

y

y
y j d j J














      (6) 

 

        
* * *

1 2

* * *
1 1

Pr f f f
i i i

j i J i

y y y

i
y y y

j J

y j d d d
 

  

  

  


          (7) 

 

  f 1d



   (8) 

 

Under the proportional odds model, all is fine and Assumption 2 is satisfied. We 

have integrated the real line satisfying the restrictions on f and F. Now let us 

examine (4). 
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* * *

1 1 2 2 , 1

* * *
0 0 1 2 1 , 1

Pr f f f
i i J i J

i i J i J

y y y

i
y y y

j J

y j d d d
  

  



 

  

  


          

 

The boundaries of the integrals were moved by assuming (4) but leaving τ fixed. 

To view this more cleanly, expand the integral about the fact that 
*

1j jy y  . The 

two cases from before will appear parenthetically. 

 

 

       

     

* * * *
2 1 2 1

* * *
1 1 2 2 1 1

* * *
1 1 1 1 2

* * *
2 2 2 3 2 2

* * *
1 2 2 2 2 3

* *
3 2

Pr f f f

f f f

i i i i

i i i

i i i

i i i

i i i

i i

y y y y

y y y

i
y y y

j J

y y y

y y y

y y

y j d d d

d d d

  

 

  

  

 

  

  


  

  



   
         

 
   

 

   

  

 

* *
3 2

*
, 1

*
1 , 1

f

1

i i

i J

J i J

y y

y

y
d





 







 
  

 





  (9) 

 

Generically, the parenthetical (or bracketed) elements will be non-zero unless 

(2) = (4). Moreover, these regions, given support on ℝ, are not countable and the 

probability that the two or multiple terms offset is a set of measure zero. Up to this 

set of measure zero,  Pr 1jj J
y j


   contradicting Assumption 2. 

Discussion 

The proportional-odds/parallel model is the J – 1 dimensional solution that 

uniquely collapses to a marginal distribution. Efforts to make the model more 

realistic, such as the structure defined in Definition 2, ultimately make it less 

realistic in the sense that its properties cannot be studied under its assumptions. The 

reason is that the assumptions are internally contradictory when combined with 

Definition 2. The models become internally contradictory of their own probability 

formulations when they deviate from the proportional odds model. The underlying 

latent variable is a strict order under the proportional-odds assumption and 

deviations can violate this ordering. These deviations from this underlying ordering 

wreak havoc on the probabilistic foundations. 
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We will replicate the Monte Carlo simulation evidence in Peterson and 

Harrell (1990, Table 6, Design 4) to provide a context. When the odds-ratio 

formulation common is considered to the ordered logistic regression model, write 

 

 
 

 
 

Pr |
exp , 1,2, , 1

Pr |

i i

i j

i i

y j
j J

y j


   



X
X β

X
  (10) 

 

Consider the experiment reported as Design 4 in Peterson and Harrell (1990, p. 

216) that defines a four-category y. X is a set of five completely crossed binary 

predictors (25) of ten observations each (N = 320). Peterson and Harrell (1990) set 

β = 0.5 with the exception of β25 = 1. α are constants (or inverse cutpoints such that 

τ in (1)) are set to α = {0.405, -0.847, -2.2}. The key to their strategy is in 

independent multinomial sampling. 

Begin with ratios of categories specified along some cumulative scale but 

curiously no appeal to a random variable. y will ultimately result from creating 

cumulative probabilities and comparing them with model estimates. Peterson and 

Harrell (1990, p. 208) define 

 

  
 

1
Pr |

1 exp
ij i

j i j

C y j


  
  

X
X β

  (11) 

 

Because this defines the cumulative distribution function of a logistically 

distributed random variable, work backward to examine the distribution(s?) of this 

logistic random variable. As in Peterson and Harrell (1990, Design 4), suppose 

x1 = x2 = x3 = x4 = 0, x5 = 1; this implies Xiβ = {0.5, 1, 0.5}. Figure 1 illustrates a 

part of the difficulty. 

The top panel of Figure 1 provides the cumulative probability plots obtained 

from all thirty-two possible combinations of our five binary predictors arranged 

along the x-axis ordered lexicographically first by ii
x  and then by i. The y-axis 

presents the cumulative probabilities (3-purple, 2-orange, 1-blue, 0-red) according 

the partial proportional-odds model. As the x-axis increases, the probability of 

higher categories increases. The unfilled circles represent predictions from the first 

and third equations (which happen to be equal) and the filled circles represent 

predictions from the second equation. The unfilled circles define the cumulative 

probabilities for the lowest (blue) and highest (purple) categories while the (orange) 

filled circles define outcomes in the interior categories. As expected from the 
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parameters given before, recalling that these parameters have log odds-ratio 

interpretations, the highest category becomes quite common. 

 

 

 
 
Figure 1. Peterson and Harrell (1990): Table 6, Design 4: The top panel plots cumulative 

probabilities derived from the partial proportional-odds cumulative logit color coded as in 
the legend; Filled circles represent probabilities derived from j = 2; Open circles represent 
probabilities derived from j = {1, 3}; The solid lines capture the cumulative probabilities as 
they enter the “partial proportional-odds” likelihood; The bottom panel displays logistic 
densities for Xβj = 0.5 above zero and for Xβj = 1 below zero; The non-hatched areas 

represent areas such that partitioning fails 

 

 

That the probability of category two is shrinking is a product of the 

nonproportional-odds and the oft-noted issue of negative probabilities is a 
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necessary consequence of this shrinkage. That they do not cross in the observed 

data is taken as a signal of the underlying validity of the model (and estimates) 

when the very fact that such lines can cross with a cumulative probability model 

contradict the foundations of cumulative probabilities. 

The scale has been assumed fixed by implication, y ~ λ(Xiβj, σ = 1), where λ 

is a logistic distribution characterized by location Xiβj and scale equal to one.7 The 

density depends on the outcome because j enters the conditional expectation. The 

way to resolve this is to set (2) = (4). If it is assumed that the cutpoints between 

categories for this logistic random variable to be constants and that the model is 

true, then a logistically distributed random variable with continuous support on ℝ 

arises and Theorem 1 applies. This only works when (2) = (4). 

Peterson and Harrell (1990) instead use the sequence of logit cumulative odds. 

Define a multinomial random variable using Cij as a partition of the unit interval 

(0, 1) for input probabilities. This is the equivalent of invoking Assumption 1. The 

problem is that drawing cumulative probabilities in a uniform fashion over the unit 

interval and inverting them to the logit-scale, given that the logit is a one-to-one 

transformation, implies continuous support on ℝ. Under Theorem 1, this cannot be 

valid unless it is done under the proportional variant. On a superficial level, the 

approach resolves an inconsistency such that simulation succeeds with probability 

one. 

In the process, avoid defining a random variable excepting y and take a 

cumulative probability over an undefined logistic random variable. Invoke a 

logistic random variable to estimate Cij alongside α and βj. Order only enters to the 

extent that the multinomial distribution is drawn as a partition of the logistic 

distribution. But here is where the problem emerges. A uniform random variable, 

call it u, gives the hypothetical cumulative probability. Taking Cij as given can 

generate y according to which interval u happens to fall into for each i. Theorem 1 

dictates a generic problem with this strategy; either the logistic distribution does 

not have continuous support or it does not generically integrate to one. In either 

case, sidestepping the specification of the random variable also allows us to sidestep 

the uncomfortable realization that the random variable we invoke does not and 

cannot have the properties that we have assumed. This is illustrated in the bottom 

panel of Figure 1. 

The bottom panel of Figure 1 displays an example of the implied logistic 

densities from Peterson and Harrell (1990), Design 4. The hatched areas represent 

portions of the density that satisfy partitioning while the blank areas showcase the 

area of partitioning failure. How does partitioning fail? In general, if one equation 
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produces some outcome ỹ and the other equation produces ŷ and ỹ ≠ ŷ, we can say 

the partition failed because the resulting value of y is not unique (or does not exist). 

The problem is very similar to the issues of completeness and coherence in 

the econometric study of simultaneous equations with limited outcomes (Heckman, 

1978; Gourieroux, Laffont, & Monfort, 1980; Dagenais, 1999; Tamer, 2003; 

Lewbel, 2007).8 Depending on the sign of differences in adjacent regression 

coefficients, the offending regions are characterized in (9). This is of consequence 

because the size of the regions in which the model is internally contradictory is 

increasing in the differences (the size of deviations from parallelism) and the 

boundaries depend on Xi. Deviations from proportional odds (or an equivalent 

parallelism of planes in p  where p is the column rank of X) are sufficient to 

break the most basic of assumptions about sources of randomness and notions of 

order, both quite sensible. Larger deviations from parallelism increase the measure 

of contradictions. 

The generic fact that y* becomes multidimensional under deviations from 

parallelism or proportionality causes the problem. Under deviations from 

proportional odds with a well behaved cumulative distribution, no such constraint 

exists that is not a jointly identified function of thresholds for each unique x and the 

parameters of interest βj. Thought of as a function, τ must match at the boundaries 

of the cumulative distribution for y* (and ϵ) to have continuous support. For this to 

work, τj cannot be invariant to i unless X is also invariant to i. Of course, if X is 

globally invariant to i, X is a constant. When X is a variable, the trouble reemerges. 

Before presenting a Monte Carlo simulation, two related issues are mentioned. 

There are a variety of ways to test parallelism of the regression slopes. The 

previous demonstration begs the question of what alternatives such tests embody. 

If the model does not exist except at the null hypothesis, a rejection of the null 

seems entirely uninformative because it offers no insights into the nature of the 

problem. These tests do not obviously lead to some more general class of models 

in which parallelism is a restriction. With this in mind, turn to an analysis of 

solutions to the more general problem in models that are not internally 

contradictory.  

In the nonrecursive simultaneous equations setting, Dagenais (1999) restricts 

the support of ϵ. Although this is technically correct and logically sound, it seems 

hard to intuitively justify for most substantive applications and impossible to verify 

in practice. Another obvious solution emerges from the ideas of Maddala (1983) 

and Terza (1985). The generalized threshold model parameterizes the thresholds 



ROBERT W. WALKER 

467 

(τj), instead of allowing regression coefficients to vary on the basis of the 

comparisons  1j j   . To be precise, write 

 

 ij i j  X ψ   (12) 

 

and expand the vector Xi to include a constant. As it happens, the model is an 

isomorphism to the previous case (4) and all the same results apply. Suppose 

instead, construct a model based on the varying thresholds where the variation in 

the thresholds is specific to the row rank of X. In other words, maintain the 

aforementioned parallelism, but allow the thresholds to be specific to observed 

covariates. Of course, with continuous covariates, this is not at all helpful, but with 

discrete regressors and large samples, such a model can be estimated and all of the 

relevant thresholds can also be estimated so long as each J is observed for each 

unique row of X. When there are no such observations, the problems of 

Chamberlain’s (1980) fixed effects estimator when outcomes do not vary arises. 

A brief R (R Development Core Team, 2009) simulation example showcases 

the severity of the problem (Appendix A provides a logistic example).9 The 

simulation is constructed with a single binary regressor and a uniform regressor on 

[-1, 1]. Set τ = {-0.5, 0.5}, β11 = 0.05, β12 = 0.1, β2 = 1 for 1000 observations and 

perturbed the latent variable with standard logistic, normal, Gumbel (cloglog), and 

Cauchy errors before applying Assumption 1 to yield results. It is important to note 

that with 1000 observations and relatively small effect sizes (as these are), under  

the proportional odds logistic regression, roughly 6.25% of 10,000 iterations reject 

the hypothesis that β = 0 when β = 0.10. The effects are so small there is almost no 

power. Even under these minute deviations, answers fail to exist. Turning to the 

evidence reported in Figure 2, the number of failures in invoking partitioning is 

bounded below by zero and bounded above by just over 3%. The graphic makes 

clear that a non-zero fraction of outcomes are undefined (in all 10000 Monte Carlo 

trials) as reported in Figure 2. Given Theorem 1, it comes as no surprise that all are 

susceptible; the model contains an internal contradiction unless it is the parallel 

version. 
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Figure 2: Undefined outcomes from partial-proportional odds: 10,000 Monte Carlo trials 

 

Conclusion 

Modeling multidimensionality is a useful endeavor and it is not prohibitive. The 

difficulties are in conceptualizing the substance of such dimensions in applications 

and linking them together to obtain a stochastic order. It is important that our efforts 

remain true to the underlying probability structures that generate the data. Models 

that cannot be inverted cannot be studied in any meaningful way. To the extent that 

models are meant to capture the processes that generated them, generalizing 
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nonparallelism in a cumulative framework under Assumptions 1 and 2 is 

impossible and the probability of contradiction goes to one as sample sizes become 

infinite. The parallel version of the model is exceptionally useful for many 

problems, but generalizations of the model must carefully handle the restrictions 

imposed by their cumulative foundations.  

Although the main demonstration is a negative one, hope is not lost. A well-

studied and widely known class of ordered regression models can accommodate 

non-parallel effects and retain some cumulative foundations. Form odds-ratios for 

the sequential (Fahrmeir & Tutz, 1994) or continuation-ratio logit (Agresti, 2002) 

as 

 

 
 

 
 

Pr | ,
exp , 1,2, , 1

Pr | ,

i i i

i j

i i i

y j y j
j J

y j y j

 
   

 

X
X β

X
  (13) 

 

The solution has two parts. First, condition on the observed data and this resolves 

the incompleteness of the generalized cumulative regression model. Second, the 

models are mixtures of category and cumulative probabilities and, more 

importantly, are inherently multidimensional in the non-parallel case. However, 

such models conform to the more basic intuition that each unique linear function 

captured by βj must yield a unique dimension. The generalized cumulative 

regression model is a multidimensional model collapsed to a single dimension. The 

collapsing works if and only if the model is the proportional odds model. 
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Endnotes 

1. To our knowledge, the first suggestion of such a model is contained in 

Winship and Mare (1984, p. 519). Long (1997, ch. 6) calls this “parallel 

regressions”. It is latent parallelism. Parallelism holds in the latent variable 

representation though not in probabilities under asymmetry. 

2. We could only require full column rank and finite x. 

3. In the class of models we consider, parameters are generally estimated to 

scale. The standard deviation of this error is the most commonly used 

method of scaling. 

4. Boes and Winkelmann (2006) show that such a model is similar, in 

likelihood terms, to what is known as the generalized threshold model of 

Maddala (1983) and Terza (1985). 

5. These conditions are elaborated by McCullagh (2005). 

 1 1j j i j j     X β β  

6. But see the class of location-scale models. Cox (1995) discussed 

generalizations of the location-scale model that nest, as special cases, the 

partial-proportional odds model of Peterson and Harrell (1990). These 

results generalize to that case because the scale parameters cannot collapse 

to zero and the measure of the set of contradictions, though possibly 

shrinking, similarly does not collapse to zero. 

http://dx.doi.org/10.1111/1467-937X.00240
http://dx.doi.org/10.1080/03610928508828893
http://www.jstor.org/stable/2095465
http://dx.doi.org/10.18637/jss.v032.i10
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7. The standard logistic distribution has variance equal to 

2
2

3
s


, where s is a 

scaling parameter. If we set 
3

s 


, we can make the variance one. 

8. Coherence, in simultaneous equations with limited outcomes, refers to 

nonexistence of solutions. Completeness refers to multiplicity. These 

problems often arise in the analysis of simultaneous move, discrete action 

game theory and are tantamount to lack of existence, in the coherence case, 

and lack of uniqueness, in the completeness case, of equilibrium. 

9. Peterson and Harrell (1990) were able to undertake the Monte Carlo 

simulations that they report because the parameters, as they set them, do not 

cross and they rely on probabilities fed to the canonical multinomial 

distribution rather than simulating latent quantities. Were they to have done 

the latter, they would have realized this. 
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Appendix A. An R Example 

> x1 <- sample(c(0, 1), size = 1000, replace = TRUE) 

> x2 <- runif(1000, -1, 1)  

> eps <- rlogis(1000) 

> y.star1 <- 0.05 * x1 + x2 + eps  

> y.star2 <- 0.1 * x1 + x2 + eps 

> y1 <- (y.star1 < -0.5 & y.star2 < -0.5)  

> y2 <- (y.star1 > -0.5 & y.star2 > -0.5 & y.star1 < 0.5 & y.star2 < 

+     0.5)  

> y3 <- (y.star1 > 0.5 & y.star2 > 0.5) 

> y <- y1 + 2 * y2 + 3 * y3 

> table(y) 

y 

  0   1   2   3 

 14 392 216 378 

> bad.result <- data.frame(y.star1, y.star2, y1, y2, y3, y) 

> bad.result[y == 0, ] 

       y.star1    y.star2    y1    y2    y3 y 

40  -0.5114175 -0.4614175 FALSE FALSE FALSE 0 

152  0.4553046  0.5053046 FALSE FALSE FALSE 0 

163  0.4736140  0.5236140 FALSE FALSE FALSE 0 

333 -0.5033633 -0.4533633 FALSE FALSE FALSE 0 

417  0.4519173  0.5019173 FALSE FALSE FALSE 0 

449  0.4507807  0.5007807 FALSE FALSE FALSE 0 

464  0.4668629  0.5168629 FALSE FALSE FALSE 0 

468  0.4720030  0.5220030 FALSE FALSE FALSE 0 

663  0.4846675  0.5346675 FALSE FALSE FALSE 0 

676  0.4669751  0.5169751 FALSE FALSE FALSE 0 

677  0.4820676  0.5320676 FALSE FALSE FALSE 0 

833 -0.5296321 -0.4796321 FALSE FALSE FALSE 0 

834 -0.5144424 -0.4644424 FALSE FALSE FALSE 0 

880  0.4776592  0.5276592 FALSE FALSE FALSE 0 
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A misclassified size-biased Borel Distribution (MSBBD), where some of the observations 
corresponding to x = c + 1 are wrongly reported as x = c with probability α, is defined. 
Various estimation methods like the method of maximum likelihood (ML), method of 
moments, and the Bayes estimation for the parameters of the MSBB distribution are used. 

The performance of the estimators are studied using simulated bias and simulated risk. 
Simulation studies are carried out for different values of the parameters and sample size. 
 
Keywords: Borel distribution, misclassification, size–biased, method of moments, 
maximum likelihood, Bayes estimation 

 

Introduction 

The Borel distribution is a discrete probability distribution, arising in contexts 

including branching processes and queueing theory. If the number of offspring that 

an organism has is Poisson-distributed, and if the average number of offspring of 

each organism is no bigger than 1, then the descendants of each individual will 

ultimately become extinct. The number of descendants that an individual ultimately 

has in that situation is a random variable distributed according to a Borel 

distribution. 

Borel (1942) defined a one parameter Borel distribution as 

 

    
   

1

11
P p ; e ; 0 1, 1,2,3,

!

x

xx
x

X x x x
x


  



 
        (1) 

 

http://dx.doi.org/10.22237/jmasm/1478003220
mailto:bhaktida.trivedi@ahduni.edu.in
mailto:mnpatel.stat@gmail.com


MISCLASSIFIED SIZE-BIASED BOREL DISTRIBUTION 

476 

This distribution describes a distribution of the number of customers served before 

a queue vanishes under condition of a single queue with random arrival times (at 

constant rate) of customers and a constant time occupied in serving each customer. 

Gupta (1974) defined the Modified Power Series Distribution (MPSD) with 

probability function given by 
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     (2) 

 

where a(x) > 0, T is a subset of the set of non-negative integers, g(θ) and f(θ) are 

positive, finite, and differentiable, and θ is the parameter. 

Hassan and Ahmad (2009) showed the Borel distribution is a particular case 

of modified power series distribution (MPSD) with 
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in (2). 

The Borel-Tanner distribution generalizes the Borel distribution. Let k be a 

positive integer. If x1, x2,…, xk are independent and each has Borel distribution with 

parameter θ, then their sum w = x1 + x2 +…+ xk is said to have the Borel-Tanner 

distribution with parameters θ and k. This gives the distribution of the total number 

of individuals in a Poisson-Galton-Watson process starting with k individuals in the 

first generation, or of the time taken for an M/D/1 queue to empty starting with k 

jobs in the queue. The case k = 1 is simply the Borel distribution above. 

Here, the M/D/1 queue represents the queue length in a system having a single 

server, where arrivals are determined by a Poisson process and job service times 

are fixed (deterministic). An extension of this model with more than one server is 

the M/D/c queue. 

Size-Biased Borel Distribution 

Size-biased distributions are a special case of the more general form known as 

weighted distributions. Weighted distributions have numerous applications in 

forestry and ecology. 

Size-biased distributions were first introduced by Fisher (1934) to model 

ascertainment bias; weighted distributions were later formalized in a unifying 
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theory by Rao (1965). Such distributions arise naturally in practice when 

observations from a sample are recorded with unequal probability, such as from 

probability proportional to size (PPS) designs. In short, if the random variable X 

has distribution f (x; θ), with unknown parameter θ, then the corresponding 

weighted distribution is of the form 

 

  
   

  
w f ;

f ;
E w

w
x x

x
x


    (4) 

 

where w(x) is a non-negative weight function such that E{w(x)} exists. 

The size-biased Borel distribution is also derived from the size-biased MPSD 

as it is a particular case of the MPSD. A size-biased MPSD is obtained by taking 

the weight of MPSD (2) as x, given by 
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where bx = xa(x) and f*(θ) = μ(θ)f(θ). 

Now, by taking 
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a size-biased Borel distribution is obtained with p.m.f. given by 
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Misclassified Size-Biased Borel Distribution 

A dependent variable which is a discrete response causes the estimated coefficients 

to be inconsistent in a probit or logit model when misclassification is present. By 
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'misclassification' we mean that the response is reported or recorded in the wrong 

category; for example, a variable is recorded as a one when it should have the value 

zero. This mistake might easily happen in an interview setting where the respondent 

misunderstands the question or the interviewer simply checks the wrong box. Other 

data sources where the researcher suspects measurement error, such as historical 

data, certainly exist as well. It will be shown that, when a dependent variable is 

misclassified in a probit or logit setting, the resulting coefficients are biased and 

inconsistent. 

Assume that some of the values (c + 1) are erroneously reported as c, and let 

the probabilities of these observation be α. Then the resulting distribution of the 

size-biased random variable X is called the misclassified size-biased distribution. 

Trivedi and Patel (2013) have considered misclassified size-biased generalized 

negative binomial distributions and parameter estimation. The misclassified size-

biased Borel distribution can be obtained as 
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where S is the set of non-negative integers excluding integers c and c + 1, 0 ≤ α ≤ 1, 

0 < θ < 1, and x = 1, 2, 3,…. The mean and variance of this distribution are obtained 

from the moments of misclassified size-biased MPSD given by Hassan and Ahmad 

(2009) as 
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Method of Maximum Likelihood Estimation 

Let x1, x2,…, xk be the probable values of the random variable X in a random sample 

of misclassified size-biased Borel distribution and nk denote the number of 

observations corresponding to the value xk in the sample (where k > 0). Thus the 

likelihood function L is given by 
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where 
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Let the derivative of ln L with respect to α and θ be zero. The solutions of 

ln l
0
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ln l
0







 gives us the ML estimators of α and θ: 
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Equating 
ln l






 and 

ln l






 to zero, we get 
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In the equation (16), substituting α from the equation (15), we get an equation 

consisting only parameter θ, say g(θ) = 0. By solving this equation for θ using any 

iterative method, we get the solution, known as the MLE of θ. Using this MLE of 

θ in (15), we get the MLE of α. 

Asymptotic Variance–Covariance Matrix of ML Estimators 

The second order derivatives with respect to α and θ of the likelihood function L 

are obtained as below: 
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Using the above equations, the asymptotic variance covariance matrix Σ of 

MLE is obtained from the inverse of the Fisher information matrix 
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That is 
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Method of Moments 

The mean and variance of the misclassified size-biased Borel distribution are 
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The recurrence relation of row moments of the misclassified size-biased Borel 

distribution is 
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where g(θ), f(θ), μ(θ), and bx are as per (6). By taking different values of r, different 

row moments are obtained. Taking r = 1 will obtain the second row moments of the 

misclassified size-biased Borel distribution. 
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Solving (22) and (25) for α and θ yields moment estimators of α and θ. 

The explicit form cannot be obtained for the moment estimators but, by the 

method of iteration, the solution for the equations may be obtained. 

Asymptotic Variance–Covariance Matrix of Moment Estimators 

Denote 1μ  by H1(θ, α) and 2μ  by H2(θ, α), i.e. 
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Then, the asymptotic variance–covariance matrix of moment estimators   and   

are given by 
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where the matrix A is 
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and mr
  is the rth sample raw moment of the MSBPL distribution, i.e. 
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Bayes Estimation 

The ML method, as well as other classical approaches, is based only on the empirical information provided by the data. 

However, when there is some technical knowledge on the parameters of the distribution available, a Bayes procedure 

seems to be an attractive inferential method. The Bayes procedure is based on a posterior density, say π(α, θ | x), which 

is proportional to the product of the likelihood function L(α, θ | x) with a prior joint density, say g(α, θ), representing the 

uncertainty on the parameters values. Assume before the observations were made knowledge about the parameters α and 

θ was vague. Consequently, the non-informative vague prior π1(α) = g1(α) = 1 is applicable to a good approximation. 

The non-informative priors of α and θ are 

 

    1 1π g 1     (31) 

 

    2 2π g 1     (32) 

 

Hence, the joint prior of θ and α is given by 
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If L is the likelihood function indexed by a continuous parameter Θ = (θ, α) with prior density g(θ, α), then the 

posterior density for Θ is given by 
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Using the result given by Gradshteĭn and Ryzhik (2007, p. 347), 
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From (35), the marginal posterior of α will be 
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From (37), the Bayes estimate of α is given by 
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Similarly, from (35), the marginal posterior of θ will be 
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From (39), the Bayes estimate of θ is given by 
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where γ, μ, and η are as given in (36) above. 
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Simulation Study 

One thousand random samples, each of size n, were generated by using Monte 

Carlo simulation with different choices of sample size n, θ, α, and value of c = 1 

from the misclassified size-biased Borel distribution defined in equation (8). Using 

these different values of sample size n, θ, and α, we calculated the simulated risk 

(SR) and simulated bias of estimators α and θ by the method of MLE, method of 

moments, and Bayes estimation. The simulated results are shown in Tables 1 and 

2. The SR is defined as 
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1

1

ˆ
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1000

i

 



  

Conclusion 

A comparison was made between different methods of estimation for the 

parameters of the misclassified size-biased Borel distribution. From Table 1 and 2, 

it was found that the method of maximum likelihood estimator works better 

compared to the moment estimator and the Bayes estimator on the basis of SR. As 

sample size increases, SR of both parameters of all three methods decreases. For 

fixed misclassification error α, as θ increases, the SR of α and θ decreases in the 

case of maximum likelihood estimation, moment estimation method, and Bayes 

estimation. For fixed values of θ and sample size n, as α increases, there is not much 

difference in the SR of α as well as θ. At the same time, if these values were 

compared in context of sample size, observe that, for a fixed value of θ and as α 

increases, the SR of α and θ decreases in most of the cases with the increase in 

sample size. As sample size increases, the bias in α and θ decreases in the case of 

all the three methods. 
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Appendix A 

Table 1. Simulated risk of ML, moment, and Bayes estimators for different values of α, θ, 

and sample size n 
 

   ML  Moment  Bayes 

θ α n SR(θ) SR(α)  SR(θ) SR(α)  SR(θ) SR(α) 

0.03 0.12 20 0.070621 0.687617  0.070009 0.730376  0.428511 0.731791 

  50 0.017214 0.662598  0.070000 0.716240  0.366045 0.722317 

  90 0.028486 0.576466  0.070000 0.661494  0.342946 0.729741 

 0.15 20 0.086849 0.637623  0.090139 0.712136  0.428910 0.774369 

  50 0.018903 0.615088  0.070000 0.695215  0.366122 0.695103 

  90 0.016796 0.386507  0.070000 0.649579  0.343211 0.675911 

 0.20 20 0.072757 0.600000  0.075005 0.681954  0.428803 0.683406 

  50 0.022814 0.489319  0.070000 0.668798  0.365955 0.653836 

    90 0.022814 0.489319   0.070000 0.668798   0.365955 0.653836 

           

0.06 0.12 20 0.040157 0.409082  0.042393 0.606705  0.408054 0.659958 

  50 0.012628 0.391981  0.040017 0.591911  0.349603 0.628596 

  90 0.015325 0.280505  0.040019 0.524187  0.327791 0.610602 

 0.15 20 0.034921 0.525708  0.042064 0.564374  0.407451 0.595577 

  50 0.032482 0.237705  0.040083 0.559160  0.348794 0.565870 

  90 0.030247 0.194459  0.040000 0.508564  0.327905 0.567689 

 0.20 20 0.041125 0.453903  0.041515 0.533885  0.408379 0.554755 

  50 0.031410 0.319943  0.040203 0.521217  0.350368 0.546684 

    90 0.029152 0.212999   0.040016 0.476619   0.328233 0.531593 

           

0.09 0.12 20 0.031714 0.386623  0.034880 0.413639  0.392743 0.556575 

  50 0.028941 0.338622  0.029383 0.376251  0.338557 0.558982 

  90 0.003557 0.010874  0.012466 0.336422  0.320139 0.556492 

 0.15 20 0.040798 0.301392  0.043413 0.409123  0.392115 0.556858 

  50 0.023699 0.105444  0.025690 0.347586  0.339796 0.539688 

  90 0.020707 0.086850  0.021824 0.321968  0.319821 0.520310 

 0.20 20 0.032107 0.361397  0.032177 0.415253  0.391115 0.504882 

  50 0.021050 0.240808  0.024129 0.348901  0.339039 0.499720 

    90 0.014885 0.214971   0.021792 0.326637   0.319959 0.454457 
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Table 2. Simulated Bias of ML, Moment and Bayes estimators for different values of α, θ, 

and sample size n 
 

   ML  Moment  Bayes 

θ α n Bias(θ) Bias(α)   Bias(θ) Bias(α)   Bias(θ) Bias(α) 

0.03 0.12 20 0.070474 0.691185  0.070010 0.699012  0.428432 0.696161 

  50 0.026334 0.571479  0.070000 0.637222  0.365951 0.619558 

  90 0.016826 0.555057  0.070000 0.558062  0.342872 0.528030 

 0.15 20 0.084899 0.613982  0.070120 0.694661  0.428820 0.668716 

  50 0.017858 0.506054  0.070000 0.684802  0.366023 0.641862 

  90 0.012158 0.374220  0.070000 0.647191  0.343131 0.604162 

 0.20 20 0.072757 0.357243  0.070005 0.688818  0.428718 0.667923 

  50 0.020000 0.348958  0.070000 0.662306  0.365868 0.659111 

    90 0.002144 0.292983   0.070000 0.622817   0.343073 0.657824 

     
 

  
 

  

0.06 0.12 20 0.046324 0.193095  0.041704 0.575521  0.407688 0.649596 

  50 0.042542 0.146035  0.040018 0.550282  0.349271 0.623053 

  90 0.035325 0.080505  0.040017 0.545392  0.327534 0.622236 

 0.15 20 0.059598 0.334418  0.041511 0.557115  0.407108 0.685204 

  50 0.051860 0.290584  0.040073 0.502591  0.348482 0.600330 

  90 0.015826 0.263941  0.039999 0.482067  0.327645 0.600231 

 0.20 20 0.058381 0.366643  0.041210 0.422684  0.408050 0.583953 

  50 0.043795 0.205674  0.040177 0.377713  0.349991 0.569713 

    90 0.039152 0.202999   0.040012 0.351268   0.327979 0.568386 

     
 

  
 

  

0.09 0.12 20 0.024845 0.190314  0.018532 0.223233  0.391976 0.542166 

  50 0.005821 0.282052  0.013171 0.233392  0.337880 0.551094 

  90 0.003557 0.010874  0.011603 0.210933  0.319659 0.552079 

 0.15 20 0.040859 0.167709  0.017899 0.196935  0.391373 0.552278 

  50 0.021317 0.008981  0.013323 0.191992  0.339088 0.538764 

  90 0.020707 0.008685  0.011186 0.191486  0.319373 0.535741 

 0.20 20 0.025665 0.115874  0.016674 0.193710  0.390411 0.499345 

  50 0.019843 0.071383  0.012421 0.183469  0.338378 0.491407 

    90 0.015508 0.021350   0.011075 0.175713   0.319515 0.490788 
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The problem of estimating the parameter of Exponential distribution on the basis of type 
II censoring scheme is considered when the available data are in the form of fuzzy 
numbers. The Bayes estimate of the unknown parameter is obtained by using the 
approximation forms of Lindley (1980) and Tierney and Kadane (1986) under the 
assumption of gamma prior. The highest posterior density (HPD) estimate of the 
parameter of interest is found. A Monte Carlo simulation is used to compare the 
performances of the different methods. A real data set is investigated to illustrate the 

applicability of the proposed methods.  
 
Keywords: Type II censoring, fuzzy lifetime data, exponential distribution, Bayesian 
estimation 

 

Introduction 

In life testing and reliability studies, the experimenter may not always obtain 

complete information on failure times for all experimental units. Data obtained 

from such experiments are called censored data. One of the most common 

censoring scheme is Type II (failure) censoring, where the life testing experiment 

will be terminated upon the rth (r is pre-fixed) failure. This scheme is often 

adopted for toxicology experiments and life testing applications by engineers as it 

has been proven to save time and money. Several authors have addressed 

inferential issues based on Type II censored samples; for example, Ng, Kundu, 

and Balakrishnan (2006) discussed point and interval estimation for the two 

parameter Birnbaum-Saunders distribution base on Type II censored samples. 

Balakrishnan and Han (2008) considered inference for a simple step-stress model 

http://dx.doi.org/10.22237/jmasm/1478003280
mailto:makhdoom@pnu.ac.ir
mailto:abbas.pak1982@gmail.com
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from exponential distribution under Type II censoring. Iliopoulos and 

Balakrishnan (2011) studied likelihood inference for Laplace distribution based 

on Type II censored samples. Dey and Kuo (1991) obtained a new class of 

empirical Bayes estimator for exponential distribution parameter from Type II 

censored data. Singh and Kumar (2007) considered Bayesian estimation of the 

exponential parameter under a multiply Type II Censoring scheme. Kundu and 

Raqab (2012) addressed Bayesian inference for Weibull distribution under Type 

II censoring scheme. 

The above research results are based on precise lifetime data. However, in 

real situations, some collected data might be imprecise quantities. For instance, 

the lifetime of a battery may be reported as: ‘about 1000 h’, ‘approximately 

1400 h’, ‘almost between 1000 h and 1200 h’, ‘essentially less than 1200 h’, and 

so on. The lack of precision of such data can be described using fuzzy sets. The 

classical statistical estimation methods are not appropriate to deal with such 

imprecise cases. Therefore, the conventional procedures used for estimating the 

parameter of Exponential distribution will have to be adapted to the new situation.  

In recent years, several researchers considered applying the fuzzy sets to 

estimation theory. Gertner and Zhu (1996) considered Bayesian estimation in 

forest surveys when samples or prior information are fuzzy. Huang, Zuo, and Sun 

(2006) proposed a new method to determine the membership function of the 

estimates of the parameters and the reliability function of multiparameter lifetime 

distributions. Coppi, Gil, and Kiers (1991) presented some applications of fuzzy 

techniques in statistical analysis. Akbari and Rezaei (2007) proposed a new 

method for uniformly minimum variance unbiased fuzzy point estimation. Pak, 

Parham, and Saraj (2013, 2014) conducted a series of studies to develop the 

inferential procedures for the lifetime distributions on the basis of fuzzy numbers. 

However, there are no reports on estimating the parameter of Exponential 

parameter from Type II fuzzy censored data. Hence, the purpose of this study is to 

consider Bayesian estimation of the parameter of Exponential distribution under 

Type II censoring scheme when the lifetime observations are reported in the form 

of fuzzy numbers.  

Below are the main definitions of fuzzy sets and some of the formula: 

 

Definition 1: Let X be a universe set. A fuzzy set A  in X is defined by a 

membership function    0,1
A

x  , where  
A

x , x X  , 

indicates the degree of x in A. 
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Definition 2: A fuzzy subset A  of the universe set X is normal iff 

 sup 1x X A
x  , where X is the universe set. 

Definition 3: A fuzzy subset A
~

 of universe set X  is convex iff 

       1 min ,
A A A

x y x y       ,  , , 0,1x y X     . 

Definition 4: A fuzzy set x  is a fuzzy number iff x  be normal and 

convex on X. 

 

In all of fuzzy types of presentation, LR-type fuzzy numbers are most used 

as in linguistic, decision making, knowledge representation, medical diagnosis, 

control systems, databases. Therefore, we shall focus on the set of LR-type fuzzy 

numbers. 

Suppose that  : 0,1L    and  : 0,1R    be two continuous 

functions with the following properties: 

 

1)        ,   L x L x R x R x    . 

2)    0 1,   0 1L R  . 

3) L and R be decreasing in [0, ∞). 

4)    lim 0,   lim 0
x x

L x R x
 

   

 

Definition 5:  A fuzzy number x  is said to be an LR-type fuzzy number 

if  

 

  

    

    

x

m x
L x m

x
x m

R x m






  
 

 
 

     

  

 

where m characterizes the mean value of x , while α and β are the left and the 

right coefficient of fuzziness, respectively. Symbolically, the LR-type fuzzy 

number is denoted by  , ,x m  . 
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Data, likelihood and parameter estimation 

Consider a generalization of the likelihood function based on Type II censoring 

when the lifetime observations are reported in the form of LR-type fuzzy numbers. 

The Bayes estimate of the unknown parameter will then be obtained using 

suitable conjugate prior of the unknown parameter, and the highest posterior 

density estimation will be discussed. 

Fuzzy lifetime data and the likelihood function 

Suppose that n independent units are placed on a life test with the corresponding 

lifetimes X1,…, Xn. It is assumed that these variables are independent and 

identically distributed as Exponential E (λ), with probability density function 

(pdf)  

 

    ; exp ,  ,  0.f x x x o         (1) 

 

Prior to the experiment, a number r < n is determined and the experiment is 

terminated after the rth failure. Now consider the problem where under the Type II 

censoring scheme, failure times are not observed precisely and only partial 

information about them are available in the form of fuzzy numbers 

 , ,i i i ix m  ,I = 1,…, r, with the corresponding membership functions 

   
1 1 , ,

rx x rx x  . Let the maximum value of the means of these fuzzy numbers 

to be m(r). The lifetime of n - r surviving units, which are removed from the test 

after the mth failure, can be encoded as fuzzy numbers 1, ,r nx x  with the 

membership functions  

 

  
 

 

0   
,    1, , .

1   j

r

x

r

x m
x j r n

x m



  



  

 

The fuzzy data  1, , nx xx =  is thus the vector of observed lifetimes. Then, by 

using Zadeh’s definition of the probability of a fuzzy event (Zadeh, 1968), the 

corresponding observed-data likelihood function can be obtained as 

 

          
1

; exp exp .
i

r
r

xr

i

n r m x x dx    


    
 x   (2) 
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Bayesian estimation 

In recent decades, the Bayes viewpoint, as a powerful and valid alternative to 

traditional statistical perspectives, has received frequent attention for statistical 

inference. Consider the Bayesian estimation of the unknown parameter λ. As 

conjugate prior for λ, we take the Gamma (a, b) density with pdf given by  

 

  
 

 1 exp , 0,
a

ab
b

a
      


  (3) 

 

where a > 0 and b > 0. Based on this prior, the posterior density function of λ 

given the data can be written as follows: 

 

  
       

        

1

1

1
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exp exp
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r
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i

r
r a

xr
i

n r m b x x dx

n r m b x x dx d

   

 

    

 





 



    
 



    
 



 

x   (4) 

 

Then, under a squared error loss function, the Bayes estimate of any function of λ, 

say g (λ), is  

 

   
          

        

1
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1
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exp exp

exp exp
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r a
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i

r
r a

xr
i

h n r m b x x dx d

E h
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x  (5) 

 

Note that (5) can not be obtained analytically; therefore, adopt two 

approximations-Lindley’s approximation and Tierney and Kadane’s 

approximation for computing the Bayes estimate. 

 

Lindley’s approximation 

 

Setting          ln ln ;F L         x , (5) can be rewritten as  
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x   (6) 

 

Then, by using Lindley’s approximation (see Lindley, 1980), the ratio of the two 

integrals in (6) can be obtained as 

 

   2

11 11 1 1 11 3 11 1

1 1
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2 2
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Evaluating all the expressions in (7) at the maximum likelihood estimate (MLE) 

of λ produces the approximation ˆ
Bh  to (6). In this case,  

 

          
1

log log exp .
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r

x r
i

F r x x dx n r m    


        

 

The MLE of λ, say ̂ , is the solution of the equation 
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Now, to apply Lindley’s form in (7), first obtain 
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The approximate Bayes of λ, say ˆ
B , for the squared error loss function is the 

posterior mean of h (λ) = λ, which is by (7) as follows.  

 

 2

11 3 11

1 1ˆ ˆ .
ˆ 2

B

a
b F   



 
    

 
  (8) 

 

Tierney and Kadane’s approximation 

 

Setting W (λ) = L (λ) / n and W* (λ) = [ln h (λ) + L (λ)] / n, the expression in (6) 

can be re-expressed as  

 

   
   

 

*

0

0

ˆ .

nW

nW

h e d

E h

e d





 













x   (9) 

 

Following Tierney and Kadane (1986), (9) can be approximated as the following 

form: 
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1

* 2

* *ˆ exp ,BTg n W W


  


 
   
  

 

  (10) 

where *  and   maximize  *W   and  W  , respectively, and 
*  and   are 

minus the inverse of the second derivatives of  *W   and  W   at *  and  , 

respectively. 

In this case, 
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1 log
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k r a b n r m

W
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  (11) 

 

where k is a constant, and  

 

    * 1
ln .W H

n
      (12) 

 

Substituting for (11) and (12) in (10), the Bayes estimate ˆ
BT  of a function 

h (λ) = λ under squared error loss can then be obtained straightforwardly. 

HPD estimation 

The highest posterior density (HPD) estimation is another popular method used 

by the Bayesian perspective. This method is based on the maximum likelihood 

principle; hence, it leads to the mode of the posterior density. The HPD estimate, 

ˆ
H , of λ is obtained by solving the equation 

 
0

 








x
 where  
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.
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r
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r
i x

x x x dxr a
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x
  (13) 

 

However, the solution cannot be obtained explicitly. In the following, Theorem 1 

discusses the existence and uniqueness of the HPD estimate of λ. 
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Theorem 1. Let g (λ) denote the function on the right-hand side of the 

expression in (13). Then the root of the equation g (λ) = 0 exists and is unique.  

 

Proof. From (13) it is easily seen that  lim g





  . Also, note that 

   
1

, 0,
r a

g  


 
    , and consequently 

 

    
1

lim lim 0 0,
r a
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Therefore, the equation g (λ) = 0 has at least one root in (0, ∞). To prove that the 

root is unique, we consider the first derivative of g, g ('λ), given by  
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Let u (λ) = exp (– λx) and      exp .
ii xv x x dx     Then g ('λ) can be written 

as  
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It is clearly that u (λ) is a log-concave function of λ, and by the Prekopa-Leindler 

inequality (see Gardner, 2002) vi (λ), i = 1,…, m, are also log-concave in λ. It 

follows that g is a strictly decreasing function w.r.t. λ and hence the equation 

g (λ) = 0 has exactly one solution. 

Because there is no closed form of the solution to the equation (13), an 

iterative numerical search such as Newton-Raphson method can be used to obtain 

the HPD estimate of λ. The second-order derivative form required for proceeding 

with the Newton-Raphson method, is obtained as follows.  
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Figure 1. Fuzzy information system used to encode the simulated data 

 

 

Numerical Study 

A Monte Carlo simulation study and one example are presented to illustrate the 

methods of inference developed in this paper. First, for fixed θ = 1 and different 

choices of n and r, generated Type II censored samples were generated, say 

x = (x1,…, xr), from the exponential distribution using the method proposed by 

Aggarwala and Balakrishnan (1998). Each realization of x was fuzzified using the 

fuzzy information system (see Pak et al., 2014) shown in Figure 1, corresponding 

to the membership functions 
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Then, the approximate Bayes estimates (via Lindley approximation or Tierney 

and Kadane approximation) and the HPD estimates of λ for the fuzzy sample were 

computed under the assumption that λ has Gamma (a, b) prior, including the non-

informative gamma prior, i.e. a = b = 0, and informative gamma prior, i.e. 

a = b = 2. The average values and mean squared errors of the estimates, computed 

based on 1000 replication, are presented in Tables 1 and 2. 

In viewing the tables, using Lindley approximation or Tierney and Kadane 

approximation for the computation of Bayes estimates gave similar estimation 

results. The performance of HPD estimates are better than the Bayes estimates in 

terms of MSE. Also, the approximate Bayes estimates based on informative prior 

are uniformly better than that of non-informative prior. In all the cases, it was 

observed that as the effective sample size m increases the performances in terms 

of MSE become better. 
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Table 1. Average values (AV) and mean squared errors (MSE) of the Bayes and HPD 

estimates of λ based on non-informative prior (a = b = 0) and for different sample sizes. 
 

n r B̂  BT̂
 Ĥ  

AV MSE AV MSE AV MSE 
20 10 1.081 0.175 1.082 0.175 1.061 0.147 

20 12 1.078 0.156 1.078 0.155 1.057 0.131 

20 15 1.055 0.124 1.030 0.123 1.045 0.115 

30 15 1.092 0.104 1.091 0.104 1.075 0.085 

30 20 1.065 0.096 1.065 0.096 1.052 0.066 

30 25 1.040 0.071 1.041 0.071 1.028 0.048 

50 20 1.051 0.098 1.050 0.098 1.040 0.073 

50 25 1.034 0.055 1.034 0.054 1.026 0.037 

50 35 1.021 0.037 1.021 0.037 1.018 0.029 

 
 
Table 2. Average values (AV) and mean squared errors (MSE) of the Bayes and HPD 

estimates of λ based on informative prior (a = b = 2) and for different sample sizes. 
 

n r B̂  BT̂
 Ĥ  

AV MSE AV MSE AV MSE 
20 10 1.069 0.151 1.068 0.152 1.047 0.129 

20 12 1.059 0.133 1.059 0.132 1.036 0.117 

20 15 1.038 0.105 1.038 0.105 1.030 0.092 

30 15 1.077 0.081 1.076 0.080 1.056 0.070 

30 20 1.051 0.067 1.051 0.067 1.041 0.051 

30 25 1.024 0.052 1.024 0.053 1.017 0.033 

50 20 1.040 0.079 1.041 0.078 1.028 0.056 

50 25 1.019 0.041 1.018 0.041 1.015 0.025 

50 35 1.012 0.020 1.012 0.020 1.007 0.014 

 

Application example 

To demonstrate the application of the proposed methods to real data, consider the 

following life-testing experiment in which n = 22 identical valves are placed on 

test. The unknown lifetime xi of valve i may be regarded as a realization of a 

random variable Xi, induced by random sampling from a total population of 

valves, which is distributed as Exponential by an unknown parameter of λ. A 

tested valve may be considered as failed, or -strictly speaking- as nonconforming, 

when at least one value of its parameters falls beyond specification limits. In 

practice, however, there isn’t the possibility to measure all parameters and are not 

able to define precisely the moment of a failure. So, the observed failure times (in 

100h) are reported in the form of lower and upper bounds, as well as a point 

estimate which are as follows. 
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Data Set: 

 

(20.68, 25.86, 29.73), (22.72, 28.41, 32.67), (24.61, 30.77, 35.38), 

(26.43, 33.04, 37.99), (28.15, 35.19, 40.46), (30.29, 37.87, 43.55), 

(34.32, 42.91, 49.34), (35.51, 44.39, 51.04), (37.80, 47.25, 54.33), 

(41.16, 51.45, 59.16), (42.52, 53.16, 61.13), (43.97, 54.97, 63.21), 

(44.31, 55.39, 63.69), (46.75, 58.44, 67.20), (47.69, 59.62, 68.56), 

(48.09, 60.12, 69.13), (52.27, 65.34, 75.14), (53.65, 67.07, 77.13), 

(60.72, 75.91, 87.29), (63.45, 79.32, 91.21), (65.69, 82.12, 94.43), 

(73.48, 91.86, 105.63). 

 

Each triple is modeled by a triangular fuzzy number 
ix , and is interpreted as 

a possibility distribution related to an unknown value xi, itself a realization of a 

random variable Xi. Randomness arises from the selection of objects from the 

total population of batteries. In contrast, fuzziness arises from the limited ability 

of the observer to describe the moment of a failure using numbers, which is not 

influenced by random factors. Consider Type II censored samples of size 

r = 12, 15, 20 from the above data and compute the estimate of λ using the Bayes 

and HPD procedures under the assumption of non-informative and informative 

priors. All the results are summarized in Table 3. 
 
 
Table 3. Bayes and HPD estimates for application example.  

 

r a = b = 0 a = b = 2 

 
B̂  BT̂

 Ĥ  B̂  BT̂
 Ĥ  

12 0.0118 0.0117 0.0107 0.0136 0.0135 0.0126 
15 0.0141 0.0140 0.0131 0.0158 0.0159 0.0152 
20 0.0163 0.0162 0.0154 0.0181 0.0181 0.0172 

 

Conclusion 

Statistical analysis of exponential distribution under Type II censoring is based on 

precise lifetime data. Precisely reported lifetimes are common when data comes 

from specially designed life tests. In such a case a failure should be precisely 

defined, and all tested items should be continuously monitored. However, in real 

situations these test requirements might not be fulfilled. In these cases, it is 

sometimes impossible to obtain exact observations of lifetime. The obtained 
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lifetime data may be imprecise most of the time. Therefore, a suitable statistical 

methodology is needed to handle these data as well.  

The Bayesian inference for the exponential distribution parameter under 

Type II censoring was addressed when the lifetime observations are fuzzy 

numbers. Based on the results of the simulation study, the HPD procedure 

produces the estimates with smaller MSE than the Bayes estimates. Using the 

informative prior for computing the approximate Bayes estimates provides an 

improvement in the estimates in terms of MSE. 
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Legendre multiwavelets are introduced. These functions can be designed in such a way 
that the properties of orthogonality, polynomial approximation, and symmetry hold at the 
same time. In this way, they can be effectively deployed in image compression. 
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Introduction 

In recent years, the wavelets theory has played a significant role in signal 

processing, especially in image processing. These wavelets are mainly scalar, 

where there is only one scaling function. However, multiwavelets are based on 

more than one scaling function. Such growing interests in multiwavelets mainly 

stem from the following facts: (i) multiwavelets can simultaneously possess 

orthogonality, symmetry, and a high order of approximation for a given support of 

the scaling functions (this is not possible for any real valued scaler wavelets); and 

(ii) multiwavelets have produced promising results in the areas of image 

compression. 

A multiwavelet system can provide perfect reconstruction while preserving 

length (orthogonality), good performance at the boundaries (via linear-phase 

symmetry), and a high order of approximation (vanishing moments). Thus, 

multiwavelets offer the possibility of superior performance for image processing 

applications, compared with scalar wavelets. In this paper, we use linear Legendre 

multiwavelets in image compression, and show its usefulness through actual 

examples. 

http://dx.doi.org/10.22237/jmasm/1478003340
mailto:hashemizadeh@kiau.ac.ir
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Multiwavelets 

As with scalar wavelets, multiwavelets are based on the concept of 

multiresolution analysis (MRA). The only difference is the number of scaling 

functions used to generate those functions. The standard multiresolution has one 

scaling function ϕ(t), which satisfies the following properties (Aboufadel & 

Schilicker, 1999; Martin & Bell, 2001, Burrus & Gopinath, 1998; Daubechies, 

1992). 

 

 The translates ϕ(t - k) are linearly independent and produce a basis 

for the subspace ϕ1(t),…, ϕN(t). 

 The dilates ϕ(2j t - k) generate subspaces Vj, j ∊ Z, such that 

 2

1 0 1... ... ... ( ), 0 .j j j j jV V V V V L R V 

              

 To obtain the subspace V1, it is sufficient to add the family of 

functions ψ(t - k), W0, to V0, i.e., V1 = V0 ⨁ W0. 

 

In multiwavelets, the notion of MRA is used in the same way except that the 

basis for V0 is generated by the translates of N different scaling functions ϕ1(t - k), 

ϕ2(t - k),…, ϕN(t - k). As in the scalar case, the vector Φ(t) = [ϕ1(t),…, ϕN(t)]T, 

satisfies the matrix dilation equation 

 

          2
k

t C k t k   

 

where C[k] is an N by N matrix of coefficients. There are also N wavelets 

ψ1(t),…,ψN(t) satisfying the matrix wavelet equation 

 

          2
k

t D k t k   

 

where Ψ(t) = [ψ1(t),…,ψN(t)]T is a vector, and D[k] is an N by N matrix. 

The scaling functions ϕ1(t),…, ϕN(t) are in V0 whose basis is   2 2 :i t k   

1 ,i N k Z   . Thus, the scaling function and the multiwavelet functions have 

to satisfy the two-scale dilation equations 

 

                2 2  and 2 2 ,k k
k k

t H t k t G t k   
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where Gk and Hk ∊ l2(2)N × N are N × N matrices of filter coefficients. Moreover, 

the set of scaling functions {ϕi,j,k(t) : 1 ≤ i ≤ N, k ∊ Z} with 

ϕi,j,k(t) = 2-j/2ϕi(t / 2 j - k) is a Riesz basis for Vi. We also write 

 

      1, , , , ,,..., .
T

j k N j k j kt t t        

 

In the case of orthonormal multiscaling functions, {ϕi (t): 1 ≤ i ≤ N, k ∊ Z} is 

not just a Riesz basis, but is orthonormal, i.e., 

 

         ,0, ,T

N kt t k t t k dt I k Z           

 

where IN is the N × N identity matrix. This implies that 

 

 
2 0, , ,T

k l k r l

k

G G I l Z     

 

In scalar wavelets, this means that the sum of squares of low-pass filter 

coefficients equals unity, and the filter is orthogonal to its even translates. 

Linear Legendre Multiwavelets 

A pair of linear Legendre scaling functions ϕ1(x) and ϕ2(x) on [0,1] are introduced 

and depicted in Figure 1. 

 

         1 21,  and 3 2 1 .x x x   
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Figure 1. A pair of linear Legendre scaling functions. The left is ϕ1(x) and the right is 

ϕ2(x).  

 

 
 

The integer translates of ϕ1(x) together with the ones of ϕ2(x) span a 

subspace V0. Furthermore, the translates of 1/2 scaled version of ϕ1(x) and ϕ2(x) 

that span V1 ⊃ V0 are given by 
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The two-scale relations for linear Legendre scaling functions should express 

each of ϕ1(x) and ϕ2(x) in terms of the four scaling functions ϕi(2x) and ϕi(2x - 1), 

i = 1,2 (Udea & Lodha, 1995). We propose these relations to be 

 

 
 
 

 
 

 
 



 

 



 
   

                 
  

1

1 2

2 1

2

2
   1   0   1   0

2
3 1 3 1 2 1

2 2 2 2
2 1

x

x x

x x

x

  (1) 

 

-1 -0.5 0 0.5 1 1.5 2

-1.5

-1

-0.5

0

0.5

1

1.5

2

x

1 x

-1 -0.5 0 0.5 1 1.5 2

-1.5

-1

-0.5

0

0.5

1

1.5

2

x

2 x

 ϕ1 (x) ϕ2 (x) 



MULTIWAVELET FUNCTIONS IN IMAGE COMPRESSION  

514 

Let ψ1(x) and ψ2(x) be wavelets on [0,1] defined based on the linear 

Legendre scaling functions. By using (1), ψ1(x) and ψ2(x) can be expressed in 

terms of ϕi(2x) and ϕi(2x - 1), i = 1,2. The conditions of being orthonormal and 

vanishing moments help reduce the two-scale relation for linear Legendre 

multiwavelets as follows. 
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Then, the explicit formulae for ψ1(x) and ψ2(x) are 
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Decomposition relations 

The matrix equation 

 

 

 
 
 
 

 
 

 
 

 

 

 

 

 
    
    
          
    
        

 
 

1 1

2 2

1 1

2 2

1 0 1 0

23 1 3 1
22 2 2 2

0 1 0 1 2 1

2 11 3 1 3

2 2 2 2

x x

x x

x x

x x

  (3) 

 

which combines (1) and (2) is called the reconstruction relation. Note that 

ϕ1(x), ϕ2(x) ∊ V0 and ψ1(x), ψ2(x) ∊ W0. This four bases are expressed in terms of 

ϕ1(2x), ϕ2(2x), ϕ1(2x - 1) and ϕ2(2x - 1) in V1 subspace. 

The decomposition relation is simply defined as the inverse of the 

reconstruction relation defined in (3). The square matrix in (3) is orthogonal with 

constant magnitude. This is because {ϕ1(x), ϕ2(x), ψ1(x), ψ2(x)} and 

{ϕ1(2x), ϕ2(2x), ϕ1(2x - 1), ϕ2(2x - 1)}. Thanks to the property M-1 = MT of any 

orthogonal matrix, the decomposition relation would be 
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Preprocessing and sampling 

Preprocessing aims to convert the given scalar input signal of length N to a 

sequence of two-dimensional vectors ν0,k. This is used in the analysis algorithm as 

shown in Figure 2. Here, N is assumed to be a multiple of a power of 2, and 

therefore it even. The signal {Xk} is taken to be a function x(.) which is observed 

at integer time points. If the preprocessing produces N two-dimensional vectors, it 

is said to be an oversampling scheme. If it produces N / 2 two-dimensional 

vectors, the result is a critical sampling. After the wavelet reconstruction step 

(synthesis), e.g., inverse DMWT, a postfilter is applied. Evidently, prefiltering, 

wavelet transform, inverse transform, and postfiltering should exactly recover the 

input signal. 
 

 
 
 
Figure 2. A multiwavelet filter bank which is iterated once. 
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Repeated Row Preprocessing: Oversampling Scheme 

The obvious way to get two input rows from a given signal is to repeat the signal. 

Two identical rows go into the multifilter bank. It then begins oversampling of the 

data by a factor of two. Although, the usefulness of oversampling has been proven, 

it requires more calculations than critical sampling. Furthermore, in data 

compression applications, one intends to remove redundancy, not to increase it. In 

the case of one-dimensional signals the repeated row scheme is convenient to be 

implemented (Strela & Walden, 1998). 

Matrix (approximation) Preprocessing: Critical Sampling 

Let x(t) belongs to V0 and is generated by the translates of linear Legendre 

multiscaling functions so that          0 1

0, 1 0, 2 .k k

k

x t v t k v t k     
    

Suppose that the input sequence samples are made at the half-integers, i.e., 

 2kX x k , and  1
2 1 2kX x k   . 

From Fig. 1 for the linear Legendre multiscaling function, the only nonzero 

function values at the integers and half-integers are      1
1 2 2

0 1, 1 , and 

   2 0 3 . 

Thus, 

 

 
     0 1 0

2 0, 0, 2 1 0,3 ,  and .k k k k kX v v X v     

 

Hence, 

 

 
 0

0, 2 1,k kv X    (4) 

 

and 

 

  1

0, 2 1 2

1 1

3 3
k k kv X X    (5) 

 

Equations (4) and (5) give the required vector ν0,k for k = 0,…,N / 2-1.We 

can write it in matrix form as follows. 
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In fact, approximation prefiltering is a special case of matrix prefiltering, 

 

 
 

 

2

0,

0 2 1

.
M

m k

k m

m m k

X
v P

X



  

 
  

  
   

 

where P0, P1,…,PM are 2×2 matrices. Thus, for linear Legendre multiwavelets, we 

have  
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,  and  0 , 1, , ,1 1

3 3

iP P i M   

 

where 02 is a 2×2 matrix of zeros. 

If prefilters are N-dimensional, the matrix preprocessing is represented by 

ρX = V0 where now ρ is N × N, X is N × 1, and V0 is N × 1. Then, we have  
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where Pm's are 2×2 matrices (Strela, Heller, Strang, Topiwala, & Heil, 1999; 

Strela, 1996; Kim & Li, 2003). 

Image Compression Using Legendre Wavelets 

The notions stated above were applied to compress a given image. In doing so, 

critical sampling was deployed on a well-known photo of Barbara. Initially 
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preprocess all the rows (see Strela & Walden, 1998), which results in the picture 

shown in Figure 3. 
 
 

 
Figure 3. The result of row preprocessing on Barbara's photo. 

 

 

Then, preprocess all columns. The amount of data remains unchanged, since we 

use critical sampling. 
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Figure 4. Result of column preprocessing on the photo in Figure 3. 

 

 

At the next step, perform the 2D-wavelet cascade. For linear Legendre 

multiwavelets, the multiwavelet filter bank is obtained as follow. From (3), we 

have 
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where H1, H2, G1, and G2 are matrix filters. Using the ideas of matrix block 

multiplication (Van Fleet, 2000), the above filters can be combined into the 

matrix below. 

 

 

2 1 2 2 2 2 2 2

2 2 2 1 2 2 2 2

2 2 2 2 2 1 2 2

2 1 2 2 2 2 2 2

2 2 2 1 2 2 2 2

2 2 2 2 2 1 2 2

       

 0 0 0 0 0 0  

0 0 0 0 0 0

 0 0 0 0 0 0  

 0 0 0 0 0 0  

0 0 0 0 0 0

 0 0 0 0 0 0  

       

H H

H H

H H

G G

G G

G G

 
 
 
 
 
 
 
 
 
 
 
  

,  

 

where 02 is a 2×2 zero matrix. The two-channel matrix filter bank operates on two 

input data streams, filters them into four output data streams, and then, 

downsamples each of the results by a factor of two. After one step of the 2D 

multiwavelet cascade algorithm for linear Legendre with approximation 

preprocessing, the photo of Figure 5 appears. 
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Figure 5. The result of one-step 2D multiwavelet cascade algorithm with linear Legendre 

wavelets and approximation preprocessing. 

 

 

The pattern of image subbands is shown in Figure 6 (Sudhakar & Jayaraman, 

2005). By comparing Figure 5 with Figure 6, it is seen that almost all information 

is in the block of G1G1. This reflects the fact that, for linear Legendre, one scaling 

function is symmetric while the other is anti-symmetric. 
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H2G1 H2G2 H2H1 H2H2 

H1G1 H1G2 H1H1 H1H2 

G2G1 G2G2 G2H1 G2H2 

G1G1 G1G2 G1H1 G1H2 

 
Figure 6. The pattern of image subbands. 

 

 

Figure 7 compares the cumulative energy in the original image with the one 

resulted from one-step Legendre multiwavelet transform. 
 

 
 
Figure 7. The cumulative energy of the original image and the one produced by the one-

step Legendre multiwavelet transform. 

 

 

The next step is to quantize the components of the Legendre multiwavelet 

transform. Any values of the transform that are small in modulus will be 
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converted to 0. The modified transform is then be converted to Huffman codes 

and the resulting bit stream is encoded. The produced file is markedly smaller 

than the original one. 
 
 

 
Figure 8. Some implementations of linear Legendre multiwavelet compression on 

Barbara's image.  

 

 

 Original Barbara image Compression 64:1, PSNR 29.1 

 Compression 32:1, PSNR 30.31  Compression 16:1, PSNR 34.8 
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Conclusion 

The technique of using Legendre multiwavelets in image compression, as 

deployed in this paper, shows great advantages compared to the wavelet-based 

and even other multiwavelet-based methods. This is due to the fact that in a linear 

Legendre multiwavelet one scaling function is symmetric while the other one is 

anti-symmetric. In this way, it concentrates well on the image and excludes a tiny 

amount of details. Linear Legendre multiwavelets were used, but, the higher order 

Legendre multiwavelets can be employed (Rahbar, 2004).  
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Lognormal distribution has many applications. The past research papers concentrated on 
the estimation of the mean of this distribution. This paper develops credible interval for 
the median of the lognormal distribution. The estimated coverage probability and average 
length of the credible interval is compared with the confidence interval using Monte 

Carlo simulation. 
 
Keywords: Lognormal distribution, credible interval, coverage probability, 
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Introduction 

The lognormal distribution is widely used in the analysis of rainfall 

(Ananthakrishnan, & Soman, 1989), survival analysis (Kalbfleisch & Prentice, 

2002; Lawless, 2003) and in the analysis of stock market data (D’Cunha & Rao, 

2014a). Length biased lognormal distribution is used in the analysis of data from 

oil field exploration studies (Ratnaparkhi & Naik-Nimbalkar, 2012; see reference 

therein). In the analysis of stock market data, although lognormal distribution is 

not directly used, analysis is carried out using log transformation which in turn 

implies that the underlying distribution is lognormal. 

The lognormal distribution belongs to log location scale family. The salient 

feature of the log location scale family is that the coefficient of variation (CV) of 

the distribution depends only on the scale parameter and not on the location 

parameter. When the log location scale family of distribution is obtained through 

the symmetric location scale family, the median of the distribution is exp(location 

parameter). In this case the median is invariant under distributional transformation 

http://dx.doi.org/10.22237/jmasm/1478003400
mailto:arunaraomu@gmail.com
mailto:gratiajuliet@gmail.com
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of the data. The estimation of mean, median and variance of the lognormal 

distribution has a long history.  

Zellner (1971) proposed several estimators of the mean and median of the 

lognormal distribution and obtained minimum mean square error estimator of 

these parameters in some class of estimators. Bayes estimators of these 

parameters were also considered. Subsequently, Padgett and Wei (1977) 

developed Bayes estimator of reliability function for the lognormal distribution. 

They used two types of priors namely normal prior for mean and gamma prior for 

the inverse of the scale parameter; the other prior is the vague prior of Jeffrey (see 

Ghosh, Delampady, & Samanta, 2006). 

This was extended by Padgett and Johnson (1983), where they obtained 

lower bounds on reliability function of the two parameter lognormal distribution. 

Sarabia, Castillo, Gómez-Déniz, and Vázquez-Polo (2005) proposed a class of 

bivariate conjugate priors for μ and σ of the lognormal distribution using the 

conditional specification. Several procedures were also suggested for the 

estimation of the hyperparameters. Harvey and van der Merwe (2012) compared 

the Bayesian credible interval for the means and variances of lognormal 

distribution. 

The performance of the credible interval is compared with 

credible/confidence interval suggested by Zhou and Tu (2000) and 

Krishnamoorthy and Mathew (2003). In the last section the authors discuss about 

bivariate lognormal distribution and obtain Bayesian confidence intervals for the 

difference between two correlated lognormal means and for the ratio of lognormal 

variances. The conclusion was the Bayes credible interval has shorter length 

compared to the length of the other intervals. 

D’Cunha and Rao (2014a) developed Bayesian credible interval for the CV 

of the lognormal distribution and compared it with the confidence interval 

obtained by the maximum likelihood estimator. They showed that, under mild 

regularity conditions, Bayes estimator for the mean of the lognormal distribution 

exists. Thus, research after Zellner (1971) did not focus on median of the 

lognormal distribution. 

The lognormal distribution is positively skewed and for skewed distributions, 

median is a better estimator rather than the mean, which is affected by extreme 

values. In medical studies, median survival time is often reported than the mean 

survival time. This motivates deriving Bayes credible interval for the median of 

the lognormal distribution. Under absolute error loss function, the Bayes estimator 

is the minimum average risk estimator. 
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Among the Bayesian significance tests, for testing a sharp null hypotheses 

namely the test based on credible interval, the Bayes factor and the full Bayesian 

significance test (FBST), credible interval is the simplest to compute and straight 

forward decision can be taken as in the case of significance tests.  Thus, the 

purpose of this study is to compare the performance the Bayes credible interval 

with the confidence interval obtained from the maximum likelihood estimator 

(MLE). 

Bayes Estimator for the Median of the Lognormal Distribution 

Let μ and σ denote the log location and scale parameter of the lognormal 

distribution. Given a random sample of size n, x1, …, xn from this distribution, let 

Zi = log Xi, i = 1, …, n, where Z follows normal distribution with parameters μ 

and σ2 and maximum likelihood estimator of μ and σ2 are Z  and 2

zS  respectively, 

where 1

n

ii
Z

Z
n




 and 
 

2

2 1

n

ii
z

Z Z
S

n







. Using invariance property of 

maximum likelihood estimator (Kale (1999)), the maximum likelihood estimate 

(MLE) of the median of the lognormal distribution namely e   is given by 
ˆˆ Ze e   . The asymptotic variance of ̂  can be obtained using delta method 

and is given by  

 

    
2

2 1ˆvar e o n
n

      (1) 

 

In the above expression 
1

1
n

n


 . The 100 (1 - α)% asymptotic confidence 

interval for ̂  is given by  2
ˆ ˆ. .Z S E  , where 2Z  refers to upper 2 th 

percentile value of the standard normal distribution and  ˆ. .S E   refers to 

estimated standard error  ̂ . The estimate of μ and σ2 is obtained by substituting 

the value of ̂  and 
2̂  in the expression for variance of ̂ .  

Four objective priors are considered: the uniform prior π (μ, σ) = 1, right 

invariant prior   1,  


 , left invariant Jeffreys prior given by 

  2
1,  


  and Jeffreys rule prior   3
1,  


 . For a discussion of these 

priors see Berger (1985) and Ghosh et al. (2006).  
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The choice of the right invariant prior stems from the fact that Z follows 

normal distribution and the right invariant prior used in this paper is the one that 

is suggested for location scale family (Ghosh et al., 2006). The advantage of 

objective Bayesian analysis is that the prediction remains the same irrespective of 

the decision maker. The procedure can be applied universally given the past data. 

The posterior density π (μ, σ | z1,…, zn) for the uniform, right invariant, left 

invariant Jeffreys priors and Jeffreys rule prior are given by the following 

expressions, 
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  (5) 

 

Although the independent prior is used for μ and σ, the posterior density has a 

bivariate correlated distribution. The Bayes estimator of θ is E (θ | z1,…, zn), 

where expectation is taken with respect to the posterior density of μ and σ. 

Monte Carlo Simulation 

Observations of size n are generated from normal distribution with mean μ and 

variance σ2. The Bayes estimator of the median of the lognormal distribution is 

E (eμ), where expectation is taken with respect to the posterior density of 

π (μ, σ | data). This expectation has no closed form solution and Monte Carlo 

integration is carried out using importance sampling approach. Since the posterior 

density is the product of 2
1


  which is gamma and the conditional density of 

μ | σ2 which is normal, an observation is generated for η from gamma density and 

using this value of η, an observation is generated for μ from normal density. This 

constitutes a pair of observations (η, μ) from the bivariate posterior density. 

Using 10,000 simulations the Bayes estimator for the median of the 

lognormal distribution is given by    1 1

1
, , i

M

n i
E e z z e

M




  , where M 

denotes the number of paired samples generated from the posterior distribution. In 

this paper we have used M = 10,000. The equitailed credible interval has the limit 

 1 2 th and 2 th upper percentile value of the posterior distribution of eμ. 

For each sample the confidence interval is given by  2
ˆ ˆ. .Z S E  , where 

ˆˆ e   and 2Z  refers to upper 2 th percentile value of the standard normal 

distribution and  ˆ. .S E   refers to estimated standard error  ̂ . Using 1000 

simulations, the proportion of times the true median lies inside the 

credible/confidence interval gives the estimated 100 (1 - α) % credible/confidence 

level and is referred as coverage probability for brevity. For the investigation the 
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value of μ is fixed at log(1000) and the CV value used for the investigation ranges 

from 0.1, 0.3, 0.5, 0.7, 1, 1.5, 2 and 2.5. It may be recalled that CV =  
2 1 2

1e  .  

The sample sizes considered are n = 10, 20, 40, 60, 80, 100, 150 and 200. 

The total number of configurations are 256 (8 sample size × 8 CV values × 4 

priors). The average time required for the computation of credible interval is 

approximately 30 minutes for each sample size and CV. 

Results  

Presented in Table 1 are the number of times coverage probability is maintained 

by the credible/confidence interval for 8 combinations of CV across sample sizes. 

We say that a credible/confidence interval maintains credible/confidence level of 

(1 – α) = 0.95 if the coverage probability is in the interval of 0.940 to 0.960. The 

confidence interval maintains the level for a sample size of n ≥ 60 and the 

credible interval maintains the level for a sample size n ≥ 80. The table also 

presents the average length of the credible/confidence interval. The average 

length is computed whenever the credible/confidence level is maintained. 
 
 
Table 1. Coverage probability of the credible and confidence interval for the Median 

across sample sizes for 8 combinations of specified values of CV 
 

n 

Bayes Procedure (Equitailed)  MLE(Equitailed) 
Number of times coverage 

probability is maintained 
Average Length 

  Number of times 
coverage probability 

is maintained 

Average 

length 
U R L JR U R L JR  

10 0 0 0 0 * * * *  0 * 
20 3 1 2 0 604.93 612.17 * *  1 86.03 

40 4 3 3 1 544.27 449.52 279.71 275.94  3 492.29 

60 5 7 3 3 433.82 489.59 485.34 481.19  7 436.37 
80 6 6 6 5 395.89 393.52 391.06 440.87  6 296.97 

100 7 7 8 6 273.59 252.46 251.19 272.75  7 217.95 
150 6 5 6 5 305.89 304.94 244.34 273.68  5 254.19 

200 7 5 7 7 185.89 185.49 202.39 184.57  5 197.64 
overall 38 34 35 27 392.04 383.96 309.00 321.5  34 283.06 

 

*Note. Whenever coverage probability is not maintained average length has not been calculated. U-Uniform 
prior, R-Right invariant prior, L-Left invariant prior, JR-Jeffreys rule prior. 

 
 

Presented in Table 2 are the average length of the credible interval and the 

confidence interval for all the sample sizes. The table has been constructed such 

that the average length of the credible interval is computed over the confidence 

interval where the nominal confidence level is maintained for each of the prior. 
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The average length of the credible interval is shorter compared to confidence 

interval. 
 
 
Table 2. Average length of the credible/confidence interval for all sample size for each 

prior. 
 

Prior 

Number of times 

coverage 

probability 
maintained out of 

64 configurations 

Number of times 

credible interval 
has shorter length 

Number of times 

confidence 
interval has 

shorter length 

Average 

length of the 
credible 

interval 

Average length 

of the 
confidence 

interval 

Uniform  38 18 20 196.77 197.32 

Right invariant 35 27 8 243.23 244.64 

Left invariant 30 30 0 292.39 294.58 

Jeffreys Rule 27 27 0 304.47 308.38 

 
 

An investigation was also carried out to find out the influence of the 

variability in the data regarding coverage probability and length of the 

credible/confidence interval. Presented in Table 3 are the coverage probability 

and length of the credible/confidence interval for sample size n = 100. The length 

of the confidence/credible interval increases with the increase in value of CV, 

upto the value of CV = 2, then there is a decrease in the length for the value of 

CV = 2.5, specific reason for this type of behavior is not known. The length of the 

credible interval for most of the values of CV is marginally shorter than the 

confidence interval. 
 
 
Table 3. Length of the confidence/credible interval for various values of CV when sample 

size = 100. 
 

Sample 
size 

Conf/cred 
interval 

based on 

Length(Coverage probability) when CV equal to 

0.1 0.3 0.5 0.7 1 1.5 2 2.5 

100 

MLE 
39.08 

(0.952) 
115.16 
(0.952) 

184.99 
(0.942) 

247.49 
(0.946) 

326.88 
(0.945) 

427.06 
(0.944) 

500.25 
(0.937) 

184.99 
(0.942) 

Uniform 
38.95 

(0.951) 
114.79 
(0.962) 

184.49 
(0.945) 

247.29 
(0.941) 

327.26 
(0.951) 

428.90 
(0.951) 

503.76 
(0.941) 

184.49 
(0.945) 

Right 
38.74 

(0.951) 

114.26 

(0.960) 

183.71 

(0.944) 

246.09 

(0.941) 

325.42 

(0.951) 

426.47 

(0.951) 

501.28 

(0.941) 

183.71 

(0.944) 

Left 
38.57 

(0.946) 

113.71 

(0.959) 

182.75 

(0.944) 

244.72 

(0.940) 

324.01 

(0.946) 

424.61 

(0.946) 

498.39 

(0.940) 

182.75 

(0.944) 

Jeffreys 
Rule 

38.38 

(0.942) 

113.10 

(0.958) 

181.75 

(0.939) 

243.72 

(0.940) 

322.40 

(0.942) 

422.49 

(0.942) 

496.37 

(0.940) 

181.75 

(0.930) 
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Illustrative Example 

To illustrate the use of Bayes procedure for the median of lognormal distribution, 

consider the data on 31 consecutive daily Carbon Monoxide measurements (parts 

per million - ppm) taken by an oil refinery northeast of San Francisco and nine 

measurements on the same stack taken by the Bay Area Air Quality Management 

District (BAAQMD). The data are available from http://lib.stat.emu.edu/DASL/. 

The sample is carbon monoxide measurements taken by the Bay Area Air Quality 

Management District (BAAQMD.  The hypothesis of interest is  

 

H0: Median Carbon Monoxide measurement of BAAQMD = 58.81 ppm 

 

The value 58.81 ppm is the estimated median value obtained by using the 

data on 31 consecutive daily Carbon Monoxide measurements taken by oil 

refinery to the northeast of San Francisco. The results are summarized in Table 4. 

Notice that the estimated median value = 58.81 ppm does not lie inside any of the 

credible/confidence interval, thus we conclude that median carbon monoxide 

measurement of BAAQMD ≠ 58.81 ppm. 
 
 
Table 4. Credible/confidence interval and length of the credible/confidence interval for 4 

priors under Bayes and Maximum Likelihood estimation for BAAQMD data. 
 

Procedure Prior Estimate 
Credible/confidence 

interval 
Length of the 

Credible/confidence interval 

Bayes 

Uniform 20.27 (10.60,36.03)  25.43  

Right 20.23 (10.97,34.15)  23.18  

Left 20.12 (11.40,33.29)  21.90  

Jeffreys Rule 20.08 (11.09,33.12)  22.03  

MLE - 19.36 (7.03,31.69)  24.65  

 

Conclusion 

The performance of the Bayes credible interval was investigated for the median of 

the lognormal distribution. It has many applications and most of the previous 

papers propose credible intervals for the mean of the lognormal distribution. The 

median of the lognormal distribution depends only on the log location parameter 

and should be the right choice as the measure of location rather than the mean. 

Lognormal distribution is right skewed and mean of the distribution is a function 

of log location and log scale parameter. Thus, the mean is very much influenced 

by the variability in the data when the underlined distribution is lognormal. 

http://lib.stat.emu.edu/DASL/
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Confidence interval is computationally simple. The present investigation revealed 

that Bayes credible interval has shorter average length compared to the 

confidence interval and is recommended. 

 

Note: A program in the MATLAB software version 7.0 for computation of 

credible interval is available. 
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The purpose of this paper is to establish a direct method for assessing the confidence in 
the detection and identification probabilities for segmented observations that are not 
identically distributed across assigned segments within a region. This paper arrives at 
easily computable confidence intervals by showing through mathematical analysis that: 
 

I. The probability of successful detection within each test segment can be 
characterized by a Beta distribution; 

II. The distribution of a weighted sum of independent but non-identically 
distributed sample means is asymptotically Normally distributed by the 
Lyapunov variant of the Central Limit Theorem, i.e., the approximation 
improves as the number of samples increases; 

III. Given that the distribution of the sample means convergences to a Normal 
distribution, the confidence intervals about the observed sample means for 
both the detection and identification probabilities can be determined in 

closed form for multiple target types. 
 
The motivation for this approach is the need to determine the exceedance probabilities to 
support a Systems Acceptance Test based on collected data. 
 
Keywords: Bayesian inference, analysis of designed experiments, beta distribution, 
Lyapunov condition 

 

Background 

A System Acceptance Test (SAT) requiring confirmatory data analysis (Box, 

Hunter, & Hunter, 2005) driven by apriori and politically deducted hypotheses is 

needed to assess the impact of a specific acquisition on two key system level 

performance parameters for a particular region: probability of detection (Pd) and 

probability of identification (Pid). The difficulty with this assessment is that 

http://dx.doi.org/10.22237/jmasm/1478003460
mailto:gjacyna@mitre.org
mailto:srosen@mitre.org
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within this region of interest, only a finite portion is covered by each sensor’s 

area-of-regard (AOR). In addition, there are an infinite number of threat 

compositions and avenues of ingress and egress (i.e., routes) that are possible 

throughout the area. Only a small sampling of operationally valid (traversable by 

the threat) routes across the region is executed and these are used to characterize 

the performance measures across the entire area. See Figure 1 for an illustrative 

view of this concept. 
 
 

 
Figure 1. A high level illustration depicting the relationship among a project area and the 

sample routes, operational valid routes, and sensor areas-of-regards within it. 

 

 
 

The overwhelming size of the test area introduces an additional test 

constraint. This is addressed by approximating the route samples with segment-

level performance observations by considering a segment to be a contiguous 

subset of a given route. Moreover, a trial in this system acceptance test is defined 

as being a test observation made on a single segment. The subset of segments 

chosen for the test fall within a given sensor’s AOR and belong to an 

operationally valid route as shown in Figure 2. 

A difficult analysis problem arises when attempting to compute a system 

level estimate of performance involving an associated confidence bound and 

exceedance probability from segment-level observations made on small sample 

routes. This is because each route segment has a different underlining probability 

distribution that is a function of the different target/system/environmental factors 

present at the time of observation. Computing confidence intervals for Pd and Pid 

for individual segments is straightforward, but determining a single overall 
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confidence interval for the sample set as a whole is not trivial since these 

independent random variables are drawn from different underlying detection and 

identification probability distributions. In this case it is not immediately apparent 

that the Central Limit Theorem (CLT) applies (Karr, 1993, p. 190-192). 
 
 

 
Figure 2. An illustration depicting the relationship among a segment, an “operationally 

valid” route, and a sensor AOR. 

 

 
 

It is shown mathematically that the Lyapunov variant (Karr, 1993, p. 190-

192) of the Central Limit Theorem (CLT) can be used to establish the Normality 

of the weighted sample means for Pd and Pid generated from this systems 

acceptance test. Furthermore, it is shown that a sample size of at least 1 trial for 

10 unique segments is sufficient for approximating the resulting mean Pd and Pid 

observations by a Gaussian or Normal distribution. 

Following this Normality result, the corresponding confidence intervals are 

then generated from the sample detection and identification proportions obtained 

in the test. Example computations are used to illustrate their implementation. A 

confidence interval calculator is then discussed for generating hypothetical 

confidence interval and exceedance probability values based upon inputted 

sample sizes for each individual segment and projected sample means for Pd and 

Pid. This calculator was then in turn used for shaping the experimental design for 

the test. 
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Introduction to the Analysis Problem 

The work presented below describes, demonstrates, and justifies mathematically 

an approach for computing the confidence intervals associated with system level 

Pd and Pid observations. A few problem assumptions are necessary. These 

assumptions are as follows: 

 

Problem Assumptions: 

 

A. A detection trial pertains to the traversal of a single item of interest 

across an entire segment.  

B. There is a binary outcome for an identification trial; the detection is 

successfully or correctly identified or the detection is unsuccessfully 

or incorrectly identified. 

C. The sample probability of detection obtained from test constitutes 

the number of successful detections divided by the number of 

detection trials. 

D. The sample probability of identification obtained from test 

constitutes the number of successful identifications divided by the 

number of identification trials 

E. A single success probability p can characterize the probability of 

successful detection along a whole segment 

F. A single success probability p cannot characterize the probability of 

successful identification across a whole segment, but can 

characterize the probability of successful identification for an 

individual identification trial within a segment. 

G. The success probabilities for detection and successful identification 

are uniformly distributed between 0 and 1 across the sample set of 

segments. 

Outline of the Approach 

The probability density function (pdf) for the system Pd sample mean is derived 

as a function of segment-level observations from test. The analysis shows, 

through a mathematical proof and supporting Monte Carlo computations, that the 

distribution can be approximated as a Normal distribution. 
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In addition, through the application of a mixture distribution (across the 

identification trials within a segment), it is shown that the Normality results for Pd 

will also apply to Pid. Recommended confidence intervals then follow for Pd and 

Pid that are supported by this Normality result. This result is also valid in the case 

of a single target type or multiple target types as explained in the section focusing 

on Pid. A case study follows to illustrate how the reader can apply these 

confidence intervals. Below is a summary of the concepts that are presented and 

verified through mathematical analysis: 

 

i) Through Bayes theorem, the probability of successful detection on 

each segment can be characterized by a Beta distribution. 

a. The weighted system detection probability is a convolution 

of Beta distributions and is referred to as an Augmented Beta 

Distribution.  

b. The distribution of the system sample mean is equivalent to 

the weighted system Pd distribution and, therefore, can also 

be characterized by the derived Augmented Beta Distribution.  

ii) The Augmented Beta distribution is shown through a mathematical 

proof to be approximately normally-distributed by the Lyapunov 

variant of the Central Limit Theorem. 

a. The Lyapunov Central Limit Theorem specifies certain 

conditions that are sufficient to establish that the sum or 

average of a large number of independent observations is 

normally-distributed even if the observations are generated 

from different underlying probability distributions. 

b. The Lyapunov conditions hold when the threat arrival 

weights are uniformly distributed or when the selection of 

segments is equally likely. 

c. The Lyapunov conditions hold when the threat arrival 

weights are greater than zero for all but a finite number of 

segments. 

d. It is illustrated through an empirical computational study that 

the system sample mean rapidly converges to a Normal 

distribution within a 30 segment Test design alternative.  
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iii) Based on the fact that the system weighted sample means are 

approximately Normally distributed, the confidence about the 

observed sample means for Pd is:  
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where: p* is the exceedance probability or specified acceptable value 

for Pd, F(x) is the Standard Normal Distribution: 
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and Ni and ni are the total number of detection attempts and actual 

detections/identifications (see iv) observed in test, respectively, for 

each segment i, where M denotes the total number of segments. 

iv) The Normality results for the weighted system sample mean also 

hold for the system Pid sample mean when the probability of 

successful identification on a segment is considered to be a mixture 

distribution as shown in the section focusing on Pid. The confidence 

interval can then be computed analogously as above. Furthermore, 

the Normality results also hold for multiple target types if the 

probability of detection is similarly considered to be a mixture 

distribution. 

 

The Probability Density Function for Pd 

This section develops the probability density function (pdf) for the weighted 

detection probability (Pd) across all segments assuming that the measurements 

relative to each segment are independent but not identically distributed. Each 
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segment i has an associated test outcome Si = {ni, Ni} which is a record of the 

number of detection successes ni out of Ni possible trials. It is assumed that the 

outcome of each segment is statistically independent of any other segment 

outcome and that the unknown success probability for each segment is pi. This 

implies that each segment ni is binomially-distributed with known number of 

trials Ni and unknown probability pi. The pdfs associated with each pi are shown 

to be the well-known Beta distribution for an uninformative prior (i.e., a prior pdf 

that is uniformly distributed in the interval [0, 1]). Following that, this result is 

generalized for the weighted probability function i ii
w p  for the system 

routes/segments when the segment outcomes Si are independent but not 

identically distributed and the known arrival weights for each segment are given 

by wi. A confidence interval is also determined for the probability that the 

weighted mean probability is greater than or equal to some exceedance 

probability p*. The appropriateness of the Gaussian approximation to this general 

problem as the number of components in the weighted mean (i.e., number of 

segments) becomes large is then shown. Following that, an illustration of the 

approach is given to show that convergence to a Gaussian distribution is reached 

within the number of segments and trials allocated for test. Then a discussion of 

how the Normality result can be extend to Pid is provided. 

 

The Beta Distribution for Segment Pd 

 

Recognizing that the probability of detection pi for a specific segment i is an 

unknown parameter, it is desirable to quantify this parameter with its own 

probability distribution. Now, determine the pdf associated with the probability of 

a successful detection pi for a generic segment based on a fixed number of trials 

Ni and the number of successes from these trials ni. From Bayes theorem 

(Bernardo & Smith, 2000, p. 241-255), this conditional pdf f (pi | ni : Ni) is: 

 

      : , ; ,p i i i i i i p if p n N B n N p f p   (1) 

 

where the corresponding likelihood function    , ; 1 i ii
N ni n

i i i i i

i

N
B n N p p p

n

 
  
 

 

is the Binomial distribution, the prior distribution fp (pi) = 1 if 0 ≤ pi ≤ 1; 

otherwise, fp (pi) = 0 (using a uniformed prior assumption), κ is a proportionality 

constant and ni denotes the number of successful detections out of Ni trials. It 
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follows that    
1

1

0
, ;i i i p i iB n N p f p dp    . Using the integral identity 

(Abramowitz & Stegun, 1965, p.258):  
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   is the Beta function, (1) can be rewritten as: 
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This density is referred to as the Beta Distribution. 

A confidence interval is defined by C and p*; C is interpreted as the 

probability that the true value of the unknown parameter p lies between the 

exceedance probability p* and 1. In particular: 
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         (4) 

 

The Augmented Beta Distribution Result for a System Pd Sample 

Mean 

 

Suppose there are M segments with M associated test outcomes S1, S2,…, SM, 

where, as before, each set Si records the number of trials, Ni, and the number of 

successful detections, ni. It is assumed that the test results ni are independent but 

not necessarily identically distributed. The unknown detection probability 

parameters associated with the M segments are labeled as p1, p2,…pM. The 

detection probability of the regional system should be represented by a weighted 

average of the segment detection probabilities, in which the segment weights wi 

are computed from the relative proportion of threat traffic through the region 

expected to occur in segment i; 0 ≤ wi ≤ 1 and 1ii
w  . Therefore, the weighted 

average is a convex combination of the segment statistics 1ii
w p  and 

0 ≤ ℓ ≤ 1. The value ℓ is a system-wide metric of detection performance. 

To understand the regional system sample mean, examine the following 

joint pdf for the posterior detection probabilities across M segments. Using vector 

notation to express segment detection probability parameters, segment sample 

sizes, and number of segment detections as p = [p1, p2,…, pM], 

N = [N1, N2,…, NM] and n = [n1, n2,…, nM], respectively, this joint posterior 
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probability is fp (p| n; N). Because the sets of measurements are statistically 

independent and each segment measurement set Si is strictly a function of the 

probability parameter pi we can write: 

 

        1

1 1

, , 1, 1 1 i ii
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N nn
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f f p n N n N n p p


 

      p p n N   (5) 

 

For clarity in the derivations below, the weighted estimate ℓ is notated as 

ii
y , where yi = wipi. Here yi is a one-to-one transformation of pi such that 

pi = yi / wi. Since each pi is Beta distributed, the distribution of yi is also a Beta 

distribution: 

 

    1; ; ,y i i i i p i i i if y n N w f p w n N   (6) 

 

where fp (pi / wi | ni ; Ni) is given by (3) upon substituting pi / wi for pi. In addition, 

since the set of conditional estimates are statistically independent by virtue of (5), 

write: 

 

      1 1 1 1 1, ; ; , , ,M M y yM M Mf n N n N f n N f n N     (7) 

 

where ⊗ denotes a convolution operation, i.e.,        f y g y f y x g x dx   . 

Finally, the associated confidence C, analogous to (4), for the weighted estimate ℓ 

of regional system Pd can be expressed as: 

 

    
1

1 1 1 1
*

Prob * , ; , , , ; , , .M M M M
p

C p n N n N f n N n N d      (8) 

 

The probability density function fℓ (ℓ | n1, N1;…; nM, NM) is referred to as the 

Augmented Beta Distribution. Note that this is not a Beta distribution. The 

integral does not have a tractable closed form solution, but could be evaluated for 

specific parameter values through numerical methods. 

The Augmented Beta Distribution fℓ (ℓ | n1, N1;…; nM, NM) is also 

appropriate when multiple target types are present within Test. This occurs when 

the weighted estimate ℓ for regional system Pd consists of a Beta distributed 

success probability pi for each target type within each segment and 

fℓ (ℓ | n1, N1;…; nM, NM) results from a convolution across segment success 
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probabilities pi, which are themselves a convolution of target type success 

probabilities within the segment. 

The Gaussian Approximation of System Pd 

Returning to the weighted mean for system Pd (i.e., ℓ), assume that ℓ is 

approximately Gaussian distributed for a sufficiently large number of segments M. 

Because i ii
w p , the corresponding mean 

   1 1, ; ; , EM M i ii
m n N n N w p , where E(.) is the expectation operator. 

However, since pi is Beta distributed, E(pi) = (ni + 1) / (Ni + 2) and the mean mℓ 

can be written as (Abramowitz & Stegun, 1965, p. 930): 

 

      1 1

1

, ; ; , 1 2 .
M

M M i i i

i

m n N n N w n N


     (9) 

 

Similarly, the associated variance is: 
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1

Var
M

i i

i

w p


   (10) 

 

where Var (pi) = (ni + 1) (Ni – ni + 1) / (Ni + 2)2 (Ni + 3) (Abramowitz & Stegun, 

1965, p. 930). Thus: 
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   (11) 

 

Substituting these expressions for the mean and variance into the Standard 

Normal Distribution, allows us to compute an approximate (1 – p*) confidence 

interval for ℓ as: 
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where      
1 2 22 exp 2

x

F x s ds



   is the Standard Normal Distribution. 
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The above assumption that the Augmented Beta Distribution converges to a 

Gaussian distribution for a large number of aggregate trials 
ii

N  holds when 

the following three conditions are satisfied: 

 

I) The random variables yi are independent and have finite mean μi and 

variance 2

i . 

II) A raw moment greater than 2 + δ is finite, i.e., E ( |yi| 2+δ) is bounded 

for some δ > 0 and for every 1 ≤ i ≤ M. 

III)  2

2 1

1
lim E 0

M

M i ii
M

y
S








  
   for every 1 ≤ i ≤ M and for 

some δ > 0 (known as Lyapunov’s Condition), where 

 
 2 2

2 2

1

M

M ii
S


 





  . 

 

These three conditions describe the Lyapunov variant of the Central Limit 

Theorem. Proving that these conditions are satisfied for this problem will 

establish that the regional system sample mean is approximately Gaussian or 

normally-distributed. The details of this proof are given below. Recall by the 

previous definition that yi = wi pi. 

 

Proof: 

 

I. It is easily verified that both μi and 2

i  are bounded from (9) and 

(10). 

II.  

a. E ( |yi| 2+δ) being bounded implies that there exists a real 

number R ≤ ∞ such that E ( |yi| 2+δ) ≤ R for all yi = wi pi 

b. Letting δ = 2, it can be shown that E ( |yi| 4) is bounded, based 

on the use of the recursion relation 

       1E E 1k k

i i i iy n k y N k     and the fact that 

 2E iy  is bounded (Johnson, Miller, & Freund, 1995, p. 586).  

III.  

a. It can be shown that  4 4E i i iy w  , since 

  4

0 E E 1i ip p   , which follows from the fact that: 
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i. yi = wi pi. 

ii. 0 ≤ pi ≤ 1. 

iii. 0 ≤ E (pi) ≤ 1. 

 

b. Additionally, because 
2 2

1

M

M ii
S 


 , as previously defined in 

condition III, conclude 
2 2 2

0 1

M

M ii
S w


  , when 

 2

0 min Var 0i ip     , using the fact that there always 

exists a smallest non-zero Var (pi) by virtue of (10). 

c. Combining the results of the first two steps, i.e., 

  4

0 E E 1i ip p    and 
2 2 2

0 1

M

M ii
S w


  , the expression 

  42
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E E
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  is bounded by: 
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  (13) 

 

This bound implies that if 
 

4

1

2
2

1

lim 0
M

ii

M

ii

w

M
w











, then the 

following limit  4

41

1
lim 0

M

M

M i iiS
E y  

  , which 

allows us to conclude that condition III is satisfied. 

d. Without loss of generality, assume that the weights are 

bounded above and below by wU and wL, respectively, such 

that 0 ≤ wL ≤ wi ≤ wU ≤ 1 Even if there did exist a finite 

number of zero weights, the remaining weights could be re-

indexed so that wL > 0. Now, it follows that 
4 4

1

M

i Ui
w Mw


  

and
2 2

1

M

i Li
w Mw


 . This implies that 

   
4

44 2

1 1

M M

i i U Li i
w w w w M

 
  . From (13), conclude 

that the Lyapunov condition is satisfied since 



BAYESIAN-BASED CONFIDENCE BOUNDS LYAPUNOV CONDITION 

548 

 4

41

1
lim 0

M

M

M i iiS
E y  

   and condition III is satisfied 

when there are an infinite number of nonzero but bounded 

weights.  

e. For the case where all the weights are uniform, wi = 1 / M; 

1 ≤ i ≤ M, it follows from the results in (d) that condition III 

is again satisfied.  

 

By the Lyapunov variant of the Central Limit Theorem, conditions I–III 

being true imply that the sum or average of yi is Gaussian for large M and that the 

regional system sample means for Pd are Gaussian. However, for the highly 

unlikely cases where all but a small number of arrival weights wi are zero, then 

the right-hand side of (13) may no longer be zero in the limit of large M resulting 

in the Gaussian approximation becoming invalid. Intuitively though, it can be 

reasoned that this case is not possible, because a segment of an operationally valid 

route cannot have a zero probability of being traversed by an item-of-interest. 

This would be especially true for a segment selected for test. 

Example of the Augmented Beta and its Gaussian Approximation 

As an illustration, consider the following hypothetical example where a weighted 

detection probability estimate is constructed from ten independent segments. The 

number of trials per segment for this example is 5, 10, 8, 6, 9, 7, 4, 5, 8, and 9, 

respectively. Note, however, that the number of trials per segment has no impact 

on the convergence to Normality. The corresponding number of successful 

detections declared is 4, 8, 7, 5, 7, 5, 2, 4, 6, and 8, respectively. In addition, the 

probability associated with choosing a given segment is 0.2, 0.1, 0.3, 0.05, 0.1, 

0.025, 0.15, 0.025, 0.025, and 0.025, respectively. Using (7), the Augmented Beta 

Distribution can be computed and is of the form illustrated in Figure 3. The 

convolutions are approximated discretely for a step size r = 0.0001 so that the 

integrated density in the interval [0, 1] is nearly unity. The distribution is shown 

to be both uni-modal and approximately symmetric about its mean value (~ 0.7). 

In addition, the distribution can be well-approximated by a Gaussian distribution–

it passes both the Kolmogorov-Smirnov and Chi-Square Goodness-of-Fit tests.  

This illustration suggests that the Augmented Beta Distribution converges to 

the Gaussian distribution using a batch of 10 segments. Therefore, it is reasonable 

to infer that the regional system sample mean, which is going to be obtained from 

a batch of N segments with N > 30, will rapidly converge to the Gaussian 
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distribution. The proof provided above that as M gets large, the regional system 

sample mean becomes Gaussian is borne out in this illustration which suggests 

that this convergence begins to occur when M = 10. 
 
 

 
Figure 3. The Augmented Beta Distribution corresponding to 10 independent segments, 

where the number of hypothetical trials per segment is N = [5, 10, 8, 6, 9, 7, 4, 5, 8, 9], 
the number of detections is n = [4, 8, 7, 5, 7, 5, 2, 4, 6, 8] and the associated probability 
of choosing each segment is q = [0.2, 0.1, 0.3, 0.05, 0.1, 0.025, 0.15, 0.025, 0.025, 
0.025]. 
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Figure 4. The confidence C for the Augmented Beta Distribution associated with the 

weighted detection probabilities for 10 independent segments, where the number of 
hypothetical trials per segment is N = [5, 10, 8, 6, 9, 7, 4, 5, 8, 9], the number of 
detections is n = [4, 8, 7, 5, 7, 5, 2, 4, 6, 8] and the associated probability of choosing 
each trial is q = [0.2, 0.1, 0.3, 0.05, 0.1, 0.025, 0.15, 0.025, 0.025, 0.025]. 

 

 
 

Figure 4 is a plot of the weighted detection probability confidence C as a 

function of the exceedance probability p* for both the Augmented Beta 

Distribution and its corresponding Gaussian approximation. It is apparent that 

both distribution functions are nearly identical. This is true when the aggregate 

number of trials ii
N  is sufficiently large. For a confidence C = 0.90, the 

exceedance probability is approximately 0.65 for either the exact or Gaussian 

approximation. 

Extension to Pid 

The previous analysis for Pd presented above assumed that each segment i has a 

single, but unknown success probability pi representative of the entire segment. 
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Consider the case where a specific segment i consists of multiple distinct and 

unknown success probabilities pi, j, where j = 1, 2,…, J. This situation is relevant 

to the identification problem for a given segment, where a single success 

probability p is not representative of the probability of successful or correct 

identification across a whole segment because multiple distinct success 

probabilities pi, j exist. Our reasoning is based on the argument that the window of 

processing for an identification trial is much smaller than for a detection trial. In 

particular, the window for detection extends across the entire segment. Because 

identification is a human-driven action comprised of multiple concurrent 

processing tasks, the trial window cannot possibility extend across the whole 

segment. Therefore, identification attempts within a segment can occur at 

different locations where the system attributes can vary. This implies that the 

success probabilities between any two identification trials, even within a segment, 

cannot be assumed to be equal. 

Consider how the analysis above can be extended to address Pid, where 

multiple distinct and unknown success probabilities pi, j occur within a segment. 

Similar to the derivation above, assume that each segment consists of Ni trials but 

now ni corresponds to successfully declared identifications. The number of 

successful identifications can be characterized by ,1

iN

i n in
n 


 , where 

 , 0,1n i   is an indicator function that represents an incorrect or correct 

identification, respectively. It is assumed that ,n i  can be drawn from a mixture 

distribution of the form: 

 

 

 

 

 

1, 1,

2, 2,

,

, j,

,1;   with probability 

,1;   with probability 
,

                       

,1;   with probability 

i i

i i

n i

j i i

B x p q

B x p q

B x p q











  (14) 

 

where B (x, 1, pj, i) is a binomial distribution for a single trial subinterval within a 

segment i, having success probability pj, i, x = {0, 1} and qj, i is the probability that 

,n i  is drawn from the distribution characterizing subinterval j on segment i. Let 

pi be the probability associated with the random variable ,n i  such that:  
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  , , ,

1

Probi n i j i j i

j

p q p


    (15) 

Given that each trial subinterval is independent of any other trial (naturally 

resulting since the location window varies for each identification trial) and the 

mixture is uniform across all subintervals, ni is binomially-distributed with 

average success probability pi. For this analysis, it is not necessary to know the 

probabilities pj, i and qj, i. From this result, it now follows that the Augmented Beta 

Distribution can be used for Pid and the Lyapunov convergence proof outlined 

above is valid for this generalization provided that the exceedance probability is 

interpreted as the average system identification performance along a given 

segment. The exact expression for the confidence C in (8) and its Gaussian 

approximation (cf. (12)) can then be used without modification. Moreover, the 

mixture distribution characterization also allows for a relaxing of the assumption 

that the success probabilities for detection must be equal for trials within a 

segment. This suggests that these confidence intervals can also be used on test 

designs consisting of multiple target types. 

The following example illustrates how a mixture distribution of uniform 

subintervals within a segment with varying success probabilities results in the 

average number of successes on the segment being binomially distributed.  

Suppose there are 10 independent trials (Ni = 10) along a given segment i, where 

the unknown success probabilities are pj, i = [0.9, 0.7, 0.4, 0.8] and the occurrence 

probabilities associated with these success probabilities are qj, i = 0.25 for 

j = 1, 2,…,4. Figure 5 depicts the distribution function for the number of 

successful detection attempts resulting from a Monte-Carlo sampling of the 

mixture distribution as defined previously in (15) with the pj, i and qj, i values 

noted above. 

The blue bars represent the histogram resulting from the Monte-Carlo 

sampling with the theoretical binomial distribution (red curve) overlaid using the 

average success probability defined in (15). The results show excellent agreement 

between the two distributions and justify the use of applying the Gaussian 

approximation results for Pd to Pid. 
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Figure 5. A comparison of the Monte Carlo-based distribution function and the theoretical 

binomial distribution for the following mixture distribution: pj, i = [0.9, 0.7, 0.4, 0.8] and 
qj, i = 0.25 for j = 1, 2,…,4, where Ni = 10.  

 

 

Confidence Interval Equations and Sample Calculations 

Consider the equations for constructing the confidence interval for the system 

mean Pd and Pid, as verified in the analysis provided above. The method 

generates the probability or confidence that the regional system sample mean 

exceeds a given threshold and is obtained under a Normal approximation when 

the segment success probabilities pi are Beta distributed. The equations for 

constructing the confidence interval are given below and are followed by a 

numerical example depicting their implementation on hypothetical data. 

Given that the distribution of regional system sample mean is approximately 

Normally distributed and the segment success probabilities pi are Beta distributed, 

the following equation is used to compute the probability that the system Pd and 

Pid mean exceeds a given threshold p* with some confidence C: 
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Ni and ni are the total number of detection attempts and successfully 

declared detections in SAT, respectively, for each segment i. 

 

The following example shows how the above equation for Pd and Pid 

confidence intervals can be implemented using hypothetical test results consisting 

of observed detections and identifications distributed across non-identical 

segments within a region. The hypothetical test involves 56 segments with 5 

potential trials occurring on each segment for detection and identification. The 

reader should note here that each segment may involve any mixture of target 

types since the proposed methodology is valid under any target type configuration 

supported by the program’s current experimental design. Table 1 summarizes the 

hypothetical detection and identification observations. 

A ‘1’ appearing in Table 1 denotes a successful detection or identification 

while a ‘0’ represents an unsuccessful attempt. An ‘x’ labeled within the 

identification columns indicates that a trial is not counted due to an unsuccessful 

detection. 

The number of detection trials observed during this hypothetical test is 280 

with 224 detections successfully declared. This, therefore, results in 224 potential 

identifications. The sample mean for Pd is simply 224 / 280 = 0.80 and similarly 

the sample mean for Pid is 202 / 224 = 0.90. 
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Table 1. Hypothetical Test Results 

 
Segment Detection Trial  Identification Trial 

 #1 #2 #3 #4 #5  #1 #2 #3 #4 #5 

1 1 1 1 1 1  1 1 0 1 1 

2 1 1 0 1 1  1 1 x 1 1 
3 1 1 0 1 1  1 1 x 1 1 

4 1 1 1 1 0  1 1 1 1 x 

5 1 1 1 1 1  1 1 0 1 1 
6 1 1 1 1 1  1 1 1 1 1 

7 1 1 1 1 1  x 1 1 1 1 
8 0 1 1 1 1  0 1 1 1 1 

9 1 1 1 1 1  1 1 1 1 1 
10 1 1 1 1 1  1 1 1 1 1 

11 1 1 1 1 1  1 1 1 1 1 
12 1 1 1 1 0  1 0 1 1 x 

13 0 0 1 1 1  x x 1 1 1 

14 1 1 1 0 0  1 1 1 x x 
15 1 1 1 0 0  1 1 1 x x 

16 1 1 1 1 1  1 1 1 1 1 
17 1 1 1 1 1  1 1 0 1 1 

18 1 1 1 1 1  0 1 1 0 1 
19 1 0 0 1 1  0 x x 1 1 

20 1 1 1 1 1  0 1 1 1 1 
21 1 1 1 1 1  1 1 1 1 1 

22 0 1 1 1 1  x 1 1 1 1 

23 1 1 1 1 1  1 1 1 1 1 
24 1 0 1 0 1  1 x 1 x 1 

25 1 1 1 1 1  1 1 1 1 1 
26 1 1 0 1 1  1 1 x 1 1 

27 0 1 0 1 1  x 1 x 1 1 
28 0 1 0 1 1  x 1 x 1 1 

29 1 0 1 1 1  1 x 1 1 1 
30 1 1 1 1 1  1 0 1 1 1 

31 1 1 1 1 0  1 1 0 1 x 

32 1 1 0 1 1  1 1 x 1 1 
33 1 1 0 1 1  1 1 x 1 1 

34 0 1 1 1 0  x 1 1 1 x 
35 1 1 1 1 1  1 1 0 1 1 

36 1 1 1 1 1  1 1 1 1 0 
37 1 1 1 0 0  x 1 1 x x 

38 0 1 1 1 1  0 1 1 1 1 
39 1 0 0 1 1  1 x x 1 1 

40 1 1 1 1 1  1 1 1 1 1 
41 1 1 1 1 1  1 1 1 1 1 

42 1 1 0 1 1  1 0 x 1 1 

43 0 0 1 1 1  x x 1 1 1 
44 1 0 1 1 1  1 x 1 1 1 

45 1 0 0 1 1  1 x x 0 1 
46 0 0 0 0 0  x x x x x 

47 1 1 1 1 0  1 1 0 1 x 
48 1 0 1 1 1  0 x 1 0 0 

49 1 0 0 1 1  0 x x 1 1 
50 0 1 1 0 0  x 1 1 x x 

51 1 1 1 1 1  1 1 1 1 1 

52 0 1 1 1 0  x 1 1 1 x 
53 1 1 1 1 1  1 1 1 1 1 

54 1 0 1 0 1  1 x 1 x 1 
55 1 1 1 1 1  1 1 1 1 0 

56 0 1 0 1 1  x 1 x 1 1 
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To compute the confidence on the Pd and Pid mean, first compute the first 

and second central moments from (9) and (11), respectively, for both Pd and Pid: 
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These calculations for the first and second central moments are shown 

separately in the following two sub-sections for the Pd and Pid confidence 

intervals. The remaining steps required to establish that the regional sample mean 

Pd or Pid is greater than p* are also provided within each subsection. 

 

Confidence of Pd > p* 

 

Because wi = 1/30 due to a necessary assumption of uniform threat arrival weights, 

the following calculations can be performed for ml and 2

l , respectively: 
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Converting the above values for mean and variance into a standardized random 

variable z for an assumed exceedance probability p* = 0.7:  

 

    1 * 0.7 0.7145 0.0004 0.7245,l lz p m         

 

and 

 

    2 1 1 0.7145 0.0004 14.2751,l lz m        

 

with z having the Standard Normal Distribution:      
1 2

2 exp 2
x

F x s ds



  .  
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Then, through the use of a standard look-up table for the Standard Normal 

Distribution (Johnson, Miller, & Freund, 1994, p. 586), the probability that the 

mean system Pd is greater than p* is F (14.2751) – F (-0.7245) = 0.7656. 

 

Confidence of Pid > p* 

 

Again, since wi = 1/30, the following calculations can be performed for ml and 2

l , 

respectively: 
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Note that for Pid, the values of Ni change for each i since the number of 

identification trials per segment is dependent on the number of successful 

detections for that segment. Similarly, converting the above values for mean and 

variance into a standardized random variable z for an assumed exceedance 

probability p* = 0.7:  

 

    *

1 0.7 0.8044 0.0009 3.480,l lz p m         

 

and 

 

    2 1 1 0.8044 0.0009 6.5200.l lz m        

 

Then, through the use of a standard look-up table for the Standard Normal 

Distribution, the probability that the regional system mean is greater than p* is 

F (6.5200) – F (-3.480) = 0.9997. In summary, these example calculations show 

that there is a 76.56% and a 99.97% statistical confidence that the true system Pd 

and Pid mean is above 0.7, respectively, for this hypothetical set of test 

observations. It is apparent from the above example that more than five trials 

would be beneficial if the sample mean is within 0.1 of p*. The difference in the 

hypothetical test sample means of 0.80 for Pd and 0.90 for Pid versus their 

Bayesian posterior expected values of 0.7145 and 0.8044, respectively, illustrate 



BAYESIAN-BASED CONFIDENCE BOUNDS LYAPUNOV CONDITION 

558 

the need for additional trials for each segment. Moreover, this example showed 

that sample means around 0.80 only resulted in less than 80% confidence that the 

true mean is above 0.7. 

Monte Carlo Confidence Interval Projector & Implementation 

The evaluation of the various candidate test designs for this regional test involved 

evaluating projected confidence interval widths and exceedance probabilities.  

Moreover, there is a motivation to more exactly understand the relationship 

between the number of segments and test trials and confidence bound widths. 

This understanding would facilitate the decision of selecting a design with the 

fewest number of trials while still maintaining a strong likelihood in achieving a 

specified and desired confidence width. To expedite this analysis, a Monte Carlo 

confidence interval tool (CI Projector) is developed to automate the calculation of 

the confidence intervals derived above. 

The CI Projector tool is coded within an Excel environment using VBA. It 

requires the user to input a candidate test design through specifying the number of 

routes, the number of segments, and the number of trials per segment by filling 

out the blue columns titled ‘Route’, ‘# of segments’, and ‘Ni’ as shown in Figure 

6. Note that Ni simply refers to the number of segments on a route. 

Figure 6 also illustrates the view from the model during execution. The five 

columns in the middle denoted ‘Segment successes’ are the sampled number of 

successes for each segment during each iteration. Sample mean and variance 

values for the segments, routes, and area are tallied and averaged after each 

iteration. This also provides the user with a subjective understanding of the 

amount of variability present in the confidence interval widths from run to run. 
 
 



JACYNA & ROSEN 

559 

 
Figure 6. CI Projector Screenshot 

 

 
 

The success distribution for each segment is of course dependent on the 

projected sample mean for Pd and Pid. The user also inputs the projected sample 

means for Pd and Pid in addition to the number of Monte Carlo replications to be 

performed as shown below in Figure 7. Sample means for Pd must be defined for 

each object type passing through the system, and for adverse weather. The 

projected Pid sample mean strictly represents an average over all of these 

components. 
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Figure 7. CI Projector Inputs 

 

 
 

After defining the specific test design within the tool, the number of 

iterations must also be assigned by the user. The default value is 500, but the user 

can adjust this value to any number. Due to the fast speed at which CI Projector 

runs coupled with the existence of a small amount of variability within the 

resulting confidence interval widths , a high number of iterations is recommended 

and should always be used. Lastly, the user simply clicks on the ‘Simulate Test’ 

button as shown to execute the model. 

Sample outputs for the test projector tool are provided in Figure 8. Provided 

in the upper portion of the output columns are the necessary numerical values to 

compute the exceedance probability for a threshold value of interest that can be 

easily inferred through an attached table. The user also directly obtains lower and 

upper bounds for 60%, 70%, and 80% confidence intervals. 
 
 

 
Figure 8. Sample Output Confidence Intervals from CI Projector 

 

 
 

This process of inputting candidate test designs, running the model, and 

observing resulting confidence interval widths and exceedance probabilities can 

be easily repeated to evaluate a wide range of test designs. The CI Projector tool 

provides an environment conducive to short scenario set-up time and run time. 
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Numerous designs are evaluated using this tool, giving the decision maker 

reasonable assurance that the desired confidence interval widths and exceedance 

probabilities will be achieved as a result of an efficient test design. 

Conclusion 

The probability density function (pdf) for regional system sample means is 

derived by considering them as a weighted estimate of the successful detection 

probability i ii
w p  under a number of independent but not necessarily 

identically-distributed Bernoulli trials. It was shown that the resulting distribution 

(Augmented Beta Distribution) for i ii
w p  is a convolution of non-identical Beta 

Distributions (cf. (7)). From this result, the corresponding confidence that the 

weighted estimate exceeds a given exceedance probability can be determined 

exactly from the Augmented Beta Distribution expression (cf. (8)). Then, the 

results were extended to address the regional system Pid sample mean. The 

analysis for the Pid sample means was more complicated and was based on the 

use of mixture distributions for cases where the success probability is no longer 

constant across a segment. It was shown that the same Pd results apply here 

provided that the exceedance probability is interpreted as the average system 

exceedance probability across the entire segment. 

It was also shown through the Lyapunov variant of the Central Limit 

Theorem that the Augmented Beta Distribution converges to a Gaussian 

distribution as the number of segments grows large. The mathematical proof 

supplied showed that the Lyapunov conditions are satisfied for uniform segment 

priors wi. Given this result, a simpler Gaussian approximation (cf. (12)) can be 

used to compute the confidence for both the regional system Pd and Pid sample 

mean that involves a simple aggregation of the detection and identification events 

observed across all segments during Test. These confidence intervals can be 

computed for individual target types and for a regional system average of all 

target types. 
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In the current study, we have exemplified the use of Bayesian neural networks for breast 
cancer classification using the evidence procedure. The optimal Bayesian network has 
81% overall accuracy in correctly classifying the true status of breast cancer patients, 
59% sensitivity in correctly detecting the malignancy and 83% specificity in correctly 
detecting the non-malignancy. The area under the receiver operating characteristic curve 
(0.7940) shows that this is a moderate classification model. 
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Introduction 

Early detection of breast cancer can reduce the deadly threat to life. Including the 

well-known “Gail model” (Gail et al., 1989), a number of other statistical models 

have been proposed to assess the risk of being diagnosed with breast cancer 

(Claus, Risch, & Thompson, 1993; Domchek et al., 2003; van Asperen et al., 

2004). However, these models imposed some limitations in their use of risk 

prediction (Amir et al., 2003; Euhus, Leitch, Huth, & Peters, 2002). 

The objective of the current study is to develop a better statistical model to 

correctly classify the malignant breast cancer patients with their demographic 

factors and previous mammogram results using a multi-layer perceptron (MLP), a 

type of feedforward neural network. Although there exist several other models 

based on neural networks with the same intention, few of them have make use of 

the evidence approach with automatic relevance determination (ARD) prior for 

http://dx.doi.org/10.22237/jmasm/1478003520
mailto:sarasepa@mail.usf.edu
mailto:ctsokos@usf.edu
mailto:taysseer.sharaf@sru.edu
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network regularization. We have selected the optimal network based on the model 

evidence (or cost function) as oppose to the classical minimum square error. 

In order to train MLPs, we have considered two different approaches. In the 

first approach, a MLP is trained in the standard setting without incorporating any 

prior probabilities in their weight structure, where the later approach is based on 

Bayesian evidence procedure and the posterior probabilities of malignancy (Hung, 

Shanker, & Hu, 2002) have been obtained. These probabilities have been used as 

an initial measure for risk of diagnosing with incident breast cancer. 

The advantage of neural networks over the other models is that, it is a self-

learning model which is free of statistical assumptions. This allows neural 

network process to be considered as a generalization of existing statistical 

methodologies.  

MLPs are used in a wide variety of fields including pattern recognition, 

cognition and decision making (Ayer et al., 2010; Floyd, Lo, Yun, Sullivan, & 

Kornguth, 1994; Orr, 2001; Wu et al., 1993), where they learn by examples 

through training algorithms. Training can be supervised, where both inputs and 

their corresponding outputs are fed to the network, or can be unsupervised, where 

training data consist of only the inputs. During the training process, the weights 

and the biases of the network are continuously adjusted to minimize the error 

between the network’s output and the target outputs (Haykin, 1999). This process 

leads weights and biases of the network to learn the knowledge or information 

about the problem. 

In the Bayesian approach, the uncertainty about the weight parameters is 

estimated from data itself and represented by a probability distribution (Bishop, 

1995). Apart from capturing the uncertainties and providing a natural 

interpretation on regularization techniques, Bayesian approach has some other 

useful aspects. Automatic relevance determination process is one of them, which 

can be used to identify the relative importance of different inputs. This method 

also allows making predictions by combining several networks (network 

committees) in order to obtain improved performance. 

Multi-Layer Perceptron (MLP) 

MLPs are a popular class of feedforward networks which represent a multivariate 

non-linear function mapping between a set of input and output variables (Bishop, 

1995). These networks are organized as several interconnected layers. Each layer 

is a collection of artificial neurons (nodes) where connections among the layers 

have not formed any loops, hence the name feedforward. Data have been fed 
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through the input layer, and then they pass through the hidden layer, and final 

outcome is given by the output layer. 

The complexity of a MLP is directly proportional to the number of hidden 

nodes. It has been shown that a network with one hidden layer accompanied by 

sufficient number of hidden nodes is capable of approximating any continuous 

function (Hornik, Stinchcombe, & White, 1989). Therefore, we have considered a 

MLP with one hidden layer (Figure 1) and the final outcome is given by (1). 
 
 

 
Figure 1. A multi-layer perceptron network (MLP) 
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During the training process, the goal is to minimize the difference between 

the actual and network predictions by adjusting the weights (including biases) 

using some optimization algorithms. A well trained MLP is capable of making 
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reasonable predictions to unseen data, which is known as generalization. This is 

achieved by incorporating the regularization techniques like weight decay (Bishop, 

1995). Next, we discuss some theory related to MLP for a two-class classification 

problem. 

Two-Class Classification Problem  

For a two class classification, logistic sigmoid is selected as the activation 

function in the output layer. This is the activation function “g” in (1), and has the 

form of 

 

  
 

1
;

1 exp
y x w

a


 
  (2) 

 

In the Bayesian context, the y (x; w) can be interpreted as the probability of 

membership in class C1 given the input vector x. The probability of membership 

of class C2 is then given by (1 – y (x; w)). 

MLP with Maximum Likelihood (Standard Network) 

Network training (minimizing the difference between the actual and network 

predictions) can be done in two ways, using conventional maximum likelihood 

and Bayesian approaches. In maximum likelihood, a single set of most likely 

values for the weights are found whereas in Bayesian, a probability distribution 

for weights is obtained to represent the uncertainty in the weight estimation.  

For a set of training data {xn, tn} which are independent and identically 

distributed, the likelihood can be written as in (3) (Assuming the data are coming 

from a Bernoulli distribution). G (D| w) is the negative logarithm of the likelihood 

which is defined as the cross entropy error function as given in (4). 
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Instead of maximizing the likelihood (since it is a monotonically decreasing 

function), it is more convenient to minimize the cross-entropy. When training the 

standard MLP in our analysis we have used this error function. The predictions on 
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new data are made using the optimal set of weights through the maximum 

likelihood method. 

MLP with Bayesian Techniques  

In training a MLP, weights are adjusted whenever a new data point is presented to 

the network. A probability distribution which contains the degree of confidence 

associated with each different weight can be used to represent this uncertainty. 

The choice of prior distribution and about the corresponding posterior distribution 

will be discussed shortly. 

Network Regularization and Gaussian Prior  

Smooth network mapping can be obtained by introducing network regularization 

techniques. This will lead for better generalization. In the simplest setting we have 

used a weight decay regularizer Ew of the form (5). 

 

 
21

2
wE w   (5) 

 
As smaller weights (i.e a smaller Ew) are preferred for network weights, we 

have generated the weights from a zero mean Gaussian prior (6) initially.  
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 and, α is the inverse variance of the distribution which is 

known as the hyper-parameter of the prior distribution. As a part of Bayesian 

learning we can optimize the hyper-parameter α (evidence procedure). 

 

 

Posterior Distribution of Weights 

The posterior probability distribution for weights can be determined according to 

the Bayes’ theorem by incorporating the above prior (6) and the data likelihood 

(3),  
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where Zs is the normalization constant and S (w) is the regularized cost function. 

The most probable weight vector wMP is found by maximizing the posterior, or 

minimizing the regularized cost function. From the second order Taylor series 

expansion of S (w) around its minimum wMP, we can obtain the following 

approximation. 
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Where A denotes the Hessian matrix of the regularized cost function. This leads to 

the Gaussian approximation to posterior distribution as given in (9) where *

sZ  is 

the normalization constant. 
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Using the above posterior distribution, obtain the network predictions for the 

probability that a new input vector x* belongs to class C1 as in (10). Although this 

prediction is not directly achievable, we can use marginalized predictions to 

obtain the results as suggested by (MacKay, 1992): 

 

          * *

1 1, , ,P C x D P C x w P w D dw y x w P w D dw     (10) 

 

The Evidence Procedure 

Prior to finding the above wMP , it is needed to find the most probable hyper-

parameter αMP , which maximizes the posterior probability of weights in Bayesian 

setting (MacKay, 1996) .This αMP is obtained using the evidence p (D| α), by 

integrating the product of data likelihood and the prior distribution of the weights 

as given in (11). 

 

      p D p D w p w d      (11) 
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After several modifications, the logarithm of the evidence can be 

represented as in (12). The first term is the negative value of the regularized cost 

function, and the next two terms are the Occam factors that represent the ratio of 

posterior volume to prior volume. A network with higher number of hidden nodes 

has a large prior volume and thus, has a small Occam factor. Hence, these Occam 

factors act to penalize complex models and the evidence represents a trade-off 

between the accuracy and the complexity (MacKay, 1992).  

 

      log log logwE S OCC OCC    w   (12) 

 

Periodically re-estimate α according to (13), in order to get the greatest log 

evidence value where γ represents the effective number of weights whose values 

are controlled by the data rather than by the prior. Using that αMP we can calculate 

the wMP (Thodberg, 1996). More details regarding this can be find in (Bishop, 

1995). 
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The Automatic Relevance Determination  

In the Bayesian setting, we can associate a separate hyper-parameter to each input 

variable which represents the inverse variance of the prior distribution of the 

weights fanning out from that input (Nabney, 2002). Optimal values for these 

hyper-parameters are obtained using the evidence procedure. So the weights 

connected to irrelevant inputs are automatically set to small values and this is 

known as the ARD approach. 

Committees 

We can form a committee of networks to improve the prediction accuracies 

by combining several networks with different architectures. These networks can 

have different numbers of hidden nodes and/or they can be trained with different 

random initializations. 

The simplest form of a committee, which involves taking the average 

predictions of the outputs of the L networks, is given by (14). This will improve 

the accuracy of the predictions over an individual network output (Nabney, 2002). 
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Methodology 

Implementation of MLPs 

Study Population  The data for this study are taken from Breast Cancer 

Surveillance Consortium (Barlow et al., 2006) for the period 1996 to 2002. The 

participating registries have obtained annual approvals from its institutional 

review board.  

The data sample contains the information on menopausal type, age, breast 

density, ethnicity (Hispanic), body mass index (BMI), age at first birth, personal 

or family history of breast cancer, prior breast procedures, results of the last 

mammogram, type of menopause and current hormone therapy for each white 

woman. These women were aged from 35 to 84 years, and more details are 

available in Table 1. 

Implementation of the Standard and Bayesian MLPs 

Training and testing data sets were created by partitioning the whole data sets 

each with 75% and 25% of data. A random sample out of the non-malignant 

group in the training set is selected and merged that with the malignant group in 

order to obtain a balanced training set. Table 2 represents the composition of data. 

Different MLPs were trained using both standard and Bayesian approaches 

with varying number of hidden nodes from 1 to 25. For all of these MLPs, a 

logistic sigmoid activation function and scaled conjugate gradient (SCG) training 

algorithm were used. SCG is selected as it is a faster training algorithm compared 

to other algorithms (Penny & Roberts, 1999). 

The standard MLP is trained using 10 fold cross-validation method and 

without any weight regularization. In 10 fold cross-validation, the training set is 

divided into 10 distinct segments, where 9 of those are used to train the network 

while the remaining segment is used for validation. This process is repeated for 

each of the 10 possible choices of the segments which are omitted from the 

training process and the validation errors (cross-entropy error) are averaged over 

all 10 results. The best network (with the corresponding hidden nodes) in this 

approach is the one with the smallest average cross-entropy in the validation data 

set (Kline & Berardi, 2005). 
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Table 1. Details of the Study Population 

 

   
Malignant (%) Not Malignant (%) Total 

 
Total 

 
1053 6.47 15218 93.53 16271 100.00 

1 Menopausal Type ( X1) 

 
Premenopausal 227 21.56 2882 18.94 3109 19.11 

 
Postmenopausal 826 78.44 12336 81.06 13162 80.89 

2 Age Group ( X2) 

  
35-39 6 0.57 496 3.26 502 3.09 

  
40-44 72 6.84 788 5.18 860 5.29 

  
45-49 137 13.01 2355 15.48 2492 15.32 

  
50-54 168 15.95 2695 17.71 2863 17.60 

  
55-59 150 14.25 1872 12.30 2022 12.43 

  
60-64 141 13.39 1663 10.93 1804 11.09 

  
65-69 131 12.44 1533 10.07 1664 10.23 

  
70-74 96 9.12 1477 9.71 1573 9.67 

  
75-79 93 8.83 1343 8.83 1436 8.83 

  
80-84 59 5.60 996 6.54 1055 6.48 

3 Breast Density ( X3) 

 
Almost entirely fat 31 2.94 2575 16.92 2606 16.02 

 
Scattered fibroglandular densities 405 38.46 5319 34.95 5724 35.18 

 
Heterogeneously dense 506 48.05 4993 32.81 5499 33.80 

 
Extremely dense 111 10.54 2331 15.32 2442 15.01 

4 Hispanic (X4) 

  
No 1026 97.44 12476 81.98 13502 82.98 

  
Yes 27 2.56 2742 18.02 2769 17.02 

5 BMI (X5) 

  
10-24.99 432 41.03 4969 32.65 5401 33.19 

  
25-29.99 326 30.96 4404 28.94 4730 29.07 

  
30-34.99 181 17.19 3304 21.71 3485 21.42 

  
35 or more 114 10.83 2541 16.70 2655 16.32 

6 Age at First Birth ( X6) 

  
Age<30 692 65.72 7654 50.30 8346 51.29 

  
Age 30 or greater 154 14.62 3412 22.42 3566 21.92 

  
Nulliparous 207 19.66 4152 27.28 4359 26.79 

7 Number of first degree relatives with breast cancer ( X7) 

  
Zero 763 72.46 8515 55.95 9278 57.02 

  
One 252 23.93 5077 33.36 5329 32.75 

  
Two or more 38 3.61 1626 10.68 1664 10.23 

8 Previous breast procedure ( X8)  

  
No 716 68.00 8925 58.65 9641 59.25 

  
Yes 337 32.00 6293 41.35 6630 40.75 

9 Result of last mammogram before the index mammogram ( X9) 

  
Negative 1032 98.01 13244 87.03 14276 87.74 

  
False positive 21 1.99 1974 12.97 1995 12.26 

10 Surgical menopause ( X10) 

  
Natural 576 54.70 7000 46.00 7576 46.56 

  
Surgical 250 23.74 5336 35.06 5586 34.33 

  
Unknown 227 21.56 2882 18.94 3109 19.11 

11 Current hormone therapy( X11) 

  
No 400 37.99 6382 41.94 6782 41.68 

  
Yes 426 40.46 5954 39.12 6380 39.21 

 
Unknown or not menopausal 227 21.56 2882 18.94 3109 19.11 
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Table 2. Summary of the training and testing data sets  

 

Data set Malignant Non-Malignant Total 
Training set 829 1658 2487 

Test set  224 3030 3254 
Total 1053 4688 5741 

 
 

Under the Bayesian approach, four types of networks were trained with 

different weight regularization techniques. The first network is trained using 10 

fold cross validation along with a weight regularization. The second and third 

types of the networks are trained using Bayesian evidence procedure, one without 

and the other with ARD prior. For both of the above types, 10 different networks 

were trained with 10 different random initializations to examine the effect of local 

minima on solutions, and they were taken to construct the network committees. 

The optimal MLP with the lowest average regularized cost function in the training 

data (or the highest average log evidence) is then selected and used to predict the 

posterior probability of malignancy by simply averaging 10 network predictions 

from each committee. Additionally, a same type of neural network with one 

hidden node was built for a comparison, which is functionally equivalent to a 

logistic regression model. 

As the final network type, 10 different networks were trained on 10 different 

random samples with varying number of hidden nodes along with evidence 

process and ARD prior. The best MLP is selected using the minimum of the 

regularized cost function.  

Model Evaluation 

The selected ANN models are evaluated based on their accuracy, sensitivity, 

specificity values and the area under the receiver operating characteristic curve 

(AUC) for the testing data (Bradley, 1997; Friedman & Wyatt, 2005). The 

proportions of correctly identified malignant and non-malignant women from the 

ANN models are known as the model accuracies. The proportions of actual 

malignant patients who are correctly identified from the models are known as the 

sensitivities and the proportions of non-malignant women who are correctly 

identified from the models are known as the specificities.  

A perfect desirable predictor would be described as 100% sensitive (i.e. 

predicting all people from the malignant group as malignant) and 100% specific 

(i.e. predicting all non-malignant people as non-malignant). However, for any test, 
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there is usually a trade-off between these two measures, and this can be 

represented graphically by a receiver operating characteristic curve.  

Results 

The summary of our six optimal network types is given in Table 3. Overall 

accuracy in the logistic network (6th MLP in the table) is lower than all other 

MLPs except for the MLP trained without ARD prior. Moreover it has the second 

lowest sensitivity and specificity values with the highest error. However, these 

models are not directly comparable in terms of their errors, as they have different 

settings and different training samples.  
 
 
Table 3. Classification summary of the different MLP 

 

No MLP Type 
 Error(Cross 

Entropy/Cost) 
Accuracy Sensitivity Specificity 

1 Standard MLP 
641.96(valid error 

16.50)  
78.43% 55.36% 80.13% 

2 MLP with weight regularization  
434.77(valid error 

8.28)  
74.09% 53.57% 75.61% 

3 
MLP with evidence, but without 

ARD prior 
548.63 72.99% 60.71% 73.89% 

4 
MLP with both evidence and 

ARD prior 
582.28 74.15% 59.82% 75.21% 

5 
MLP trained on different samples 

with evidence and ARD prior 
908.78 81.35% 59.38% 82.97% 

6 
MLP with one hidden node 

(logistic) 
1123.10 73.11% 55.35% 74.42% 

 
 

Out of these MLP types, the best network in terms of the highest accuracy 

and specificity is found to be the MLP trained using different samples along with 

both evidence procedure and ARD prior (5th MLP). As can be seen, use of the 

evidence procedure and the ARD prior has always resulted in better sensitivities. 

However, use of weight regularization without any optimization (evidence 

process) does not provide any significant improvement over the standard network 

training process.  

It can be concluded that use of weight regularization techniques along with 

evidence process gives better results in Bayesian classification for most of the 

time. Apart from that, use of ARD prior helps to identify the most contributing 

variables to the network. Overall, Bayesian methods are preferred over the 

standard method mainly because of the natural way of handling the weight 
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regularization. By forming committees, we were able to reduce the network 

training error. 

The minimum and maximum prediction accuracies from these MLPs are 

73% and 81%, respectively. Sensitivity values are varying from a minimum of 

54% up to a maximum of 61% while specificity values are varying from 74% to 

83%.  
 
 

 
 
Figure 2. The receiver operating characteristic curves and the AUC values 

 

 
 

The AUC values of all the above MLPs are greater than 70%, which implies a 

moderate classification model. Figure 2 represents the receiver operating 

characteristic curves with the corresponding AUC values. The posterior 

probabilities of malignancy were obtained from the best Bayesian MLP network 

selected. 

ARD prior identifies the relevant importance of the inputs in the network. 

Table 4 includes the rankings of the variable based on these hyper-parameter 

values. Risk factors with smaller hyper-parameters are highly contributing to the 

model outcome. Being in the age group 75 to 79 is the most critical factor in 

diagnosing with malignant breast cancer. Having a prior false positive 

mammogram can be an indication of malignant breast cancer. In accordance with 

cancer literature, risk factors such as having heterogeneously or extremely dense 

breast densities, and having a BMI of 35 or more are significantly contributing to 

the model.  
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Table 4. Rankings of the attributable variables based on the ARD prior 

 

Rank 
Alpha  

(hyper-parameter) 
Variable Risk Group 

1 0.3841 agegrp9 Age group 75-79 

2 0.5550 lastmamm 
Result of last mammogram before the index mammogram 

- False positive 

3 0.6489 density3 Density - Heterogeneously dense 

4 0.6846 density4 Density - Extremely dense 

5 0.8251 bmi4 35 or more 

6 1.3072 agegrp2 Age group 40-44 

7 1.3872 agegrp7 Age group 65-69 

8 1.6989 hispanic Hispanic or not - Yes 

9 1.7403 nrelbc2 
Number of first degree relatives with breast cancer - 2 or 

more 

10 1.9510 hrtYes Current hormone therapy – Yes 

11 2.0528 agegrp10 Age group 80-84 

12 2.0826 bmi2 25-29.99 

13 2.1980 agegrp8 Age group 70-74 

14 2.2112 hrtNo Current hormone therapy - No 

15 2.8161 agegrp6 Age group 65-69 

16 2.9341 bmi3 30-34.99 

17 3.2299 agegrp5 Age group 55-59 

18 3.6520 nrelbc1 Number of first degree relatives with breast cancer - One 

19 3.7138 surgnatural Surgical menopause - Natural  

20 4.2249 agegrp4 Age group 50-54 

21 5.0616 surgsurgical Surgical menopause - Surgical 

22 5.1547 brstproc Previous breast procedure - Yes 

23 5.7224 density2 Density - Scattered fibroglandular densities  

24 7.2989 menopaus Postmenopausal or age>=55 

25 10.1388 agenulli Age at first birth - Nulliparous 

26 10.5538 agegrp3 Age group - 45-49  

27 11.4664 agegreater30 Age at first birth - Age 30 or greater 
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Conclusion 

A breast cancer detection model was introduced using artificial neural network 

theory. With the intention of having a better classification, different types of 

MLPs were developed. These models are trained using the standard and Bayesian 

techniques. The first two models were validated using 10-fold cross validation 

and we have constructed committees for the other models. Finally all MLPs were 

tested on a new set of test data.  

The advantage of Bayesian MLP is that it gives the posterior probabilities 

for classification which can be used as a priori risk of diagnosing with breast 

cancer. The evidence procedure is used for the network regularization along with 

ARD prior. Use of ARD prior did not make any significant difference in the 

accuracy of our optimal MLP. Use of committees also did not show much 

difference in the overall results compared to the single network predictions alone. 

However, this has helped to give a low variance in the predictions. 

The highest accuracy which was obtained from one of the Bayesian MLP is 

about 81% and this is a significant improvement over the other methods which 

used the same set of real data in terms of the discriminative accuracy. ROC curve 

provides information about a model’s classification efficiency. A good 

classification model was obtained for the third and the fifth MLP with more than 

75% area under the ROC curve. The model may be further improved by 

considering more relevant risk factors and more recent data, such as different 

races because ethnicity is one of the significant risk factors that contributes to the 

malignancy of breast cancer (Xu, Kepner, & Tsokos, 2011). 

It was also confirmed that ANN may have an important role in improving 

the accuracy and consistency of medical diagnosis. The proposed approach in 

developing the ANN model is free of assumptions, as opposed to parametric 

regression and hence increases the validity of our findings. 
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The advent of more complicated control charting schemes has necessitated the use of 
Monte Carlo simulation (MCS) methods. Unfortunately, few sources exist to study 
effective design and validation of MCS methods related to control charting. This paper 
describes the design, issues, considerations and limitations for conducting normal-based 
control chart MCS studies, including choice of random number generator, simulation size 
requirements, and accuracy/error in simulation estimation. This paper also describes two 
design strategies for MCS for control chart evaluations and provides the programming code. 

As a result, this paper hopes to establish de facto MCS schemes aimed at guiding 
researchers and practitioners in validation and control-chart evaluation MCS design. 
 
Keywords: Monte Carlo simulation, statistical process control, random number 
generation 

 

Introduction 

Various control charts exist using a control chart statistic based on the Normal 

distribution, including the Shewhart, R-Chart, Individuals, S-Chart, Cumulative 

Sum (CUSUM), Exponentially-Weighted Moving Average (EWMA), Combined 

EWMA-Shewhart (CES), and Reverse Moving Average (RMA), among others. 

The performance of many control charts have been investigated using various 

analytical and numerical methods such as integral equations, saddle-point 

approximations, and Monte Carlo Markov Chain (MCMC) methods. Monte Carlo 

simulation (MCS) has also grown in popularity due to the relative ease of 

programmatic design, and the ability to investigate additional important 

performance measures of a control chart such as the median run-length (MRL), run-

length quantiles, and the cumulative distribution function (CDF). Unfortunately 

http://dx.doi.org/10.22237/jmasm/1478003580
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there are few sources available for researchers and practitioners to study effective 

design and validation of MCS methods related to control charting. 

In general, MCS includes a broad class of computational algorithms that rely 

on repeated random sampling to obtain numerical results, then running multiple 

simulations to obtain the distribution of an unknown probabilistic entity. MC 

methods are used in physical and mathematical problems and are useful when it is 

difficult or impossible to obtain a closed-form expression, or infeasible to apply a 

deterministic algorithm. MC methods are mainly used in three distinct problems 

classes: optimization, numerical integration, and studying probability distributions 

of random variables. The use of random numbers as input is a defining feature of 

MCS. This is what turns a deterministic model into a stochastic model. Regardless 

of the application, simulations of this kind should be impartial, systematic and 

reproducible. Sources of error need to be controllable or at least isolatable. The 

basic steps of conducting a Monte Carlo simulation can be summarized as follows 

(Salleh, 2013). 

 

1. Create a model with appropriate parameters and assumptions. 

2. Generate random numbers as inputs to the model. 

3. Run the simulation and record the results and desired outputs. 

4. Analyze the results with statistical and/or advanced modeling tools. 

 

Although there is no strict definition MCS, in the field of statistical process 

control (SPC) and control charting, and for the purposes of this paper, it is broadly 

defined as the use of a programmatic pseudo-random number generation replicating 

repeated sampling from an assumed underlying statistical distribution, for the 

purposes of numerical integration of a function of a control-charting statistic and/or 

studying run-length (RL) properties and performance of the control chart. As such, 

there are several considerations related to control-charting MCS, including the 

choice, series length, and precision of the random number generator (RNG), as well 

as the required simulation size and expected accuracy/error in simulation estimation.  

The advantage of using MCS in this manner allows one to more fully 

investigate the RL properties and performance of a control chart, over a wider array 

of performance measures including the average run-length (ARL), MRL, standard 

error of the run-length (SRL) and the CDF of the run-length, as well as percentiles 

and quartiles. The CDF measures the cumulative proportion or percent of signals 

given by the ith period following the shift.  It should be noted that the CDF 

completely characterizes the run length distribution, while the ARL is only the 

mean.  Additionally, the MRL can be used in conjunction with the ARL and CDF 
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since it is a better measure of central tendency for skewed distributions such as the 

run length distribution. The MRL is defined as the median (50 th percentile) number 

of sampling periods until the control chart signals. Although traditional analytical 

and numerical methods such as integral equation and saddle-point approximations, 

as well as MCMC methods, provide good estimates of ARLs at specified control 

limits (CLs) of a control chart, the methods can be very cumbersome, 

mathematically complicated, and do not readily allow wider studies of RL 

properties and performance measures beyond the ARL, or simultaneous evaluation 

over a wide range of CLs. Additionally, in most cases the MCS can provide equal 

or better estimates than the traditional methods. One can also use MCS to validate 

findings based on other methods mentioned above. 

Many researchers and practitioners involved in SPC and control charting 

design and implementation are very familiar with Microsoft Excel and use it 

extensively for analysis and modeling, regardless of the inherent problems known 

to exist in Excel and the RNGs employed in Excel (Ahrens & Dieter, 1988; Knusel, 

2002; Benneyan, Lloyd, & Plsek, 2003). Additionally, Excel has many built-in 

functions as well as offering the user a Visual Basic for Applications (VBA) 

interface for programming in Excel. Excel can also be used as a prototype or beta 

MCS for initial studies prior to full implementation. As such, this paper does not 

have the purpose to intensely discuss the advantages, disadvantages, similarities, 

differences, etc., regarding analytical/numerical/MCMC methods versus MCS, nor 

is it the purpose to compare and contrast MCS using a myriad of possible 

programming languages, such as R, Visual Basic, C+, Java, FORTRAN, etc. 

Instead, this paper’s purpose is to describe the basic validation design, issues, 

considerations and limitations for normal-based control chart MCS design, 

including choice of RNGs, RNG series length, MCS simulation size, and 

accuracy/error in MCS estimation, while exemplifying using Excel 2010. The 

design principles can be easily extended to other programming languages and in a 

variety of field requiring simulation. It is assumed that the reader is familiar with 

basics of elementary statistics, control charting and the normal distribution. For 

detailed introductions to these ideas, the reader is referred to (NIST/SEMATECH, 

2012; Montgomery, 1996; Ryan, 2000; Wheeler & Chambers, 1992). 

Normal Based Control Charts and Performance Criteria 

SPC techniques have been used for decades to monitor and control a process, most 

often a manufacturing process, but are seeing increased use in fields broadly related 

to health care (Benneyan et al., 2003; Srinivasan, 2011), information technology 
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(Abdel-Aziz, Abdel & Darwis, 2008), finance (Golosnoy & Schmid, 2007; Severin 

& Schmid, 1998), and business process monitoring and improvement (Jaing, Au, 

& Tsui, 2007). The idea is to plot data (a control chart statistic) over time to aid in 

determining trends or changes in the process variability. In any process there exists 

a certain amount of inherent, common cause variability. This common cause 

variability is usually small, yet unavoidable. In contrast, variability from assignable 

causes is generally large, and can usually be removed from the process if detected. 

The primary use of control charts is to detect any assignable causes or process 

changes as quickly as possible, thus enabling quick action in elimination of the 

assignable cause. 

Control charts can be used to monitor many aspects of the process, but the 

most common use is for monitoring the process mean and/or variance. To monitor 

the mean, individual observations or averages (or functions of) are plotted over time, 

where these plotted values are estimates of the process mean. Likewise, sample 

ranges or standard deviations are plotted against time as estimates of process 

variability. 

When evaluating control chart performance, the ARL has typically been used 

to quantify performance of the chart. The ARL is defined as the average number of 

time periods until the control chart signals, and can be defined for both the in-

control (IC) and out-of-control (OC) cases. A more recent alternative performance 

criterion is the CDF (Dyer & Barrett, 2000; Dyer, Conerly, Adams, & Barrett, 2002; 

Dyer, Conerly, & Adams, 2003; Dyer, Adams, & Conerly, 2003; Lin & Adams, 

1996) and MRL. The CDF measures the cumulative proportion or percent of signals 

given by the ith period following the shift. It should be noted that the CDF 

completely characterizes the RL distribution, while the ARL is only the mean. 

Additionally, the MRL can be used in conjunction with the ARL and CDF since it 

is a better measure of central tendency for skewed distributions such as the RL 

distribution (Gan, 1993). The MRL is defined as the median (50th percentile) 

number of time periods until the control chart signals. 

Although there are a myriad of control charting schemes, many are based on 

an assumption of plotting a control chart statistic related to individual measures or 

the mean of a subgroup of measures against control-limits that are a function of the 

normal distribution. These control charts include the Shewhart (Shewhart, 

1931/1980; Shewhart, 1939/1986; Roberts, 1959) and Individuals charts (with and 

without runs-rules) (Nelson, 1984; Western Electric Company, 1956), Multiple-

Sampling schemes (Daudin, 1992; He, Grigoryan, & Sigh, 2002; Irianto & 

Shinozaki, 1998; Teoh & Khoo, 2012; Torng & Lee, 2009), the CUSUM (Page, 

1954), EWMA (various schemes) (Hunter, 1986; Ryan, 2000) CES (Lucas & 
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Saccucci, 1990), and RMA (Dyer, Adams, & Conerly 2003) charts, among others. 

In many cases a measure of variability is also charted. The Shewhart and 

Individuals charts are straightforward in determining control-limits and control 

chart performance since the distribution of the IC and OC sequentially plotted 

statistics are assumed to follow an independent and identical Normal distribution 

(iidN), hence the RL properties can be studied using the Geometric distribution. It 

should be noted that the IC and OC processes follow different iidN distributions. 

For example, assuming an IC process, using a Shewhart chart and ±3σ CLs, 

the probability of a signal (p) is 0.0027, that is, the probability the plotted statistic 

exceeds the CLs (although it is a false-alarm), corresponding to ARL = 370. Since 

the count of the number of sampling periods until a false-alarm occurs (the run 

length) follows a Geometric distribution (Chen, 1997), the ARL, SRL and MRL 

are given by 

 

 
1

ARL
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     (1) 

 

 
1
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p
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ln 0.50
Med=MRL=

ln 1 p
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Solving (1), (2), and (3) for p = 0.0027 yields ARL = 370, SRL = 370, and 

MRL = 256. For cases in which consecutive observations are independent, for the 

Geometric distribution, µ ≈ σ, that is, ARL ≈ SRL. This result is not true of several 

common control charting methods such as the EWMA, CUSUM and RMA. 

Additionally, for the Geometric distribution the first quartile (Q1) and third quartile 

(Q3) RLs are given by 
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Solving (4) and (5) following the above example yields QRL1 = 106 and 

QRL2 = 512. In general, the pth percentile run-length value is given by 

 

 
 

 
th

thln 1 percentile
RL

ln 1p p

p

p





  (6) 

 

Now, assume a shift of 1σ in the process mean. The probability of a signal is 

now p = 0.0228. In this case, the ARL ≈ 44, SRL ≈ 43, MRL ≈ 30, QRL1 ≈ 12, and 

QRL3 ≈ 60. The IC and OC processes now follow different iidN distributions 

following the shift in the process mean of the underlying distribution; hence the RL 

distributions are different iid Geometric (iidG) distributions. 

Although the underlying processes used for the CUSUM, EWMA and RMA 

control chart statistics are assumed to be iidN, the sequentially plotted control-chart 

statistics are not independent since they are a form of cumulative sums or averages; 

hence the RL distribution cannot be exactly described as above. The Shewhart chart 

is said to have “no memory” while the CUSUM, EWMA, RMA (and others) are 

said to have “memory” (Kalgonda, Koshti, & Ashokan, 2011). Memory refers to if 

the control-chart statistic uses past data from a previous sampling period. It is 

known that CLs for control-charts with memory are much different than for the 

underlying iidN process. In this case of the lack of independence (memory), it can 

be difficult to use the traditional analytical or numerical methods to study RL 

properties and control chart performance, hence many MCS studies have been 

conducted to determine appropriate CLs as well as control chart performance 

measures (Dyer, Conerly, & Adams, 2003; Fu & Hu, 1999; Lin & Adams, 1996). 

Additionally, MCS can also be employed to more readily determine overall 

RLs when multiple charts are used to monitor the same process, such as 

simultaneous use of charts for the mean and variability. Most of the aforementioned 

control-charts also have very limited tabulations of IC and OC ARLs, and sparse 

literature regarding other important measures like the MRL, percentiles/quartiles, 

SRL, CDF, or RL distribution studies. 

Designing the Validation MCS for Control Chart Evaluation 

One advantage of using the design exemplified in this paper is the ability to produce 

the RL distribution for many different sets of CLs simultaneously. For example, 

most MCS programs allow specification of a single set of CLs, thus calculating a 

single set of performance measures (ARL, MRL, SRL, CDF, etc.) from the 
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resulting simulated run-lengths.  Alternatively, this design allows specification of 

up to 16,380 different sets of CLs, thus calculating as many different sets of 

summary measures.  This would be an absurd case, but it reflects the capability of 

the design and the ability to use a single simulation run across all desired CLs. 

Regardless of the programming language, software, or RNG being used, this 

author proposes two different designs of a MCS for control charting the mean or 

individual observations based on an underlying iidN process, as described in the 4 

steps below. The two designs, D1 and D2 respectively, differ only in step 4 

discussed below. In D1, a series of length m random numbers is independently 

generated nsim times, where nsim = the number of simulation runs. Then, one RL 

is recorded for each separate simulation, resulting in an array of nsim RLs. For 

example, setting m = 14,000 and nsim = 10,000, each independent series of length 

14,000 is produced 10,000 times, resulting in 10,000 recorded RLs. In D2, a single 

very long series of size m is generated only one time. The number of RLs within 

the m random numbers is recorded. The optimal values of m and nsim for D1 and 

the optimal value of m and expected number of RLs are discussed in a subsequent 

section. 

The basic design steps can be easily modified to accommodate a myriad of 

various control charting schemes, such as monitoring mean/variability 

simultaneously, or employing two charts for the mean simultaneously, like the CES 

control chart, and schemes based on runs-rules and those such as double-sampling. 

The MCS design steps are as follows. 

 

1. Use a RNG to generate a series of length m, of subsets of size n of 

pseudo-random iidN variables (n = 1, 2, 3…) representing the 

simulated values of the underlying iidN process (xi), i = 1 to m. The 

variable n represents a subgroup size from which the appropriate 

statistic is calculated, such as the subgroup mean. So, the result will 

be a series of m means of subset size n. It is recommended that each 

of the m means be standardized to represent the Standard Normal 

distribution, that is, z ~ N(µ = 0, σ = 1) where zi is the standardized 

subgroup mean. Note, that although n = 1 for the Individuals chart, n 

can also be 1 for the CUSUM and EWMA, but is usually ≤ 10. 

2. Transform the series of calculated z statistics from step 1 to a series of 

control-chart statistics (CCS), appropriate to the control chart to be 

studied, e.g., CUSUM, EWMA, RMA, etc. 
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3. Establish upper/lower CLs (or a range of CLs) by which to compare 

the series of CCS from step 2. 

 

For Design 1: 

 

4. For the IC process, compare each sequential CCS from step 2 to the 

CLs established in step 3. When the first occurrence of a CCS exceeds 

one of the CLs, record the RL as RL = i, that is, the location within the 

series of m statistics wherein CCS exceeded CL. Stop step 4. 

 

Following step 4, repeat steps 1 through 4 nsim times (where nsim is the 

number of simulations) and calculate the summary measures like ARL, MRL, SRL, 

and desired percentiles/quartiles. This will produce a total of nsim RLs for each set 

of estimates. For the simulated OC process, induce a step-shift in the mean of the 

process in step 1, e.g., a 1σ shift where σ is the process standard deviation. Again, 

complete the 4 steps nsim times and calculate the summary measures, including the 

CDF. 

 

For Design 2: 

 

4. For the IC process, compare each sequential CCS from step 2 to the 

CLs established in step 3. When an occurrence of a CCS exceeds one 

of the CLs, record the RL as RL = i, that is, the location within the 

series of m statistics wherein CCS exceeded one of the CLs. After 

recording the first RL, re-index the series so that next value in the 

series is 1, and then continue step 4, re-indexing and recording each 

subsequent RL until the entire series has been evaluated. In this case, 

the series-length m is much longer than D1. 

 

After evaluating the entire series calculate the summary measures like ARL, 

MRL, SRL, CDF and desired percentiles/quartiles. This will produce an unknown 

but predictable number of sets of RLs for each set of estimates. For the simulated 

OC process, induce a step-shift in the mean of the process in step 1, e.g., a 1σ shift 

where σ is the process standard deviation. Again, complete the 4 steps and calculate 

the summary measures, including the CDF. 
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MCS Design Considerations 

Because the RL distribution for the N(μ, σ) Shewhart/Individuals control charts is 

well known, one should first design a validation MCS by which to compare 

estimated results with known results. There are several important considerations to 

be made when designing the MCS according to the section above, including the 

choice of RNGs, the RNG series length and burn-in period, the choice of CLs, the 

number of simulations to conduct, and the resulting accuracy or error of the MCS. 

Since we already know the RL distribution of the Shewhart and Individuals chart, 

any MCS should begin by first validating the study against what is known about 

the IC z ~ N(µ = 0, σ = 1) process. That is, before transforming data into the CCS 

for the CUSUM, EWMA and RMA (or others), one should first test the MCS design 

against known properties and RL distribution of a Shewhart or Individuals chart. If 

the validation design is adequate, then one can make better assumptions regarding 

the adequacy of the design when modified for other control charting schemes. 

Although the literature reflects results using MCS for many control chart studies, 

few if any provide information regarding the estimated accuracy of results 

(estimated error) or degree of confidence in estimates, and few adequately describe 

the MCS design, the RNGs used or a justification of simulation size. 

Additionally, when extending the validation design to other control charts, 

one should first validate at least a few summary measures from the MCS against 

what is already known in the literature. As such, the topics discussed in the sub-

sections should first be applied against the known Shewhart or Individuals results. 

Choosing the Random Number Generator 

As stated in design step 1 in a previous section, one must use a RNG to generate a 

series of pseudo-random numbers from an assumed distribution. This can be done 

by calling an existing RNG function (as in Excel), or employing existing and 

validated RNG subroutines (e.g., the IMSL subroutine library) in languages such 

as FORTRAN, C, C++, Java, etc., or by writing one’s own RNGs using known and 

validated algorithms. Note also, that a RNG is more appropriately called a pseudo-

random number generator (PRNG), as it is an algorithm for generating a sequence 

of numbers that approximates the properties of random numbers that are 

“sufficiently random" to suit the intended use. Regardless of the RNG used, it 

should meet at least some of the statistical tests of randomness, and have a period-

length long enough to not repeat a value in a very long string of pseudo-randomly 

generated values. Additionally, a good RNG should allow one to set a starting seed, 

allowing replication of results, and the RNG should have a known period-length. 
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In any event, the RNG must be implemented programmatically and requires some 

knowledge of programming.  

Methods commonly used for the Normal distribution include the Ziggurat 

method (Marsaglia & Tsang, 2000), the Box-Muller transform (Box & Muller, 

1958), the Marsaglia polar method (Marsaglia & Bray, 1964), the Probit function 

method, the Abramowitz & Stegun algorithm (Abramowitz & Stegun, 1972), a 

recent algorithm by Acklam (2014), and methods known as Kinderman-Ramage 

(Kinderman & Ramage, 1976), and Ahrens-Dieter (Ahrens & Dieter, 1988). Of 

these, the Ziggurat algorithm is considered superior, but the Box-Muller transform 

is very good and is a very common implementation in many software and 

programming languages. Many other algorithms are available for both the normal 

and other distributions (Korn, Korn, & Kroisandt, 2010; C. Roberts & Casella, 

1999). 

The task is then to use a Uniform [0, 1] RNG to randomly generate values of 

p, then solve the desired distribution’s cdf for values of x. Common uniform RNGs 

include implementations using the Wichmann-Hill (WH) method (Wichmann & 

Hill, 1982), the Mersenne Twister algorithm (MT19937) (Matsumoto & Nishimura, 

1998), the Marsaglia Multiply-with-carry (MWC) method (Marsaglia, Zaman, & 

Marsaglia, 1994), and other various methods in the classes of linear feedback shift 

register generators and linear congruential generators. 

Using Excel 2010 VBA to replicate a series of iidN pseudo-random variates 

requires use of two built in functions; RND and NORM_INV. The RND function 

returns a floating-point Uniform [0, 1] random real number, representing a 

probability (p), where 0 ≤ p < 1. The function has no arguments and the output 

depends on the initial seed, which is set as a function of the system clock, hence 

not replicable. Although Microsoft claims to have implemented the Wichmann-Hill 

generator for the RND function, there are many finding that it was implemented 

incorrectly, and that it does not pass the DIEHARD test (McCullough & Heiser, 

2008). Others suggest that for long periods, RND will create negative numbers, and 

the period-length is not exactly known. The RND function also returns the value 0. 

The NORM_INV function returns the inverse of the normal cumulative distribution 

with specified mean and standard deviation. That is, given a value for p, 

NORM_INV(p, µ, σ) seeks that value x such that the function NORM_DIST(x) = p. 

The value of p is the output from the RND function. The NORM_INV function is 

implemented using the Probit function method. It should be noted that Microsoft 

claims that that accuracy of the NORM_INV function depends on the accuracy of 

their NORM_DIST function (which uses the Abramowitz & Stegun algorithm), and 

the quality of the search procedure in its ability to “home in on” the value of x that 
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corresponds to the supplied value of p (Microsoft, 2011). They further claim that 

the accuracy is up to 15 or 16 decimal places. Excel with VBA is a good software 

and programming platform, and this author has been satisfied with the results of 

implementing the above Excel functions as well as the MT19937 for the Uniform 

[0, 1] RNG, which passes the DIEHARD test, and using the Box-Muller transform 

for the Normal distribution. 

Calculating the Series Length 

The series length m is the total number of N(µ, σ) random numbers (x) or subgroup 

averages to be generated and examined sequentially against the CLs in each 

simulation run. Again, the series of random numbers or subgroup averages should 

be standardized to represent a z ~ N(µ = 0, σ = 1) distribution. For any given 

desired ARL estimate, m will be constant, and is chosen as a function of the upper 

percentiles of the related Geometric distribution. 

In D1, the total series length m should be long enough for at least one of the 

randomly generated z-values to exceed the CLs based on the desired in-control 

ARL. For example, a Shewhart chart with ±3σ CLs (p ≈ 0.0027), the ARL ≈ 370. 

Based on a known Geometric RL distribution with µ = ARL = 370, the 99th 

percentile value of the RL distribution is 1,702. So, setting m = 1,702, it would be 

expected that with great probability, at least one of the 1,702 z-values will exceed 

the CLs. Choosing the 99.9th percentile results in m = 2,554, and the 99.99th 

percentile results in m = 3,406. Of course, larger ARLs (corresponding to smaller 

values of p), like ARL = 1,000 (p = 0.001), the series lengths for the 99th, 99.9th, 

99.99th and 99.9999th percentiles are m = 4,602, m = 6,903, m = 9,205, and 

m = 13,808, respectively. For iidN cases it is recommended that the 99.9999 th 

percentile value be chosen for m to avoid the case of any simulation run failing to 

result in a recordable run-length. This almost certainly ensures that each series m 

will produce a recordable RL. When designing a MCS to evaluate a range of desired 

CLs and corresponding ARLs, it is recommended that (7) below be used to select 

the series length to accommodate the largest expected ARL estimation (eARL) in 

the study. Note that the multiple of 14 corresponds to the 99.9999 th percentile.  

Alternatively, a multiple of 11 would result in the 99.999th percentile, a multiple of 

9 would result in the 99.99th percentile, and so on. 

 

  Max ARL 14m e    (7) 
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For example, if a study were performed using multiple CLs corresponding to 

ARLs of 1000, 900, 800, 700,…, 100, then Max(eARL) = 1000 and m = 14,000. 

Keep in mind that the series of length m will be generated and evaluated nsim times. 

For example, if m = 14,000 and nsim = 10,000, there would be 10,000 RLs recorded 

for each set of CLs in the completed simulation. 

The greater issue of determining m arises when the sequential values of the 

transformed plotted statistics, CCS, are not independent, like for the CUSUM, 

EWMA, and RMA. Previous research has shown the CLs need to be adjusted to 

accommodate the correlation between sequential CCS. This case requires more of 

a trial and error approach in determining m since the expected RL can be much 

different than under the iidN assumption, and the distribution of the RL is no longer 

exactly Geometric. For example, if the underlying distribution is iidN, and ±3σ CLs 

are chosen, the resulting ARL ≈ 370 and recommended m = 5,180, use m = 6,000, 

run several thousand simulations and count the number of simulations for which no 

CCS exceeded the CLs in each run. If the count is zero then the choice of m should 

be sufficient. If not, then increase m. Additionally, the control-charts based on 

cumulative sums or averages are known to have a much larger standard deviation 

than the z ~ N(0, 1) process, so the value m will likely be longer than the N(0, 1) 

process. 

Alternatively, instead of presetting m, one could increment a variable by 1 

until the first CCS exceeds the CLs, record the value of m as the RL, then stop the 

run and start the next simulation. Although this is suitable for studying only one RL 

distribution at a time for a specified set of CLs and ARL, this researcher often 

performs the study over a very wide range of ARLs (up to 50 simultaneously), 

which is a feature that often makes MCS more desirable and faster than other 

methods. Recall, the capability of the design and the ability to use a single 

simulation run across many desired CLs is an advantage of the proposed design, 

and is not possible when incrementing instead of presetting m. 

In D2, only one series m is calculated, but is a much longer length than used 

in D1. The choice of m and the expected number of resulting RLs depend directly 

again on the largest ARL to be estimated. Let dRL = the desired number of RLs to 

evaluate properties related to the largest expected ARL (eARL) in the design. So, 

for D2, the series-length m is given by (8): 

 

  Max ARLm e dRL    (8) 

 

For example, for ARL = 1,000 and dRL = 10,000, m = 1,000*10,000 = 10,000,000. 

So a series length of m = 10,000,000 will result in about 10,000 recordable RLs. 
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Inversely, choosing m to accommodate the largest ARL estimate, the resulting 

number of RLs for lessor values of ARLs is given by (9): 

 

 
ARL

m
dRL

e
   (9) 

 

Using the example above, simultaneously evaluate RLs for known ARLs of 

1,000, 500, 370, and 50. The expected number of useable RLs will be about 10,000, 

20,000, 27,000, and 200,000, respectively. As a result, the error in estimating lower 

valued ARLs will be dramatically reduced. Keep in mind that the IC ARL is always 

larger than the OC ARL, and the larger the mean shift (б) the smaller the OC ARL. 

For example, for IC ARL = 1,000, the OC ARLs for mean shifts of б = 1, б = 2, 

and б = 3 are 90.87, 10.16, and 2.59, respectively. Hence, while nsim will remain 

the same, m can be decreased significantly and the program will run much faster. 

Calculating the Burn in Period 

When extending the validation model to evaluating control charts like the CUSUM, 

EWMA and RMA, or other control-charts with memory, the series of normal 

random numbers (z) and the transformed control-chart statistics (CCS) should have 

a burn-in period of runs prior to the actual RLs to be evaluated in the OC process. 

This accommodates the cumulative nature of the transformed statistics required to 

mimic a steady-state of the IC series prior to evaluating the subsequent desired 

series-length. Zero-state simulations refer to RLs those that have been initialized at 

the target starting value of the control statistic. Steady-state simulations refer to 

RLs that are evaluated after the control chart statistic has reached a steady-state, 

meaning the process has been “in-control” long enough for the effect of the starting 

value to become negligible (Lucas & Saccucci, 1990). So zero-state simulations 

require no burn-in period, but steady-state simulations do require a short burn-in 

period. 

When evaluating the IC process, it is assumed that one starts the process from 

an IC zero-state, meaning there is no burn-in period. When evaluating the OC 

process it is assumed the series has reached a steady-state, implying a burn-in 

period of a stable IC process. There is no body of literature regarding burn-in for 

MCS, while there are quite a few articles regarding burn-in for MCMC methods. 

Although the burn-in period is equivocally stated, it is suggested that a burn-in 

period that is close to and less than the smallest expected MRL being evaluated 

should be adequate. Beyond those periods one might expect the burn-in process to 
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drift toward a false-alarm state. Additionally, CLs for many control-charts like the 

EWMA are a function of asymptotic variance, so the burn-in period should be long 

enough for the assumption of the asymptotic variance to hold. For example, if 

evaluating the OC RL properties of an EWMA with parameter λ with corresponding 

control-limits set to produce an IC ARL = 300 and MRL = 208, then the burn-in 

period less than 208 should be adequate.  

The EWMA parameter λ can be used to determine a burn-in period necessary 

for asymptotic CLs to be appropriate. The asymptotic time-varying component of 

the variance of the EWMA is given as 1 – (1 – λ)2t, hence the asymptotic CLs are 

constant starting at burn-in period determined by solving for the period t such that 

1 – (1 – λ)2t ≈ 1. This is especially true when evaluating the OC case, assuming the 

period was stable and in-control during the previous IC periods. As such, the total 

series-length will be Burn-in + m, where evaluation starts at the first period of m 

following the last burn-in period. One can easily run several independent 

simulations using various burn-in periods to determine the most appropriate period. 

Additionally, the rational starting value of the burn-in period is a function of 

the assumed/estimated mean of the control chart IC process. For example, if 

evaluating the EWMA control-chart with parameter λ = 0.20 and process μ = 5, the 

rational starting or target value would be CCS1 = 5. Hence, 

CCS2 = λ*z + (1 – λ)*CCS1 = 0.20*z + 0.80*5, where z is the randomly generated 

value such that z ~ N(µ = 5, σ = 1). 

Establishing Control Limits 

Control charts for the mean of a z ~ N(0, 1) process are typically designed based on 

the desired IC ARL for a process, which in turn determines the control-limits, which 

is turn determines the OC ARL based on a specified shift in the process mean. In 

the z ~ N(μ, σ) process, using a Shewhart or Individuals chart, the upper/lower CLs 

are easily found for any desired IC ARL, since ARL = 1/p, where p is the 

probability of an IC signal (false-alarm). For example, for a desired IC ARL = 370, 

p = 1/370 = 0.0027. 

Because half of 0.0027 is below the lower CL and half is above the upper CL, 

one can use a Normal Inverse function (e.g., Excel’s function 

NORM_INV(p/2, μ, σ)) to determine the lower CLL ≈ -2.9967; hence the upper 

CLU ≈ +2.9967, which closely correspond to the ±3σ CLs. Likewise, when a mean 

shift (б) occurs, one can determine the expected OC ARL for the shifted process 

z ~ N(μ + бσ, σ) as OC ARL = 1/(p1 + p2), where p1 = P(z < CLL) and 

p2 = P(z > CLU), which are not equal probabilities in the OC case. One can use a 
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Normal Distribution function (e.g., Excel’s function NORM_DIST(z, μ, σ)) to 

calculate p1 and p2 thus allowing calculation of the OC ARL. 

When using MCS to evaluate RL properties for other control charts, such as 

the EWMA, one might want to evaluate RL properties over a range of CLs. As 

previously noted, one advantage of MCS is the ability to evaluate RL properties 

over a range of CLs simultaneously, like evaluating properties for ARLs ranging 

from 20 to 1,000 in steps of 5 units, like 20, 25, 30,…, 1,000. In this case a 

consideration that must be made regarding CLs is how many decimal places are 

required, which also helps in deciding the unit step-distance from one ARL to the 

next. For example, if the IC process is z ~ N(0, 1), then CLs = ±2.99 would include 

ARL values from 359 to 370, while CLs = ±3.00 correspond to ARL values from 

371 to 382. The point being that the more CLs that are evaluated simultaneously, 

the longer the time it takes to run the simulations, some of which may be redundant 

and overlapping. Conversely, the additional time will always render some 

additional information. In general, smaller unit step-distances are more appropriate 

for ranges of smaller expected ARLs, while larger unit step-distances are more 

appropriate for ranges of larger expected ARLs. 

Determining Simulation Size and Error 

For D1, the choice of simulation runs, nsim, depends on the accuracy of the RNG 

being used, the acceptable maximum error in estimation (E) of ARLs, and the 

(100 – α)% degree of confidence in the estimation of the ARL. A common 

simulation size used in many published articles for MCS is nsim = 10,000, hence 

producing 10,000 RLs (Dyer et al., 2002; Dyer, Conerly, & Adams, 2003; Dyer, 

Adams, & Conerly, 2003; Lin & Adams, 1996). The value is not arbitrary, but is 

based on the assumption of the large-sample Normal distribution of a proportion 

(p), (often an unknown, hence assumed value of p = 0.50), and a desired 95% 

confidence level (corresponding to α = 0.05 and z ≈ 2) in estimation of p with a 

margin of error E = 0.01. The value z is the value of the Standard Normal 

distribution such that α/2 is above +z and below -z. In this case the formula is given 

as 

 

  
2 2

2
1 0.25 10,000

0.01

z
nsim p p

E

   
       

   
  

 

Because a primary goal of MCS is evaluating IC ARLs, and ARLs are a 

function of p (probability of a false alarm), and p is almost always much less than 
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0.05, this goal then is to have a very small error in estimation of p (much less than 

0.01), hence a small error in estimation of the ARL. But, we are estimating ARLs, 

which in turn provide estimates of p. So, if we assume a large-sample Normal 

distribution of the ARL, and we know for the Geometric distribution that the mean 

and standard deviation are approximately equal, that is, µ = ARL ≈ σ = SRL, then 

the following estimated equation ((10) below) is given based on D1 for the number 

of simulations necessary to accommodate the largest ARL estimation (when 

estimating a wider array of ARLs simultaneously), based on a (100 – α)% degree 

of confidence and the maximum allowable error in estimation (E) of the largest 

expected ARL (eARL). Recall, this estimate does not account for the error in the 

RNG being used, which can increase the number of required simulations. The value 

z is the same as described in the previous paragraph. 

 

 
 

2

Max ARLz e
nsim

E

 
  
 

  (10) 

 

Conversely, the estimated error (E) for any specified expected ARL is given by 

(11): 

 

 
ARLz e

E
nsim


   (11) 

 

Since a Shewhart chart with p = 0.001 corresponds to ARL = 1,000, using 

nsim = 10,000 would suggest a maximum error in estimation of E = 20 with 95% 

confidence, not accounting for any additional error in the RNG. A review of the 

research also reveals that many published MCS based studies evaluate only a very 

few selected ARLs, like 370, 500, and 1,000. Using the above scenario 

(nsim = 10,000, z = 2.00), for ARL = 500 we expect E = 10, and for ARL = 370 we 

expect E = 7.4. Unfortunately, to reduce the error further (or to increase the degree 

of confidence), requires a substantial increase in nsim. For example, in the case 

above with ARL = 1,000, reducing the desired maximum error to E = 5 requires 

increasing the number of simulations to nsim = 160,000. 

In D2, only one long series m is generated, and the resulting expected number 

of RLs is given by (9). Hence, (10) is modified to estimate the series-length given 

by (12) below: 
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2

3Max ARL
z

m e dRL
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  (12) 

 

Conversely, the estimated error (E) for any specified ARL is given by (13): 

 

 
34ARLe

E z dRL
m

     (13) 

 

In general, all RL distributions appear Geometric to some degree, but are not 

exactly iidG. As a result, one must be very cautious about extending Shewhart 

based error estimates to ARLs obtained for other control charts for which the 

sequential CCS are not iidN (but are correlated), and making assumptions about the 

RL distribution that is not exactly iidG. Again, as discussed in the beginning of this 

section, at least a few of the results should be validated against existing literature 

before making broader conclusions about RL properties and summary measures. 

An advantage of MCS is that the method allows additional summaries such 

as the MRL, SRL, CDF, and quantities such as percentiles and quartiles. As such, 

one might want to place confidence limit bounds on the resulting estimated MRL 

and SRL, in essence allowing one to estimate the error on these values following 

the simulations. It is assumed that the D1 simulation size (nsim) or the D2 desired 

run-length (dRL) is determined relative to a desired maximum error in estimation 

(E) of the maximum ARL under study.  

Regarding the MRL, and assuming a large-sample Normal approximation, the 

upper and lower confidence interval provides two ordered rank locations of the RLs, 

which in turn allow one to determine the upper and lower confidence intervals 

around the MRL, which is asymmetric. Let MRL and MRU be the lower and upper 

rank locations, respectively, in an ordered array of RLs of size nsim for any given 

ARL. (14) and (15) are provided to find the rank locations, where z corresponds to 

the desired (1 – α)% degree of confidence. 
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For example, using 95% confidence and nsim = 10,000, MRL = 4,900, and 

MRU = 5100, and the ordered RL values at rank locations 4,900 and 5,100 are the 

asymmetric confidence interval limits on the MRL. For any given nsim, the rank 

locations will always be the same, but larger nsim will result in corresponding RLs 

closer to the true MRL, that is, less error. Confidence intervals for rank locations 

for other percentiles and/or quartiles can be derived by adjusting each divisor in 

each of the two formulas above. 

Additionally, one can determine the expected error in the MRL by examining 

the cumulative probabilities of the Geometric distribution for a specified expected 

ARL at the 50th percentile RL (median), and upper and lower RLs corresponding 

to 0.50 ± desired maximum error. Additionally, for any given nsim, the expected 

maximum error (E) for the MRL estimate with (1 – α)% degree of confidence is 

given by (16), where eMRL is the expected MRL, and (11) is inflated by a factor 

of 0.50 1.25   (Stigler, 1973). 

 

 
ARL
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    (16) 

 

Regarding the SRL, the large-sample distribution for any given ARL is 

Normally distributed, hence the confidence limits on the true SRL are a function of 

the desired (100 – α)% degree of confidence, nsim, the estimated SRL, and the Chi-

square distribution (χ2) evaluated at functions of α/2 and df = nsim – 1 degrees of 

freedom, so that 
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Let SRLL and SRLU be the lower and upper confidence limits (respectively). 

(17) and (18) are provided to find the desired (1 – α)% degree of confidence interval 

limits, where SRL is the estimated SRL. 
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Additionally, the expected error can be determined based on (1 – α)% degree of 

confidence in the SRL estimation using (13), where eSRL is the expected SRL. 

 

 
 2

UpperSRL χe df
E

df

 
   (19) 

MCS Programs and Validation Design Example 

Although MCS can be implemented in a variety of programming languages, several 

advantages of using Excel 2010 for MCS studies include the available built-in 

functions, the ability to write special functions, the VBA programming interface 

for macros, subroutines and functions, built-in analysis and modeling tools, and the 

ability to use the spread-sheet as a data repository. Even when MCS is performed 

in programs such as R, C+, and FORTRAN, the data arrays are often imported into 

Excel for analysis and modeling. It should be noted that the validation design 

examples have been exemplified in Excel 2010 using VBA, but also compared with 

results in the VBA implementation using MT19937 and the Box-Muller transform 

method adapted to VBA (Annen, 2013). As such, the VBA code shown in 

Appendix A reflect calling two Excel VBA functions; RND which generates the 

Uniform [0, 1] variables, and NORM_DIST to generate the series of z ~ N(µ, σ) 

random variables using input from the RND functions. The code sections reflecting 

the generation of random numbers can be modified to implement any other choice 

of RNGs. Additionally, there is no error handling code, so one must be careful about 

such issues as inputting σ ≤ 0 or placing data of any kind into worksheet cells that 

are not directly related to specific input or output. The screen-shots provided also 

reflect formatting options set at the worksheet level and not in the VBA code, such 

as rounding and run-time output formats. All code and a working Excel 2010 

workbook is available from the author by request.  

The sections below discuss the setup and description of the worksheet and the 

underlying VBA code for running the validation MCS based on the Individuals 

control chart, with an assumed IC N(μ, σ) process for both D1 and D2. Recall, the 

Individuals chart is a Shewhart chart with subgroup size n = 1. The assumption for 

the design is that, regardless of the underlying IC iidN process, the underlying data 

(x) would be standardized (z) such that z ~ N(μ = 0, σ = 1) process. As such, for the 

OC process the distribution changes to a z ~ N(б, 1) process. 
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Program Worksheet Inputs 

For Design 1: For D1 and a single IC simulation run, we wish to generate quantity 

m of z ~ N(μ = 0, σ = 1) random variables, sequentially compare each z-value to the 

CLs determined by the desired ARLs, then record the location of the RL in the 

sequence when the first z-value in the series exceeds the CLs (for each specified set 

of CLs). This process is then replicated nsim times. The result will be nsim RLs (for 

each set of specified IC ARLs) for which we can calculate the summaries for 

estimated ARLs, MRLs, and SRLs. Additionally, one may repeat the entire 

simulation as many times as desired using the Num Runs input. So, the worksheet 

will include input cells to specify the number of runs (Num Runs), the series length 

(m), the number of simulations (nsim), the in-control process mean (µ) and standard 

deviation (σ), the mean shift (0 for the IC case, бσ for the OC case), and the desired 

IC ARLs, which correspond to CLs that will be calculated using the Excel function 

NORM_INV implemented in the VBA code. Note that the simulation design allows 

any values of μ and σ, but there is no need to set these values to anything other than 

0 and 1, respectively. 

Figure 1 is a screen-shot of the formatted Excel 2010 workbook reflecting the 

initial setup using Num Runs = 1, m = 14,000, nsim = 10,000, and IC ARLs of 

1,000, 500, 370, and 50. The input parameters reflect a desire for a maximum Error 

of E = 20 for estimating ARL = 1,000 with 95% confidence. The desired IC ARLs 

are entered from the largest to the smallest. With this limited example we wish to 

use MCS validation to estimate the four ARLs, MRLs and SRLS of an Individuals 

control chart based on the control-limits corresponding to specified IC probabilities 

of p = 0.001 (ARL = 1000), p = 0.002 (ARL = 500), p = 0.0027 (ARL =370), and 

p = 0.02 (ARL = 50). The corresponding calculated control-limits will be ±3.2905, 

±3.0902, ±2.9997, and ±2.3263, respectively. Recall, we already know the 

properties of the Individuals based z ~ N(0, 1) process, so the MCS in the example 

is used to exemplify setup and validation of the estimated MCS results with 

expected results. 

The input cells are as follows: 

 

 B2 (Num Runs) = 1. This value allows one to produce one or more 

independent simulations runs, hence allowing one to investigate 

results of the same simulation design over multiple runs. 

 B3 (m) = 14,000. This value is based on the series length calculation  

 m ≈ Max(ARL)*14 = 1,000*14 ≈ 14,000. 
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 B4 (nsim) = 10,000. This value is based on a desired maximum error 

in estimation of E = 20 for Max ARL = 1,000, with 95% confidence. 

Error will necessarily be lower for smaller estimates. 

 B5 (µ) = 0 (mean for the underlying IC process assuming a z ~ N(0, 1) 

process). 

 B6 (σ) = 1 (standard deviation for underlying IC process assuming a 

z ~ N(0, 1) process). 

 B7 (µ-Shift) = 0 (0 for the IC process, or > 0 for the OC process 

z ~ N(бσ, 1) process). 

 F1:I1 (IC ARLs) = 1000 (F1), 500 (G1), 370 (H1), 50 (I1), assuming 

one wants to evaluate these four ARLs. 

 Run Button – A button to execute the VBA subroutine 

 

For Design 2: Figure 2 is a screen-shot of the formatted Excel 2010 

worksheet reflecting the initial setup using m = 10,000,000 (B3) while the 

remainder of input cells are the same as used in the D1 example. Recall that for D2 

we wish to generate one very long series of length m of z ~ N(0, 1) random variables, 

sequentially compare each z to the CLs determined by the desired ARLs, then 

record the location of each RL in the sequence when each z in the series exceeds 

the CLs (for each specified set of CLs). The long series is based on the dRL, and is 

almost equivalent to m*nsim in D1. The other inputs are the same as D1, with the 

same error and confidence level. The output will be almost the same is D1, except 

that we don’t know in advance how many RLs will be produced for each set of 

specified IC ARLs, but can be estimated using (9). 
 
 

 
 
Figure 1. Design 1 program input cells 
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Figure 2. Design 2 program input cells 

 

Program Worksheet Outputs 

For Design 1: Figure 3 is a screen-shot reflecting the D1 outputs of one 

individual run of m = 14,000 and nsim = 10,000 simulations. All output cells are 

set and/or calculated using VBA code as shown in Appendix A. The worksheet 

output cells include a timer with Start-time, End-time and Run-time, an indicator 

of the exact simulation number being run at any given time (if multiple simulations 

are to be done), cells containing the upper and lower control-limits (based on the 

input ARLs), expected ARLs, MRL, and SRLs, columns to record the RLs of all 

simulations for each set of control-limits, and cells for the estimated ARLs, MRLs 

and SRLs for each IC ARL (or for each OC ARL in the OC process). 

The output cells for this example are described as follows. See the screen-shot 

for actual exemplary values. 

 

 B10 = Start-time, B11 = End-time, B12 = Run-time 

 B13 (Sim Run) = changing variable depending on exact simulation 

being run, starting with 1 and ending with Num Runs in B2. Only used 

if multiple simulations are being run on the same set of inputs. 

 F2:I3 = upper and lower CLs based on input ARLs. 

 F4:I4 = expected ARLs based on the input µ-Shift. The values are the 

same as the input ARLs for the IC process but will change for the OC 

process, and depend on the mean shift (set in input cell B7). 

 F5:I5 = expected MRLs based on the input µ-Shift. The values are the 

same for the IC process but will change for the OC process, and 

depend on the mean shift (set in input cell B7). 
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 F6:I6 = expected SRLs based on the input µ-Shift. The values are the 

same for the IC process but will change for the OC process, and 

depend on the mean shift (set in input cell B7). 

 F7:I7 = estimated ARLs (average of RLs). 

 F8:I8 = estimated MRLs (median of RLs). 

 F9:I9 = estimated SRLs (standard error of RLs). 

 F10:I10010 = 10,000 recorded RLs for each input ARL. 

 D11 = a count of the runs of size m out of nsim that did not produce a 

RL for the largest input ARL. If m is selected appropriately and large 

enough then the value will be 0. 

 

For Design 2: Figure 4 is a screen-shot reflecting the D2 outputs of one 

individual run. All output cells are set and/or calculated using VBA code as shown 

in Appendix B. The worksheet output cells are the same as D1, with the exceptions 
 
 

 
 
Figure 3. Design 1 program output cells 
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Figure 4. Design 2 program output cells 

 

 
 

that in D2 there is no need for a count of runs that didn’t produce a RL value, and 

the D2 output includes a count of the number of RLs for each set of control-limits. 

For example, the single simulation resulted in 9,821 RLs for ARL = 1,000 as 

displayed in cell F10. Cells G10, H10, and I10 display the counts for each of the 

additional ARLs. Note the much larger RL counts for the smaller ARL calculations. 

Program Overview 

For Design 1: For D1, when the VBA code is executed for the IC z ~ N(μ, σ) 

process, the following steps occur programmatically. For each simulation run 

(Num Runs); (1) The Start-time is stored in cell B10, (2) each of the upper and 

lower control-limits are calculated and stored in cells starting in cell F2. These 

values correspond to the desired IC ARLs, based on input choices of μ and σ, and 

(3) each of the expected ARLs, MRLs and SRLs are calculated and stored in in 

cells starting in cell F4. 

For each simulation (nsim); (4) a series of m z-values are generated and stored 

in an array. For each set of the control-limits; (5) each z-value is sequentially 

compared to each upper CL and lower CL, one at a time. When the first z-value 

exceeds its CLs, the RL is recorded in an array. After a RL has been recorded for 

each specified CL, the process terminates and continues to the next simulation. 

Steps 5 through 7 are continued until all simulations are completed. After all nsim 

simulations are complete, the RL array is copied into the worksheet. 

Following the last simulation in step 5; (6) the summary estimated measures 

(estimated ARL, MRL and SRL) are calculated based on the RLs and stored in cells 
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starting in cell F7, and (7) the End-time is stored in cell B11 and Run-time is stored 

in cell B12. 

When an OC process is simulated, the user sets the value of the shifted mean 

in worksheet cell B7, in terms of a shift in σ. For example, regardless of the choice 

of σ, entering the value “3” in cell B7 implies a 3σ shift. In step 3 the expected OC 

ARLs, MRLS and SRLs are calculated and stored in cells starting in cell F4. Then 

in step 5 the z-values are generated as z ~ N(μ-Shift, 1). Note that m is now much 

smaller and chosen to accommodate the largest OC ARL. For example, for IC 

ARL = 1,000 and corresponding control-limits ±3.2905, a mean-shift of 1σ results 

in an OC ARL ≈ 91. Hence, m = Max(eARL)*14 = 91*14 = 1,275. Keeping 

m = 10,000 will result in an expected error of E = 1.82 with 95% confidence. 

 

For Design 2: For D2, when the VBA code is executed for the IC z ~ N(μ, σ) 

process, the following steps occur programmatically. For each simulation run 

(Num Runs), the first 4 steps and steps 6 and 7 are the same as D1. For each of the 

control-limits; (5) each z-value is sequentially compared to each upper CL and 

lower CL, one at a time. Anytime a z-value exceeds its CLs, the RL is recorded in 

an array. After all RLs have been recorded for each specified CL, the procedure 

terminates and the RL array is copied into the worksheet. When an OC process is 

simulated, D2 is setup the same as D1. Again m is now much smaller and chosen 

to accommodate the largest OC ARL. Using the previous example, for IC 

ARL = 1,000 and corresponding control-limits ±3.2905, a mean-shift of 1σ results 

in an OC ARL ≈ 91. For dRL = 10,000, m = Max(ARL)*dRL = 91*10,000 

= 900,000. 

Other Considerations 

It might be questioned why two MCS validation designs are exemplified, when 

both produce equivalent results. When the IC process is simulated for any control-

charting scheme, both designs are adequate and have equal results. But when 

simulating the OC case for cumulative schemes, like the CES, CUSUM, EWMA 

and RMA, D1 is required since the cumulative effect of the control-chart statistic 

depends on previous states, which must be based on the last simulated value of the 

previous control-chart statistic. That is, each new series of the OC process must be 

started using the last value of the stable IC burn-in period, which reflects the IC 

process prior to a process shift. Additionally, the design choice depends on 

computing time versus the personal computer’s (PC) configuration and 

performance. D1 takes significantly more time to run on a PC since the series-
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length m is replicated and evaluated nsim times, but for most simulations the full 

series length m is not necessary. Unfortunately, one doesn’t know in advance when 

the first z to exceed the CLs will occur, so m must be long enough to ensure a 

recordable RL will occur in each separate nsim. The full series of z-values for each 

nsim are stored in an array, and since the array size is relatively small, the program 

is less dependent on the PCs processor and memory to handle large arrays. The 

trade-off then relates to being able to use a PC with less processing capacity and 

memory, but requiring greater processing time. 

The D2 design is best used to evaluate the OC case when implementing 

control-charts with run-rules or multiple-sampling plans, wherein the OC statistic 

at any given time is not dependent on a previous value. D2 creates one very long 

array of size m and indexes through it to count the RLs, and is thus significantly 

faster. The long array size though may create a limitation on computers with less 

memory. As a result, D2 might not be a feasible option on some PCs, but for those 

that can accommodate the large array in memory the processing time in reduced 

significantly. Additionally, the D2 design with an overly long series-length may 

still press the limits of any modern PC’s ability to dimension an overly large array 

in memory. In either event, if using Excel 2010 to generate or store RLs, one must 

be careful of the longest expected RL output since the maximum number of rows 

is 1,048,576. If the RL is expected to exceed this value then the RLs can be 

truncated or can be written to a text file. 

Design Validation and Error Analysis 

For the sake of completion, a limited study was conducted as follows to validate 

designs and estimate error using two tests (T1 and T2). The test compares and 

contrasts results using T1 and T2 (shown below) to validate the MCS design for the 

IC z ~ N(0, 1) process using m = 14,000, nsim = 10,000, ARLs of 1000, 500, 370, 

and 50, respectively, repeated NumRuns = 20 times, and maximum error in 

estimation corresponding to 95% confidence. The aggregated results are shown in 

Tables 1 (ARLs), 2 (MRLs), and 3 (SRLs), and are further discussed. 

 

 T1: Use Excel 2010 and VBA implementing built-in RND and 

NORM_DIST functions. 

 T2: Use Excel 2010 and VBA implementing the Mersenne Twister 

algorithm and Box-Muller transform methods (Annen, 2013). 
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Tables 1, 2, and 3 reflect simulated estimated ARLs, MRLs, and SRLs as specified 

above for tests T1 and T2. Note that the results in each table are sorted by ARL, 

MRL, and SRL in ascending order, respectively. Table 1 displays the observed 

(estimated) ARLs (versus expected ARLs) for the 20 independent simulation runs 

(sorted from lowest to highest). The summary statistics provided reflect the 

aggregated ARLs over the 20 runs. For T1, while the aggregated average ARLs do 

not all match the expected results, most of individual ARL estimates are very close 

to the expected ARLs, that is, most of the observed error is within the maximum 

expected error. The last row of the table reflects the percent of the 20 individual 

runs for each estimated ARL that are within the expected error, and all but expected 

ARL = 370 resulted in 95% to 100% of runs within the expected error. ARL = 370 

also corresponds to an unexpectedly high standard deviation of RLs (4.35). The 

average aggregate error for expected ARL = 1,000 (E = 3.85) is well within 

expected error (4.5), but the error for expected ARL = 500 (E = 4.60) is 205% 

larger than expected error (2.24), the error for expected ARL = 370 (E = 3.35) is 

202% larger than the expected error (1.65), and the error for expected ARL = 50 

(E = 0.30) is 134% larger than the expected error (0.22). Although the percent 

difference is large the actual error is very small. 

Regarding T2, the aggregated estimated ARLs are generally quite close to 

expected ARLs, and the standard deviation between the individual runs are 

typically close to those of T1, with the exception of estimated ARL = 1,000 with a 

very large standard deviation (7.13). While each of the 20 individual runs for each 

estimated ARL is within the expected errors, the average aggregated errors are 

similar to that of T1, all having larger than expected errors. 

Table 2 displays the same summary data as Table 1 but for the MRLs instead. 

The estimated MRLs are very close to expected MRLS. The results are largely 

consistent with those found in Table 1, but the maximum errors for T1 and T2 are 

typically somewhat larger than those for the ARLs. The standard deviations 

between median RLs as well as the standard deviations of errors are much larger 

than expected. The last row of the table reflects the percent of 20 individual runs 

for each MRL that are within the expected error. For T1, 100% of the 20 runs for 

expected MRL = 693 (ARL = 1,000) and MRL = 256 (ARL = 370) are within 

expected error, while 90% of runs for expected MRL = 346 (ARL = 500) are within 

expected error, and 95% of runs for expected MRL = 34 (ARL=50) are within 

expected error. For T2, 90% of the 20 runs for expected MRL = 693 are within 

expected error, 95% for MRL = 346, 100% for MRL = 258, and only 85% for 

MRL = 34. 
 



JOHN N. DYER 

607 

Table 1. ARL summaries for S1 

 

Expected ARLs 1000  500  370  50 

Simulation Test 1 Test 2   Test 1 Test 2   Test 1 Test 2   Test 1 Test 2 

1 994 989  489 494  361 365  49 49 

2 995 994  490 494  362 367  49 49 

3 996 995  491 495  362 367  49 49 

4 997 996  492 495  365 368  50 49 

5 998 996  492 496  367 368  50 50 

6 998 997  493 498  368 370  50 50 

7 998 998  495 498  368 370  50 50 

8 999 999  495 498  369 370  50 50 

9 1000 1001  496 500  370 371  50 50 

10 1002 1001  496 501  370 371  50 50 

11 1003 1001  497 502  371 372  50 50 

12 1003 1002  497 502  371 373  50 50 

13 1003 1003  498 503  371 373  50 50 

14 1004 1003  499 504  372 374  50 50 

15 1004 1005  499 504  372 374  50 50 

16 1005 1008  499 505  372 374  50 50 

17 1006 1008  500 505  374 375  50 51 

18 1007 1012  502 506  374 376  51 51 

19 1007 1014  504 508  375 376  51 51 

20 1008 1017   504 508   377 376   51 51 

            

ARL Summary Statistics for 20 Simulation Runs 

Average 1001 1002  496 501  370 372  50 50 

Median 1002 1001  496 501  370 372  50 50 

Std Dev 4.32 7.13  4.40 4.58  4.35 3.30  1.00 0.64 

Minimum 994 989  489 494  361 365  49 49 

Maximum 1008 1017  504 508   377 376  51 51 

            

ARL Error Summary Statistics for 20 Simulation Runs 

Expected Error1 20.00  10.00  7.40  1.00 

Expected Error2 4.47  2.24  1.65  0.22 

Average 3.85 5.56  4.60 4.03  3.35 2.99  0.30 0.49 

Median 3.50 4.07  4.00 4.26  2.00 2.91  0.00 0.41 

Std Dev 2.10 4.60  3.15 2.12  2.73 1.95  0.46 0.39 

Minimum 0.00 0.57  0.00 0.08  0.00 0.07  0.00 0.03 

Maximum 8.00 17.37  11.00 7.70  9.00 6.46  1.00 1.36 

% Within Error 100% 100%  95% 100%  85% 100%  100% 100% 

 

Note: 1 individual run of nsim = 10,000, 2 aggregated runs of nsim = 200,000 
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Table 2. MRL summaries for S1 

 

Expected MRLs 693  346  256  34 

Simulation Test 1 Test 2   Test 1 Test 2   Test 1 Test 2   Test 1 Test 2 

1 676 675  337 336  248 250  33 34 

2 679 675  337 338  251 251  34 34 

3 683 677  337 338  251 252  34 34 

4 684 681  341 339  251 253  34 34 

5 685 683  341 340  252 254  34 34 

6 685 684  344 341  252 254  35 35 

7 687 687  345 342  253 254  35 35 

8 689 687  345 344  255 254  35 35 

9 690 688  346 344  255 255  35 35 

10 691 690  347 345  256 255  35 35 

11 692 694  347 346  256 256  35 35 

12 694 695  348 347  257 257  35 35 

13 694 696  348 347  259 258  35 35 

14 695 696  349 348  259 258  35 35 

15 697 699  350 348  259 259  35 35 

16 701 703  351 350  260 260  35 35 

17 701 705  352 350  260 260  35 35 

18 702 705  354 352  260 260  35 36 

19 706 712  356 352  262 261  35 36 

20 706 718   358 353   262 262   36 36 

            

MRL Summary Statistics for 20 Simulation Runs 

Average 692 692  347 345  256 256  35 35 

Median 691 692  347 346  256 256  35 35 

Std Dev 8.52 12.15  6.04 5.16  4.17 3.48  0.64 0.56 

Minimum 676 674.5  337 336  248 250  33 34 

Maximum 706 718   358 353   262 262   36 36 

            

ARL Error Summary Statistics for 20 Simulation Runs 

Expected Error1 17.33  8.65  6.40  0.85 

Expected Error2 3.87  1.93  1.43  0.19 

Average 7.05 9.88  4.75 4.28  3.50 2.95  0.85 0.85 

Median 8.00 9.75  4.50 4.00  4.00 2.50  1.00 1.00 

Std Dev 4.66 6.56  3.55 2.86  2.06 1.69  0.48 0.55 

Minimum 1.00 1.00  0.00 0.00  0.00 0.00  0.00 0.00 

Maximum 17.00 25.00  12.00 10.00  8.00 6.00  2.00 2.00 

% Within Error 100% 90%   90% 95%   95% 100%   95% 85% 

 

Note: 1 individual run of nsim = 10,000, 2 aggregated runs of nsim = 200,000 
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Table 3. SRL summaries for S1 

 

Expected SRLs 1000  500  370  50 

Simulation Test 1 Test 2   Test 1 Test 2   Test 1 Test 2   Test 1 Test 2 

1 1000 984 
 484 489  361 366  48 48 

2 1001 984 
 485 493  363 367  49 49 

3 1001 985 
 485 496  364 368  49 49 

4 1001 985 
 486 497  365 372  49 49 

5 1003 988 
 486 499  366 372  49 49 

6 1005 989 
 487 499  367 372  49 49 

7 1005 992 
 487 499  368 372  49 49 

8 1006 992 
 487 500  368 372  49 49 

9 1006 995 
 488 501  369 372  49 49 

10 1006 1004 
 488 503  370 373  50 49 

11 1007 1007 
 489 505  370 375  50 49 

12 1007 1008 
 490 506  371 375  50 49 

13 1010 1008 
 490 506  372 376  50 49 

14 1010 1008 
 491 506  373 376  50 50 

15 1010 1009 
 495 507  374 376  50 50 

16 1013 1012 
 495 509  374 378  50 50 

17 1013 1012 
 495 510  376 378  50 50 

18 1013 1012 
 496 510  376 379  50 50 

19 1014 1022 
 498 511  377 381  50 50 

20 1014 1029   498 514   378 389   51 51 

            

SRL Summary Statistics for 20 Simulation Runs 

Average 1007 1001  490 503  370 374  50 49 

Median 1007 1005  489 504  370 374  50 49 

Std Dev 4.57 13.48  4.47 6.46  4.88 5.18  0.66 0.70 

Minimum 1000 984  484 489  361 366  48 48 

Maximum 1014 1029   498 514   378 389   51 51 

            

SRL Error Summary Statistics for 20 Simulation Runs 

Expected Error1 27.73  13.86  10.26  1.39 

Expected Error2 6.20  0.15  0.11  0.02 

Average 7.25 11.84  10.00 5.83  4.00 5.30  0.55 0.77 

Median 6.50 11.49  11.50 5.84  4.00 4.33  0.50 0.58 

Std Dev 4.56 5.82  4.44 3.80  2.61 4.15  0.59 0.49 

Minimum 0.00 3.52  2.00 0.37  0.00 1.60  0.00 0.02 

Maximum 14.00 29.01  16.00 13.69  9.00 18.74  2.00 1.94 

% Within Error 100% 95%   70% 95%   100% 90%   95% 95% 

 

Note: 1 individual run of nsim = 10,000, 2 aggregated runs of nsim = 200,000 
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Table 3 displays the same summary data as Table 1 but for SRLs instead. For 

T1, while the aggregated average SRLs do not all match the expected results, most 

of individual SRL estimates are relatively close to the expected SRLs. The average 

errors are significantly larger than those of the ARLs and MRLs. The last row of 

the table reflects the percent of 20 individual runs for each SRL that are within the 

expected error. For T1, while expected SRLs 1000, 370 and 50 have 95% to 100% 

of runs within the expected error, ARL = 500 has only 70% of runs within the 

expected error. The average aggregate errors for all T1 SRLs are larger than 

expected. Results for T2 are more consistent with what is expected. The estimated 

SRLs are all very close to expected SRLs, and expected SRL 1,000, 500 and 50 

have 95% of runs within the expected error, while SRL = 370 has 90% of runs 

within expected error. 

As previously mentioned, for any given ARL/MRL/SRL estimate and 

simulation size, any difference between expected errors versus observed errors are 

due to the choice of RNG, or perhaps implementation and/or numerical precision. 

While most results are consistent with expected results, and the estimates are 

relatively adequate, it appears that Excel’s implementation of the two RNGs is 

adequate, and in some cases is superior to the VBA implementation of the 

Mersenne Twister algorithm and Box-Muller transform methods. Additionally, the 

T1 design runs about 8-times faster than the T2 design, running on a PC configured 

with an AMD Phenom II 945 Processor (3.00 GHz), 8 GB of Ram, using Windows 

7 (64-bit) and Excel 2010 (32-bit). 

Design Modification, Validation, and Evaluation for the 
EWMA Control Chart 

Assuming the D1 design proposed in this paper has validated the simulation results 

for the z ~ N(0, 1) process, we can now modify the program to transform the series 

of z ~ N(0, 1) values to a series of EWMA control chart statistics. It is known that 

the CLs for the EWMA are much narrower than those of the Individuals control-

chart. Control-limit equations in the literature relate that the EWMA with parameter 

λ = 0.25 and desired IC ARL≈500 has estimated CLs = ±1.134. The corresponding 

Shewhart IC ARL = 370 with CL = ±3.00. 

The D1 program designed is then modified to evaluate a set of 7 different CL 

values ranging from ±1.14271 to ±1.1240 for which to compare our EWMA 

statistics. These CLs correspond to Shewhart z ~ N(0, 1) ARLs from 400 to 340 in 

steps of 10, centered on ARL = 370. Hence we will modify the MCS validation 

design to provide estimated ARLs, MRLs, and SRLs for the complete set of EWMA 
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CLs, for both the IC and OC cases. This modified program will thus allow one to 

validate and then estimate IC and OC RL properties of the EWMA over a wide 

array of parameter values and any choice of CLs. 

The simulation is then designed to accommodate the following three studies. 

 

 Study 1: One individual validation run (Num Runs = 1) of m = 7,000 

and nsim = 200,000, λ = 1.00, for the IC z ~ N(0, 1) process. The 

simulation requires no burn-in period. The EWMA with λ = 1.00 

corresponds to a Shewhart control-chart, hence the EWMA CLs for 

ƛ = 1.00 are shown in Table 4 (2nd row) correspond to desired 

Shewhart IC ARLs between 400 and 340. This simulation is to 

validate the modified design when λ = 1.00. Under this process we 

expect the error in estimation of Shewhart desired ARL = 370 to be 

E ≈ 1 with 95% degree of confidence. 

 Study 2: One individual validation run (Num Runs = 1) of m = 7,000 

and nsim = 200,000, λ = 0.25, for the IC z ~ N(0, 1) process. To 

maintain consistency with methods and results in literature, there is 

no burn-in period, nor are time-varying control-limits used at start-up. 

The modified EWMA CLs with λ = 0.25 shown in Table 4 correspond 

to desired EWMA IC ARLs between about 536 and 462. This 

simulation is to validate the modified design with expected results 

when λ = 0.25 with no mean-shift (б = 0.00). 

 Study 3: One individual estimation run (Num Runs = 1) of m = 1,000 

and nsim = 200,000, λ = 0.25, for the OC z ~ N(μ-Shift, 1) process 

based on CLs in study 2. The simulation uses a burn-in period of 50. 

This simulation is to estimate RL properties and generate summary 

estimates (ARL, MRL, SRL) and compare with expected OC results 

when λ = 0.25 and mean-shifts of б = 0.50, б = 1.00, and б = 1.50. 

 

For study 1, the observed ARLs, MRLs and SRLs are consistent with what is 

expected. While many of the observed ARL and MRL estimates equal the expected 

results, the maximum error for those that do not equal expected results is never 

more than E = 1. While many of the observed SRLs are also equal to expected 

results, the maximum error never exceeds E = 2. Recall in the limited validation 

study in a subsequent section that the SRL is most often marginally 

inflated/deflated from expected results. Since the simulation result is consistent 
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with what is known, the modified design is validated and expected to be highly 

accurate. 

For study 2, focus on the observed EWMA ARL corresponding to Shewhart 

IC ARL = 370. Much of the comparative literature on the EWMA provide results 

for λ = 0.25 and ARL = 370, relating that the expected EWMA IC ARL = 500. 

Many studies based on integral equation, MCMC and MCS studies estimate 

the actual IC ARL between 501 and 503. This simulation result reveals estimated 

ARL = 501, which is largely consistent with the previous finding. Since the 

simulation result is consistent with the existing literature, the modified design is 

again validated and expected to be highly accurate. 
 
 
Table 4. EWMA validation and estimation summaries 
 

Shewhart IC ARLs 400 390 380 370 360 350 340 

EWMA CLs λ = 1.00 3.0233 3.0157 3.0078 2.9997 2.9913 2.9827 2.9738 

Expected IC ARL 400 390 380 370 360 350 340 

Observed IC ARL 399 389 380 371 360 350 341 

Expected IC MRL 277 270 263 256 249 242 235 

Observed IC MRL 278 270 263 257 250 243 237 

Expected IC SRL 400 390 380 370 360 350 340 

Observed IC SRL 398 389 380 370 359 349 340 
        

EWMA CLs λ = 0.25 1.1427 1.1398 1.1368 1.1338 1.1306 1.1274 1.124 
        

μ-Shift = 0.00 

Observed IC ARL 536 524 512 501 488 475 462 

Observed IC MRL 372 364 355 347 338 330 320 

Observed IC SRL 533 523 510 503 489 475 463 
        

μ-Shift = 0.50 

Observed OC ARL 50 49 48 48 47 46 46 

Observed OC MRL 36 35 35 34 34 34 33 

Observed OC SRL 46 45 44 44 43 43 42 
        

μ-Shift = 1.00 

Observed OC ARL 11 11 11 11 11 11 11 

Observed OC MRL 9 9 9 9 9 9 9 

Observed OC SRL 8 8 8 8 7 7 7 
        

μ-Shift = 1.50 

Observed OC ARL 5 5 5 5 5 5 5 

Observed OC MRL 5 5 5 5 5 5 5 

Observed OC SRL 3 3 3 3 3 3 3 
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For study 3, again focus on EWMA IC ARL = 370 and OC ARLs related to 

the three specified mean-shifts. The findings are consistent with existing literature 

regarding OC ARLs (Lucas & Saccucci, 1990). Although not a part of this study, 

it is interested to note the same OC ARLs for mean-shifts б = 1.00, and б = 1.50, 

suggesting that across the specified range of IC ARLs one can expect the same OC 

ARLs over the specified range of EWMA CLs, hence one would benefit most by 

choosing the wider CLs to increase the IC ARL. Since the simulation result is 

consistent with the existing literature, the modified design is again validated and 

expected to be highly accurate, hence one could feel confident using the design over 

a wider range of EWMA studies. 

Conclusion 

Two MCS validation design schemes related to control-charting simulation studies 

were proposed. The basic design was modified to evaluate the EWMA control-chart. 

Three EWMA MCS studies were conducted and evaluated, resulting in summaries 

consistent with existing literature, hence validating the adequacy of the MCS design 

schemes. Although the MCS design is specific to control-chart evaluation, the basic 

design and related issues extend to simulation studies in other fields. It is suggested 

that researchers and practitioners using any MCS design should state results relative 

to the issues discussed in this paper, including justification of RNGs, simulation 

size, expected error, burn-in period, and design validation, among others. 
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Appendix A: Design 1 VBA Code 

Sub Sim() 

' 1. Declare Variables ------------------------------------------------- 

Range("A1").Select: Dim numRuns As Long, LastRow As Long, LastCol As Long, 

RLStartRow As Long, RLEndRow As Long 

Dim CLStartRow As Long, CLStartCol As Long, CLEndCol As Long 

Dim M As Long, nsim As Long, Mu As Double, Sigma As Double, MuShift As 

Long, NumCL As Long, CL As Double 

Dim p1 As Double, p2 As Double, expARL As Double, expMRL As Double, expSRL 

As Double 

Dim Z As Long, a As Long, b As Long, c As Long, d As Long, e As Long, f 

As Long 

Dim zOut() As Variant, CLArray() As Double, RLOut() As Double 

Dim wsOut As Range, calcOut As Range, blankOut As Range 

Dim wf As WorksheetFunction: Set wf = Application.WorksheetFunction 

Dim Path As String: Path = "User Sets Path Here to Save Results": Dim 

xlsmExt As String: xlsmExt = ".xlsm" 

 

' 2. Set Number of Simulation Runs ------------------------------------- 

numRuns = Range("B2").Value                                                 'Number 

of Simulation Runs (each saved separately to path above) 

 

' 3. Start Simulation Runs---------------------------------------------- 

For Z = 1 To numRuns: Range("B13") = Z                      'Display Run 

 

' 4. Delete Previous Time and Blank Count Outputs ---------------------- 

Range("B10:B12").Select: Selection.ClearContents 'Delete Previous Start-

Time, End-Time, & Run-Time 

Range("D11").Select: Selection.ClearContents 'Delete Previous Blank Count 

 

' 5. Delete Previous Estimates and Run-Length Outputs ------------------ 

LastRow = ActiveSheet.UsedRange.Rows.Count: 'Count Last Row of Worksheet 

LastCol = ActiveSheet.UsedRange.Columns.Count 'Count Last Column of 

Worksheet 

Range(Cells(2, 6), Cells(LastRow, LastCol)).Select:  

Selection.ClearContents 'Delete previous Estimates and RL outputs 
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' 6. Set Start Time ---------------------------------------------------- 

StartTime = "=Now()": Range("B10") = StartTime: Range("B10") = 

Range("B10") ‘ 

 

' 7. Set Variables Typed  into Worksheet Inputs ------------------------ 

M = Range("B3").Value                                     'Series Length 

nsim = Range("B4").Value                          'Number of Simulations 

Mu = Range("B5").Value                   'IC Mean of Normal Distribution 

Sigma = Range("B6").Value             'IC Std Dev of Normal Distribution 

MuShift = Mu + Range("B7").Value * Sigma 'OC Mean of Shifted x~N(Mu+Shift, 

1) 

 

' 8. Set Range of Control Limits For ARLs Starting in Range("F3") ------ 

CLStartRow = 2: CLStartCol = 6 'Starting Row/Column of Control Limits 

(F3) 

NumCL = wf.Count(Range(Cells(1, CLStartCol), Cells(1, LastCol))) 'Count 

Number of Control Limits 

CLEndCol = CLStartCol + NumCL – 1       'Ending Column of Control Limits 

RLStartRow = 10                       'Starting Row of Run-Length Output 

RLEndRow = RLStartRow + nsim – 1        'Ending Row of Run-Length Output 

Set wsOut = Range(Cells(RLStartRow, CLStartCol), Cells(RLEndRow, 

CLEndCol)) 'Set Range of RL Output in Worksheet 

 

' 9. Calculate Control Limits and OC ARLs ------------------------------ 

ReDim CLArray(1 To 2, 1 To NumCL)      'Re-dimension Control-Limit Array 

For a = CLStartCol To CLEndCol 

CLL = wf.Norm_Inv((1 / Cells(1, a)) / 2, Mu, Sigma) 'Calculate 

Lower Control Limit Value 

CLU = wf.Norm_Inv(1 - (1 / Cells(1, a)) / 2, Mu, Sigma) 'Calculate 

Upper Control Limit Value 

Cells(2, a) = CLU: Cells(3, a) = CLL 'Copy CLs into Worksheet 

CLArray(1, a - 5) = CLU: CLArray(2, a - 5) = CLL 'Copy CLs 

into CL Array 

'Calculate p1 and p2 for Expected ARL Calculation 

p1 = 1 - wf.Norm_Dist(Cells(2, a), MuShift, Sigma, True) 

'P(z>Upper CL) 
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p2 = wf.Norm_Dist(Cells(3, a), MuShift , Sigma, True) 

'P(z<Lower CL) 

'Calculate Expected ARLs (will be the same for the IC Process) 

expARL = (1 / (p1 + p2)) 

Cells(4, a) = Round(expARL, 2) 'Copy Expected ARLs into 

Worksheet  

'Calculate Expected MRLs (will be the same for the IC Process) 

expMRL = (wf.Ln(0.5)) / (wf.Ln(1 - (1 / Cells(4, a))) 

Cells(5, a) = Round(expMRL, 2) 'Copy Expected MRLs into 

Worksheet  

'Calculate Expected SRLs (will be the same for the IC Process) 

expSRL = ((1 - (1 / Cells(4, a))) ^ (1 / 2)) / (1 / Cells(4, 

a)) 

Cells(6, a) = Round(expSRL, 2) 'Copy Expected SRLs into 

Worksheet 

Next a 

 

' 10. Start Simulations ------------------------------------------------ 

ReDim RLOut(1 To nsim, 1 To NumCL)        'Re-dimension Run-Length Array 

For b = 1 To nsim:  Application.ScreenUpdating = False 'For Each Simulation 

 

' 11. Fill zOut Array with z~N(Mu,Sigma) Random Numbers of Series-Length 

M using NormInv Function ----------------------------------------------- 

ReDim zOut(1 To M, 1 To 2)         'Re-dimension Array of Random Numbers 

For c = 1 To M      'For Each Random Number to Be Generated in the Array 

p = Rnd            'Use Rnd Function to generate value of p, 0<p<1 

If p <= 0 Then                                 'If p<0 Then 

p = Rnd                      'Generate new value of p 

End If 

zOut(c, 1) = wf.NormInv(p, MuShift, Sigma) 'Use NormInv Fn to fill 

Array with Random Value 

zOut(c, 2) = c     'Record Location in Array for each Random Value 

Next c 

 

' 12. Compare each z with Control Limits and Record Run-Lengths in Run-

Length Array ----------------------------------------------------------- 

For d = 1 To NumCL                   'For Each CL in Control-Limit Array 

For e = 1 To M              'For each Random z-Value in Array zOut 
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If zOut(e, 1) > CLArray(1, d) Or zOut(e, 1) < CLArray(2, d) 

Then 'If z exceeds CLs Then 

RLOut(b, d) = zOut(e, 2) 'Record Run-Length Location 

in Run-Length Array 

Exit For                                 'Exit and Move to Next CL 

Else: End If 

Next e                                        'Else Move to Next z 

Next d 

'----------------------------------------------------------------------- 

Next b  

 

' 13. Copy Run-Length Array into Worksheet ----------------------------- 

wsOut.Value = RLOut: Application.ScreenUpdating = True 'Copy Run-Length 

Array into Worksheet Range 

 

' 14. Calculate Estimated ARLs, MRLs and SRLs -------------------------- 

For f = CLStartCol To CLEndCol: Set calcOut = Range(Cells(RLStartRow, f), 

Cells(RLEndRow, f)) 

Cells(7, f) = wf.Average(calcOut)                   'Calculate ARL 

Cells(8, f) = wf.Median(calcOut)                    'Calculate MRL 

Cells(9, f) = wf.StDev(calcOut)                     'Calculate SRL 

Next f 

 

' 15. Count Blank Run-lengths ------------------------------------------ 

Set blankOut = Range(Cells(RLStartRow, CLStartCol), Cells(RLEndRow, 

CLStartCol)) 

Range("D11") = wf.CountBlank(blankOut) 'Count Simulations with Blank Run-

Lengths 

 

' 16. Set End Time and Calculate Run Time ------------------------------ 

EndTime = "=Now()": Range("B11") = StartTime: Range("B11") = Range("B11") 

Range("B12") = Range("B11") - Range("B10") 

 

' 17. Save Workbook and Do Next Run Z ---------------------------------- 

Range("A1").Select: ActiveWorkbook.SaveAs Path & "-M=" & M & "-Z=" & Z & 

xlsmExt 'Save Workbook  

Next Z                                                         'Next Run 

End Sub 
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Appendix B: Design 2 VBA Code 

Sub Sim() 

' 1. Declare Variables ------------------------------------------------- 

Dim LastRow As Long, LastCol As Long, RLStartRow As Integer, RLCountRow 

As Integer, MaxRow As Long 

Dim CLStartCol As Integer, CLEndCol As Integer, CLStartRow As Integer, 

numRuns As Long, M As Long 

Dim Mu As Double, Sigma As Double, MuShift As Double, NumCL As Integer, 

CL As Double, p1 As Double, p2 As Double 

Dim expARL As Double, expMRL As Double, expSRL As Double, Z As Long, a As 

Long, c As Long, d As Long, e As Long 

Dim f As Long, g As Long, h As Long, i As Long, RL2 As Long, RL1 As Long, 

RLDiff As Long, ZOut() As Variant 

Dim RLArray() As Variant, CLArray() As Variant, ROut As Long, MaxCount As 

Long, MaxRL() As Long, RLCount As Long 

Dim calcOut As Range, wf As WorksheetFunction: Set wf = 

Application.WorksheetFunction 

Dim Path As String: Path = "User Sets Path to Save Results": Dim xlsmExt 

As String: xlsmExt = ".xlsm" 

 

' 2. Set Number of Simulation Runs ------------------------------------- 

numRuns = Range("B2").Value 'Number of Simulation Runs (each saved 

separately to path above) 

 

' 3. Start Simulation Runs --------------------------------------------- 

For Z = 1 To numRuns: Range("B13") = Z                      'Display Run 

 

' 4. Delete Previous Time and Blank Count Outputs ---------------------- 

Range("B9:B11").Select: Selection.ClearContents 'Delete Previous Start-

Time, End-Time, & Run-Time 

 

' 5. Delete Previous Estimates and Run-Length Outputs ------------------ 

LastRow = ActiveSheet.UsedRange.Rows.Count: 'Count Last Row of Worksheet 

LastCol = ActiveSheet.UsedRange.Columns.Count 'Count Last Column of 

Worksheet 

Range(Cells(2, 6), Cells(LastRow, LastCol)).Select:  

Selection.ClearContents 'Delete previous Estimates and RL outputs  
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' 6. Set Start Time ---------------------------------------------------- 

StartTime = "=Now()": Range("B9") = StartTime: Range("B9") = Range("B9") 

' 

 

'7. Set Variables Typed  into Worksheet Inputs ------------------------- 

M = Range("B3").Value                                    'Series Length  

Mu = Range("B4").Value                  'IC Mean of Normal Distribution  

Sigma = Range("B5").Value            'IC Std Dev of Normal Distribution  

MuShift = Mu + Range("B6").Value * Sigma 'OC Mean of Shifted x~N(Mu+Shift, 

1)  

 

' 8. Set Range of Control Limits For ARLs Starting in Range("F3") ------ 

CLStartRow = 2: CLStartCol = 6 'Starting Row/Column of Control Limits 

(F3)  

NumCL = wf.Count(Range(Cells(1, CLStartCol), Cells(1, LastCol))) 'Count 

Number of Control Limits  

CLEndCol = CLStartCol + NumCL – 1      'Ending Column of Control Limits  

RLCountRow=10                                 'Row of Run-Length Counts  

RLStartRow = 12                      'Starting Row of Run-Length Output  

MaxRow=1048576                             'Last Row in Excel Worksheet  

 

' 9. Calculate Control Limits and OC ARLs ------------------------------ 

ReDim CLArray(1 To 2, 1 To NumCL)     'Re-dimension Control-Limit Array  

For a = CLStartCol To CLEndCol 

CLL = wf.Norm_Inv((1 / Cells(1, a)) / 2, Mu, Sigma) 'Calculate 

Lower Control Limit Value  

CLU = wf.Norm_Inv(1 - (1 / Cells(1, a)) / 2, Mu, Sigma) 'Calculate 

Upper Control Limit Value  

Cells(2, a) = CLU: Cells(3, a) = CLL 'Copy CLs into Worksheet  

CLArray(1, a - 5) = CLU: CLArray(2, a - 5) = CLL 'Copy CLs 

into CL Array  

'Calculate p1 and p2 for Expected ARL Calculation 

p1 = 1 - wf.Norm_Dist(Cells(2, a), MuShift, Sigma, True) 

'P(z>Upper CL) 

p2 = wf.Norm_Dist(Cells(3, a), MuShift , Sigma, True) 

'P(z<Lower CL) 

'Calculate Expected ARLs (will be the same for the IC Process) 

expARL = (1 / (p1 + p2)) 
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Cells(4, a) = Round(expARL, 2) 'Copy Expected ARLs into 

Worksheet 

'Calculate Expected MRLs (will be the same for the IC Process) 

expMRL = (wf.Ln(0.5)) / (wf.Ln(1 - (1 / Cells(4, a))) 

Cells(5, a) = Round(expMRL, 2) 'Copy Expected MRLs into 

Worksheet 

'Calculate Expected SRLs (will be the same for the IC Process) 

expSRL = ((1 - (1 / Cells(4, a))) ^ (1 / 2)) / (1 / Cells(4, 

a)) 

Cells(6, a) = Round(expSRL, 2) 'Copy Expected SRLs into 

Worksheet 

Next a 

 

' 10. Start Simulations - Fill ZOut Array with z~N(Mu,Sigma) Random 

Numbers of Series-Length M using NormInv Function----------------------- 

ReDim ZOut(1 To M, 1 To 2): Application.ScreenUpdating = False 'Re-

dimension Run-Length Array 

For c = 1 To M      'For Each Random Number to Be Generated in the Array  

p = Rnd            'Use Rnd Function to generate value of p, 0<p<1  

If p <= 0 Then                                 'If p<0 Then  

p = Rnd                      'Generate new value of p  

End If 

zOut(c, 1) = wf.NormInv(p, MuShift, Sigma) 'Use NormInv Fn to fill 

Array with Random Value 

zOut(c, 2) = c     'Record Location in Array for each Random Value  

Next c 

 

' 11. Compare each z with Control Limits and Record Run-Lengths in Run-

Length Array ----------------------------------------------------------- 

For d = 1 To NumCL                   'For Each CL in Control-Limit Array  

Rout = 11                                'Set Row Output to Row 11  

For e = 1 To M               'For each Random z-Value in Array zOut  

If ROut = MaxRow Then 'If Row Out Exceeds Excel's Max Row 

Length  

Exit For   'Exit For Loop If Row Out Exceeds Excel's Max Row Length  

ElseIf zOut(e, 1) > CLArray(1, d) Or zOut(e, 1) < CLArray(2, 

d) Then 'If z exceeds CLs Then  

Rout = Rout + 1                  'Increment Row Output by 1  
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Cells(ROut, d).Value = e           'Record Run-Length Location  

End If 

Next e                                   'Else Move to Next z-value  

Next d                                                   'Move to Next CL  

 

' 12. Calculate the Count of Each Run Length for Each CL & Store in Row 

10 --------------------------------------------------------------------- 

For f = CLStartCol To CLEndCol                               'For Each CL  

RLCount = wf.CountA(Range(Cells(RLStartRow, f), Cells(MaxRow, f))) 

'Count Number of Non-Zero Run-Lengths  

Cells(RLCountRow, f) = RLCount     'Copy Count into Worksheet Cells  

Next f                                                   'Move to Next CL  

 

' 13. Iteratively Subtract Subsequent RL from Previous RL to Calculate 

Indexed Run-Lengths ---------------------------------------------------- 

LastRow = ActiveSheet.UsedRange.Rows.Count  'Count Last Row of Worksheet 

MaxCount = wf.Max(Range(Cells(RLCountRow, CLStartCol), Cells(RLCountRow, 

CLEndCol))) 

ReDim RLArray(1 To MaxCount, 1 To NumCL)    'Re-dimension Run-Length Array  

For g = CLStartCol To CLEndCol                               'For Each CL  

RLCount = Cells(RLCountRow, g)      'Set Count from Worksheet Cells  

For h = 1 To RLCount                      'For Each Row/Column Cell  

RL2 = Cells(h + RLCountRow + 1, g).Value 'Set RL2 = to 

Subsequent Run-Length Value  

RL1 = Cells(h + RLCountRow, g).Value 'Set RL1 = to Previous 

Run0-Length Value  

RLDiff = RL2 - RL1            'Calculate Difference Rl2-Rl1  

RLArray(h, g - (CLStartCol - 1)) = RLDiff 'Copy RLDiff into 

RLArray  

Next h                                'Move to Next Row/Column Cell  

Next g                                                   'Move to Next CL  

 

' 14. Copy Run-Length Array into Worksheet ----------------------------- 

Range(Cells(RLStartRow, CLStartCol), Cells(MaxCount + RLCountRow + 1, 

CLEndCol)) = RLArray 

 

' 15. Find & Replace 0 Run-Lengths with Null String -------------------- 

LastRow = ActiveSheet.UsedRange.Rows.Count    'Count Last Row of Worksheet  
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Range(Cells(RLCountRow + 1, CLStartCol), Cells(LastRow, LastCol)).Select 

'Find & Replace 0 Run-Lengths  

Selection.Replace What:="0", Replacement:="", LookAt:=xlWhole,  

SearchOrder:=xlByColumns, MatchCase:=True _ 

SearchFormat:=False, ReplaceFormat:=False: Range("A1").Select 

 

' 16. Calculate Estimated ARLs, MRLs and SRLs -------------------------- 

For i= CLStartCol To CLEndCol 

RLCount = Cells(RLCountRow, i).Value         'Record RL Count for Each CL  

Set calcOut = Range(Cells(RLStartRow, i), Cells(RLCount + RLCountRow + 1, 

i)) 'Set Range of Run-Length Output  

Cells(7, i) = wf.Average(calcOut)                   'Calculate ARL  

Cells(8, i) = wf.Median(calcOut)                    'Calculate MRL  

Cells(9, i) = wf.StDev(calcOut)                     'Calculate SRL  

Next i 

 

' 17. Set End Time and Calculate Run Time ------------------------------ 

EndTime = "=Now()": Range("B10") = StartTime: Range("B10") = Range("B10") 

Range("B11") = Range("B10") - Range("B9") 

 

' 18. Save Workbook and Do Next Run Z ---------------------------------- 

Range("A1").Select 

ActiveWorkbook.SaveAs Path & "-" & M & "-" & Z & xlsmExt     'Save Workbook  

Next Z                                                          'Next Run  

End Sub 
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Missing data is a common problem in longitudinal studies because of the characteristics 
of repeated measurements. Herein is proposed a latent variable model for nonignorable 
intermittent missing data in which the latent variables are used as random effects in 
modeling and link longitudinal responses and missingness process. In this methodology, 
the latent variables are assumed to be normally distributed with zero-mean, and the 
values of variance-covariance are calculated through maximum likelihood estimations. 

Parameter estimates and standard errors of the proposed method are compared with the 
mixed model and the complete-case analysis in the simulations and the application to the 
weight gain prevention among women (WGPW) data set. In the simulation results with 
respect to bias, mean squared error, and coverage of confidence interval, the proposed 
model performs better than the other two methods in different scenarios. Relatively, the 
proposed latent variable model and the mixed model do a better job for between-subject 
effects compared to within-subject effects. The converse is true for the complete case 

analysis. The simulation results also provide support for application of this proposed 
latent variable model to the WGPW data set. 
 
Keywords: Latent variable, longitudinal study, non-ignorable missing data, weight 
gain prevention 

 

Introduction 

Missing data is a common issue encountered in the analysis of longitudinal data. 

In the behavioral intervention setting, missed visits and/or losing to follow up can 

be extremely problematic. In this area, missed visits are assumed to be a result of 

http://dx.doi.org/10.22237/jmasm/1478003640
mailto:liqin2004@gmail.com
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failure of the intervention, sustained lack of interest in the study, or decreased 

desire to change the behavior (Qin et al., 2009). For weight loss studies, these are 

common issues that must be dealt with at the data analysis phase. For example, 

Levine et al. (2007) conducted a weight gain prevention study among women 

(WGPW) aged 25 to 45 years old. Participants were assessed for BMI (Body 

Mass Index) at baseline, year one, two and three. However, the outcomes at 

follow-ups for some women were missing. Because the missing data might be 

related to their unobserved BMIs, they were considered as nonignorable, 

informative, or missing not at random (MNAR) (Rubin, 1976). 

To account for informative missingness, a number of model-based 

approaches were proposed to jointly model the longitudinal outcome and the 

missingness mechanism. The methodology adopted here is motivated by latent 

pattern mixture models (Lin, McCulloch, & Rosenheck, 2004) and latent dropout 

class models (Roy, 2003). In latent pattern mixture models, the mixture patterns 

are formed from latent classes that link the longitudinal responses and the 

missingness process. A non-iterative approach has been proposed, to assess the 

assumption of the conditional independence between the longitudinal outcomes 

and the missingness process given the latent classes (Lin et al., 2004). Roy (2003) 

noted the idea of pattern-mixture models (e.g., Little, 1993) is not appropriate in 

many circumstances, because there are many reasons for missingness and subjects 

with the same missingness pattern may not share a common distribution. Roy 

(2003) assumed the existence of a small number of dropout classes behind the 

observed dropout times. But for Roy (2003)’s method, it is difficult to decide the 

number of latent classes ahead of the analysis. It also leads to misclassification 

because it is difficult to divide subjects into classes due to the variety of reasons 

for missingness. Some subjects may not belong to any latent classes. So it is 

reasonable and straightforward to propose a latent variable model in which the 

latent variable is unobserved and continuous. 

The WGPW study data (Levine et al., 2007) provides motivation to adopt 

the latent pattern mixture model methodology. In this trial, interventions were 

compared with a control group in preventing weight gain among normal or 

overweight women. 190 women were randomized to clinic-based group 

intervention and information-only control condition. For women randomized to 

the interventions, treatment was provided over a two-year period, with a follow-

up at year three. All women participated in yearly assessment. The primary 

outcome of interest was body mass index (BMI) calculated from weight assessed 

yearly and height at baseline. Overall, 81%, 76% and 36% completed a weight 

assessment at year one, two and three, respectively. The reasons for this 



QIN ET AL. 

629 

incompleteness may be related to their unobserved outcomes. To avoid biased 

estimations, possible dependence of missingness status on unobserved responses 

has to be considered. 

A latent variable model is proposed for informative intermittent missingness, 

developed from Henderson, Diggle, and Dobson’s (2000) joint modeling of 

longitudinal measurements and event time data. In the proposed model, 

longitudinal process and missing data process are linked through a latent bivariate 

Gaussian process W(t) = {W1(t), W2(t)}. An assumption of this latent variable 

model is that the longitudinal measurements and missing data process are 

conditional independent given W(t). This assumption simplifies likelihood 

function. It also increases the strength of the relationship between the missing 

data process and underlying true outcome process determined by the correlation 

between W1(t) and W2(t). 

The proposed latent variable model and the parameter estimation is 

described in next section. A simulation study is carried out in the following 

section, to compare the performance of the latent variable model with mixed 

model and complete-case analysis. The proposed model is then applied to the 

WGPW data (Levine et al., 2007) and compared with the mixed model and 

complete-case analysis, and the assessment of fit of the model is treated. A 

discussion is provided in the last section. 

Model specification and estimation  

Assume the proposed latent variable model is present for the full data. Denoting a 

normally distributed continuous response variable measured on the ith subject at 

the jth occasion as Yij (i = 1, …, N; j = 1, …, K), the K intended responses are 

collected into a vector Yi = (Yi1, …, YiK) if there is no missing data. 

For various reasons, not all subjects have all K measurements. Here the 

baseline measure Yi1 is assumed to be observed for every individual. When 

missingness process occurs as a result of dropout, the response Yij for subject i is 

only observed at time points j = 1, …, ki; where ki ≤ K. But if the data are subject 

to intermittent missingness, before time point ki, there may be additional missing 

measurements. A missingness indicator, Rij, is used for each of the K 

measurements, with 1 if Yij is missing and 0 if Yij is observed. 

In the following, random-effect models are briefly described for the separate 

analysis of longitudinal data and missingness procedure, and the joint model via a 

latent zero-mean bivariate Gaussian process. 
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Longitudinal Responses 

The sequence of longitudinal measurements Yi1, Yi2, …, YiK for the ith subject at 

times ti1, ti2, …, tiK is modeled as 

 

Yij = βTxij + W1i (tij) + εij, 

 

where βTxij = μij is the mean response in which the vector β and xij represent 

possibly time-varying explanatory variables and their corresponding regression 

coefficients, respectively; W1i(tij) incorporates subject-specific random effects; 

and εij ~ N(0, σε2) is a sequence of mutually independent measurement errors 

corresponding to Yij. The W1i(tij) can be viewed as the actual individual variability 

of outcome trajectories after they have been adjusted for the overall mean 

trajectory and other fixed effects. 

Missing Data Procedures 

Here Rij = 1 is defined as Yij being missing, and Rij = 0 as Yij being observed. 

Letting φij denote the probability of Rij = 1, the logistic model for φij is specified 

as 

 

log

  

j
ij

1-j
ij

 = αTzij + W2i (tij). 

 

where α is a vector of log odds ratios corresponding to zij; zij is a vector of 

covariates specific to the missingness process for subject i; and W2i(tij) represents 

random effect. 

Latent Variable Model 

The dependence between the missingness process and longitudinal responses is 

characterized by sharing a common random effect vector for the ith subject, say 

(W1i, W2i)T, which is independent across different subjects. Thus, the stochastic 

dependence between W1i and W2i is critical. It is referred as latent association. 

Before specifying (W1i, W2i)T, the pair of latent variables (U1i, U2i)T are defined 

with a mean-zero bivariate Gaussian distribution N(0, Σ) (Henderson et al., 2000). 

The (W1i, W2i)T are then modeled as 

 

W1i (s) = U1i + U2is, 
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W2i (t) = λ1U1i + λ2U2it 

 

Both W1i and W2i are represented as random intercept and slope terms; s and t 

are possibly time-varying explanatory variables; λ1 and λ2 are the parameters 

measuring the association between W1i and W2i, that is, the association between 

longitudinal and missing data processes induced through the intercept, slope and 

current W1 value. The derivatives of W2i are as follows: 

 

                                  W2i (t) = λ1U1i + λ2U2it 

 = γ1U1i + γ2U2it + γ3(U1i + U2it) 

 = γ1U1i + γ2U2it + γ3W1i (t), 

 

where λ1 = γ1 + γ3 and λ2 = γ2 + γ3. 

In this way, the traditional Laird-Ware random effects models are combined 

with a proportionality assumption W2i(t) ∝ W1i(t). A simple case of this 

assumption is W2i(t) = W1i(t), in which γ1 = γ2 = 0 and γ3 = 1. The proportionality 

assumption allows us to consider more complicated situations in which the 

association between longitudinal and missing data processes is described in terms 

of the intercept and slope. In other words, the impact of underlying random effect 

structure differences between the longitudinal and missing data processes can be 

assessed. The fixed effects in sub-models mentioned earlier in this section, xij and 

zij, may or may not correspond to the same covariates. Actually, the dependence 

between Yij and φij may arise in two ways: through the common fixed effects or 

through stochastic dependence between W1i and W2i. Even if W1i and W2i are 

independent, the longitudinal and missing data processes still could be associated 

through the common fixed effects. 

Estimation  

Let yi, yi
c and yi

m denote the vector of observed, complete and missing 

longitudinal responses for the ith subject. Let ψT = (βT, αT, γT) represent the set of 

parameters of interests; the observed log-likelihood for the joint model is 
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is the mean vector for Wi. Here let 

 

  
log L b; y

i
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i( ), 

 

that is, given the latent variables Wi, the outcome Yi is independent of the 

missingness φi. This is an important assumption which reduces the mathematical 

complexity for estimation. Because φi affects yi through Wi, the missingness is not 

ignored in the maximum likelihood inference.  

The maximum likelihood estimation of the joint model is obtained by the 

quasi-Newton method, in which the latent variables are estimated by empirical 

Bayes and standard errors are estimated using the delta method. Because the 

likelihood equations for the L(α;φi | zi,Wi) are non-linear (from logistic regression) 

and do not have closed form maximizers, which may lead to some maximization 

algorithms having difficulty converging, a modified quasi-Newton algorithm is 

used for maximizing the likelihood. For example, the current estimate of ψ is 

updated by 
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where l(ψ) = logL(ψ; y,φ,W | x,z), and a(k) is a small constant with values 

between 0 and 1. Generally, a(k) starts from very small (e.g., 0.01) toward 1 as k 

increases. The above algorithm may be repeated for different starting values of ψ 
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to make sure that it will converge to a global maximum. Here, the starting values 

are chosen from the estimates of complete-case analysis. 

Sensitivity Analysis  

The proposed method assumes that the distribution of the longitudinal responses 

(both observed and missing) does not depend on the missingness procedure after 

conditioning to latent zero-mean bivariate Gaussian process. This conditional 

independence assumption is strong, and neither it nor the missing not at random 

assumption can be tested just using the observed data. The sensitivity analyses 

will be considered for these assumptions by comparing the new model with 

commonly used mixed model and complete-case analysis in the simulation and 

data analysis sections. Results by the proposed method will be reported with 

different latent processes W1(s) and W2(t). Akaike’s information criterion (AIC) 

(Akaike, 1981) and the Bayesian information criteria (BIC) (Schwartz, 1978) will 

be used to assess model fit. It must be kept in mind that the unobserved outcomes 

cannot be checked in any sensitivity analyses. 

Simulation study  

A small simulation study was carried out to compare the performance of the latent 

variable model with mixed model under MAR assumption and complete-case 

analysis that discards subjects with missing observations. The data sets were 

generated by considering two aspects: the complete data structure with outcomes 

and observable independent variables; and the missingness structure.  

Complete data is generated with N = 200 subjects with J = 4 time points. It is 

assumed that there are 2 treatment groups with an equal number of subjects in 

each group. The following specifications for the longitudinal component are 

assumed: intercept = −0.5; treatment (Tx) = 1.0; time 2 vs. time 1 (T2 – T1) = 0.5; 

time 3 vs. time 1 (T3 – T1) = 1.0; time 4 vs. time 1 (T4 – T1) = 1.5. Consequently 

the mean of the dependent variable Yij can be written as:  

 

E(Yij) = β0 + β1Tx + β2 (T2 – T1) + β3 (T3 – T1) + β4 (T4 – T1) 

 

where β0 = −0.5, β1 = 1.0, β2 = 0.5, β3 = 1.0, and β4 = 1.5 as defined above. Tx is 

the variable for treatment groups with values of 0 or 1; (T2 – T1) = 1 if Yij is 

observed at time point 2, 0 otherwise; (T3 – T1) and (T4 – T1) are defined similarly 

with a value of 1 if Yij is observed at time point 3 or 4 and a value of 0 otherwise. 
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The error term of outcomes Yi follows a compound symmetry structure, with 

variance 1 and covariance 0.5.  

For missingness component, the assumption of missing not at random 

(MNAR) will be followed directly: that is, the missingness depends on the 

unobserved variables. Here let missingness procedure follow a logistic regression 

with an intercept and current unobserved response as the only covariate. 

Specifications are assumed as: intercept (α0) = −3.0 and log odds ratio for the 

current unobserved response (α1)  = 1.5, 1.0 or 0.5. That is: 

 

 

  

log
j

ij

1-j
ij

= a
0
+a

1
y

ij
. 

 

The summary measures for a parameter estimate include: a) mean bias: the 

mean difference of a sample estimate from the true parameter average over 

iterations of a simulation run; b) mean squared error: the mean of the squared 

deviation of a sample estimate from the true parameter averaged over iterations of 

a simulation run; and c) the coverage of nominal 95% confidence intervals, 

obtained by computing the percentage of iterations for which the corresponding 

nominal 95% confidence interval included the true parameter (Ten Have, 

Kunselman, Pulkstenis, & Landis, 1998). Data are generated 1000 times under 

each scenario for the proposed model (latent variable model, LVM), a mixed 

model (MM) for all available data, and a mixed model that discards the missed 

observations, that is, a complete-case analysis (CC). 

The simulation results are presented in Table 1. When missingness strongly 

depends on the unobserved outcomes (α1 = 1.5), the time effects (T2 – T1, T3 – T1, 

and T4 – T1) are underestimated (negative bias) and coverage of 95% confidence 

interval is poor under the mixed model. For complete-case analysis, the between-

subject effect (Intercept and Tx) estimates and confidence interval coverage do 

not exhibit good properties, though the mixed model displays just the opposite, 

that is, it is accurate in the between-subject effect estimates but not in the within-

subject effect (time effect) estimates. For the proposed method, both within- and 

between-subject inference are accurate even under the strong dependence on the 

unobserved outcomes except for the effect of (T4 – T1), which is due to the small 

number of observations at T4. 
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Table 1. Simulation results: mean bias and mean squared error (MSE) for the three 

models (latent variable model (LVM), mixed model (MM) and complete case analysis 
(CC)). 
 

  
α1 = 1.5 

 
α1 = 1.0 

 
α1 = 0.5 

Statistic Variable LVM MM CC   LVM MM CC   LVM MM CC 

% Bias 

Intercept -1.46 -3.42 -28.88   -1.41 -1.30 -17.59   -1.49 -1.66 -6.73 

Tx -11.19 -15.23 -33.13 
 

-5.50 -8.09 -17.18 
 

-1.12 -1.94 -4.73 

T2 – T1 -3.72 -4.48 -0.92 
 

-0.91 -1.43 -0.56 
 

0.03 0.12 -0.24 

T3 – T1 -8.48 -11.49 -5.88 
 

-3.74 -4.84 -3.70 
 

-0.15 -1.06 -1.44 

T4 – T1 -14.78 -18.73 -10.14 
 

-5.02 -6.27 -3.50 
 

0.67 0.60 0.37 

             

% Mean Squared 

Error 

Intercept 0.70 0.87 9.77 
 

0.63 0.65 3.90 
 

0.82 0.78 1.32 

Tx 2.40 3.39 13.42 
 

1.22 1.71 4.55 
 

1.20 1.15 1.77 

T2 – T1 0.75 0.84 0.98 
 

0.68 0.66 0.63 
 

0.50 0.46 0.46 

T3 – T1 1.12 1.82 1.41 
 

0.63 0.77 0.68 
 

0.50 0.52 0.44 

T4 – T1 2.81 4.08 2.01 
 

0.73 0.88 0.82 
 

0.48 0.47 0.50 

             

Coverage of 

95% CI 

Intercept 0.94 0.92 0.21 
 

0.97 0.97 0.63 
 

0.95 0.95 0.92 

Tx 0.81 0.73 0.42 
 

0.93 0.90 0.78 
 

0.96 0.95 0.95 

T2 – T1 0.90 0.87 0.95 
 

0.92 0.92 0.99 
 

0.93 0.97 0.97 

T3 – T1 0.86 0.73 0.91 
 

0.93 0.89 0.97 
 

0.96 0.96 0.99 

T4 – T1 0.60 0.37 0.88   0.95 0.94 0.97   0.97 0.99 0.97 

 

Application to WGPW data  

Data description and model specifications 

The proposed latent variable model is applied to an actual data set to illustrate its 

features and explore issues involved with its implementation. The sensitivity of 

inference to the model assumption and constraints in model formulation are also 

considered. 

To illustrate the method, a subset of data from a study involving weight gain 

prevention in women (WGPW) is used. This trial was conducted in the 

Department of Psychiatry at the University of Pittsburgh Medical Center (Levine 

et al., 2007), and involved 25- to 45-year-old women at risk for weight gain and 

future obesity. The primary aim of the trial was to compare the relative efficacy of 

three approaches to weight gain prevention: a clinic-based group intervention, a 

mailed, correspondence intervention and an information-only control group. The 

measurements were taken at baseline, year 1, year 2 and year 3. 

For the analysis, 190 women with complete baseline data are focused on and 

randomized into the clinic-based group and the control group.  Women 

randomized to the clinic-based intervention group were required to attend 15 
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group meetings over a 24-month period. These sessions were held biweekly for 

the first 2 months and bimonthly for the next 22 months. Biweekly sessions 

focused on self-monitoring of energy intake and expenditure, and behavioral 

strategies for making modest changes in dietary intake and activity level. During 

the 11 bimonthly clinic-based meetings, participants received lessons on cognitive 

change strategies, stimulus control techniques, problem solving, goal setting, 

stress and time management, and relapse prevention. Women belonging to the 

control group received booklets containing information about the benefits of 

weight maintenance, low-fat eating, and regular physical activity. 

About 70% of the women did not complete their scheduled assessments 

(Table 2). It was suspected that this was in part due to reasons related to their 

weight outcomes. Among women randomized to the intervention group in which 

treatment was provided over a 2-year period, 20% missed the weight assessments 

at year 1; 27% at year 2; and 63% at year 3 of the follow-up.  For subjects in the 

control group, 19%, 22% and 66% missed the weight assessments at year 1, 2 and 

3. The plot in Figure 1 indicates that at year 2, which is the end of the treatment, 

the intervention group exhibits a lower BMI than the control group. However the 

plot of Figure 2 indicates that at year 2, the probability of missingness in the 

intervention group is a little higher than that of the control group. If only the 

observed data are used, the conclusion that the intervention group has a smaller 

BMI at the end of the treatment (year 2) may be reached. But if the missing data 

mechanism is considered, what will the data tell us? 
 
 
Table 2. Distribution of the missingness patterns for WPGW data. 
 

Pattern Baseline Year 1 Year 2 Year 3 Frequency (%) 

1 • • • • 56 (29.5) 

2 • • • × 77 (40.5) 

3 • • × • 06 (03.2) 

4 • × • • 01 (00.5) 

5 • • × × 14 (07.4) 

6 • × • × 10 (05.3) 

7 • × × • 05 (02.6) 

8 • × × × 21 (11.1) 
 

Note: •: observed; ×: missingness 
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Figure 1. Observed BMI mean (SE) across years for each treatment group 

 

 
 

 
 

Figure 2. Probability of missingness across years for each treatment group 
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Let Yij denote the BMI measurement on the ith patient at the jth year in the 

trial, j = 0, 1, 2 and 3. Six explanatory variables are included as main effects in the 

analysis: treatment (Tx, intervention = 1 and control = 0), years in the trial (year), 

patient age when enrolled (age), dietary restraint (S3FS1, range from 0–21), 

disinhibition (S3FS2, range from 0–16), and perceived hunger (S3FS3, range from 

0–14). Among them, dietary restraint, disinhibition and perceived hunger belong 

to Stunkard Three-Factor Eating Questionnaire, and they are included in the 

model as time-variant predictors, as is year. The linear random effects model for 

BMI is specified as 

 

   Yij = β0 + β1yearj + β2yearj  

 × Txi + β3agei + β4S3FS1ij + β5S3FS2ij + β6S3FS3ij + W1i(yearj), 

 

where W1i(yearj) is the random effect. 

Similarly the missingness procedure is modelled with the logistic regression 

with random effect, W2i(yearj). Let φij = Pr(Yij is missing), 

 

  0 1 2log
1

ij

i i j

ij

Tx W year


 


  


. 

 

To choose the exact forms of W1i and W2i, Akaike’s information criterion 

(AIC) (Akaike, 1981) and the Bayesian information criterion (BIC) (Schwartz, 

1978) are used. The results are given in Table 3: because Model VII emerges with 

the smallest values of AIC and BIC, it is selected over the others, and also 

demonstrates the full complexity of (W1i, W2i)T given under the Latent Variable 

Model, earlier. In Model VII, W1i(yearj) = U1i + U2iyearj. So W1i(yearj) includes 

random effects for intercept and slope over time, where 

   1 2 2, ~ 0,
iid

T

i i iU U U N   and variance-covariance structure 
11 12

12 22

   
  
   

. 

This structure of random effects allow that each subject has her own baseline BMI 

value and time trend of BMIs over years in the trial. And the random effects in the 

models of missingness procedure are chosen as 

W2i(yearj) = r1U1i + r2U2iyearj + r3(U1i + U2iyearj), where U1i and U2i are defined 

as before. In the following application results and interpretations, inferences will 

be based on these chosen random effect structures. 
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Table 3. Descriptive of model fit for different random effect structures for WGPW data. 

 

Model W1i W2i 

−2 log 

likelihood AIC BIC 

I 0 0 2904.4 2936.4 3018.0 

II U1i 0 2656.6 2657.6 2709.6 

III U1i γ1U1i 2625.3 2657.3 2709.3 

IV U1i+ U2iyearj 0 2595.9 2629.7 2679.8 

V U1i+ U2iyearj γ1U1i 2595.7 2627.7 2679.6 

VI U1i+ U2iyearj γ1U1i+ γ2U2i 2614.6 2656.6 2698.6 

VII U1i+ U2iyearj γ1U1i+ γ2U2i+ γ3W1i 2534.7 2566.7 2618.6 

 

Model interpretation  

Table 4 details the model estimates of treatment, time, age, dietary restraint, 

disinhibition and perceived hunger effects on the BMIs. In Table 5, the estimates 

in the missingness component of the joint model are compared to the analogous 

estimates from a random effects model, which ignores the BMI outcome, to 

address the effects of treatment on the missingness status. In both tables, the 

estimates for variance-covariance structure Σ under models for longitudinal 

responses and missing data procedure, separately and jointly, are discussed. 

As shown in Table 4, the mixed model, under the assumption of missing at 

random, and the proposed joint model yield similar inference for significant effect 

of year, whereas the complete case analysis under the assumption of missing 

completely at random does not show any significant time effect. In the proposed 

model, age effect intends to be significant (p value = 0.074), although in the other 

two models, there is no such intention. Under all three models, dietary restraint 

and disinhibition show strong effects (p values < .0001). In Table 5, the 

association parameter in the proposed method, γ3, is negative and significantly 

different from zero. It provides a strong evidence of association between the two 

sub-models of the proposed method, and indicates that the slope of observed BMI 

values is negatively associated with the missingness status, because of 

λ2 = γ2 + γ3 < 0 with γ2 = 6.779 and γ3 = −26.94 (Table 5). This may result from 

patients with larger BMI values having lower probabilities of dropping out, 

leaving their relatively larger BMI values in the trial. 

Comparisons with simulation results 

The relationship between the proposed method and the mixed model in the 

application to the WGPW data is now checked, and compared with the patterns 

observed in the simulations. Table 4 reveals that the proposed method and the 
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mixed model yield similar between-subject effect estimates (age, dietary restraint, 

disinhibition and perceived hunger), but are different in the within-subject 

inference (year, and year × treatment). As in the simulation results, the mixed 

model gives accurate inference in between-subject effect estimates but not in 

within-subject effect estimates. This congruence in the between-subject effect 

estimates, and difference in the within-subject effect estimates, provides evidence 

that the proposed method is a good choice for the WGPW data. 
 
 
Table 4. Parameter estimates, estimated standard errors and p-values for modeling the 
outcomes, BMI. 
 

 
CC analysis 

 
Mixed Model 

 
Latent Variable model 

Variable Estimate SE p-value 
 

Estimate SE p-value 
 

Estimate SE p-value 

Intercept 24.3000 2.1350 <0.0001   22.8200 1.1410 <0.0001   22.8400 1.1590 <0.0001 

Year 0.0770 0.1400 0.5850 
 

0.2030 0.0920 0.0290 
 

0.1520 0.0750 0.0440 

Year × Treatment -0.0240 0.1920 0.9030 
 

-0.1630 0.1280 0.2020 
 

-0.1240 0.1030 0.2300 

Age 0.0370 0.0580 0.5250 
 

0.0470 0.0300 0.1180 
 

0.0550 0.0300 0.0740 

Dietary Restraint -0.2090 0.0370 <0.0001 
 

-0.1200 0.0220 <0.0001 
 

-0.1320 0.0240 <0.0001 

Disinhibition 0.1650 0.0520 0.0030 
 

0.1800 0.0320 <0.0001 
 

0.1780 0.0330 <0.0001 

Perceived 
Hunger 

-0.0270 0.0450 0.5460 
 

-0.0180 0.0300 0.5610 
 

-0.0280 0.0320 0.3940 

Σ11 1.9480 0.2300 <0.0001 
 

2.0180 0.1300 <0.0001 
 

2.0490 0.1250 <0.0001 

Σ12 -0.0090 0.1120 0.9370 
 

-0.0230 0.0750 0.7620 
 

0.0040 0.0090 0.6720 

Σ22  0.4940 0.0940 <0.0001 
 

0.5280 0.0690 <0.0001 
 

0.0620 0.0410 0.1300 

σε
2 0.9400 0.0720 <0.0001   0.8620 0.0500 <0.0001   1.0680 0.0460 <0.0001 

 
 
Table 5. Parameter estimates, estimated standard errors and p-values for modeling the 
missingness status, R. 
 

 

Separate Analysis 
 

Latent Variable Model 

Variable Estimate SE p-value 
 

Estimate SE p-value 

Intercept -1.0620 0.1350 <0.0001   -2.5910 0.3580 <0.0001 

Treatment 0.0360 0.1800 0.8410 
 

0.0700 0.3320 0.8320 

γ1 NA NA NA 
 

27.0600 17.9600 0.2400 

γ2 NA NA NA 
 

6.7790 5.7500 0.1360 

γ3 NA NA NA   -26.9400 17.9700 <0.0001 

 

Conclusion 

A latent variable model was proposed to fit longitudinal data with informative 

intermittent missingness. The main idea is to jointly model the longitudinal 

process and missing data process via a latent zero-mean bivariate Gaussian 
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process on (W1(t), W2(t))T, with correlation between W1(t) and W2(t), inducing 

stochastic dependence between the longitudinal and missing data processes. An 

advantage of this method, compared with other existing methods for informative 

missing data problems, is its easy implementation. The models in this method can 

be easily fit after providing the likelihood functions. Thus it avoids the 

complexity of EM algorithm programming, facilitating use of this proposed 

method in practice. The specifications and selections of W1(t) and W2(t) can be 

implemented via AIC and BIC, and the method enables direct comparisons of 

different specifications. 

In the proposed method, the latent variables are also used to induce 

conditional independence between the responses (both observed and missing) and 

missingness status, so that the standard likelihood techniques can be used to 

derive the estimates. This is a strong assumption and it cannot be tested with the 

available data. For this type of assumption, a sensitivity analysis is the way to 

investigate the model fit and departure of the assumption. Such an analysis has 

been attempted by comparing the proposed method with other alternative models 

in the true data and in simulations. 

The proposed method is developed from the joint model proposed by 

Henderson et al. (2000) for longitudinal and survival processes. In the future, this 

method should be considered for extension into other applications, through 

different link functions (e.g. binary or ordinal data) or random effect structures 

other than zero-mean bivariate Gaussian distribution. 
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Introduction 

The logarithmic series distribution (LSD) is obtained by expanding the logarithmic 

function -log(1 – θ) as a power series in. Alternatively, it can also be derived as a 

limiting case of zero-truncated negative binomial distribution as k decreases to zero. 

In either case, the logarithmic series distribution is a very useful distribution on the 

positive integers (Nasiri, 2011). Estimation is an important topic in statistical 

inference. Bayesian approach is an important approach in the estimation of 

parameter. A suitable prior distribution plays an effective role in reducing error in 

the estimation. Therefore, the more the prior information is obtained, the more it 

affects the posterior. 

Lindley and Smith (1972) argued hierarchical prior. E-Bayesian estimation is 

another method introduced by Han and Ding (2004). Han (2005) applied E-

Bayesian estimation for forecast of security investment. He also (2006, 2007) 

presented hierarchical Bayesian estimation for computing as well as E-Bayesian 

estimation for transition probability. In this study, maximum likelihood, Bayesian, 

and E-Bayesian estimations of the parameter of logarithmic series distribution are 

discussed in detail. This paper considers the maximum likelihood estimation of θ, 

http://dx.doi.org/10.22237/jmasm/1478003700
mailto:pnasiri45@yahoo.com


ESTIMATION PARAMETER OF LSD 

644 

the Bayesian estimation of θ, and the E-Bayesian estimation of θ; by use of a 

simulation, all estimations will be compared by MSE. 

Maximum Likelihood Estimation of θ 

Let f(x) be the density of the logarithmic series distribution given by 
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The maximum likelihood estimation of θ in the above distribution is derived by i.i.d 

observations x1, x2,…xn. Hence, the likelihood function is given by 
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Similarly, the logarithm of the likelihood function is given by 
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       (3) 

 

There are two ways to estimate θ. The first is to apply the “optimum” command in 

R software, and the second is to take the first order derivative of Log l(θ) over θ 

and set it equal to zero, as in the following: 
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   . This equation can be solved via the Newton-

Raphson method: 
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where 
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and Fixed-Point method as 

 

  1hn n     (5) 

 

such that 

 

      h 1 log 1x      . 

 

Equations (4) and (5) were solved using the MATLAB software. The 

“optimum” command was used in R software. There is additional discussion 

regarding the MLE logarithmic series in Bohning (1983). 

Bayesian Estimation of θ 

Let π(θ) be prior density of θ that has beta distribution: 
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By using i.i.d. observations x1, x2,… xn, the posterior distribution of θ was 

calculated as in the following: 
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where l(θ) is the likelihood function introduced in (2). 

Note that (-log(1 – θ))-n can be expanded as  
0

n m

mm
n  




 , where 

ρ0(-n) = 1, ρm(-n) = nψm – 1(m – n – 1) for m ≥ 1, and the coefficients ψm(.), are 

Sterling polynomials given by Castellares and Lemonte (2014). 

Consider 
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The Bayesian estimation of θ under loss function l(θ, d) = (d – θ)2 is  E | x , 
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 E | x  is computed by numerical methods using R software. 

E-Bayesian Estimation 

Let the prior distribution of θ be given as: 
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where a and b are super parameters. According to Han (1997) a and b should be 

selected to guarantee π(θ∣ a, b) is a decreasing function of θ. Therefore, we applied 

one order derivative of π(θ∣ a, b) over θ to obtain 
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Because a > 0, b > 0, and 0 < θ <1, then 0 < a ≤ 1, b > 1 result in 
 | ,

0
d a b

d






 . 

Thus, π(θ∣ a, b) is a decreasing function of θ given 0 < a ≤ 1, b > 1. 

As b grows larger, the tail of the beta density function grows thinner. However, 

as far as the robustness of Bayesian estimation is concerned (Berger, 1985), the 

thinner-tailed prior distribution often leads to the worse robustness of the Bayesian 

estimate. Accordingly, b should not be too big; it is better to be selected below the 

given upper bound c (c > 1) (see Han & Ding, 2004). All in all, the super parameters 

a and b were selected to be in the ranges 0 < a ≤ 1 and 1 < b ≤ c. 

Let a = 1 and b have density function given by the following: 
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Hence, the prior distribution is given by 
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If the prior distribution is named πE(θ), it is calculated as 
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is the posterior distribution of θ and, under loss function l(θ, d) = (d – θ)2,the 

Expected Bayesian (E-Bayesian) estimation is given as 
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E(θ| x) is computed by numerical methods using R software. 

Simulation 

The simulation logarithmic series distribution is applied and the MSE among these 

three estimations are compared. The sample sizes chosen are n = 10 (10)50, 100 

from the logarithmic series distribution and then the above sampling is repeated 

1000 times. In all the tables below, a = 1, b = 1. 
 
 
Table 1. MSE of MLE, Bayesian, and E-Bayesian estimation for c = 1.1, θ = 0.2 
 

 MLE  BAYES  E-BAYES 

n θ̂  MSE  θ̂  MSE  θ̂  MSE 

10 0.1754406 0.02280529  0.268888 0.015603929  0.2670986 0.015603929 

20 0.1848736 0.01274284  0.235789 0.009822050  0.2349044 0.009710344 

30 0.1888380 0.00885097  0.223687 0.007274929  0.2231012 0.007219458 

40 0.1915576 0.00665076  0.217965 0.005719935  0.2175264 0.005686960 

50 0.1951806 0.00536783  0.216286 0.004821819  0.2159331 0.004798442 

100 0.1968546 0.00251246   0.207595 0.002366069   0.2074195 0.002360269 
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Table 2. MSE of MLE, Bayesian, and E-Bayesian estimation for c = 1.5, θ = 0.2 
 

 MLE  BAYES  E-BAYES 

n θ̂  MSE  θ̂  MSE  θ̂  MSE 

10 0.1754406 0.02280529  0.268888 0.015603929  0.2600561 0.013984288 

20 0.1848736 0.01274284  0.235789 0.009822050  0.2313332 0.009281856 

30 0.1888380 0.00885097  0.223687 0.007274929  0.2207135 0.007003590 

40 0.1915576 0.00665076  0.217965 0.005719935  0.2157289 0.005557730 

50 0.1951806 0.00536783  0.216286 0.004821819  0.2144824 0.004706188 

100 0.1968546 0.00251246   0.207595 0.002366069   0.2066942 0.002337212 

 
 
Table 3. MSE of MLE, Bayesian, and E-Bayesian estimation for c = 2, θ = 0.2 
 

 MLE  BAYES  E-BAYES 

n θ̂  MSE  θ̂  MSE  θ̂  MSE 

10 0.1754406 0.02280529  0.268888 0.015603929  0.2517434 0.012635242 

20 0.1848736 0.01274284  0.235789 0.009822050  0.2269419 0.008802810 

30 0.1888380 0.00885097  0.223687 0.007274929  0.2177276 0.006756307 

40 0.1915576 0.00665076  0.217965 0.005719935  0.2134603 0.005407923 

50 0.1951806 0.00536783  0.216286 0.004821819  0.2126412 0.004597898 

100 0.1968546 0.00251246   0.207595 0.002366069   0.2057618 0.002309824 

 
 
Table 4. MSE of MLE, Bayesian, and E-Bayesian estimation for c = 3, θ = 0.2 
 

 MLE  BAYES  E-BAYES 

n θ̂  MSE  θ̂  MSE  θ̂  MSE 

10 0.1754406 0.02280529  0.268888 0.015603929  0.2370938 0.010660721 

20 0.1848736 0.01274284  0.235789 0.009822050  0.2187640 0.008047442 

30 0.1888380 0.00885097  0.223687 0.007274929  0.2120299 0.006352388 

40 0.1915576 0.00665076  0.217965 0.005719935  0.2090714 0.005159055 

50 0.1951806 0.00536783  0.216286 0.004821819  0.2090494 0.004414182 

100 0.1968546 0.00251246   0.207595 0.002366069   0.2039068 0.002262655 

 
Table 5. MSE of MLE, Bayesian, and E-Bayesian estimation for c = 5, θ = 0.2 
 

 MLE  BAYES  E-BAYES 

n θ̂  MSE  θ̂  MSE  θ̂  MSE 

10 0.1754406 0.02280529  0.268888 0.015603929  0.2145302 0.008617966 

20 0.1848736 0.01274284  0.235789 0.009822050  0.2051204 0.007182372 

30 0.1888380 0.00885097  0.223687 0.007274929  0.2021512 0.005863618 

40 0.1915576 0.00665076  0.217965 0.005719935  0.2012877 0.004851086 

50 0.1951806 0.00536783  0.216286 0.004821819  0.2025892 0.004176082 

100 0.1968546 0.00251246   0.207595 0.002366069   0.2004542 0.002201122 
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Figure 1. MSE of MLE, Bayesian, and E-Bayesian estimation for θ = 0.2 
 

 

According to Tables 1-5 and Figure 1 below, if θ is close to zero, then the E-

Bayesian estimator will be better than the others. Furthermore, the E-Bayesian 

estimator for big c is better than for that of small c. 
 
 
Table 6. MSE of MLE, Bayesian, and E-Bayesian estimation for c = 1.1, θ = 0.5 
 

 
MLE  BAYES  E-BAYES 

n θ̂  MSE   θ̂  MSE   θ̂  MSE 

10 0.4493031 0.036068680  0.4727567 0.020631200  0.4703712 0.020689950 

20 0.4774472 0.015412300  0.4856296 0.011751570  0.4842737 0.011769950 

30 0.4822146 0.011401902  0.4872720 0.009491975  0.4863317 0.009503848 

40 0.4862952 0.007998191  0.4897325 0.006975903  0.4890090 0.006984277 

50 0.4899989 0.006229734  0.4925262 0.005593061  0.4919384 0.005597817 

100 0.4917995 0.003252503   0.4929799 0.003078263   0.4926775 0.003081360 

 
 
Table 7. MSE of MLE, Bayesian, and E-Bayesian estimation for c = 1.5, θ = 0.5 
 

 
MLE  BAYES  E-BAYES 

n θ̂  MSE   θ̂  MSE   θ̂  MSE 

10 0.4493031 0.036068680  0.4727567 0.020631200  0.4611687 0.021062690 

20 0.4774472 0.015412300  0.4856296 0.011751570  0.4789428 0.011893800 

30 0.4822146 0.011401902  0.4872720 0.009491975  0.4826069 0.009577576 

40 0.4862952 0.007998191  0.4897325 0.006975903  0.4861318 0.007033491 

50 0.4899989 0.006229734  0.4925262 0.005593061  0.4895955 0.005627388 

100 0.4917995 0.003252503   0.4929799 0.003078263   0.4914670 0.003097037 
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Table 8. MSE of MLE, Bayesian, and E-Bayesian estimation for c = 2, θ = 0.5 
 

 
MLE  BAYES  E-BAYES 

n θ̂  MSE   θ̂  MSE   θ̂  MSE 

10 0.4493031 0.036068680  0.4727567 0.020631200  0.4506494 0.021772010 

20 0.4774472 0.015412300  0.4856296 0.011751570  0.4726720 0.012145060 

30 0.4822146 0.011401902  0.4872720 0.009491975  0.4781747 0.009721149 

40 0.4862952 0.007998191  0.4897325 0.006975903  0.4826866 0.007126098 

50 0.4899989 0.006229734  0.4925262 0.005593061  0.4867802 0.005685544 

100 0.4917995 0.003252503   0.4929799 0.003078263   0.4900001 0.003122489 

 
 
Table 9. MSE of MLE, Bayesian, and E-Bayesian estimation for c = 3, θ = 0.5 
 

 
MLE  BAYES  E-BAYES 

n θ̂  MSE   θ̂  MSE   θ̂  MSE 

10 0.4493031 0.036068680  0.4727567 0.020631200  0.4329851 0.023664110 

20 0.4774472 0.015412300  0.4856296 0.011751570  0.4617896 0.012865210 

30 0.4822146 0.011401902  0.4872720 0.009491975  0.4703766 0.010129876 

40 0.4862952 0.007998191  0.4897325 0.006975903  0.4765777 0.007386216 

50 0.4899989 0.006229734  0.4925262 0.005593061  0.4817677 0.005854256 

100 0.4917995 0.003252503   0.4929799 0.003078263   0.4873595 0.003187286 

 
 
Table 10. MSE of MLE, Bayesian, and E-Bayesian estimation for c = 5, θ = 0.5 
 

 
MLE  BAYES  E-BAYES 

n θ̂  MSE   θ̂  MSE   θ̂  MSE 

10 0.4493031 0.036068680  0.4727567 0.020631200  0.4081765 0.027960910 

20 0.4774472 0.015412300  0.4856296 0.011751570  0.4460818 0.014636860 

30 0.4822146 0.011401902  0.4872720 0.009491975  0.4590000 0.011149126 

40 0.4862952 0.007998191  0.4897325 0.006975903  0.4676159 0.008033505 

50 0.4899989 0.006229734  0.4925262 0.005593061  0.4744028 0.006284713 

100 0.4917995 0.003252503   0.4929799 0.003078263   0.4834468 0.003338421 
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Figure 2. MSE of MLE, Bayesian, and E-Bayesian estimation for θ = 0.5 
 

 

According to Tables 6-10 and Figure 2 above, if θ is equal to 0.5, then the 

Bayes estimator will be better than the others. 
 
 
Table 11. MSE of MLE, Bayesian, and E-Bayesian estimation for c = 1.1, θ = 0.8 
 

 
MLE  BAYES  E-BAYES 

n θ̂  MSE   θ̂  MSE   θ̂  MSE 

10 0.7565883 0.016160921  0.7342053 0.016276950  0.7320425 0.016636190 

20 0.7771566 0.006733548  0.7635732 0.007190623  0.7623963 0.007302307 

30 0.7853821 0.004234158  0.7757980 0.004486893  0.7749946 0.004538776 

40 0.7908123 0.003149407  0.7834313 0.003279836  0.7828241 0.003307885 

50 0.7891018 0.002431975  0.7831037 0.002570948  0.7826102 0.002592876 

100 0.7962759 0.000991319   0.7931716 0.001020993   0.7929747 0.001032422 

 
 
Table 12. MSE of MLE, Bayesian, and E-Bayesian estimation for c = 1.5, θ = 0.8 
 

 MLE  BAYES  E-BAYES 

n θ̂  MSE   θ̂  MSE   θ̂  MSE 

10 0.7565883 0.016160920  0.7342053 0.016276950  0.7240587 0.018094940 

20 0.7771566 0.006733548  0.7635732 0.007190623  0.7580292 0.007758596 

30 0.7853821 0.004234158  0.7757980 0.004486893  0.7720108 0.004751512 

40 0.7908123 0.003149407  0.7834313 0.003279836  0.7805691 0.003423867 

50 0.7891018 0.002431975  0.7831037 0.002570948  0.7807726 0.002682152 

100 0.7962759 0.000991319   0.7931716 0.001020993   0.7919732 0.001041411 
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Table 13. MSE of MLE, Bayesian, and E-Bayesian estimation for c = 2, θ = 0.8 
 

 
MLE  BAYES  E-BAYES 

n θ̂  MSE   θ̂  MSE   θ̂  MSE 

10 0.7565883 0.016160920  0.7342053 0.016276950  0.7156517 0.019879590 

20 0.7771566 0.006733548  0.7635732 0.007190623  0.7534337 0.008318997 

30 0.7853821 0.004234158  0.7757980 0.004486893  0.7688793 0.005013464 

40 0.7908123 0.003149407  0.7834313 0.003279836  0.7782094 0.003568182 

50 0.7891018 0.002431975  0.7831037 0.002570948  0.7788405 0.002790142 

100 0.7962759 0.000991319   0.7931716 0.001020993   0.7910271 0.001068188 

 
 
Table 14. MSE of MLE, Bayesian, and E-Bayesian estimation for c = 3, θ = 0.8 
 

 
MLE  BAYES  E-BAYES 

n θ̂  MSE   θ̂  MSE   θ̂  MSE 

10 0.7565883 0.016160920  0.7342053 0.016276950  0.7034408 0.023040870 

20 0.7771566 0.006733548  0.7635732 0.007190623  0.7469579 0.009294010 

30 0.7853821 0.004234158  0.7757980 0.004486893  0.7645488 0.005464724 

40 0.7908123 0.003149407  0.7834313 0.003279836  0.7749910 0.003818176 

50 0.7891018 0.002431975  0.7831037 0.002570948  0.7762116 0.002971987 

100 0.7962759 0.000991319   0.7931716 0.001020993   0.7897346 0.001107678 

 
 
Table 15. MSE of MLE, Bayesian, and E-Bayesian estimation for c = 5, θ = 0.8 
 

 
MLE  BAYES  E-BAYES 

n θ̂  MSE   θ̂  MSE   θ̂  MSE 

10 0.7565883 0.016160921  0.7342053 0.016276950  0.6907121 0.027424820 

20 0.7771566 0.006733548  0.7635732 0.007190623  0.7410871 0.010504326 

30 0.7853821 0.004234158  0.7757980 0.004486893  0.7609354 0.005989118 

40 0.7908123 0.003149407  0.7834313 0.003279836  0.7724500 0.004101652 

50 0.7891018 0.002431975  0.7831037 0.002570948  0.7741743 0.003164136 

100 0.7962759 0.000991319   0.7931716 0.001020993   0.7888172 0.001145513 
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Figure 3. MSE of MLE, Bayesian, and E-Bayesian estimation for θ = 0.8 
 

 
 

According to Tables 11-15 and Figure 3 above, if θ is close to 1, then the 

maximum likelihood estimator will be better than the others. 

Conclusion 

The comparison among the three estimators revealed that with increasing sample 

size, all three estimators come together and as a result, the error rate is reduced. 

However, in the small samples according to the value of θ is superior to any of the 

rest, of the figures and tables is shown. 
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Introduction 

One of the simplest and most commonly used distributions (and often erroneously 

overused due to its simplicity) is the exponential distribution. The two-parameter 

exponential distribution, which is an extension of the exponential distribution, was 

first introduced by Gupta and Kundu (1999), and is very popular in analyzing 

lifetime or survival data. Like Weibull and gamma distributions, the generalized 

exponential distribution can have an increasing, constant, or decreasing hazard 

function depending on the shape parameter. 

It was observed by Gupta and Kundu (2001) that the generalized exponential 

(GE) distribution and the gamma distribution have very similar properties in many 

respects, and in some situations the generalized exponential distribution provides a 

better fit than Gamma and Weibull distributions in terms of maximum likelihood 

(ML) or minimum chi-square. Sanku Dey (2010) obtained Bayes estimators of the 

parameters of GE and its associated risk using different loss functions. Raqab 

(2002), Raqab and Ahsanullah (2001), Raqab and Madi (2005), Jaheen (2004), 

Kundu and Gupta (2008) extensively studied this distribution. Singh, Singh, Singh, 

and Singh (2008) studied the estimation problem of the parameters of this 

http://dx.doi.org/10.22237/jmasm/1478003760
mailto:naqashsaima@gmail.com
mailto:sprvz@yahoo.com
mailto:aqlstat@yahoo.co.in
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distribution under some symmetric and asymmetric loss functions using Lindley's 

method. 

Let x1, x2,…, xn be independently and identically distributed GE random 

variables with shape parameter α and scale parameter λ (= 1). Then the C.D.F. of x 

will become 

 

    F , 1 exp , 0, 0x x x


          (1) 

 

and the corresponding P.D.F. is 

 

      
1

f , 1 exp exp , 0, 0x x x x


  


          (2) 

 

For α = 1, the GE distribution reduces to the one parameter (standard) 

exponential distribution. The GE distribution is unimodal with mode at z = logα, 

α > 1, and its median is  
1

log 1 0.5M 
 

   
 

. 

Maximum Likelihood Estimation 

Assume that X = (x1, x2,…, xn) is a random sample from GE distribution. The 

likelihood function of α for the given sample observation is: 

 

     
1

1

L , 1 exp exp
n n

n

i i

i ii

x x x


 




 
    

 
   (3) 

       
1 1

log L , log 1 log 1 exp
n n

i i

i i

x n x x  
 

          

 

the maximum likelihood estimation (MLE) of α is given by 

 

 ˆ
n

T
     (4) 

 

where   
1

1
log 1 exp

n

ii
T x




   . 
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Prior and Posterior Distributions 

Consider that the parameter α has the non-informative Jeffrey’s prior and is given 

by     g det  I , where I(α) is the Fisher Information Matrix given by 

 

    
2

2 2
E log f ,

n
n x 

 

 
   

 
I   

 

and Jeffery’s prior distribution becomes 

 

  
1

g 


   (5) 

 

The posterior distribution is given by 

 

 

     

    
 

 

    

   

1

11

11

11

11

1 1

1

1

| g L

1
| 1 exp exp

1 exp exp

exp 1 log 1 exp exp

| exp 1 exp

n n
n

i i

ii

n n
n

i i

ii

n n
n

i i

i i

n
n

i

i

x

x x x

k x x

k x x

x k T x

k





  

 




 

  













 





 

  
       

  

  
     

  

   
       

   

 
         

 







 



   1

1

exp exp exp
n

n

i

i

T T x



 
 
 


  

 

The constant k is determined such that 
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1

| 1
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With this value of k, the posterior distribution of α becomes 
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  1| exp
n

nT
x T

n
     


  (6) 

 

which is a Gamma distribution with parameters n and T, where 

  
1

1
log 1 exp

n

ii
T x




   , i.e.,    1

1
~ G , log 1 exp

n

ii
n x




  . 

The expected value (mean) and variance of the distribution is given by 

 

   E |
n

x
T

    (7) 

 

and 

 

    2
V |

n
x

T
    

 

where T is given as above. 

Bayes Estimator under Jeffery’s Prior Using Different Loss 
Functions 

Squared Error Loss Function (SELF) 

Consider the following SELF:    
2

ˆ ˆl , c      and obtain the Risk function as: 

 

 

     

 
   

 

0

2 2 1

0

2

2

ˆ ˆR , l , |

ˆ ˆ2 exp

1
ˆ ˆ2

n
n

x d

T
c T d

n

n nn
c c c

T T

     

     

 







 

   



  



   

 

Solving the equation  ˆR , 0
ˆ

 






 will give the Bayes estimator: 
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 ˆ
iB

n

T
    (8) 

 

which is the same as the MLE of α given in (4). 

Quadratic Loss Function (QLF) 

Consider the following QLF: 

 

  
2

ˆ
ˆl ,

 
 



 
  
 

  

 

and obtain the Risk function as 
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1
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2
2

ˆ ˆR , l , |
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exp

ˆ ˆ1 2
1 1 2
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n

x d

T
T d

n

T T
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Solving the equation  ˆR , 0
ˆ

 






, we get the Bayes estimator of α as: 

 

 
2

2
ˆ

B

n

T



   (9) 

Al-Bayyati’s Loss Function 

Al-Bayyati’s loss function is of the form    2
2

2
ˆ ˆl , ,c c        . This loss 

function is used to obtain the estimator of the parameter of GE distribution. The 

risk function is obtained as: 
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Solving the equation  ˆR , 0
ˆ

 






, we get the Bayes estimator of α as: 

 

 
3

2ˆ
B

n c

T



   (10) 

 

Remark 1: 

 

1. For c2 = -2 in (10), we get 
2

ˆ
n

T



 , which gives the Bayes estimator 

under QLF using Jeffery’s prior. 

2. For c2 = 0 in (10), we get ˆ
n

T
  , which gives the Bayes estimator 

under SELF using Jeffery’s prior. 

Precautionary Loss Function (PLF) 

Consider the following PLF: 

 

  
 

2
ˆ
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and obtain the Risk function as: 
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Solving the equation  ˆR , 0
ˆ

 






, the Bayes estimator of α is 

 

 
 

4

1
ˆ

B

n n

T



   (11) 

New Extension of Jeffery’s Prior Information 

The new extension of Jeffrey’s prior information is given by: 
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12

1
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    (12) 

 

The posterior distribution is obtained in a similar way as in the case of Jeffrey’s 

prior information and is given by 
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Hence the posterior distribution of α becomes 
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1

1
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1

1

| exp
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  (13) 

 

which is the Gamma distribution with parameters (n – 2c1 + 1) and T, i.e. 
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1

1

1

~ G 2 1, log 1 exp
n

i

i

n c x




 
    

 
   

 

The expected value (mean) and variance of the distribution is given by 

 

    1
1

2 1
E |

n c
x

T


 
    (14) 

 

and 

 

    1
1 2

2 1
V |

n c
x

T


 
    

 

Remark 2: 

 

1. For c1 = 1/2 in (14), the posterior distribution under the extension of 

Jeffery’s prior reduces to the posterior distribution under the Jeffery’s 

prior. 

2. For c1 = 3/2 in (14), the posterior distribution under the extension of 

Jeffery’s prior reduces to the posterior distribution under the 

Hartigan’s prior. 

Bayes Estimation under the Extension of Jeffery’s Prior 
using Different Loss Functions 

Squared Error Loss Function 

The risk function under SELF is obtained as 
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Solving the equation  ˆR , 0
ˆ

 






, the Bayes estimator of α is 

 

 
5

12 1
ˆ

B

n c

T


 
   (15) 

 

Remark 3: For c1 = 1/2 in (15), ˆ n T  , which gives the Jeffery’s 

estimator under SELF. 

Quadratic Loss Function 

Using the QLF, 

 

  
2

ˆ
ˆl ,

 
 



 
  
 

  

 

The risk function under QLF is obtained as 
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Solving the equation  ˆR , 0
ˆ

 






, the Bayes estimator of α is 

 

 
6

12 1
ˆ

B

n c

T


 
   (16) 

 

Remark 4: For c1 = 1/2 in (16), 
2

ˆ
n

T



 , which gives the Bayes 

estimator under QLF using Jeffery’s prior. 
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Al-Bayyati’s Loss Function 

Al-Bayyati’s loss function is of the form    2
2

2
ˆ ˆl , ,c c        . The risk 

function is given by 
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Solving the equation  ˆR , 0
ˆ

 






, the Bayes estimator of α is 

 

 
7

2 12 1
ˆ

B

n c c

T


  
   (17) 

 

Remark 5: 

 

1. For c1 = 1/2 and c2 = 0 in (17), ˆ n T  , which gives the Bayes’ 

estimator under SELF using Jeffery’s prior. 

2. For c1 = 1/2 and c2 = -2 in (17), 
2

ˆ
n

T



 , which gives the Bayes’ 

estimator under QLF using Jeffery’s prior. 

Precautionary Loss Function 

Using the PLF 

 

  
 

2
ˆ

ˆl ,
 

 



   

 

obtain the Risk function under PLF as 
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Solving the equation  ˆR , 0
ˆ

 






, the Bayes’ estimator of α is 

 

 
  

8

1 12 2 2 1
ˆ

B

n c n c
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   (18) 

 

Remark 6: For c1 = 1/2 in (18), 
 1

ˆ
n n

T



 , which gives the Bayes’ 

estimator under PLF using Jeffery’s prior. 

Simulation Study of Generalized Exponential Distribution 

In the simulation study, sample sizes were chosen at n = 25, 50, and 100 to represent 

small, medium, and large data sets. The scale parameter is estimated for 

Generalized Exponential distribution with Maximum Likelihood and Bayesian 

using Jeffrey’s & extension of Jeffrey’s prior methods. For the scale parameter, 

α = 0.5, 1.0, and 1.5. The values of Jeffrey’s extension are chosen as c1 = 1.0, 1.5, 

and 2. The value for the loss parameter c2 =  ±1.0 and ±2.0. This was iterated 5000 

times and the scale parameter for each method was calculated. A simulation study 

was conducted in R-software to examine and compare the performance of the 

estimates for different sample sizes with different values for Jeffrey’s prior and the 

extension of Jeffrey’s prior under different loss functions. The results are presented 

in tables for different selections of the parameters and c extension of Jeffrey’s prior. 

In Table 2, Bayes’ estimation with Al-Bayyati’s Loss function under Jeffrey’s 

prior provides the smallest values in most cases especially when loss parameter c2 

is ±2.0. Similarly, in Table 4, Bayes’ estimation with Al-Bayyati’s Loss function 

under extension of Jeffrey’s prior provides the smallest values in most cases, 
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especially when loss parameter c2 is ±2.0 whether the extension of Jeffrey’s prior 

is 0.5, 1.0, or 1.5. Moreover, when the sample size increases from 25 to 100, the 

Mean Squared Error decreases quite significantly. 
 
 

Table 1. Posterior mean for α̂  under Jeffery’s prior 

 

n λ α αML αSL αQL αPL 

αAL 

c2=1.0 c2=-1.0 c2=2.0 c2=-2.0 

25 1.0 

0.5 0.3815 0.3815 0.3510 0.3890 0.3967 0.3662 0.4120 0.3510 

1.0 0.9899 0.9899 0.9107 1.0095 1.0295 0.9503 1.0691 0.9107 

1.5 2.3398 2.3398 2.1526 2.3861 2.4334 2.2462 2.5270 2.1526 

50 1.0 

0.5 0.4521 0.4521 0.4340 0.4566 0.4512 0.4431 0.4702 0.4340 

1.0 0.8861 0.8861 0.8507 0.8950 0.9038 0.8684 0.9215 0.8507 

1.5 1.5164 1.5164 1.4557 1.5315 1.5467 1.4861 1.5770 1.4557 

100 1.0 

0.5 0.4845 0.4845 0.4748 0.4869 0.4893 0.4797 0.4941 0.4748 

1.0 0.8911 0.8911 0.8733 0.8956 0.9000 0.8822 0.9089 0.8733 

1.5 1.4541 1.4545 1.4250 1.4613 1.4686 1.4395 1.4831 1.4250 
 

Note: ML=Maximum Likelihood, SL=Squared Error Loss Function, QL=Quadratic Loss Function, 
PL=Precautionary Loss Function, AL=Al-Bayyati’s Loss Function 

 
 

Table 2. Mean squared error for α̂  under Jeffery’s prior 

 

n λ α αML αSL αQL αPL 

αAL 

c2=1.0 c2=-1.0 c2=2.0 c2=-2.0 

25 1.0 

0.5 0.0258 0.0258 0.2722 0.0246 0.0235 0.0288 0.0215 0.0322 

1.0 0.0473 0.0473 1.0080 0.0492 0.0519 0.0460 0.0600 0.0479 

1.5 0.8114 0.8114 2.6759 0.8956 0.9860 0.6546 1.1785 0.5157 

50 1.0 

0.5 0.0077 0.0077 0.2544 0.0074 0.0080 0.0084 0.0068 0.0094 

1.0 0.0347 0.0347 1.0223 0.0331 0.0319 0.0381 0.0297 0.0423 

1.5 0.0491 0.0491 2.2520 0.0508 0.0530 0.0471 0.0582 0.0470 

100 1.0 

0.5 0.0028 0.0028 0.2506 0.0028 0.0028 0.0030 0.0027 0.0031 

1.0 0.0223 0.0223 1.0161 0.0214 0.0206 0.0241 0.0191 0.0261 

1.5 0.0255 0.0255 2.2556 0.0252 0.0249 0.0267 0.0247 0.0281 
 

Note: ML=Maximum Likelihood, SL=Squared Error Loss Function, QL=Quadratic Loss Function, 
PL=Precautionary Loss Function, AL=Al-Bayyati’s Loss Function 
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Table 3. Posterior mean for α̂  under extension of Jeffery’s prior 

 

n λ α αML αSL αQL αPL 

αAL 

c2=1.0 c2=-1.0 c2=2.0 c2=-2.0 

25 1.0 

0.5 0.3815 0.3662 0.3357 0.3738 0.3815 0.3510 0.3967 0.3357 

1.0 0.9899 0.9107 0.8315 0.9303 0.9503 0.8711 0.9899 0.8315 

1.5 2.3398 2.0590 1.8718 2.1053 2.1526 1.9654 2.2462 1.8718 

50 1.0 

0.5 0.4521 0.4431 0.4250 0.4476 0.4521 0.4340 0.4612 0.4250 

1.0 0.8861 0.8107 0.8152 0.8595 0.8684 0.8330 0.8861 0.8152 

1.5 1.5164 1.4254 1.3648 1.4557 1.4405 1.3951 1.4861 1.3648 

100 1.0 

0.5 0.4845 0.4797 0.4700 0.4821 0.4845 0.4748 0.4893 0.4700 

1.0 0.8911 0.8733 0.8555 0.8777 0.8822 0.8644 0.8911 0.8555 

1.5 1.4541 1.4104 1.3814 1.4177 1.4250 1.3959 1.4395 1.3814 
 

Note: ML=Maximum Likelihood, SL=Squared Error Loss Function, QL=Quadratic Loss Function, 
PL=Precautionary Loss Function, AL=Al-Bayyati’s Loss Function 

 
 

Table 4. Mean squared error for α̂  under extension of Jeffery’s prior 

 

n λ α αML αSL αQL αPL 

αAL 

c2=1.0 c2=-1.0 c2=2.0 c2=-2.0 

25 1.0 

0.5 0.0258 0.0288 0.0361 0.0272 0.0258 0.0322 0.0235 0.0361 

1.0 0.0473 0.0479 0.0617 0.0466 0.0460 0.0531 0.0473 0.0617 

1.5 0.8114 0.3947 0.2062 0.4253 0.5157 0.2915 0.6546 0.2061 

50 1.0 

0.5 0.0077 0.0552 0.0104 0.0080 0.0077 0.0094 0.0071 0.0104 

1.0 0.0347 0.0558 0.0526 0.0401 0.0381 0.0471 0.0347 0.0526 

1.5 0.0491 0.0487 0.0578 0.0460 0.0485 0.0523 0.0471 0.0578 

100 1.0 

0.5 0.0028 0.0032 0.0033 0.0029 0.0028 0.0031 0.0028 0.0033 

1.0 0.0223 0.0261 0.0305 0.0251 0.0241 0.0282 0.0223 0.0305 

1.5 0.0255 0.0300 0.0352 0.0291 0.0281 0.0324 0.0267 0.0352 
 

Note: ML=Maximum Likelihood, SL=Squared Error Loss Function, QL=Quadratic Loss Function, 
PL=Precautionary Loss Function, AL=Al-Bayyati’s Loss Function 

Conclusion 

The Bayes’ estimator of the parameter of the Generalized Exponential distribution 

was studied under Jeffrey’s prior and the extended Jeffrey’s prior assuming 

different loss functions. The extended Jeffrey’s prior gives the opportunity of 

covering wide spectrum of priors to get Bayes’ estimates of the parameter – 
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particular cases of which are Jeffrey’s prior and Hartigan’s prior. We have also 

addressed the problem of Bayesian estimation for the Generalized Exponential 

distribution, under symmetric loss functions and that of Maximum Likelihood 

Estimation. In most cases, the Bayesian Estimator under Al-Bayyati’s Loss 

function has the smallest Mean Squared Error values for both prior’s i.e, Jeffrey’s 

and an extension of Jeffrey’s prior information. Moreover, when the sample size 

increases from 25 to 100, the MSE decreases quite significantly. 
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In this paper, hierarchical Bayes approach is presented for estimation and prediction of 

reliability indexes and remaining lifetimes of a cold standby series system under general 

progressive Type II censoring scheme. A simulation study has been carried out for 

comparison purpose. The study will help reliability engineers in various industrial series 

system setups. 

 

Keywords: Cold standby series system, general progressive Type II censoring, 

hierarchical Bayes estimation, Monte Carlo simulation 

 

Introduction 

A cold standby series system is widely applied to achieve high reliability in various 

engineering systems used in space exploration and satellite, textile manufacturing 

and carbon recovery systems. In such a series system, some units are placed in 

working mode while the rest in cold standby mode. When any unit in the working 

mode fails, it is replaced by any of the standby units in negligible time to survive 

the engineering system. The standby system becomes invalid when all standby units 

are used up, and one of the working units becomes unusable. 

Mei, Liao, and Sun (1992) discussed the point estimation of reliability indexes 

by assuming that the life units in the series system have identical exponential 

distribution, and the failure rate is a known constant. Under the assumption that the 

failure rate is a random variable, Su and Gu (2003) derived the Bayes estimates 

while Bai, Yu, and Hu (1998) derived the multiple Bayes estimates of reliability 

indexes for the series system. Pham and Turkkan (1994) studied the reliability of 

http://dx.doi.org/10.22237/jmasm/1478003820
mailto:dinesh.barot@ahduni.edu.in
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the series system with Beta distribution component live. Willits (1997) studied 

reliability estimation of the series system using small binomial samples. Xu, Kang, 

and Shi (2002) discussed Bayesian and multiple Bayesian analysis of reliability 

performances for the series system. Barot and Patel (2014) derived the exact 

confidence limits of the reliability indexes for a cold standby series system under 

general progressive Type II censoring scheme using an empirical Bayesian 

approach. 

In a life testing experiment, a censoring scheme that can balance between total 

times spent, number of units used and efficiency of statistical inference based on 

the results of an experiment is desirable. For this reason a more general censoring 

scheme called, general progressive Type II censoring scheme, has received a 

significant importance in the last few decades. This censoring scheme is extremely 

useful in both industrial life testing and clinical settings. The numerous articles 

dealing with inference procedures under this censoring scheme have been found in 

the journals (e.g., Balakrishnan & Sandhu, 1996; Fernández, 2004; Kim & Han, 

2009; Barot & Patel, 2014). 

In Bayes approach, the posterior distribution of the parameters of interest 

given the data is obtained by assuming that the model hyper-parameter is known 

and then inferences are considered based on this distribution. However, when the 

information regarding the model hyper-parameter is unknown, empirical Bayes or 

hierarchical Bayes approaches are used to handle the super parameter structure for 

the estimation and prediction. In the empirical Bayes approach, the posterior 

distribution of the parameter of interest given the data is first obtained, assuming 

that the model hyper-parameters are known. The hyper-parameter is estimated from 

the marginal distribution of the data, and inferences are then based on the estimated 

posterior distribution. 

However, in the case of non-availability of empirical data, estimates of 

parameters can be obtained through only an expert consulting. In such situations, 

hierarchical Bayes approach is more preferable than empirical Bayes approach. In 

hierarchical Bayes approach, a prior distribution of the hyper-parameter is specified 

according to expert’s opinions, and then the posterior distribution of the parameter 

of interest is obtained. A parameter of interest is then estimated by its posterior 

mean and its precision is measured by its posterior variance. The hierarchical Bayes 

approach is straightforward and clear-cut, but computationally intensive, often 

involving high dimensional integration. It looks promising, but caution should be 

exercised in applying this approach. It has been described and applied extensively 

for various statistical inferences in literature (e.g., Han, 1998; Lehmann & Casella, 
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1998; Papadopoulos, Tiwari, & Zalkikar, 1996; Younes, Delampady, MacGibbon, 

& Cherkaoui, 2007). 

Statistical prediction was the most prevalent form of statistical inference, 

which is very important in a variety of disciplines such as medicine, engineering, 

and business. Various authors have studied the prediction problems in reliability 

and life testing problems (e.g., Dunsmore, 1974; Chhikara & Guttman, 1982; Ali 

Mousa, 2001; Ali Mousa & Jaheen, 2002). 

Most of the research on a cold standby series system has focused on the usual 

Bayes approach. The objective of the present paper is to investigate estimation and 

prediction of reliability indexes and remaining lifetimes of the series system using 

a hierarchical Bayes approach under general progressive Type II censoring scheme. 

Bayes Estimation of Reliability Indexes 

In reliability and life testing studies, an exponential distribution is one of the most 

widely used lifetime models, and inference based on this distribution can be used 

quite effectively. A number of lifetime data have been analyzed, and it was 

observed that in most of the cases an exponential distribution provides a good fit. 

This distribution has been used to describe the life span of many items such as 

electronic tubes, light bulbs and mechanical components. 

Suppose that a cold standby series system has (k + n – 1) identical units 

comprising a series of k working units U1, U2,…, Uk being in an operational state 

and (n – 1) standby units S1, S2,…, S(n–1) connected in a series. When any unit of 

the series of k working units fails, any unit of (n – 1) standby units replaces it 

immediately through an alternation switch in negligible time, so that the series 

system stays operational. Figure 1 shows a functional diagram of the series system. 

Barot and Patel (2014) have considered such a series system and placed it on a life 

testing experiment under general progressive Type II censoring scheme by 

assuming that every unit has the failure rate kλ with the probability density and 

cumulative distribution functions, respectively, as 

 

  f | e , , , 0kxx k x k      (1) 

 

and 

 

  F | 1 e kxx      (2) 
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Figure 1. Cold standby series system with (k + n – 1) identical units 
 

 

According to Cao and Cheng (1986), the reliability R(t) and average life 

MTTF of the series system are strictly monotonic decreasing functions with respect 

to  and can be given, respectively, by 
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Under the general progressive Type II scheme, the lifetimes of the first s units, 

i.e., x(1), x(2),…, x(s) are not observed, and then the lifetimes until the mth failure, i.e., 

x(s+1), x(s+2),…, x(m) are completely observed. At the time of every ith failure, ri units 

are randomly removed from the remaining (n – s – 1) standby units (i = s + 1, 

s + 2,…, m – 1). Instead of continuing the test until the entire standby units are used 

up, the test is terminated at the time of the mth failure (m < n), and all the remaining 

rm standby units are removed from the test, where rm is given by 
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Following Barot and Patel (2014), the likelihood function based on the general 

progressive Type II sample x = (x(s+1), x(s+2),…, x(m)) can be written as 
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The concern in Bayesian estimation is an appropriate choice of a prior 

distribution for a parameter to consider subjective information from experienced 

experts. An exponential distribution is one of most prominent random probability 

distributions, and its good mathematical properties facilitate insight and 

computational reduction. In reliability analysis and life testing, it is preferred over 

many other distributions due to its richness, computational ease, better fit to the 

failure data, analytical tractability, and easy interpretability. To ease the 

computational burden and get computable closed form expression for the posterior 

distribution, it is assumed that the unknown failure rate λ is the realization of a 

random variable and follows an exponential prior with the probability density 

function 

 

  | e , 0        (5) 

 

The likelihood function (4) and prior distribution (5) can be easily combined 

to form a posterior distribution that represents total knowledge about the parameter 

λ after the data have been observed. It is 
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In Bayesian analysis, a loss function must be specified in order to obtain 

Bayes estimates. The loss function is a non-negative function of the distance 

between the estimate and the true value. When decisions become gradually more 

damaging for large errors, the use of squared error loss function,    
2

ˆ ˆL ,     , 

is more appropriate because of its analytical tractability. The Bayes estimate of 

parameter λ, reliability R(t) and MTTF can be obtained under the squared error loss 

function, respectively, as 
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Hierarchical Bayesian Analysis 

The idea in a Bayesian model is that when you look at a likelihood function and 

decide right priors for parameters. Instead, it may be more appropriate to use priors 

depending on other parameters those are not mentioned in a likelihood function. 

These parameters themselves will require priors and can depend on new ones. This 

can continue in a hierarchical framework until there are no more parameters to 

incorporate in the model. In this section, hierarchical Bayes estimates of reliability 

indexes of the series system are constructed. 
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Due to the complicity of practical problems and uncertainty about the true 

level of an expert, it is quite difficult to give the exact estimate of a super parameter 

β. However, the value of β can be obtained in an approximate interval denoted by 

(a, b) through an expert consulting. As there is no other information on the 

parameter β,  it is assumed that it has uniform distribution on (a, b) with the 

probability density function 
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given in Xu et al. (2002). In order to obtain the posterior density of β given x, 
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From Bayes theorem, the posterior density of β given x can be obtained as 
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Under the squared error loss function, the Bayes estimate of β can be given by 
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Using (10) in (7), (8), and (9), the hierarchical Bayes estimates of λ, R(t) and MTTF 

under the squared error loss function can be obtained as follows: 
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In Bayesian inference, the 100(1 – α)% highest probability density (HPD) 

interval of the parameter of interest is the shortest interval in parameter space that 

contains 100(1 – α)% of the probable values of the parameter. It is one of the most 

useful tools to measure posterior uncertainty that includes more probable values 

and excludes the least probable values of the parameter. Since the posterior 
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distribution (6) is unimodal, the 100(1 – α)% Bayes HPD-interval (p1, p2) for λ must 

simultaneously satisfy the equations 
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After tedious algebra, the equations (14) and (15) can be written in the form 
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where cj = kwj + β. 

The 100(1 – α)% Bayes HPD-intervals of R(t) and MTTF can be obtained 

from (8) and (9). When the super parameter β is unknown, the 100(1 – α)% 

hierarchical Bayes HPD-intervals of reliability indexes can be obtained by using 

the estimate ˆ
B  for β. 

Prediction of Remaining Lifetimes Truncated at x(m) 

The prediction of remaining lifetimes, based on a current available sample, known 

as an informative sample, is an important feature in Bayesian analysis. Howlader 

(1985) presented HPD-prediction intervals for the zth order statistic of a future 

sample. Fernández (2000) considered the problem of predicting an independent 

future sample from the Rayleigh distribution under doubly Type II censoring 

scheme. Raqab and Madi (2002) considered an estimation of the predictive 

distribution of the total time on a test up to certain failures in a future sample, as 

well as that of the remaining testing time until all the units in the original sample 

have failed. 
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Let 
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denote the lifetime of the lth unit to fail. The conditional probability density function 

of y = x(l) – x(m) from the probability density function truncated at x(m) is given by 
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From (1) and (2), the function f1 = (y | λ) can be obtained as 
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Based on the general progressive Type II censored sample x, the conditional joint 

probability density function of y and λ can be written as 
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The Bayes predictive density function of y can be obtained as 
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where 
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Under the squared error loss function, the Bayes predictive estimate of y can be 

obtained as 
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Thus, the Bayes predictive estimate of x(l) can be given by 

 

 
   
* *

l m
x x y    (19) 

 

Moreover, the 100(1 – α)% Bayes HPD-prediction interval of y* is given by (h1, h2), 

where h1 and h2 are solutions of the equations 

 

    1 2p | p |h hx x   (20) 

 

and 

 

  1 2p 1h y h       (21) 

 

Using (19) in (20) and (21), after tedious algebra, we have 
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Hence, the 100(1 – α)% Bayes HPD-prediction interval for x(l) is 

 

     1 2,
m m

x h x h    (24) 

 

When the super parameter β is unknown, the hierarchical Bayes predictive 

estimates x(l) and the corresponding 100(1 – α)% hierarchical HPD-prediction 

interval of can be obtained by using the estimate ˆ
B  for β in (19) and (24). 

Simulation Study 

An extensive Monte Carlo simulation study was carried out to illustrate and 

compare the performance of hierarchical Bayes estimates of reliability indexes of 

the system with series of k units in working mode and (n – 1) units in cold standby 

mode. The performance is evaluated based on estimated risks and biases for 

different combinations of sample size (n), effective sample size (m – s), and general 

progressive Type II censoring scheme r = (rs+1, rs+2,…, rm). The different censoring 

schemes applied in the simulation study are summarized in Table 1. 

For given values a = 0, b = 1 and 100,00,000 generated uniform numbers, two 

values of β, one is the true value βT = 0.5002 and another is the expert value 

βE = 0.4999 were obtained by the Monte Carlo means. The corresponding 

λ = 2.0008 is brought from the prior (5) and the expert value βE. Using the generated 

value of λ, we have generated a general progressive Type II censored sample 

x = (x(s+1), x(s+2),…, x(m)) with the censoring scheme r from the exponential 

distribution according to the algorithm presented in Balakrishnan and Sandhu 

(1996) that involves the following steps: 
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1. Generate Vm from the Beta distribution with parameters (n – s) and 

(s + 1) 

2. Independently generate Zs+i from U(0, 1) and then set 

1

s ia

s i s iV Z 

  , 

1

m

s i jj m i
a i r   

   for i = 1, 2,…, (m – s – 1) 

3. Set Us+1 = 1 – Vm and Us+i = 1 – (Vm–i+1Vm–i+2…Vm), 

i = 2, 3,…, (m – s) 

4. For the generated value of λ and given k,    
1

ln 1 s is i
x U

k


   , 

i = 1, 2,…, (m – s) is the required general progressive Type II 

censored sample of size (m – s) from the exponential distribution 

 

The Bayes estimates, hierarchical Bayes estimates, and the corresponding 

estimated risks were computed by averaging over 100,000 simulations, and are 

reported, respectively, in Tables 2-6. From the simulation results, the following 

points can be drawn: 

 

1) For the fixed sample size n and initial s unobserved failures, as the 

predetermined number of failures m increases, the estimated risks of 

estimates of reliability indexes decrease, that is, the performance 

becomes better in terms of the estimated risks. (Refer to Tables 2-4) 

2) For the fixed effective sample size (m – s), the estimated risks of 

estimates of failure rate λ and reliability R(t) decrease while that of 

MTTF increase with the increasing sample size n. (Refer to Tables 2-

4) 

3) For the fixed sample size n and predetermined number of failures m, 

the estimated risks of estimates of failure rate λ and reliability R(t) 

increase while that of MTTF decrease with the increasing number of 

initial s unobserved failures. (Refer to Tables 2-4) 

4) For the fixed sample size n and effective sample size (m – s), the 

estimated risks of the estimates of MTTF decrease while that of 

reliability R(t) decrease for small sample size and increase for 

moderate and large sample sizes with increasing number of working 

units k. (Refer to Table 6) 

5) It is noted that an increase in k does not have any dampening effect on 

the estimated risk of failure rate λ. (Refer to Table 6) 
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6) The estimated risks of the Bayes estimates of reliability indexes are 

smaller than the corresponding hierarchical Bayes estimates for all the 

considered cases. This indicates that Bayes estimates outperform the 

hierarchical Bayes estimates. (Refer to Tables 2-4) 

7) For the fixed effective sample size (m – s), as the sample size n 

increases, the Bayes and hierarchical Bayes estimates of failure rate λ 

decrease while reliability R(t) and MTTF increase, i.e., the series 

system survives for a long period. (Refer to Tables 2-4) 

8) For the fixed sample size n and effective sample size (m – s), as the 

number of working units k increases, the Bayes and hierarchical Bayes 

estimates of reliability R(t) and MTTF decrease, i.e., the series system 

fails frequently. (Refer to Table 5) 
 
 
Table 1. Progressive Type II censoring schemes (CS) applied to the simulation study 
 

n m s CS No. r = (rs+1,rs+2,…,rm)  n m s CS No. r = (rs+1,rs+2,…,rm) 

20 8 3
 

[1] (1, 0, 4, 1, 6)  50 10 3
 

[19] (6, 8, 10, 4, 3, 7, 2) 
   [2] (0, 0, 0, 0, 12)     [20] (0, 0, 0, 0, 0, 0, 40) 
    [3] (12, 0, 0, 0, 0)      [21]

 
(40, 0, 0, 0, 0, 0, 0) 

           

  4
 

[4] (2, 0, 4, 6)    4
 

[22]
 

(6, 8, 10, 4, 5, 7) 
   [5] (0, 0, 0, 12)     [23]

 
(0, 0, 0, 0, 0, 40) 

     [6] (12, 0, 0, 0)        [24]
 

(40, 0, 0, 0, 0, 0) 

           

 10 3
 

[7] (2, 0, 3, 0, 1, 2, 2)  100 8 3
 

[25] (16, 12, 20, 14, 30) 
   [8] (0, 0, 0, 0, 0, 0, 10)     [26] (0, 0, 0, 0, 92) 
   [9] (10, 0, 0, 0, 0, 0, 0)      [27] (92, 0, 0, 0, 0) 

           

  4
 

[10] (3, 0, 2, 1, 0, 4)    4
 

[28] (28, 25,17, 22) 
   [11] (0, 0, 0, 0, 0, 10)     [29] (0, 0, 0, 92) 

      [12] (10, 0, 0, 0, 0, 0)       [30] (92, 0, 0, 0) 

           

50 8 3
 

[13] (6, 12, 11, 4, 9)   10 3
 

[31] (6, 13, 15, 14, 8, 12, 22) 
   [14] (0, 0, 0, 0, 42)     [32] (0, 0, 0, 0, 0, 0, 90) 
    [15] (42, 0, 0, 0, 0)      [33]

 
(90, 0, 0, 0, 0, 0, 0) 

           

  4
 

[16] (8, 15, 7, 12)    4
 

[34]
 

(16, 18, 15, 14, 15, 12) 
   [17] (0, 0, 0, 42)     [35]

 
(0, 0, 0, 0, 0, 90) 

      [18] (42, 0, 0, 0)        [36]
 

90, 0, 0, 0, 0, 0 
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Table 2. Estimates of failure rate of λ and their estimated risks 
 

CS β̂  
ˆ

B
λ  ˆ

HB
λ   ˆ

B
λER   ˆ

HB
λER  

1 0.5257 2.2951 2.3031 0.6755 0.7867 

2 0.5273 2.2706 2.2772 0.6508 0.7554 

3 0.5078 2.5724 2.6029 1.0682 1.3812 

4 0.5229 2.3396 2.3504 0.7288 0.8545 

5 0.5250 2.3066 2.3154 0.6917 0.8070 

6 0.5005 2.6863 2.7278 1.2986 1.6107 

7 0.5234 2.3322 2.3365 0.6178 0.6879 

8 0.5280 2.2616 2.2629 0.5479 0.6060 

9 0.5098 2.5440 2.5598 0.8976 1.0207 

10 0.5192 2.3984 2.4059 0.6934 0.7772 

11 0.5246 2.3146 2.3181 0.5986 0.6655 

12 0.4985 2.7215 2.7505 1.2238 1.4206 

13 0.5279 2.2612 2.2676 0.6451 0.7537 

14 0.5300 2.2301 2.2348 0.6168 0.7176 

15 0.5078 2.5717 2.6025 1.0667 1.2980 

16 0.5269 2.2779 2.2850 0.6593 0.7669 

17 0.5292 2.2422 2.2473 0.6250 0.7233 

18 0.5006 2.6853 2.7265 1.2945 1.6056 

19 0.5269 2.2790 2.2808 0.5607 0.6197 

20 0.5317 2.2033 2.2042 0.4952 0.5432 

21 0.5098 2.5438 2.5593 0.8921 1.0120 

22 0.5265 2.2845 2.2865 0.5639 0.6223 

23 0.5307 2.2195 2.2199 0.5060 0.5548 

24 0.4985 2.7209 2.7495 1.2191 1.4100 

25 0.5299 2.2310 2.2358 0.6177 0.7183 

26 0.5305 2.2219 2.2262 0.6038 0.6983 

27 0.5076 2.5706 2.6017 1.0657 1.2978 

28 0.5286 2.2511 2.2564 0.6259 0.7249 

29 0.5301 2.2282 2.2323 0.6054 0.6989 

30 0.5004 2.6824 2.7254 1.2902 1.5969 

31 0.5317 2.2031 2.2040 0.4944 0.5427 

32 0.5326 2.1878 2.1883 0.4845 0.5312 

33 0.5098 2.5424 2.5588 0.8907 1.0105 

34 0.5296 2.2362 2.2365 0.5266 0.5806 

35 0.5321 2.1971 2.1970 0.4951 0.5437 

36 0.4985 2.7203 2.7403 1.2161 1.4044 
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Table 3. Estimates of reliability R(t) and their estimated risks 
 

CS R(t)  ˆ
B

tR   ˆ
HB

tR    ˆ
B

tER R    ˆ
HB

tER R  

1 0.4695 0.4554 0.4600 0.0598 0.0623 

2  0.4638 0.4686 0.0601 0.0617 

3  0.3692 0.3717 0.0646 0.0661 

4  0.4410 0.4453 0.0600 0.0625 

5  0.4520 0.4564 0.0603 0.0626 

6  0.3410 0.3428 0.0789 0.0815 

7  0.4249 0.4289 0.0586 0.0604 

8  0.4505 0.4549 0.0583 0.0601 

9  0.3552 0.3578 0.0642 0.0659 

10  0.4019 0.4055 0.0596 0.0613 

11  0.4311 0.4352 0.0584 0.0602 

12   0.3060 0.3075 0.0734 0.0752 
      

13 0.9999 0.9643 0.9676 0.0069 0.0092 

14  0.9665 0.9696 0.0063 0.0085 

15  0.9361 0.9429 0.0144 0.0195 

16  0.9631 0.9666 0.0071 0.0095 

17  0.9657 0.9689 0.0065 0.0087 

18  0.9219 0.9307 0.0190 0.0259 

19  0.9722 0.9745 0.0048 0.0063 

20  0.9768 0.9786 0.0039 0.0050 

21  0.9513 0.9558 0.0101 0.0131 

22  0.9719 0.9742 0.0049 0.0064 

23  0.9759 0.9778 0.0040 0.0052 

24   0.9318 0.9387 0.0159 0.0209 
      

25 1.0000 0.9993 0.9997 1.136 × 10-5 1.105 × 10-5 

26  0.9993 0.9997 1.079 × 10-5 1.172 × 10-5 

27  0.9981 0.9991 6.165 × 10-5 3.532 × 10-5 

28  0.9993 0.9996 1.934 × 10-5 1.141 × 10-5 

29  0.9993 0.9997 1.798 × 10-5 1.262 × 10-5 

30  0.9973 0.9988 8.788 × 10-5 5.091 × 10-5 

31  0.9997 0.9999 6.051 × 10-5 3.037 × 10-5 

32  0.9997 0.9999 5.034 × 10-5 2.081 × 10-5 

33  0.9993 0.9996 2.221 × 10-5 1.098 × 10-5 

34  0.9997 0.9998 6.072 × 10-5 3.081 × 10-5 

35  0.9997 0.9998 5.092 × 10-5 2.594 × 10-5 

36   0.9986 0.9993 4.714 × 10-5 2.338 × 10-5 
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Table 4. Estimates of MTTF and their estimated risks 
 

CS MTTF B
MTTF  

HB
MTTF   B

MTTFER   HB
MTTFER  

1 1.9991 2.1663 2.1792 0.4857 0.5213 

2  2.1901 2.2039 0.5051 0.5417 

3  1.9329 1.9369 0.3798 0.4136 

4  2.1270 2.1386 0.4620 0.4965 

5  2.1576 2.1702 0.4834 0.5190 

6  1.8599 1.8602 0.3788 0.4116 

7  2.0519 2.0613 0.3475 0.3687 

8  2.1164 2.1276 0.3809 0.4039 

9  1.8815 1.8855 0.3062 0.3255 

10  1.9954 2.0032 0.3271 0.3473 

11  2.0677 2.0776 0.3552 0.3769 

12   1.7626 1.7630 0.3027 0.3239 
      

13 4.9979 5.5000 5.5351 3.2263 3.4580 

14  5.5787 5.6162 3.4049 3.6458 

15  4.8297 4.8395 2.3392 2.5313 

16  5.4589 5.4926 3.1398 3.3672 

17  5.5472 5.5838 3.3299 3.5669 

18  4.6484 4.6492 2.3318 2.5252 

19  5.2490 5.2760 2.3295 2.4697 

20  5.4308 5.4626 2.6177 2.7724 

21  4.7025 4.7124 1.9184 2.2388 

22  5.2357 5.2623 2.3140 2.4531 

23  5.3902 5.4209 2.5499 2.7009 

24   4.4066 4.4072 1.8230 2.1551 
      

25 9.9958 11.1494 11.2244 13.5400 14.4996 

26  11.1964 11.2729 13.7659 14.7371 

27  9.6457 9.6649 9.2994 10.1653 

28  11.0364 11.1081 12.9450 13.8712 

29  11.1528 11.2282 13.4762 14.4297 

30  9.2739 9.2750 9.2443 10.1482 

31  10.8628 10.9265 10.5038 11.1230 

32  10.9300 10.9954 10.7570 11.3888 

33  9.4016 9.4214 7.6860 8.1665 

34  10.7068 10.7662 10.0085 10.6043 

35  10.8999 10.9644 10.6881 11.3177 

36   8.8144 8.8156 7.0966 7.6261 
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Table 5. The effect of k on the estimates of reliability indexes 
 

CS k 
ˆ

B
λ  ˆ

HB
λ   ˆ

B
tR   ˆ

HB
tR  

B
MTTF  

HB
MTTF  

1 4 2.2951 2.3031 0.6261 0.6282 2.7078 2.7240 
 8   0.1543 0.1587 1.3539 1.3620 
 12   0.0371 0.0388 0.9026 0.9080 

4 4 2.3396 2.3504 0.6118 0.6136 2.6588 2.6732 
 8   0.1464 0.1506 1.3294 1.3366 
 12   0.0346 0.0362 0.8863 0.8911 

7 4 2.3322 2.3365 0.6095 0.6115 2.5648 2.3365 
 8   0.1210 0.1244 1.2824 1.2883 
 12   0.0225 0.0236 0.8549 0.8589 

10 4 2.3984 2.4059 0.5866 0.5881 2.4943 2.5040 
 8   0.1099 0.1129 1.2471 1.2520 
 12   0.0198 0.0206 0.8314 0.8346 

13 4 2.2612 2.2675 0.9896 0.9873 6.8750 6.9188 
 8   0.8067 0.8056 3.4375 3.4594 
 12   0.5095 0.5144 2.2917 2.3063 

16 4 2.2779 2.2850 0.9893 0.9869 6.8236 6.8658 
 8   0.8022 0.8010 3.4118 3.4329 
 12   0.5033 0.5080 2.2745 2.2886 

19 4 2.2790 2.2808 0.9930 0.9916 6.5613 6.5950 
 8   0.8123 0.8115 3.2806 3.2975 
 12   0.4877 0.4923 2.1871 2.1983 

22 4 2.2845 2.2865 0.9929 0.9915 6.5446 6.5779 
 8   0.8108 0.8100 3.2723 3.2889 
 12   0.4853 0.4898 2.1815 2.1926 

25 4 2.2310 2.2358 0.9999 0.9998 13.9367 14.0305 
 8   0.9919 0.9897 6.9684 7.0152 
 12   0.9382 0.9348 4.6456 4.6768 

28 4 2.2511 2.2564 0.9999 0.9998 13.7955 13.8852 
 8   0.9917 0.9896 6.8977 6.9426 
 12   0.9362 0.9327 4.5985 4.6284 

31 4 2.2031 2.2020 0.9999 0.9999 13.5785 13.6581 
 8   0.9955 0.9945 6.7892 6.8290 
 12   0.9527 0.9505 4.5261 4.5527 

34 4 2.2362 2.2365 0.9999 0.9999 13.3835 13.4578 
 8   0.9949 0.9937 6.6917 6.7289 

  12     0.9489 0.9465 4.4611 4.4859 
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Table 6. The effect of k on the estimated risks of estimates of reliability indexes 
 

CS k  ˆ
B
λER   ˆ

HB
λER    ˆ

B
tER R    ˆ

HB
tER R   B

MTTFER   HB
MTTFER  

1 4 0.6755 0.7867 0.0927 0.0950 0.7590 0.8146 
 8   0.0428 0.0454 0.1897 0.2036 
 12   0.0043 0.0047 0.0843 0.0905 

4 4 0.7288 0.8545 0.0993 0.1018 0.7218 0.7758 
 8   0.0394 0.0418 0.1804 0.1939 
 12   0.0039 0.0042 0.0802 0.0862 

7 4 0.6178 0.6879 0.0985 0.1002 0.5429 0.5761 
 8   0.0284 0.0300 0.1357 0.1440 
 12   0.0019 0.0021 0.0603 0.0640 

10 4 0.6934 0.7772 0.1092 0.1112 0.5111 0.5427 
 8   0.0242 0.0256 0.1278 0.1357 
 12   0.0015 0.0017 0.0568 0.0603 

13 4 0.6451 0.7537 0.0015 0.0026 5.0411 5.4031 
 8   0.0790 0.0829 1.2603 1.3508 
 12   0.0871 0.0891 0.5601 0.6003 

16 4 0.6593 0.7669 0.0015 0.0027 4.9060 5.2612 
 8   0.0815 0.0856 1.2265 1.3153 
 12   0.0882 0.0902 0.5451 0.5846 

19 4 0.5607 0.6197 0.0009 0.0014 3.6399 3.8589 
 8   0.0752 0.0782 0.9100 0.9647 
 12   0.0804 0.0818 0.4044 0.4288 

22 4 0.5640 0.6223 0.0009 0.0014 3.6156 3.8330 
 8   0.0759 0.0790 0.9039 0.9582 
 12   0.0808 0.0821 0.4017 0.4259 

25 4 0.6177 0.7183 2.071×10-6 3.023×10-5 21.1563 22.6557 
 8   0.0012 0.0023 5.2891 5.6639 
 12   0.0176 0.0210 2.3507 2.5173 

28 4 0.6259 0.7249 1.565×10-6 2.568×10-5 20.2266 21.6737 
 8   0.0012 0.0022 5.0566 5.4184 
 12   0.0180 0.0214 2.2474 2.4082 

31 4 0.4944 0.5427 4.014×10-7 5.444×10-6 16.4122 17.3797 
 8   0.0006 0.0010 4.1030 4.3449 

  12     0.0121 0.0141 1.8236 1.9311 

34 4 0.5266 0.5806 3.553×10-7 4.667×10-6 15.6383 16.5692 

 8   0.0007 0.0011 3.9096 4.1423 

  12     0.0136 0.0159 1.7376 1.8410 

Numerical Examples 

Two numerical examples are presented to illustrate how the data support the 

developed model and how to employ the proposed method for estimation of 

reliability indexes of the series system. Examples 1 and 2 consider the artificial 
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general progressive Type II censored samples generated from the real data set 

provided by Nelson (1982) and the computer simulation, respectively. 

Example 1. Real Life Data 

As a numerical illustration, a system comprising a series of 2 working units and 18 

cold standby units was considered. This series system is equivalent to a cold 

standby series system of 19 identical and independent units. The lifetimes of such 

19 units were observed until failure during the life test experiment in which 

specimens of a type of electrical insulating fluid were subject to a constant voltage 

stress (34 KV/minutes). The 19 failure times were obtained as follows: 

 

 
0.19 0.78 0.96 1.31 2.78 3.16 4.15 4.67 4.85 6.50

7.35 8.01 8.27 12.06 31.75 32.52 33.94 36.71 72.89
  

 

Asgharzadeh and Valiollahi (2009) checked the validity of an exponential model 

with mean = 14.2857 and indicated that the exponential model is adequate for this 

data set. To generate an artificial general progressive Type II censored sample from 

the given real data set, it is assumed that the lifetimes of the first two failures are 

lost without observation, and then lifetimes were observed until the eighth failure. 

At each failure from 3rd failure to 8th failure, units were randomly withdrawn 

according to the general progressive Type II censoring scheme r = (r3, r4,…, r8) 

= (2, 0, 1, 2, 1, 5). The life test was terminated at the eighth failure, and the vector 

of observed lifetimes was found to be x = (x(3), x(4),…, x(8)) 

= (0.96, 1.31, 2.78, 4.85, 6.50, 8.01). 
 
 
Table 7. Estimates of reliability indexes and their (1 – α)% HPD-intervals for Example 1 
 

 Parameter Estimate 95% HPD-interval 99% HPD-interval 

Bayes Estimation  0.0519 (0.0209, 0.0866) (0.0107, 0.1239) 
 R(t) 0.9415 (0.6257, 0.9999) (0.0992, 0.9999) 
 MTTF 205.5657 (109.7102, 454.5454) (76.6798, 887.8505) 
     

Hierarchical 
Bayes Estimation 

 0.0519 (0.0203, 0.0880) (0.0120, 0.1172) 

R(t) 0.9418 (0.5988, 0.9999) (0.1526, 0.9999) 
 MTTF 205.7603 (107.9023, 467.9803) (81.0286, 791.6666) 
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Table 8. Predictive estimates of the remaining lifetimes and their (1 – α)% HPD-
prediction intervals for Example 1 
 

  l x(i) 95% HPD-interval 99% HPD-interval 

Bayes Estimation 9 10.1738 (8.0262, 15.3444) (8.0206, 22.2503) 
 10 12.8786 (8.0218, 20.7168) (8.0202, 27.9367) 
 11 16.4851 (8.0418, 28.2399) (8.0251, 38.7317) 
 12 21.8947 (8.1446, 39.6961) (8.0996, 55.4946) 

  13 32.7139 (8.0212, 46.9190) (8.0201, 61.6929) 
     

Hierarchical Bayes 
Estimation 

9 10.1758 (8.0470, 16.1734) (8.0244, 24.3241) 

10 12.8833 (8.0267, 20.7303) (8.0377, 27.9939) 
 11 16.4931 (8.0355, 28.2591) (8.0298, 38.7608) 
 12 21.9078 (8.0907, 39.7260) (8.0971, 55.5395) 

  13 32.7373 (8.0261, 46.9559) (8.0241, 61.7342) 

 
 

The Bayes and hierarchical Bayes estimates of failure rate λ, reliability R(t), 

and MTTF and the corresponding HPD-intervals at t = 100 have been computed, 

and are reported in Table 7. The 95% and 99% Bayes and hierarchical Bayes 

predictive estimates and the corresponding HPD-prediction intervals for the each 

of the remaining l lifetimes (9 ≤ l ≤ ) have also been computed, and are reported 

in Table 8. 

Example 2. Simulated Data 

As a numerical illustration, a system initiated with the series of 5 working units 

being in an operational state is placed on a life test along with the other 19 standby 

units connected in a series. This series system is equivalent to a cold standby series 

system of 20 identical and independent units. Under a general progressive Type II 

censoring scheme, the lifetimes of the first two failures are not observed and then 

the lifetimes are completely observed until the eighth failure. Using the algorithm 

presented in the previous section, the general progressive Type II censored sample 

x = (0.01250, 0.01531, 0.02063, 0.02679, 0.03062, 0.05251) has been generated 

with the censoring scheme r = (1, 0, 2, 1, 2, 6). For this sample, Bayes and 

hierarchical Bayes estimates of failure rate λ, reliability R(t), and MTTF, and the 

corresponding HPD intervals at t = 2, have been computed and are reported in Table 

9. Moreover, the 95% and 99% Bayes and hierarchical Bayes predictive estimates 

and the corresponding HPD-prediction intervals for each of the remaining l 

lifetimes (9 ≤ l ≤ ) have also been computed, and are reported in Table 10. 
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Table 9. Estimates of reliability indexes and their (1 – α)% HPD-intervals for Example 2 
 

 Parameter Estimate 95% HPD-interval 99% HPD-interval 

Bayes Estimation λ 2.4747 (0.9950, 4.1210) (0.7440, 4.8827) 
 R(t) 0.3201 (9.053×10-5, 0.9967) (9.9×10-7, 0.9999) 
 MTTF 1.8184 (0.9706, 4.0201) (0.8192, 5.3763) 
     

Hierarchical Bayes 
Estimation 

λ 2.4650 (0.9910, 4.1050) (0.74800, 4.8390) 

R(t) 0.3235 (9.895×10-5, 0.9968) (1.31×10-6, 0.9999) 
 MTTF 1.8256 (0.9744, 4.0363) (0.82661, 5.3476) 

 
 
Table 10. Predictive estimates of the remaining lifetimes and their (1 – α)% HPD-
prediction intervals for Example 2 
 

 l x(i) 95% HPD-interval 99% HPD-interval 

Bayes Estimation 9 0.0676 (0.0527, 0.1079) (0.0526, 0.1661) 
 10 0.0858 (0.0526, 0.1394) (0.0526, 0.1888) 

 11 0.1086 (0.0530, 0.1859) (0.0526, 0.2546) 

 12 0.1389 (0.0526, 0.2477) (0.0526, 0.3431) 

 13 0.1843 (0.0562, 0.3429) (0.0526, 0.4821) 

     

Hierarchical Bayes 
Estimation 

9 0.0677 (0.0529, 0.1201) (0.0526, 0.1662) 

10 0.0860 (0.0527, 0.1398) (0.0526, 0.1893) 

 11 0.1088 (0.0526, 0.1864) (0.0526, 0.2554) 

 12 0.1392 (0.0531, 0.2485) (0.0526, 0.3442) 

 13 0.1848 (0.0526, 0.3440) (0.0526, 0.4838) 

 
 

From the results presented in Tables 7-10, it is observed that the hierarchical 

Bayes estimates and predictors are very close to the Bayes estimates and predictors 

for both the considered real and simulated data. Furthermore, the Bayes and 

hierarchical Bayes predictive estimates and the length of the HPD-prediction 

interval increases as l increases. This implies that the prediction is less precise as a 

large l is considered. 

Conclusion 

This purpose of this study was to study hierarchical Bayes estimation and prediction 

of reliability indexes and remaining lifetimes of a cold standby series system 

consisting a series of k working units and (n – 1) cold standby units under general 

progressive Type II censoring scheme. The Bayes and hierarchical Bayes estimates 

as well as an HPD interval for reliability indexes of the series system are derived. 

In addition, we have derived the Bayes and hierarchical Bayes predictive estimates, 
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and HPD-prediction interval for the remaining lifetimes based on an informative 

sample. We have presented two numerical examples to illustrate the proposed 

estimation and prediction methods. The Monte Carlo simulation study is carried 

out to examine and compare the performance of the Bayes and hierarchical Bayes 

estimates. The simulation results indicated Bayes estimation should be preferred 

over the hierarchical Bayes estimation for estimation of reliability indexes of the 

series system. Furthermore, the number of components in the working condition 

should be less and the number of components in the cold standby mode should be 

large to run the series system for a long period. 
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The discrete skewed Laplace distribution is a flexible distribution with integer domain and 

simple closed form that can be applied to model count data. Parameters are estimated under 

empirical Bayes (EB) analysis and comparison are made between the Bayesian parameter 

estimation and classical parameter estimation, i.e. the maximum likelihood (ML) approach. 

The results show that the Bayesian parameter estimations are preferable. 

 

Keywords: Empirical Bayes, discrete skewed Laplace distribution, Bayesian 

parameter 

 

Introduction 

Skewed distributions are a non-normality of interest (Azzalini, 1985). For example, 

discrete skewed distributions could be used to model count data. One way to 

produce discrete skewed distribution is based on the survival function to 

corresponded continuous case (Roy & Dasgupta, 2001; Roy, 2003). The 

discretization for continuous distributions based on the positive real numbers 

produce discreet distributions on the positive integer numbers, such as the discrete 

Gamma, Weibull, and negative binomial distributions in Chakraborty and 

Chakravarty (2012). Roy (2004) presented the discrete Rayleigh distribution and 

Krishna and Sing (2009) investigated discrete Burr and Pareto. One of the flexible 

discrete skewed distributions that is defined by Barbiero (2014) on the whole 

integer numbers is the discrete skewed Laplace distribution. A main advantage for 

this distribution is the closed and simple forms of its probability function, 

distribution function, mathematical expectation, and variance. The purpose of this 

study is to present empirical Bayesian analysis for the parameter estimation. 

http://dx.doi.org/10.22237/jmasm/1478003880
mailto:a.hossainzadeh@yahoo.com
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Discrete Skewed Laplace Distribution 

Yu and Zhang (2005) and Kozubowski and Nadarajah (2010) defined different 

forms for the discrete skewed Laplace distribution. Here, a simple closed form 

based of the difference between survival functions is used as a way to create a 

discrete distribution based on the continuous one (Barbiero, 2014). 

So, let the continuous skewed Laplace distribution be as follows: 
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such that 0 < p, q < 1 are unknown parameters. The survival function for this 

distribution is defined as 
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Now, using the instruction rule to construct a discrete distribution based on the 

differences between survival functions of the continuous one, i.e. 
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This is the simple closed form for the discrete skewed Laplace distribution with 

0 < p, q < 1 that known as 

 

  ~ ADSLaplace ,d p qX   

 

Now, using the iid sample X = (X1,…, Xn), the maximum likelihood (ML) 

function is defined as 
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such that s- and s+ are defined as number of the negative and positive samples, 

respectively, i.e. as 
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Now, using first order derivative of the likelihood function, the ML estimation for 

the desired parameters are the solutions to the following equations: 
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So we have 
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In a similar way, 
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So the solutions of these equations lead to the  ˆ ˆ,ML MLp q  such that we did not have 

closed form and should solve analytically. 

Bayesian Analysis 

Let θ = (p, q) be the parameters of the discrete skewed Laplace distribution with 

the prior distribution π(θ) = π(p)π(q | p). Note that we assume p and q are 

independent, so π(θ) = π(p)π(q). Also, the prior distribution for p and q are the non-

informative prior U(0, 1), the uniform distribution. If f(x | θ) is the desired 

distribution, then the posterior distribution of θ given x is as follows: 
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Note that, under the square integrable loss function, the Bayes estimator for 

θ = (p, q) is as follows: 
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That leads to 
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Now, if θ1, θ2,…, θm are m iid samples from the prior distribution π(θ), we have 
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So the empirical Bayes (EB) estimator θEB is as follows: 
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and finally the Bayes estimators EBp̂  and EBq̂  can be easily found. 

Simulation Study 

Now, to validate our estimation method presented in this paper, we simulate 1000 

samples for different combinations of the parameters (p, q) and compare the ML 

estimator with the EB method. Note that this can be easily achieved through the R 

package DiscreteLaplace (Barbiero, 2014; Barbiero & Inchingolo, 2016). As Table 

1 shows, the differences between the considered values for (p, q) and their EB 

estimators are less than that of the estimators provided by the ML method. 
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Table 1. Simulation study for empirical Bayes and maximum likelihood methods 
 

(p, q) 
ˆ

ML
p  ˆ

ML
q  ˆ

EB
p  ˆ

EB
q  

(0.25, 0.25) 0.211 0.229 0.231 0.238 

(0.25, 0.50) 0.221 0.472 0.231 0.495 

(0.50, 0.25) 0.482 0.232 0.491 0.239 

(0.75, 0.75) 0.724 0.722 0.731 0.739 

Numerical Example 

Kappenman (1975) and later Barbiero (2014) considered the following data: 

 

 

1.96,  1.96,  3.60,  3.80,  4.79,  5.66,  5.76,  5.78,  6.27,  6.30,  6.76,  7.65,

7.84,  7.99,  8.51,  9.18,  10.13,  10.24,  10.25,  10.43,  11.45,  11.48,  11.75,

11.81,  12.34,  12.78,  13.06,  13.29,  13.98,  14.18,  14.40,  16.22,  17.06

  

 

which are assumed to represent a random sample of size n = 33 from a symmetrical 

Laplace distribution with a location parameter. Before employing these data for our 

purposes, we transform them by subtracting their median, 10.13, and then take its 

integer part. We expect that these final values can be modeled through our proposed 

discrete distribution. We then apply our estimation methods discussed above and 

compare these estimators to those which the maximum likelihood method provides: 

ML 0 65ˆ .71p   and ML 0 57ˆ .76q  , while EB
ˆ 0.7005p   and EB 0 11ˆ .75q  . The 

Bayesian information criteria (BIC) for the ML estimation are -211.75, while this 

criteria for empirical Bayes method is -236.54; this shows that the EB estimators 

are more efficient than classical estimators. 

Conclusion 

The presented paper investigates Bayesian analysis for the discrete skewed Laplace 

distribution and compares it to the classical estimation method, the maximum 

likelihood estimator. The BIC criteria show that the empirical Bayes estimators are 

preferable. 
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Skip-lot sampling plan serves as a cost-effective technique to manage the cost of 

performing frequent product inspections. As a powerful tool within a real-time quality 

management system, the ability to collect data which an optimize skip-lot sampling 

parameters affords manufacturers the luxury of lowering inspection expenses in various 

manufacturing units. The good quality of product can be produced in continuous 

improvement of production process in excellent quality history for suppliers. The 

procedures and necessary tables are provided for finding the respective plans for which 

sum of producer and consumer risks are minimized with acceptable and limiting quality 

levels which accounts for the prior distribution of process state for each lot and revenue 

received appreciably which reduces destructive testing. 

 

Keywords: Bayesian sampling plan, gamma-Poisson distribution, producer’s quality 

level, consumer’s quality level, weighted risk 

 

Introduction 

Quality has been an internal part of all products and services. It has become one 

of the most important consumer decision factors in the selection among 

competing product and services. The modern quality control methods are 

developed to growing awareness of needs and demands of the consumer. The 

method of quality control is mainly refers to a spectrum of managerial methods 

for attempting to maintain the quality of products at a desired level. 

Acceptance sampling is a statistical procedure for accepting or rejecting a 

batch of merchandise or documents involves determining the maximum of defects 

discovered in a sample before the entire batch is rejected. The sampling procedure 

is defined on the inspection and classification of sample of units selected at 

random from a larger batch or lot and the ultimate decision about disposition of 

http://dx.doi.org/10.22237/jmasm/1478003940
mailto:sureshkk1@rediffmail.com
mailto:umasoundhar@gmail.com


SURESH & UMAMAHESWARI 

704 

the lot is made. Acceptance sampling is the specific plan that states the sample 

size or sizes to be used and associated with acceptance and rejection criteria. This 

method has rapidly gained wide application in industry, particularly in the 

following stages of manufacturing: incoming materials inspection, on line 

production control and finished product quality auditing. 

Acceptance sampling is concerned with the risks of decision making. In 

industry it is used to take decision on lots, whether accept or reject a lot of some 

product or to accept or reject process. The rejection of a lot means return the lot to 

supplier or its submission to 100 percent inspection. The risks are classified as 

two namely, producer’s risk and consumer’s risk. The producer's risk implies that 

a good lot may be rejected by a sampling plan and the consumer's risk implies that 

a bad lot may be accepted by a sampling approach. Sampling plans are usually 

designed to control one or both of these risks. 

The theory of acceptance sampling offers various inspection procedures, 

termed as sampling plans, which are categorized under four types, namely, (i) lot-

by-lot sampling by attributes, in which each unit in a sample is inspected on a go-

on-go basis for one or more characteristics, (ii) lot-by-lot sampling by variables, 

in which each unit in a sample is measured for single characteristics, (iii) 

sampling plans for continuous production by method of attributes and (iv) special 

purpose plans. Lot-by-lot sampling by attributes, in particular, comprises plans 

such as single sampling plans, double sampling plans, multiple sampling plans 

and sequential sampling plans.  

A sampling plan is usually specified by one or more parameters such as 

sample size (n) and acceptance number (c) and associates with itself an important 

measure of performance, called operating characteristic function. The 

determination of the parameters of a sampling plan is prescribed the conditions on 

its operating characteristic curve providing protection to the producer and 

consumer is called designing of the sampling plan. 

Acceptance sampling by attributes each item tested is classified as 

conforming or non-conforming. A sample is taken and it contains too many non-

conforming items, then the batch is rejected, otherwise it is accepted. For this 

method to be effective, batches containing some non-conforming items must be 

acceptable. If the only acceptable percentage of non-conforming items is zero, 

this can only be achieved by examine every item and removing the item which are 

non-conforming. This is known as 100% inspection. 

Effective acceptance sampling involves effective selection and the 

application of specific rules for lot inspection. The acceptance sampling plan 

applied on a lot-by-lot basis becomes an element in the overall approach to 
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maximize quality at minimum cost. Since different sampling plans may be 

statistically valid at different times during the life of a process, therefore all 

sampling plans should be periodically reviewed. 

Many quality characteristics of a product can be measured by their 

performance measures. In such situations each product can be inspected and 

classified as either satisfying or non-satisfying a given set of specifications. Thus 

the products can be classified as defectives or non-defectives otherwise good or 

bad which based on inspections. Such quality characteristics are called attributes. 

This kind of inspection procedure is known as inspection by attributes and the 

respective plan is called as attribute sampling plan. In attribute sampling plan, 

decision is taken by comparing the number of defectives found on inspection with 

a stated acceptance number. 

Bayesian Acceptance Sampling Plan 

The Bayesian approach provides a formal mechanism for taking sample of 

preferences for striking an economical balance between the cost of sampling and 

the expectation of loss due to accepting an insufficiently reliable product or 

rejecting a sufficiently reliable one. The assumption underlying the theory of 

acceptance sampling is that the production process from which lots are formed is 

stable and the lot quality defined in terms of fraction nonconforming is a fixed 

constant. The sampling inspection procedures defined under such assumptions are 

considered as conventional sampling plans.  

However, in practice, the production processes are not always stable and the 

lots coming from such processes will have quality variations which may occur 

due to random fluctuations. The quality variations in the lots are separated into 

two types, viz., within-lot (sampling) variation and between-lot (sampling and 

process) variation. If these two sources of variation are equal and implying more 

process variation, the dispersion of process about the process average is zero, and 

each lot can be considered as a random sample drawn from a process with a 

constant probability of producing a non-conforming unit. This is the premise 

behind conventional acceptance sampling. In frequently, between-lot variation is 

greater than within-lot variation, which indicating that process variation exists and 

the probability of obtaining non-conforming unit varies continually. In such 

situations, the decisions on the submitted lots should be made with the 

consideration of between-lot variations and the lot quality will be treated as a 

random variable rather than a fixed quantity. 
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Further, Bayesian acceptance sampling considers both sources of variation. 

Thus the distinction between conventional and Bayesian approach is associated 

with the variations in lot quality and it can be studied by an appropriate prior 

distribution based on process history or knowledge in the selection of distribution 

to describe the random fluctuations involved in sampling plans. Sampling plans 

which use prior distribution for the lot quality together with the sampling 

distribution of sample information for making decisions such as accepting or 

rejecting the submitted lots are termed as Bayesian acceptance sampling plans and 

which are treated as alternative to conventional sampling plans. [See, Calvin 

(1990)]. 

The procedures for Bayesian plans which are introduce an economic 

considerations and prior results into the sampling equation. These procedures are 

suited to the sampling lots from process or assembly operations that contain 

assignable causes. These causes may be unknown and awaiting for isolation, 

known but unremovable due to state-of-the limitations, or known but 

uneconomical to remove. Conventional acceptance sampling assumes these 

assignable causes have been eliminated. Thus, the distinction between 

conventional and Bayesian approach is associated with the utilization of prior 

process history or knowledge in the selection of a distribution to describe the 

random fluctuations involved in acceptance sampling (Calvin, 1990).  

Wetherill and Chiu (1975) noted the economic schemes based on Bayesian 

theory is more precise and scientific, leaving much less to judgement than those 

based on classical theory. The objective of the paper is to develop a Bayesian 

acceptance sampling plan with fixed acceptance numbers, when the number of 

defects in a unit can be described by a Poisson distribution with parameter λ and 

the prior distribution of λ takes the form of a gamma or non-informative function. 

The gamma distribution was selected for utilization as prior knowledge 

because of two inherent characteristics: which are (i) The Poisson natural 

conjugate prior and (ii) It possesses sufficient productivity in distribution form, 

varying its parameters, which allows a reasonable representation of the specific 

prior knowledge. The first aspect leads to mathematical compatibility; a 

convenient attribute which obtained facilitates the computations. The second point 

implies that the gamma distribution, which provides a variety of distribution 

forms ranging from the positively skewed exponential distribution to an 

approximately symmetrical distribution shape. 

The non-informative function used in the absence of specific prior 

knowledge corresponds to Jeffrey’s non-informative prior (Box & Tiao, 1992). 

The relationship between defectives in sample and defectives in remaining lot for 
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each of prior distributions can be exploring the idea of Bayesian methodology. 

Further it observed that the use of a binomial prior renders sampling useless and 

unsuitable. These serve to make the designers and users of Bayesian sampling 

plans more aware of the consequence associated with selection of particular prior 

distribution (See Case & Keats, 1982). Phelps (1982) derived sampling procedure 

for skip-lot model using Bayesian approach under destructive testing. The model 

is developed for the purpose of (i) To maximize the expected return per lot 

produced items with non-conformities. (ii) To determine the inspection duration 

of preceding or succeeding lots, sample size (n), and acceptance number (c). The 

problem is generated with the help of posterior distribution of success state for 

each lot and it may reduce the constructive of sampling plan. 

Designing of Skip-lot Sampling Plan 

The theory behind skip-lot is that continuous lots should be of high quality. In a 

skip-lot inspection, quality management recruits only inspect a small percentage 

of very high-conforming lots. Once companies develop a reference plan based on 

historical data of consumers’ risks and producers’ risks from inspections proceed 

to lot-by-lot. However, once a specified number of consecutive high-conforming 

lots have passed inspection, firms only inspect a fraction of subsequent lots at 

random. This skip-lot process continues until a lot does not pass, which then 

reverts to lot-by-lot inspection until products pass the skip-lot threshold again. 

The continuous inspection procedures which are optimum for a specified income 

function and a production model which can be only in of two states, which are 

states of repair, and known transition probabilities. The Markov process, 

generated by the model and class of decision procedures, approaches a limiting 

distribution. 

Dodge (1955) presented an extension of continuous sampling plans for 

individual units to a skipping lot sampling plan that are applicable to bulk 

materials or products produced in successive lots or batches and designates the 

inspecting plan. The skipping inspection has specific rules based on the record of 

lot acceptance and rejections, for switching back and forth between normal 

inspection and skipping inspection.  

Perry (1970, 1973) was concerned with the development and evaluation of a 

system of lot inspection sampling plans in which the provision are made for 

inspecting only some fraction of the submitted lots when the quality of the 

submitted product is good as demonstrated by the quality history of the product. A 

good proportion of the ideas and concepts of the skip-lot sampling plan SkSP-2 
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has modified from the continuous sampling plans for individual units or items of 

production. A continuous sampling inspection plan used to inspect a product 

which consisting of individual units and manufactured by an essentially in 

continuous process. This plan proposes that when quality is good, only a fraction f 

of the submitted units need to be inspected [see Dodge (1943)].  

Carr (1982) extended the procedures of CSP-M type plan and developed 

with a system of skip-lot plans designated as CSP-MSkSP. Carr (1982) noted 

inspection errors can have a severe impact on an attributes single-sampling plan 

for lot acceptance due to misclassification of units as defectives or nondefectives. 

However, with estimates of errors, the plan can be adjusted to preserve the desired 

operating characteristic curve for specified sampling plan. The skip-lot sampling 

plan have been developed at various situations such as cost, MIL_STD_105D, 

error of inspection, which are qualified by Schilling (1982), Hsu (1977), Okada 

(1967), Stephens (1979), Cox (1980), and Carr (1982). Aslam, Balamurali, Jun, 

and Ahmad (2010) established the designing methodology to determine the 

parameters for system of skip-lot sampling plan with corresponding to two points 

on the operating characteristic curve and also to minimize the average sample 

number with the help of binomial distribution. 

The SkSP-2 plan is described as one that uses a given lot inspection plan by 

method of attributes called ‘reference plan’ together with the following rules. 

 

Rule 1. Start with normal inspection (inspecting every lot) using 

reference plan 

Rule 2. When i consecutive lots are accepted on normal inspection, 

switch to skipping inspection and inspect only a fraction f of 

the lots. 

Rule 3. When a lot is rejected on skipping inspection, return to 

normal inspection 

 

The positive integer i and sampling fraction f are the parameters of SkSP-2. 

Here 0 < f < 1. When f = 1 the plan reduces to original reference plan. The 

probability of acceptance of the plan SkSP-2 is denoted by Pa (f, i). Using 

Markov-chain technique one can find the probability of acceptance of SkSP-2 

plan. A Markov process represents the observations of system which satisfying 

the condition that the probability of physical system will be given a state at time t2 

may be deduced from knowledge of its state at earlier time t1. A Markov chain is a 

special case of Markov process in which the set of states or state space is discrete. 

A more complete characterization of the one step transitions of a Markov chain 
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with their corresponding probabilities provided in a matrix form is called the 

transition matrix (see Parzen, 1964). 

The technique of Markov chains to evaluate the sampling plans, a trial 

corresponds to the drawing of sample from a lot which is under consideration. 

The results and outcomes of these trials, called states of chain, will depend upon 

the sampling plan. In some instances, the outcomes of these trials are either 

accepting or rejecting a particular lot while in others, the outcomes are more 

involved. The sates for the Markov chain of the skip-lot plan of type 2 can be 

categorized into two main classifications which are (i) normal inspection states 

(ii) skipping inspection states. 

 

Pa (f, i) can be determined by Markov- Chain Technique as follows: 

 

NR = State where lot is rejected under normal inspection 

Nj = State under normal inspection representing the number of 

consecutively accepted lots j 

SA = State where lots accepted during skipping inspection 

SR = State where lots rejected during skipping inspection 

SN = State where lot is skipped  

P = Probability of acceptance of a lot according to the reference plan 

Q = 1 - P 

 

Because the Markov Chain is finite, recurrent and irreducible and periodic the 

stationary probabilities πi for each state can be obtained from the system 

 

   For all states i j ji

alli

P i    

 

Pij = one step transition probability of state from i to state j. 

 

  
 

 

1
and 1  thus ,

1

i

i a i
alli

fP f P
P f i

f f P


 
 

 
   (1) 

 

The properties of SkSP-2 are (i) for f2 < f1, fixed i and given reference plan, which 

implies that Pa (f1, i) ≤ Pa (f2, i), (ii) for integers i < j, fixed f given reference plan, 

which implies that Pa (f, i) ≤ Pa (f, i) and (iii) Pa (f, i) ≥ P developed by Perry 

(1973). 
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Selection Procedure for SkSP-2 with Repetitive Group Sampling Plan 

as Reference Plan 

When sampling plans are set up for product characteristics that can involve costly 

and destructive testing by attributes, and the samples are required small 

acceptance numbers such as c1 = 0 and c2 = 1. The operating characteristics curve 

with c1 = 0 and c2 = 1 which leads to conflicting interest between the producer 

and consumer. The plan with acceptance number 0 favors to consumer and 1 

favor to producer. Such conflict can be overcome, if the design of plan having 

both c1 = 0 and c2 = 1. In such situations Repetitive Group Sampling Plan with 

acceptance numbers 0 and 1 (with rejection number 2) can be used. 

In the Repetitive Group Sampling Plan (RGSP), derived by Sherman (1965), 

a sample is drawn and the number of defectives is counted. According to fixed 

criterion the lot is either accepted or rejected. This is continued until the fixed 

criterion, the lot is either accepted or rejected or the sample is completely 

disregarded and one begins with another new sample, which is employed for 

making decision about an isolated lot of finished items. The RGS plan gives 

minimum sample size as well as the desired protection. Furthermore, RGS Plans 

are not nearly as efficient as the sequential sampling plans but they are usually 

more efficient than single sampling plan.  

This plan gives an intermediate value in sample size efficiency between 

single sampling and sequential sampling plans. The RGS plan is used to improve 

operating characteristics curve with zero acceptance number. To increase, 

discriminating power of this curve, one way is to increase the sample size, an 

alternative way to use the RGS plan for attribute inspection. The RGSP plays a 

dominant role in industries to achieve high standard of quality as well as 

satisfaction of consumer. It is known that the sampling inspection has two 

principal effects namely filtering and incentive effects. The classified solution of 

sampling plans seems to be reasonable when filter is aim; but it seems unjustified 

when incentive is the main purpose. The selection of sampling plan with an index 

which is a simple function of derivative. Suresh (1993) has studied single 

sampling plan with the producers takes into both filtering and incentive effectives 

simultaneously. 

Calvin (1990) derived the procedures which are suited to the sampling of 

lots from process or assembly operations, which contain assignable causes. These 

causes may be unknown and awaiting for isolation or known and irremovable due 

to the state limitations, or known and it has removed for uneconomical situations. 

Further considered the Bayesian sampling, in which, primary concern with the 
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process average function of non-conforming is P , with lot fraction non-

conforming is p and its limitations being discussed. Further suggested that the 

posterior beta distribution for lot fraction non-conforming requires a family stable 

process with infrequent shifts. Theoretically, any major shifts would require 

reassessment of the sampling plan that accurate sampling risks were to be 

maintained. The RGS plan under Bayesian methodology could be developed by 

past history of the lot quality based on prior distribution of sample information, 

which is termed as BRGS Plan. 

If the number of nonconforming units, d, then the sample follows a binomial 

model under attribute sampling with characteristic function from a finite lot with 

replacement. This can be used under the sampling an attribute characteristic from 

a finite lot without replacement for the case of non-conforming units d, whenever 

n / N ≤ 0.10, which is based on two parameters namely, sample size n and lot size 

N. Under hypergeometric model, the case of non-conforming units d, can be 

determined from a finite lot without replacement. 

The Poisson model can be used whenever n / N ≤ 0.10, n is large and p is 

small such that np < 5 under the situations of attribute characteristic from finite lot 

without replacement. However the case of non-conforming units can be used 

whenever n is large and p is small such that np < 5 under finite lot with 

replacement. The Poisson model permits operating characteristics function of all 

attribute sampling plans simply as function of the product np for given acceptance 

and rejection numbers. The OC function remains some various combinations of n 

and p provided their product of given acceptance and rejection numbers. To 

develop compact table for the selection of sampling plans as only one parameter 

is considered in place of two parameters viz., n and p. 

However, when the Poisson model is assumed, the sampling plans are 

constructed by tables are necessarily the plans with risks are greater than the 

specified limits. The values will be close, but differences occurs in sample size 

and which meet the specified risks, the results found from tables and start to 

search for the appropriate plan. The gamma distribution is a natural conjugate 

prior for the sampling from a Poisson distribution. When the sample items are 

drawn randomly from a process, the number of defects in the sample is distributed 

according to Poisson, the gamma distribution is conjugate prior to the average 

number of defects per items as its parameters, denoted by λ. The Poisson 

distribution is defined with reference to the fixed parameter λ, representing the 

expected number of defects per unit. When λ is assumed to vary at random from 

lot-to-lot, the gamma distribution is a suitable prior distribution for λ. According 

to Hald (1981), the production process produces output in a continuous stream 
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and observed number of defects in the sample from this process is distributed as 

Poisson used as an approximation to the binomial distribution for small values of 

p, which denoted as p < 0.10. The Poisson distribution is an appropriate 

distribution for the case of  

 

(i) Number of nonconforming items in the samples, when p < 0.10. 

(ii) Number of nonconformities in the sample. 

 

The operating characteristics function for RGS plan by attributes under 

Poisson distribution is expressed by  
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where Pa and Pr are the probability of acceptance and rejection of a lot 

respectively when the fraction is nonconforming. (i.e.) Pa = P (d ≤ c1 / P) and 

Pr = P (d > c2 / P). Where c1 and c2 are the acceptance numbers. According to 

gamma distribution, the natural conjugate prior for sampling from the Poisson 

distribution, the function of prior distribution p is denoted by 
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where a is scale parameter and m is shape parameter. Here m is specified from the 

prior information about the production process. The posterior distribution for 

nonconformities is reduced under gamma-Poisson distribution. When the 

production is unstable, the nonconforming item (d) and average number of defects 

p are independently distributed. According to Hald (1981), the nonconforming 

items (d) can be developed under the process average 0.1, 0.2
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P
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A design is presented for skip-lot sampling inspection plans with conditional 

repetitive group sampling plan as reference plan, to reduce the sample size and 

minimize the producer and consumer risks using repetitively selection of group of 
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samples. Further fixing the acceptance numbers c1 = 0 and c2 = 1 as the reference 

plan is advantage for the situations of costly or destructive testing. 

The operating procedures for SkSRGSP are  

 

1. At the outset, select a random sample of size n from each lot and find 

the number of defectives d. 

2. If d = 0, accept the lot 

If d > 1, reject the lot 

If d = 1, repeat the steps 1 and 2. 

3. When i consecutive lots are accepted on normal inspection, switch to 

skipping inspection. 

4. When a lot is rejected on skipping inspection, inspect next i lots are 

produced. 

5. When a lot is rejected while inspecting i lots, switch to normal 

inspection. 

6. When all i lots are accepted, proceed as in step 3. 

7. Screen each rejected lot and correct or replace all the non-

conforming units. 

 

The purpose of this study is to design a sampling plan, which is useful to 

save time and cost of the experimenters (producer and consumer). The product to 

be inspected comprises a series of successive lots produced by an essentially 

continuing process and the size of the lots is taken to be sufficiently large. Under 

the normal conditions the lots are expected to be essentially the same quality and 

the product comes from a source in which the consumer has confidence as good. 

This goal is achieved if we find a minimum/optimal sample size, n, that satisfies 

either both risks or only the consumer’s risk. These procedures are useful to 

minimize the sample size of required sampling plan and increase the production 

level at minimum cost. 

As the rapid advancement of manufacturing technology, supplier require 

their products to be high quality with low fraction of defectives often measured in 

parts per million. Unfortunately, traditional methods in some particular situations 

fail to find out a minute defect in the product. In order to overcome these 

problems the Bayesian methodology can be used to develop the sampling plan 

with minimum cost of inspection. 

The attribute sampling plans have been developed for the situations where 

one of the parameters either the sample size n or the acceptance number c is 

prefixed. The method for obtaining this plan is to minimize the sum of the 
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producer’s risk and the consumer’s risk. In single sampling plan which minimize 

the sum of weighted risk fixed acceptance numbers developed by Vijayathilakan 

(1982) for the Poisson model. 

Procedure for Determination of Sample Size 

When the sum of risk is minimized, the individual values of producer’s and 

consumer’s risk are taken into account and the decision of plan may be advantage. 

The method is developed to minimize the sum of risks with different weights for 

the producer’s and consumer’s risk. The sum is minimized when both risks have 

equal weights. If the consumer risk has larger weight, then it can be assigned to 

the consumer’s rather than producer’s risk. Suppose w1 and w2 are the weights 

such that (w1 + w2) = 1, which implies (w1α + w2β) can be minimized to obtain the 

necessary plan. 

Minimizing (w1α + w2β) which is same as minimizing α + (w2 / w1) β. 

(w2 / w1) can be referred to the index of relative importance to given consumer’s 

risk with the comparison of producer’s risk and it will be denoted by w. The 

weights of the plan has two properties which are (i) when w is greater than one, 

the plan will be more favorable to consumer while compared to equal weights of 

plan. (ii) When w is less than one, it will be more favorable to producer. The 

Poisson model can be used to minimize the sum of weighted risks with fixed 

acceptance numbers it is obtained from 

 

      a aw P p R wP p A      (5) 

 

The expression derived from Poisson model is given by 
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On the simplification for expression of value c as the integral part is given by 
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The equation (7) can be modified in terms of μ1, μ2, and n, which becomes 

 

      2 1 1 2 2 1exp exp
n

n w n                 (8) 

 

Using (7) expression, Soundararajan (1981) has tabulated the value of n 

which minimize the weighted risks for c = 0 and 1 over different combinations of 

AQL and LQL. The fixed acceptance numbers is useful in the area of compliance 

testing where strict adherence to quality is important. Plans with fixed small 

acceptance numbers will have better control over acceptance of lots with more 

defectives. For any given sample size, it is known that acceptance numbers of 

zero and one will reduce the consumer’s risk—(i.e.) the chance of accepting the 

lot with more than LQL percent defective will be reduced. Such plans are 

necessary while dealing with defence products. 

Numerical Study for Proposed Sampling Plan 

1. Given AQL = 5 percent and LQL = 15 percent, one can find the 

values of sample size n which minimize the risks for given value of 

desired distribution. The value of N = 10 and w = 0.5. 

(i) Substituting μ1 = 0.05, μ2 = 0.15 and m = 0 in Table 1, one 

can find the value of n is 4  

(ii) Substituting μ1 = 0.05, μ2 = 0.15 and m = 5 in Table 2, one 

can find the value of n is 6. 

2. Given AQL = 12 percent and LQL = 25 percent, one can find the 

values of sample size n which minimize the weighted risks for given 

value of desired distribution. The value of N = 25 and w = 1. 

(i) Substituting μ1 = 0.12 and μ2 = 0.25 and m = 10 in Table 3, 

one can find the value of n is 6. 

(ii) Substituting μ1 = 0.12 and μ2 = 0.25 and m = 10 in Table 4, 

one can find the value of n is 9 from given value of N = 25, 

m = 15 and w = 1.5. 

 

From above examples, the expression for n may be obtained by using desire 

distribution, which gives the values of n given by the exact tables and the large 

number of tables required for various combinations of the lot size N and the 

acceptance number c may be dispensed with approximating expression can be 
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used instead. Tables have been prepared for various combinations of AQL and 

LQL from required sample size n can be found out easily for given acceptance 

number c. 

The tables are constructed with the help of n values which minimise the sum 

of risks for fixed acceptance number c1 = 0 and c2 = 1 based on different 

combinations of AQL and LQL. The tables constructed as follows: 

 

Table 1, N = 10, m = 0, AQL = 3(1)20 and LQL = 8(1)45 

Table 2, N = 10, m = 5, AQL = 5(1)22 and LQL = 10(1)47 

Table 3, N = 25, m = 10, AQL = 11(1)28 and LQL = 1(1)38 

Table 4, N = 25, m = 15, AQL = 2(1)19 and LQL = 15(1)52 

Conclusion 

A new procedure of weighted risk techniques adapted on skip-lot sampling plan 

with repetitive group sampling plan, designed as SkSPRGSP has been proposed in 

this paper. The interest of performance measure is derived to minimize the sample 

number along with smaller acceptance number such as c1 = 0 and c2 = 1, which is 

advantage for small sample situations and also costly or destructive testing. Using 

Bayesian methodology the proposed plan provides better protection to the 

consumer and producer than the conventional sampling plans. The proposed 

approach can be applied to any variants of a skip-lot sampling plan to design a 

more economical plan. The new approach plays an important role in industries to 

achieve high standard of quality as well as satisfaction of consumer. Each 

received lot has been inspecting in a time-consuming endeavor, especially if lots 

are large size. Raw materials are one example of an ideal explorer for skip-lot 

techniques. Products with critical parameters may still require a more thorough 

inspection process, but skip-lot inspection protocols serve as a way to offset the 

cost of inspecting high-conforming products. Conducting business with a supplier 

of proven record is another ideal condition for skip-lot strategies. 
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Table 1. Obtain the sample size n which minimizing (α + 0.5β), when fixed acceptance 
number m = 0, N = 10 
 

Acceptable Quality Levels in Percent Defective (μ1) 

  3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

L
im

it
in

g
 Q

u
a
lit

y
 L

e
v
e
ls

 i
n
 P

e
rc

e
n
t 

D
e
fe

c
ti
v
e
 (
μ

2
) 

8 6 - - - - - - - - - - - - - - - - - 

9 7 2 - - - - - - - - - - - - - - - - 

10 7 3 - - - - - - - - - - - - - - - - 

11 7 4 1 - - - - - - - - - - - - - - - 

12 8 5 2 - - - - - - - - - - - - - - - 

13 8 5 3 1 - - - - - - - - - - - - - - 

14 8 5 4 2 - - - - - - - - - - - - - - 

15 8 6 4 2 - - - - - - - - - - - - - - 

16 7 6 4 3 1 - - - - - - - - - - - - - 

17 7 6 4 3 2 - - - - - - - - - - - - - 

18 7 6 4 3 2 1 - - - - - - - - - - - - 

19 7 6 4 3 2 1 - - - - - - - - - - - - 

20 7 6 5 4 3 2 - - - - - - - - - - - - 

21 7 6 5 4 3 2 1 - - - - - - - - - - - 

22 7 6 5 4 3 2 1 - - - - - - - - - - - 

23 7 5 5 4 3 2 2 1 - - - - - - - - - - 

24 7 5 5 4 3 2 2 1 - - - - - - - - - - 

25 6 5 4 4 3 3 2 1 - - - - - - - - - - 

26 6 5 4 4 3 3 2 2 1 - - - - - - - - - 

27 6 5 4 4 3 3 2 2 1 - - - - - - - - - 

28 6 5 4 4 3 3 2 2 1 - - - - - - - - - 

29 6 5 4 4 3 3 2 2 1 1 - - - - - - - - 

30 6 5 4 4 3 3 2 2 2 1 - - - - - - - - 

31 6 5 4 4 3 3 2 2 2 1 - - - - - - - - 

32 6 5 4 4 3 3 2 2 2 1 1 - - - - - - - 

33 6 5 4 4 3 3 2 2 2 1 1 - - - - - - - 

34 6 5 4 4 3 3 2 2 2 1 1 - - - - - - - 

35 5 5 4 4 3 3 2 2 2 2 1 1 - - - - - - 

36 5 5 4 4 3 3 2 2 2 2 1 1 - - - - - - 

37 5 5 4 4 3 3 2 2 2 2 1 1 - - - - - - 

38 5 5 4 4 3 3 2 2 2 2 1 1 1 - - - - - 

39 5 5 4 4 3 3 2 2 2 2 1 1 1 - - - - - 

40 5 4 4 4 3 3 2 2 2 2 1 1 1 - - - - - 

41 5 4 4 4 3 3 2 2 2 2 2 1 1 - - - - - 

42 5 4 4 3 3 3 2 2 2 2 2 1 1 1 - - - - 

43 5 4 4 3 3 3 2 2 2 2 2 1 1 1 - - - - 

44 5 4 4 3 3 3 2 2 2 2 2 1 1 1 - - - - 

45 5 4 4 3 3 3 2 2 2 2 2 1 1 1 1 0 0 0 

 
*Key: α–Producer Risk, β–Consumer Risk 
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Table 2. Obtain the sample size n which minimizing (α + 0.5β), when fixed acceptance 
number m = 5, N = 10 
 

Acceptable Quality Levels in Percent Defective (μ1) 

  5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

L
im

it
in

g
 Q

u
a
lit

y
 L

e
v
e
ls

 i
n
 P

e
rc

e
n
t 

D
e
fe

c
ti
v
e
 (
μ

2
) 

10 7 6 5 3 - - - - - - - - - - - - - - 

11 7 6 5 4 2 - - - - - - - - - - - - - 

12 6 6 5 4 3 2 - - - - - - - - - - - - 

13 6 6 5 4 4 3 1 - - - - - - - - - - - 

14 6 5 5 4 4 3 2 1 - - - - - - - - - - 

15 6 5 5 4 4 3 3 2 1 - - - - - - - - - 

16 6 5 5 4 4 3 3 2 2 - - - - - - - - - 

17 5 5 5 4 4 3 3 3 2 1 - - - - - - - - 

18 5 5 4 4 4 3 3 3 2 2 1 - - - - - - - 

19 5 5 4 4 4 3 3 3 3 2 2 1 - - - - - - 

20 5 5 4 4 4 3 3 3 3 2 2 2 1 - - - - - 

21 5 4 4 4 4 3 3 3 3 2 2 2 1 1 - - - - 

22 5 4 4 4 3 3 3 3 3 2 2 2 2 1 1 - - - 

23 5 4 4 4 3 3 3 3 3 2 2 2 2 1 1 - - - 

24 4 4 4 4 3 3 3 3 3 2 2 2 2 2 1 1 - - 

25 4 4 4 4 3 3 3 3 3 2 2 2 2 2 1 1 1 - 

26 4 4 4 4 3 3 3 3 3 2 2 2 2 2 2 1 1 1 

27 4 4 4 3 3 3 3 3 3 2 2 2 2 2 2 1 1 1 

28 4 4 4 3 3 3 3 3 3 2 2 2 2 2 2 2 1 1 

29 4 4 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 1 

30 4 4 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 1 

31 4 4 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 1 

32 4 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 1 

33 4 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 1 

34 4 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 1 

35 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 1 

36 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 1 

37 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 1 

38 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 1 

39 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 1 

40 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 1 

41 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 1 

42 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 1 

43 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 1 

44 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 1 

45 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 1 

46 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 

47 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 

 
*Key: α–Producer Risk, β–Consumer Risk 
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Table 3. Obtain the sample size n which minimizing (α + 1β), when fixed acceptance 
number m = 10, N = 25 
 

Acceptable Quality Levels in Percent Defective (μ1) 

  11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 

L
im

it
in

g
 Q

u
a

lit
y
 L

e
v
e

ls
 i
n

 P
e

rc
e

n
t 
D

e
fe

c
ti
v
e

 (
μ

2
) 

1 23 21 21 20 18 18 17 16 16 15 14 14 14 13 13 12 12 12 

2 19 18 17 16 16 15 14 14 13 13 13 12 12 11 11 11 11 10 

3 17 16 15 14 14 13 13 12 12 12 11 11 11 10 10 10 9 9 

4 15 14 14 13 13 12 12 11 11 10 10 10 10 9 9 9 9 8 

5 14 13 13 12 12 11 11 10 10 10 9 9 9 9 8 8 8 8 

6 13 12 12 11 11 10 10 10 9 9 9 9 8 8 8 8 8 7 

7 12 11 11 10 10 10 9 9 9 9 8 8 8 8 7 7 7 7 

8 11 11 10 10 10 9 9 9 8 8 8 8 7 7 7 7 7 7 

9 11 10 10 9 9 9 8 8 8 8 7 7 7 7 7 7 6 6 

10 10 10 9 9 9 8 8 8 8 7 7 7 7 7 6 6 6 6 

11 10 9 9 9 8 8 8 7 7 7 7 7 7 6 6 6 6 6 

12 9 9 9 8 8 8 7 7 7 7 7 6 6 6 6 6 6 6 

13 9 9 8 8 8 7 7 7 7 7 6 6 6 6 6 6 6 5 

14 9 8 8 8 7 7 7 7 7 6 6 6 6 6 6 5 5 5 

15 8 8 8 7 7 7 7 6 6 6 6 6 6 6 5 5 5 5 

16 8 8 7 7 7 7 6 6 6 6 6 6 6 5 5 5 5 5 

17 8 7 7 7 7 6 6 6 6 6 5 5 5 5 5 5 5 5 

18 8 7 7 7 6 6 6 6 6 6 5 5 5 5 5 5 5 5 

19 7 7 7 7 6 6 6 6 6 5 5 5 5 5 5 5 5 5 

20 7 7 7 6 6 6 6 6 5 5 5 5 5 5 5 5 4 4 

21 7 7 6 6 6 6 6 5 5 5 5 5 5 5 5 5 4 4 

22 7 6 6 6 6 6 6 5 5 5 5 5 5 5 5 4 4 4 

23 7 6 6 6 6 6 5 5 5 5 5 5 5 5 4 4 4 4 

24 6 6 6 6 6 5 5 5 5 5 5 5 5 4 4 4 4 4 

25 6 6 6 6 5 5 5 5 5 5 5 5 5 4 4 4 4 4 

26 6 6 6 6 5 5 5 5 5 5 5 4 4 4 4 4 4 4 

27 6 6 6 5 5 5 5 5 5 5 5 4 4 4 4 4 4 4 

28 6 6 5 5 5 5 5 5 5 5 4 4 4 4 4 4 4 4 

29 6 6 5 5 5 5 5 5 5 4 4 4 4 4 4 4 4 4 

30 6 5 5 5 5 5 5 5 4 4 4 4 4 4 4 4 4 4 

31 6 5 5 5 5 5 5 4 4 4 4 4 4 4 4 4 4 4 

32 5 5 5 5 5 5 4 4 4 4 4 4 4 4 4 4 4 4 

33 5 5 5 5 5 5 4 4 4 4 4 4 4 4 4 4 4 3 

34 5 5 5 5 5 4 4 4 4 4 4 4 4 4 4 4 3 3 

35 5 5 5 5 5 4 4 4 4 4 4 4 4 4 4 4 3 3 

36 5 5 5 5 4 4 4 4 4 4 4 4 4 4 4 3 3 3 

37 5 5 5 5 4 4 4 4 4 4 4 4 4 4 3 3 3 3 

38 5 5 5 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 

 
*Key: α–Producer Risk, β–Consumer Risk 
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Table 4. Obtain the sample size n which minimizing (α + 1.5β), when fixed acceptance 
number m = 15, N = 25 
 

Acceptable Quality Levels in Percent Defective (μ1) 

  2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

L
im

it
in

g
 Q

u
a

lit
y
 L

e
v
e

ls
 i
n

 P
e

rc
e

n
t 
D

e
fe

c
ti
v
e

 (
μ

2
) 

15 25 22 19 18 17 16 15 14 14 13 13 13 15 -- -- -- -- -- 

16 24 21 19 17 16 15 14 14 13 13 12 12 13 14 -- -- -- -- 

17 23 20 18 17 15 15 14 13 13 12 12 12 12 12 14 -- -- -- 

18 22 19 17 16 15 14 13 13 12 12 11 11 11 11 11 13 -- -- 

19 21 19 17 15 14 14 13 12 12 11 11 11 10 10 10 11 13 -- 

20 20 18 16 15 14 13 12 12 11 11 10 10 10 10 9 10 10 12 

21 20 17 16 15 14 13 12 12 11 10 10 10 10 10 9 9 9 10 

22 19 17 15 14 13 12 12 11 11 10 10 10 9 9 9 9 9 9 

23 19 16 15 14 13 12 11 11 10 10 10 9 9 9 9 9 9 9 

24 18 16 14 13 12 12 11 11 10 10 9 9 9 9 9 8 8 8 

25 18 16 14 13 12 11 11 10 10 10 9 9 9 8 8 8 8 8 

26 17 15 14 13 12 11 11 10 10 9 9 9 8 8 8 8 8 8 

27 17 15 13 12 12 11 10 10 9 9 9 9 8 8 8 8 8 7 

28 16 14 13 12 11 11 10 10 9 9 9 8 8 8 8 8 7 7 

29 16 14 13 12 11 10 10 9 9 9 8 8 8 8 8 7 7 7 

30 15 14 12 12 11 10 9 9 9 9 8 8 8 8 7 7 7 7 

31 15 13 12 11 11 10 9 9 9 8 8 8 8 7 7 7 7 7 

32 14 13 12 11 10 10 9 9 9 8 8 8 7 7 7 7 7 7 

33 14 13 12 11 10 10 9 9 8 8 8 8 7 7 7 7 7 6 

34 14 13 12 11 10 9 9 8 8 8 8 7 7 7 7 7 7 6 

35 14 12 11 10 10 9 9 8 8 8 8 7 7 7 7 7 6 6 

36 13 12 11 10 10 9 8 8 8 8 7 7 7 7 7 6 6 6 

37 13 12 11 10 9 9 8 8 8 8 7 7 7 7 6 6 6 6 

38 13 12 11 10 9 9 8 8 8 7 7 7 7 7 6 6 6 6 

39 13 11 10 10 9 9 8 8 7 7 7 7 7 6 6 6 6 6 

40 13 11 10 10 9 8 8 8 7 7 7 7 7 6 6 6 6 6 

41 12 11 10 9 9 8 8 7 7 7 7 7 6 6 6 6 6 6 

42 12 11 10 9 9 8 8 7 7 7 7 7 6 6 6 6 6 6 

43 12 11 10 9 9 8 8 7 7 7 7 6 6 6 6 6 5 6 

44 12 10 10 9 8 8 8 7 7 7 7 6 6 6 6 6 5 5 

45 12 10 9 9 8 8 7 7 7 7 6 6 6 6 6 6 5 5 

46 11 10 9 9 8 8 7 7 7 7 6 6 6 6 6 6 5 5 

47 11 10 9 9 8 8 7 7 7 6 6 6 6 6 6 5 5 5 

48 11 10 9 8 8 8 7 7 7 6 6 6 6 6 6 5 5 5 

49 11 10 9 8 8 7 7 7 7 6 6 6 6 6 5 5 5 5 

50 11 10 9 8 8 7 7 7 6 6 6 6 6 6 5 5 5 5 

51 11 9 9 8 8 7 7 7 6 6 6 6 6 5 5 5 5 5 

52 10 9 9 8 7 7 7 7 6 6 6 6 5 5 5 5 5 5 

 
*Key: α–Producer Risk, β–Consumer Risk 

 
  



DESIGNING OF BAYESIAN SKIP LOT SAMPLING PLAN 

721 

Acknowledgments 

The authors are thankful to the unknown referee for his comments towards 

revision of this paper. The first author is thankful to University Grants 

Commission, New Delhi for providing UGC-BSR-OTG. The second author is 

thankful to Department of Science and Technology, New Delhi towards providing 

DST-INSPIRE Fellowship for carrying out the research work. 

References  

Aslam, M., Balamurali, S., Jun, C. H., & Ahmad, M. (2010). Optimal 

designing of a skip-lot sampling plan by two point method. Pakistan Journal of 

Statistics, 26(4), 585-592. 

Box, G. E. P., & Tiao, G. C. (1992). Bayesian inference in statistical 

analysis. New York, NY: Wiley. 

Calvin, T. W. (1990). How and when to perform Bayesian acceptance 

sampling. Milwaukee, WI: American Society for Quality Control. 

Carr, W. E. (1982). Sampling plan adjustment for inspection error and skip-

lot plan. Journal of Quality Technology, 14(3), 105-116. 

Case, K. E., & Keats, J. B. (1982). On the selection of a prior distribution in 

Bayesian acceptance sampling. Journal of Quality Technology, 14(1), 10-18. 

Cox, D.C. (1980). Skip-lot sampling plans. Quality, 21(8), 26-27. 

Dodge, H. F. (1943). A sampling inspection plan for continuous production. 

Annals of Mathematical Statistics, 14(3), 264-279. doi:10.1214/aoms/1177731420 

Dodge, H. F. (1955). Skip-lot sampling plan. Industrial Quality Control, 11, 

3-5. 

Hald, A. (1981). Statistical theory of sampling inspection by attributes. 

London: Academic Press. 

Hsu, J. I. S. (1977). A cost model for skip-lot destructive testing. IEEE 

Transactions on Reliability, R-26(1), 70-72. doi:10.1109/TR.1977.5215081 

Okada, H. (1967). Skip-lot sampling inspection plan combined with MIL-

STD-105D. Reports of Statistical Application Research, 14(4), 13-20. 

Parzen, E. (1964). Stochastic processes. San Francisco, CA: Holden-Day. 

Perry, R. L. (1970). A system of skip-lot sampling plan for lot inspection 

(Unpublished doctoral thesis). Rutgers, The State University of New Jersey, New 

Brunswick, NJ. 

http://dx.doi.org/10.1214/aoms/1177731420
http://dx.doi.org/10.1109/TR.1977.5215081


SURESH & UMAMAHESWARI 

722 

Perry, R. L. (1973). Skip-lot sampling plans. Journal of Quality Technology, 

5(3), 123-130. 

Phelps, R. I. (1982). Skip-lot destructive sampling with Bayesian inference, 

IEEE Transactions on Reliability, R-31(2), 191-193. 

doi:10.1109/TR.1982.5221295 

Schilling, E. G. (1982). Acceptance sampling in quality control. Milwaukee, 

WI: American Society for Quality. 

Sherman, R. E. (1965). Design and evaluation of a repetitive group sampling 

plan. Technometrics, 7(1), 11-21. doi:10.1080/00401706.1965.10490222 

Soundararajan, V. (1981). Single sampling attributes plan indexed by AQL 

and AOQL. Journal of Quality Technology, 13(3), 195-200. 

Stephens, K. S. (1979). How to perform continuous sampling. Milwaukee, 

WI: American Society for Quality Control. 

Suresh, K. K. (1993). A study on acceptance sampling using acceptable and 

limiting quality levels (Unpublished doctoral thesis). Bharathiar University, Tamil 

Nadu, India. 

Vijayathilakan, J. P. (1982). Studies on lot acceptance procedures 

(Unpublished doctoral thesis). Madras University, Tamil Nadu, India. 

Wetherill, G. B., & Chiu, W. K. (1975). A review of acceptance sampling 

schemes with emphasis on the economic aspect. International Statistical Review / 

Revue Internationale de Statistique, 43(2), 191-210. doi:10.2307/1402898 

http://dx.doi.org/10.1109/TR.1982.5221295
http://dx.doi.org/10.1080/00401706.1965.10490222
http://dx.doi.org/10.2307/1402898


Journal of Modern Applied Statistical Methods 

November 2016, Vol. 15, No. 2, 723-736. 

doi: 10.22237/jmasm/1478004000 

Copyright © 2016 JMASM, Inc. 

ISSN 1538 − 9472 

 

 

 
Dr. Krstić is a Toxicologist and Human Health Risk Assessment Specialist. Email him at: 

goran.krstic@fraserhealth.ca. Mr. N. Krstić is a student in the Department of Statistics. 

Dr. Zambrano-Bigiarini is a Professor of Hydrology. 

 

 

723 

The br2–weighting Method for Estimating the 
Effects of Air Pollution on Population Health

Goran Krstić 
Fraser Health Authority 

New Westminster, British Columbia 

Nikolas S. Krstić 
University of British Columbia 

Vancouver, British Columbia 

Mauricio Zambrano-Bigiarini 
Universidad de La Frontera 

Temuco, Chile

 

 
Uncertainties, limitations and biases may impede the correct application of concentration-

response linear functions to estimate the effects of air pollution exposure on population 

health. The reliability of a prediction depends largely on the strength of the linear 

correlation between the studied variables. This work proposes the joint use of the 

coefficient of determination, r2, with the regression slope, b, as an improved measure of 

the strength of the linear relation between air pollution and its effects on population 

health. The proposed br2-weighting method offers more reliable inferences about the 

potential effects of air pollution on population health, and can be applied universally to 

other fields of research. 

 

Keywords: Linear regression coefficients, uncertainty analysis, concentration-

response function, air pollution, population health 

 

Introduction 

Inherent uncertainties associated with the application of relative risks (RR), 

hazard ratios (HR) and concentration-response (C-R) functions derived from the 

epidemiological studies on air pollution exposure vs. population 

mortality/morbidity have been discussed in the published literature (Burnett et al., 

2014; Fann, Gilmore, &Walker, 2013; Fann et al., 2011; Krewski et al., 2009; 

Environmental Protection Agency, 2006; Post, Watts, Al-Hussainy, & Neubig, 

2005; Lipfert & Wyzga, 1995). Considering that confounding factors not 

controlled or accounted for could affect our ability to predict reliably the effects 

attributed to a variable of interest (e.g., effects of PM2.5 on population health), 

epidemiological studies often include adjustments for potential impacts from 

various environmental, behavioral, genetic, and socio-economic health risk 

factors. 

http://dx.doi.org/10.22237/jmasm/1478004000
mailto:goran.krstic@fraserhealth.ca
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The coefficient of correlation (r) has been developed in its current format by 

Pearson in 1895 (Rodgers & Nicewander, 1988). The squared value of r is 

defined as the coefficient of determination (r2), which provides an estimated 

proportion of the variation in a dependent/response variable y that could be 

explained by the variation in an independent/explanatory variable x. In linear least 

squares regression with an estimated intercept term, the r2 can be calculated with 

the following equation: 
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where O are the observed and P the predicted values (Krause, Boyle, & Bäse, 

2005). 

When used for regression between an environmental risk factor vs. 

population health, the r2 provides a statistical estimate of how well the regression 

line approximates the real observations. The r2 provides an estimate of the 

combined dispersion against the single dispersion of the observed and predicted 

series, with values in the range 0 to 1, where r2 = 1 indicates a perfect linear 

correlation (i.e., the dispersion values of the observation and the prediction are 

equal) and r2 = 0 indicates absence of a linear correlation between the studied 

variables. Refer to Rodgers and Nicewander, (1988) for a set of different ways to 

express r and conversely the r2. 

The coefficient of determination (r2) is sensitive to outliers and extreme 

dataset values, which may lead to a “bias toward the extreme events if correlation-

based measures are employed in model evaluation” (Legates & McCabe, 1999, p. 

234). Arnold et al. (2012) indicated the use of r2 without the regression 

coefficients could be associated with an over-estimation bias and that “if r2 is the 

primary statistical measure, it should always be used with slope and intercept to 

ensure that means are reasonable (slope = 1) and bias is low” (p. 1495). 

The study by Pope, Ezzati, and Dockery, (2009) could be used as an 

example to illustrate the importance of r2-value as well as the slope in predicting 

the effects of PM2.5 on population health. Pope, Ezzati, and Dockery (2009, 2012) 

suggested a reduction in PM2.5 concentration observed over the period 1980s – 

2000s is responsible for a statistically significant improvement of life expectancy 

in the metropolitan areas of the United States. However, the observed correlation 
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with/without the influential observations is very weak (r2 ~ 0.05) and Pope et al. 

(2012) acknowledged that “given that there are other determinates of life 

expectancy that may have changed in correlation with changes in air pollution” (p. 

234) their analyses “cannot fully eliminate the potential of some residual 

confounding” (p. 234). This indicates in statistical terms that only approximately 

5% of the variation in a change of life expectancy could be explained by the 

variation in a change of PM2.5 concentration and that the remaining 95% could be 

attributed to a set of selected explanatory variables including income and proxy 

smoking or other environmental, behavioral, genetic and socio-economic health 

risk factors not controlled or accounted for in the presented study (e.g., medical 

practice improvement, public health expenditure change, ambient air temperature). 

The focus of the current study is on improving the interpretation of 

statistical linear regression analyses between air pollution vs. population health. 

Krause et al., (2005) introduced the application of the regression slope (b) as a 

weighing factor of the coefficient of determination (r2) to address potential under- 

or over-estimates of model predictions. The proposed method has been used 

extensively by other researchers in the field of hydrology (Malagò, Pagliero, 

Bouraoui, & Franchini , 2014; Feaster et al., 2014; Arnold et al., 2012; Zambrano-

Bigiarini, 2010; Bellocchi, Rivington, Donatelli, & Matthews, 2009). However, 

application of this approach in the field of environmental health has been limited 

(Krstić, 2012; Young & Xia, 2013).  

Methodology 

In a comparison of different efficiency criteria for hydrological model assessment, 

Krause et al., (2005) consider that r2 alone may be limited in its ability to explain 

the relationship between the response and the explanatory variables, as it 

quantifies only the dispersion, where “a model which systematically over- or 

under-predicts all the time will still result in good r2 values close to 1.0 even if all 

predictions were wrong” (p. 90). Hence, they argue that “for a proper model 

assessment the gradient b should always be discussed together with r2” (p. 90), 

and proposed the following model of a weighted coefficient of determination (wr2) 

(Krause et al., 2005): 
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The weighted coefficient of determination (wr2) quantifies under- or over-

predictions from both the r2 and the slope or gradient of the regression line (b) for 

a more comprehensive representation of the variable dynamics and model results. 

In a recently developed R package (R Core Team, 2015) on goodness-of-fit 

functions for comparison of simulated and observed hydrological time series 

(“hydroGOF”), Zambrano-Bigiarini (2014) indicates “the br2 coefficient allows 

accounting for the discrepancy in the magnitude of two signals (depicted by ‘b’) 

as well as their dynamics (depicted by r2)” (p. 6). Hence, the commutative product 

of |b| and r2 presented above in (2) can be considered also from the opposite 

perspective, where r2 is used for weighting the slope/gradient (b) to take into 

account the strength of the linear correlation between the studied variables. 

For example, a weak correlation model (e.g., r2 < 0.1) cannot be considered 

the same as a model with near perfect correlation (i.e., r2 value close to 1.0), 

which should be taken into account for the interpretation of linear regression 

analyses by adjusting the slope/gradient (b) accordingly: 
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  (3) 

 

where wb represents a weighted slope/gradient (b) of the regression line. If r2 = 1.0, 

in a hypothetical situation of a perfect linear correlation, then wb = |b| or wb = |b|-1 

(i.e., r2 – neutral). 

In case of |b| ≤ 1, the limit of r2 |b| equals 0 if both |b| and r2 approach 0. The 

same result for the limit of r2 |b| is obtained if |b| → 0 and r2 → 1 as well as if 

|b| → 1 and r2 → 0: 

 

 
   

 
   

 
   

 
2 2 2

2 2 2

, 0,0 , 0,1 , 1,0

lim lim lim 0
b r b r b r

r b r b r b
  

        (4) 

 

The limit of r2 |b| equals 1 when both |b| and r2 approach 1: 

 

 
   

 
2

2

, 1,1

lim 1
b r

r b


    (5) 

In case of |b| > 1, the limit of r2 |b|-1 equals 0 if |b| → 1 and r2 → 0 or if |b| → ∞ 

and r2 → 0 or if |b| → ∞ and r2 → 1: 
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As in the case of wb = r2 |b|, the limit of r2 |b|-1 equals 1 when both |b| and r2 

approach 1: 
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    (7) 

 

The results of linear regression analyses models can be used to make 

predictions about the effects of exposure to environmental/socio-economic factors 

on population health. A linear dose-response model or a linear concentration-

response (C-R) function is typically assumed: 

 

 ,y a bx    (8) 

 

where y is the dependent/response variable, x – independent/explanatory variable, 

a – the y-axis intercept, and b – the slope/gradient of the line. However, it needs 

to be taken into consideration that the reliability of a prediction made with the 

aforementioned model depends largely on the strength of the linear correlation 

between the studied variables, where r2–values greater than ~ 0.5 indicate a strong 

relationship with high reliability and r2–values less than ~ 0.1 indicate a weak 

relationship with low reliability of model predictions. This is where the weighted 

slope/gradient (wb) can be used for a more robust procedure to assess the potential 

effects of exposure to environmental and/or socio-economic factors on population 

health. 

Using the methodology for particulate matter risk analysis described by the 

U.S. Environmental Protection Agency (US EPA), Environmental Protection 

Authority of Victoria (Australia) developed the equations for dose-response or 

concentration-response (C-R) functions. The authors estimate health outcome 

changes and calculate the health-endpoint-specific effect coefficient (β) on the 

basis of available dose-response data (Burgers & Walsh, 2002). 

The C-R functions can be estimated from epidemiological studies using a 

Poisson regression where the natural base logarithm of a health endpoint or an 

effect is presented as a linear function of air pollution (e.g., PM2.5) concentration 

(Environmental Protection Agency, 2010a): 
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 1

1 0 ,
xy y e

    (9) 

 

where y1 is the incidence rate of a specific health endpoint of interest at the 

ambient air pollution concentration (x1), e – the base of natural logarithm (ln or 

loge), β – the health effect coefficient of ambient air pollution derived from 

epidemiological studies, and yo – the baseline incidence rate in hypothetical 

absence of ambient air pollution, provided that there is no threshold concentration 

(i.e., level of air pollution below which there is no significant health effect). 

The change in the number of cases for a specific health endpoint (e.g., lung 

cancer incidence or mortality rate) Δy = y1 - yo or y1 = Δy + yo, corresponding to a 

given change in ambient air pollution levels relative to the background 

(Δx = x1 - xo or x1 = Δx + xo), can be calculated from the C-R function in (9) 

presented above using the following equation: 

 

 
  1 ,ox x

oy y e
  

     (10) 

 

where β is the health-endpoint-specific effect coefficient representing an 

incremental change in the health outcome associated with a unit change in air 

pollution (Δx). In a hypothetical situation where the background air pollution 

xo = 0, (10) can be presented as following: 

 

    1   or  1x

o o xy y e y y RR

        (11) 

 

where the term eβΔx is also known as the relative risk (RRΔx) associated with the 

change in Δx. If eβΔx = RRΔx then βΔx = ln(RRΔx), and β = ln(RRΔx)/Δx. 

The percentage change in the number of cases of a given health endpoint 

(zp), corresponding to a given change in air pollution concentration (Δx), can be 

calculated from (Burgers & Walsh, 2002): 
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      (12) 

 

Then, combining and rearranging (11) and (12) provides the equation to calculate 

β for different health endpoints on the basis of available dose-response data from 

epidemiological studies for a 1 μg/m3 change in air pollution: 
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  (13) 

 

Finally, an impact of air pollution on a health endpoint can be calculated from the 

following equation (Fann et al., 2011): 

 

  1 ,x

oy y e pop      (14) 

 

where pop is population size of a particular group exposed to air pollution. 

Case study data used in the current paper are obtained from Vinikoor-Imler, 

Davis, and Luben (2011), the National Center for Environmental Assessment of 

the U.S. EPA, who studied an association between air pollution and population 

health in North Carolina. They reported the following slopes for PM2.5 vs. lung 

cancer mortality and incidence after adjusting for the neighborhood socio-

economic status and the prevalence of cigarette smoking: b = 0.96 per 1 μg/m3 

PM2.5 for lung cancer mortality (95% CI: 0.34, 1.59, p-value < 0.01; r2 = 0.18; 

y-axis intercept, a = 40.96) and b = 1.35 per 1 μg/m3 PM2.5 for lung cancer 

incidence (95% CI: 0.36, 2.35, p-value 0.01; r2 = 0.09; y-axis intercept, a = 44.36). 

Results 

Case Study Worked Example Calculations: Lung Cancer Mortality 

Vinikoor-Imler et al., (2011) provided an adjusted slope of 0.96 lung cancer 

mortality cases per 100,000 population per 1 μg/m3 change in PM2.5 

(b = 0.96·10-5), a y-axis intercept (a) or an estimated baseline lung cancer 

mortality rate at xo = 0 of 40.96 cases per 100,000 population (yo = 40.96·10-5), 

and lung cancer mortality rate per 100,000 population associated with an 

incremental 1 μg/m3 increase in PM2.5 (y1 = 0.96·10-5 + 40.96·10-5 = 41.92·10-5). 

Using (12) the value of zp is calculated at 2.344%. Considering that y1 = bx1 + a 

and yo = bxo + a, the same calculation can be obtained on the basis of the 

relationship: y1 - yo = (bx1 + a) - (bxo + a) or Δy = bΔx, where if Δx = 1 μg/m3 

then Δy = b (i.e., 0.96 cases per 100.000 population per 1 μg/m3): 

 100   .p

o

b
z
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The C-R coefficient β can be then calculated using (13): 

 

 
 

 
 

1
3

3

ln 1 2.344 100
0.0232 .

1
g m

g m
 




    

 

On the basis of the analysis presented by Vinikoor-Imler et al., (2011), using 

(14), it is estimated that incremental 10 μg/m3 increase in PM2.5 concentration 

could be associated with additional 10.68 cases of lung cancer mortality per 

100,000 population (i.e., 34,710 additional cases in ~325 million U.S. population). 

In the following estimate of the coefficient β, the slope of the regression line 

(b) is adjusted for the observed strength of the association between PM2.5 

exposure and lung cancer mortality (r2) using (13) and (15) with (3), where 

|b| = 0.96·10-5 and r2 = 0.18 for a weighted slope/gradient wb = 1.728·10-6 per 

μg/m3 and where Δx = 1 μg/m3 for Δy = wb: 
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A weighted coefficient βw can be then calculated using a weighted percentage 

increase in the number of cases of a given health endpoint zw in the following 

equation: 

 

 

 

 

 
 

1
3

3

ln 1 100

ln 1 0.422 100
0.0042

1

w

w

w

z

x

g m
g m



 










 

  (17) 

 

Hence, adjusting for the neighborhood socio-economic status, cigarette smoking, 

and the r2 between PM2.5 concentration and lung cancer mortality yields a 

weighted C-R coefficient βw of 0.0042 per μg/m3. Using (14), it is estimated that 

an incremental 10 μg/m3 increase in PM2.5 concentration could be associated with 

additional 1.76 cases of lung cancer mortality per 100,000 population or 5,720 

additional cases if applied to ~325 million U.S. population, which is much lower 
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than the 34,710 additional cases foreseen by using the unadjusted slope 

coefficient b. 

Case Study Worked Example Calculations: Lung Cancer Incidence 

Using the approach described above and the data from Vinikoor-Imler et al., 

(2011), a weighted C-R coefficient βw is calculated for the cancer incidence where 

the slope/gradient b > 1 (i.e., b = 1.35), r2 = 0.09 and an estimated baseline lung 

cancer incidence rate yo = 44.36 per 100,000 population at xo = 0. Hence, from (3) 

a weighted slope/gradient is wb = r2·|b|-1 = 0.09·0.7407·10-5 = 6.666·10-7 per 

μg/m3 and zw can be calculated using a modified version of (16) to reflect that 

b > 1: 
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A weighted C-R coefficient βw is calculated using (17): 
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then, using (14), an incremental 10 μg/m3 increase in PM2.5 concentration could 

be associated with additional 0.67 cases of lung cancer incidence per 100,000 

population or 2,178 additional cases if applied to ~325 million U.S. population. 

Discussion and Conclusion 

Some of the key uncertainties and limitations of currently accepted approach in 

assessing the effects of air pollution on population health stem from the quality 

and reliability of epidemiological studies (e.g., study design, exposure assessment, 

confounding factors, statistical model assumptions, risk characterization, potential 

errors and biases). The assumptions required for a valid least-squares regression 

are often not possible to satisfy completely in epidemiological study designs. It 

should be emphasized that regression coefficient/slope b becomes meaningless 

and should not be used to make linear inferences/predictions if the r2 approaches 
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0 (e.g., r2 < 0.1) even in situations where it may appear to be statistically 

significant. 

It is also important to consider available evidence for a plausible biological 

mechanism of toxicity and for a slope and shape of the dose-response relationship 

at low to very low levels of air pollution (Vedal, Brauer, White, & Petkau, 2003). 

There is no universal agreement among the researchers for an assumed linear no-

threshold effect of air pollution on population health. Specifically regarding 

PM2.5-related mortality the U.S. EPA indicated “a review of the time-series and 

cohort studies may lead to the conclusion that although a threshold is not apparent 

at commonly observed concentrations, one may exist at lower levels” 

(Environmental Protection Agency, 2010b, p. 23). Uncertainties associated with 

the evidence for and likelihood of causality should be acknowledged. In addition, 

there is variability in the estimated C-R functions and the magnitude of potential 

effects of air pollution on population health as reported by different research 

groups (Environmental Protection Agency, 2010a). 

The described methodological approach, first proposed by Krause et al., 

(2005) in the context of hydrology, was applied by Krstić, (2012) and accepted by 

Young & Xia, (2013) from the National Institute of Statistical Sciences (NISS) to 

adjust the predicted population health effects in the context of ambient air 

pollution. The analyses presented in the current paper on the basis of 

epidemiological and environmental data from Vinikoor-Imler et al., (2011) 

showed that inclusion of the r2 in the calculation is expected to yield better 

estimates of the predicted effects of air pollution on population health, which 

reflect more accurately the strength of the real linear correlation between the air 

pollution and the specified population health endpoint. 

The proposed br2-weighting method is sensitive to extreme values of both 

|b| and r2 where model prediction reliability increases if |b| and r2 approach 1 and 

decreases if |b| departs from 1 in either direction (i.e., |b| → ∞ or |b| → 0) and/or if 

r2 departs from 1 and approaches 0. The method identifies situations of maximum 

prediction ability as those of |b| ≤ 1 as well as for |b| > 1, provided that both |b| 

and r2 are close to 1. This is in agreement with theoretical/ideal conditions in 

linear regression where a perfect correlation requires that r = 1, |b| = 1 and 

y-intercept a = 0 if the relationship between the studied variables is truly linear in 

nature, resulting in a 45° angle for the regression line as the best fit of the least-

squares estimator (Nau, 2014; Legendre, 2014). 

The least-squares regression coefficient b is considered as an unbiased 

prediction estimator under the assumptions of a perfect correlation between the 

studied variables (Legendre, & Legendre, 1998). The estimated r2-values closer to 
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1 allow more direct and reliable application of b in making inferences and 

predictions. On the other hand, r2-values closer to 0 indicate a necessity to adjust 

the slope b for the observed reduction in model prediction ability. In situations of 

very low r2-values, it becomes increasingly more likely even for the 95% 

confidence interval of the slope b not to include the ideal 45° angle line of the 

best regression fit (Mesplé et al., 1996; Legendre, 2014). 

The presented analyses illustrate the importance of weighting the slope of 

the regression (b) by the coefficient of determination (r2) to obtain more reliable 

inferences in projecting potential effects of air pollution on population health. The 

proposed br2-weighting method could be applied universally in studies of other 

environmental, behavioral, genetic or socio-economic risk factors for more 

comprehensive health impact estimates with lower potential bias and better 

decision-making. 
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Revolution R code is presented to setup Structural Equation Model (SEM) for a Monte 

Carlo study. The example is a comparison of different fit indices. 

 

Keywords: Revolution R, structural equation model, SEM, fit indices, RMSEA, 

SRMR, CFI, chi-squared 

 

 

Revolution R Lavaan package contains algorithms for performing SEM analytics. 

It has the ability to perform Monte Carlo simulations. The example considered here 

is for comparing model fit indices. This algorithm was verified using two well-

known SEM computer software programs by extracting the last repetition of the 

Monte Carlo simulation in Revolution R and comparing the output results with IBM 

SPSS Amos Graphics and with Mplus Version 5.1. 

The algorithm was developed for a 4 × 4 correlation matrix of random values 

constrained within a specific range. Lines 4 and 5 of the code indicate the minimum 

and maximum values of the correlation value range, respectively. These values are 

defined as variable “b1” for the lower limit and “c1” for the upper limit. Line 6, 

variable “var”, specifies the variant range that increases in magnitude based on the 

location of the correlation value within the correlation matrix. The algorithm 

defaults the variant range to zero, so all random correlation values for the matrix 

are within the same range. 

The SEM model was designed for four variables: X1, X2, X3, and X4. The first 

three are exogenous variables, and X4 is the only endogenous variable. The 4 × 4 

correlation matrix is specified on line 75. To modify the correlation matrix to 

http://dx.doi.org/10.22237/jmasm/1478004060
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another matrix size (i.e. 3 × 3 matrix, or 5 × 5 matrix) the variables on lines 7 

through 16 would need to be redefined. Furthermore, the SEM model specification 

within the Monte Carlo command loop would require appropriate modifications on 

lines 69 through 80. 

The model is specified with no correlation relationships, and no direct paths 

between variables X1 and X2, X1 and X3, and X2 and X3. Relationships can be added 

or modified by deleting or modifying lines 78 through 80, which are currently 

designed to force relationship values to zero. 

The algorithm was designed to provide six output files for six sample sizes 

(50, 100, 150, 200, 300, and 500). To change the sample sizes, modify the variable 

names and values on lines 18 through 23. The new variable names will have to be 

modified accordingly on lines 82 and 140. 

The code provided in this article only contains the Monte Carlo simulation 

for one sample size of 50. Repetition of the algorithm logic for the other five sample 

sizes has been deleted to more concisely display the algorithm in this article. The 

repeated code should be copied and pasted, as appropriate, for compilation of all 

six output files. To do this, copy lines 68 through 156 for each of the various sample 

sizes required. The variable “ss50” should be replaced with the appropriate variable 

names that were specified in lines 19 through 23 (e.g. “ss100”, “ss150”, “ss200”, 

“ss300”, and “ss500”). These variable names should replace “ss50” in the copied 

version of lines 82, 140, and 156. 

To modify the number of repetitions for the Monte Carlo simulation loop, 

modify the variable value of “rep” on line 25. 

The model fit indices calculated and provided in the output files are the Chi-

Squared (“baseline.pvalue” as specified by Revolution R), Root Mean Square Error 

Approximation (RMSEA), Standardized Root Mean Square Residual (SRMR), and 

Comparative Fit Index (CFI). The output files indicate the sample size, number of 

repetitions, mean degrees of freedom for all simulations, specified correlation range, 

and the percentage of times the SEM resulted in model fit index values above or 

below a critical value. 

The Lavaan Package contains additional model fit indices that can be added 

to the output file. These include Tucker-Lewis Index (TLI), Goodness of Fit Index 

(GFI), Adjusted Goodness of Fit Index (AGFI), Normalized Fit Index (NFI), and 

Nonnormalized Fit Index (NNFI). To add these fit indices, copy lines 98 through 

102 and paste them at the end of the repetition loop. Replace references to “srmr” 

with “tli”, “gfi”, “agfi”, “nfi”, or “nnfi”, as appropriate. Prepare the output by 

copying and modifying lines 118 through 120, lines 133 and 134, and lines 148 and 

149 appropriately. The new variables created for these model fit indices would 
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require specification of variable length. Insert the appropriate length and zero 

constant values, after lines 39 and 66, by copying the previous lines and modifying 

the variable names as appropriate. 
 
 
Figure 1. R code and Lavaan package for conducting SEM fit indices 
 
#Load SEM Lavaan Package 
library(lavaan) 
#Specify the Correlation Matrix Value Range 
b1=0.06 
c1=0.07 
var=0 
b2=b1+var 
c2=c1+var 
b3=b2+var 
c3=c2+var 
b4=b3+var 
c4=c3+var 
b5=b4+var 
c5=c4+var 
b6=b5+var 
c6=c5+var 
#set sampe size 
ss50=50 
ss100=100 
ss150=150 
ss200=200 
ss300=300 
ss500=500 
#set number of repetition 
rep=1000 
#create arrays of specified length 
reja5=numeric(length=rep) 
reja1=numeric(length=rep) 
reja01=numeric(length=rep) 
acceptb=numeric(length=rep) 
rejectb=numeric(length=rep) 
acceptc=numeric(length=rep) 
rejectc=numeric(length=rep) 
acceptd=numeric(length=rep) 
rejectd=numeric(length=rep) 
close9=numeric(length=rep) 
close75=numeric(length=rep) 
close5=numeric(length=rep) 
dof=numeric(length=rep) 
#initialize constants to zero 
totreja5=NULL 
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totreja1=NULL 
totreja01=NULL 
totacceptb=NULL 
totrejectb=NULL 
totacceptc=NULL 
totrejectc=NULL 
totacceptd=NULL 
totrejectd=NULL 
totlessthane9=NULL 
ttotlessthane75=NULL 
totlessthane5=NULL 
totdof=NULL 
tle5a=NULL 
tle1a=NULL 
tle01a=NULL 
tleaccb=NULL 
tlerejb=NULL 
tleaccc=NULL 
tlerejc=NULL 
tleaccd=NULL 
tlerejd=NULL 
tlecl9=NULL 
tlecl75=NULL 
tlecl5=NULL 
meandof=NULL 
#start loop 
for (i in 1:rep) { 

d1=runif(1,b1,c1) 
d2=runif(1,b2,c2) 
d3=runif(1,b3,c3) 
d4=runif(1,b4,c4) 
d5=runif(1,b5,c5) 
d6=runif(1,b6,c6) 
data.cor=lav_matrix_lower2full(c(1,d1,1,d2,d3,1,d4,d5,d6,1)) 
rownames(data.cor)=colnames(data.cor)=c("z","x1","x2","x3") 
model='z~x1+x2+x3 
x1~~0*x2 
x1~~0*x3 
x2~~0*x3 
' 
fit=sem(model,sample.cov=data.cor,sample.nobs=ss50,fixed.x=FALSE) 
doff=fitMeasures(fit,"df") 
dof[i]<-doff 
chisqpvalue=fitMeasures(fit,"baseline.pvalue") 

# If chisqpvalue is significant at various levels, increment counter 
if (chisqpvalue <= .05) reja5[i] <- 1 
if (chisqpvalue > .05) reja1[i] <- 1 
if (chisqpvalue < .001) reja01[i] <- 1 
rmsealower=fitMeasures(fit,"rmsea.ci.lower") 
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# If RMSEA value is less than 0.05 
if (rmsealower <= .05) acceptb[i] <- 1 
if (rmsealower > .05) rejectb[i] <- 1 
rmseaupper=fitMeasures(fit,"rmsea.ci.upper") 

# If rmseaupper value is less than 0.1 
if (rmseaupper <= .1) acceptc[i] <- 1 
if (rmseaupper > .1) rejectc[i] <- 1 
srmr=fitMeasures(fit,"srmr") 

# If srmr value is less than 0.09 
if (srmr <= .09) acceptd[i] <- 1 
if (srmr > .09) rejectd[i] <- 1 
cfi=fitMeasures(fit,"cfi") 

# If cfi value is close to 1.0 
if (cfi < .9) close9[i] <- 1 
if (cfi < .75) close75[i] <- 1 
if (cfi >= .9) close5[i] <- 1 
} 

#A sum the number of rejections 
totreja5=sum(reja5) 
totreja1=sum(reja1) 
totreja01=sum(reja01) 
#B sum the number of rejections 
totacceptb=sum(acceptb) 
totrejectb=sum(rejectb) 
#C sum the number of rejections 
totacceptc=sum(acceptc) 
totrejectc=sum(rejectc) 
#D sum the number of rejections 
totacceptd=sum(acceptd) 
totrejectd=sum(rejectd) 
#E sum the number of rejections 
totlessthane9=sum(close9) 
totlessthane75=sum(close75) 
totlessthane5=sum(close5) 
totdof=sum(dof) 
#divide the sum by number of repetitions 
tle5a=totreja5/rep 
tle1a=totreja1/rep 
tleaccb=totacceptb/rep 
tlerejb=totrejectb/rep 
tleaccc=totacceptc/rep 
tlerejc=totrejectc/rep 
tleaccd=totacceptd/rep 
tlerejd=totrejectd/rep 
tlecl9=totlessthane9/rep 
tlecl75=totlessthane75/rep 
tlecl5=totlessthane5/rep 
meandof=totdof/rep 
# Summarize results in output file 
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results <- c("sample size=",ss50,"repetitions=",rep, 
"mean DOF=",meandof, "correlation=",b1,"-",c1, 
"chisq a<=0.05=",tle5a,"-> This means that p-chi-squared was less 
than 0.05 % of the time", 
"chisq a>0.05=",tle1a,"-> This means that p-chi-squared was 
greater than 0.05 % of the time", 
"RMSEA (lower)<=0.05=",tleaccb,"-> This means that RMSEA lower is 
less than 0.05 % of the time", 
"RMSEA (lower)>0.05=",tlerejb,"-> This means that RMSEA lower is 
greater than 0.05 % of the time", 
"RMSEA (upper)<=0.1=",tleaccc,"-> This means that RMSEA upper is 
less than 0.1 % of the time", 
"RMSEA (upper)>0.1=",tlerejc,"-> This means that RMSEA upper is 
greater than 0.1 % of the time", 
"SRMR<=0.09=",tleaccd,"-> This means that SRMR is less than 
0.09 % of the time", 
"SRMR>0.09=",tlerejd,"-> This means that SRMR is greater than 
0.09 % of the time", 
"CFI<0.9=",tlecl9,"-> This means that CFI is less than 0.9 % of 
the time", 
"CFI<0.75=",tlecl75,"-> This means that CFI is less than 0.75 % 
of the time", 
"CFI>=0.9=",tlecl5,"-> This means that CFI is greater than 0.9 % 
of the time") 

# Write results to the hard disk.  
# To write the results to your computer 
# change file path to the folder you created on the C drive. 
cat(results,sep="\n",file="c:/Users/Sarah/2cor_results-4variables-
50.txt",append=TRUE)# 
# 
# 
#Repeat Lines 68 through 156 with appropriate modifications of variable 
#“ss50” on lines 82 & 140 and output file name on line 156. 
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Research on modeling is becoming popular nowadays, there are several of analyses used 

in research for modeling and one of them is known as applied multiple linear regressions 

(MLR). To obtain a bootstrap, robust and fuzzy multiple linear regressions, an 

experienced researchers should be aware the correct method of statistical analysis in 

order to get a better improved result. The main idea of bootstrapping is to approximate 

the entire sampling distribution of some estimator. To achieve this is by resampling from 

our original sample. In this paper, we emphasized on combining and modeling using 

bootstrapping, robust and fuzzy regression methodology. An algorithm for combining 

method is given by SAS language. We also provided some technical example of 

application of method discussed by using SAS computer software. The visualizing output 

of the analysis is discussed in detail. 

 

Keywords: Multiple linear regression, robust regression, bootstrap method 

 

Introduction 

Multiple linear regression (MLR) is an extension of simple linear regression. The 

random error term is added to make the model probabilistic rather than 

deterministic. The value of the coefficient βi determines the contribution of the 

independent variables xi, and β0 is the y-intercept (Ngo & La Puente, 2012; Amir, 
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Shafiq, Rahim, Liza, & Aleng, 2016). A fuzzy regression model corresponding to 

equation (1) can be stated as: 

 

 0 1 1 2 2 k ky A A x A x A x      (1) 

 

Explanation variables xi’s are assumed to be precise. However, response 

variable Y is not crisp; it is fuzzy in nature. That means the parameters are also 

fuzzy in nature. Hence, the objective is to estimate these parameters. 

Assume Ai’s are assumes symmetric fuzzy numbers which can be presented 

by interval. For example, Ai can be expressed as a fuzzy set given by 

Ai = < a1c, a1w > where aic is center and aiw is radius or has associated vagueness. 

The fuzzy set reflects the confidence in the regression coefficients around aic in 

terms of symmetric triangular memberships function. Application of this method 

should be given more attention when the underlying phenomenon is fuzzy which 

means that the response variable is fuzzy. Thus, the relationship is also considered 

to be fuzzy. 

Ai = < a1c, a1w > can be written as Ai = [ a1L, a1R ] with a1L = a1c - a1w and 

a1R = a1c - a1w (Kacprzyk & Fedrizzi, 1992). In fuzzy regression methodology, 

parameters are estimated by minimizing total vagueness in the model. 

 

 0 1 1 2 2j j j k kjy A A x A x A x      (2) 

 

Using Ai = < a1c, a1w > write  

 

 0 0 1 1 1, , , ,j c w c w j nc nw nj jc jwy a a a a x a a x a a            (3) 

 

Thus, 

 

 0 1 1jc c c j nc njy a a x a x      (4) 

 

 
0 1 1jw w w j nw njy a a x a x      (5) 

 

As yjw represent radius and so cannot be negative, therefore on the right-

hand side of equation yjw = a0w + a1w | x1j | +…+ anw | xnj |, absolute values of xij are 

taken. Suppose there m data point, each comprising a (n + 1) - row vector. Then 

parameters Ai are estimated by minimizing the quantity, which is total vagueness 
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of the model-data set combination, subject to the constraint that each data point 

must fall within estimated value of response variable. This can be visualized as 

the following linear programming problem. 

 

Minimized  0 1 1

1

m

w w j nw nj

j

a a x a x


     

 

Subject to  

 

 0 0

1 1

n n

c ic ij w iw ij j

i i

a a x a a x Y
 

    
       

    
    

 

 0 0

1 1

n n

c ic ij w iw ij j

i i

a a x a a x Y
 

    
       

    
    

 

and aiw ≥ 0. Simplex procedure is generally employed in order to solve the linear 

programming problem. 

Calculation for linear Regression using SAS 

/* First do Multiple linear regression */  

procreg data=temp1;  

model y=x1  x2; 

run; 

Approach the MM-Estimation Procedure for Robust Regression  

/* Then do robust regression, in this case, MM-estimation */  

ods graphics on; 

procrobustreg method = MM fwls data=biostatistics plot=fitplot(nolimits) 

plots=all; 

model y = x1  x2 / diagnostics itprint;  

output out=resids out=robout r=residual weight=weight outlier=outlier sr=stdres; 

run; 

ods graphics off; 
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Figure 1. Flow Chart of Robust, Bootstrap and Fuzzy Regression 
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Procedure for Bootstrap with Case Resampling n = 1000 

/* And finally, use a bootstrap with case resampling */  

ods listing close; 

procsurveyselect data=temp1 out=boot1 method=urs 

samprate=1 outhits rep=1000;  

run; 

Procedure for bootstrap into fuzzy regression Model 

/*Combination of Bootstrap Technique with Fuzzy Regression*/ 

ods listing close; 

procoptmodel; 

set j= 1..8; 

numberFish{j}, weight{j}, height{j};  

read data boot1 into [_n_]  Fishweight height;  

 

/*Print Fishweight height*/  

printFishweight height; 

number n init 8;  /*Total of Observations*/ 

 

/* Decision Variables bounded or not bounded*/  

/*Theses three variables are bounded*/  

var aw{1..3}>=0;  

 

/*These three variables are not bounded*/ 

var ac{1..3}; 

 

/* Objective Function*/  

min z1= aw[1]*n + sum{i in j} weight[i]*aw[2]+sum{i in j} height[i]*aw[3]; 

 

/*Linear Constraints*/ 

con c{i in 1..n}: 

ac[1]+weight[i]*ac[2]+height[i]*ac[3]-aw[1]-weight[i]*aw[2]-height[i]*aw[3] <= 

Fish[i]; 

con c1{i in 1..n}:  

ac[1]+ weight[i]*ac[2]+ height[i]*ac[3]+aw[1]+ weight[i]*aw[2]+ height[i]*aw[3] 

>= Fish[i];  
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expand;/* This provides all equations */ 

solve;  

print ac aw; 

quit; 

ods rtf close; 

An Illustration of a Biostatistics Case 

 

A Case Study of Aquaculture  
 
 
Table 1. Description of the Variables 
 

Variables  Code Description 
Fish Y Number of Fish Caught 

Weight  X1 Weight in (g) 

Height X2 Height in (cm) 
 

*(Talib, Jaafar, & Sirwar, 2007) 

 
 

Full Algorithm for Alternative Multiple Linear Regression Modelling 

 

Title 'Alternative Linear programming with combining robust and bootstrap'; 

data Biostatistics; 

input Fish weigh height; 

datalines;  

97.32  110.41  103.74 

174.52  111.08  104.80 

214.56  114.98  105.71 

178.44  114.16  105.27 

199.48  112.99  105.45 

189.92  115.20  105.34 

170.48  113.24  105.11 

207.16  117.19  105.66 

; 

run; 

 

ods rtf file='result_ex1.rtf' ; 

 

/*The next step is performing the procedure of modeling linear 
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regression model */ 

procreg data = biostatistics; 

modelFish =weigh height; 

run; 

 

/* Then do robust regression, in this case, MM-estimation */  

ods graphics on; 

procrobustreg method = MM fwls data= biostatistics plot=fitplot(nolimits) 

plots=all; 

modelFish =weigh height/ diagnostics itprint; 

output out=resids out=robout r=residual weight=weight outlier=outlier sr=stdres; 

run; 

ods graphics off; 

 

/* And finally use a bootstrap with case resampling */  

ods listing close; 

procsurveyselect data = biostatistics out = boot1 method = urs 

samprate =1 outhits rep=1000;  

run; 

/*Combination of Bootstrap Technique with Fuzzy Regression*/ 

ods listing close; 

procoptmodel; 

set j= 1..8; 

numberFish{j}, weigh{j}, height{j}; 

read data boot1 into [_n_]  Fish weigh height; 

 

 /*Print Fish weight height*/ 

printFish weigh height; 

 

/*Total of Observations*/ 

number n init 8; 

 

/*Theses three variables are bounded*/ 

var aw{1..3}>=0;  

/*These three variables are not bounded*/ 

var ac{1..3}; 

 

/* Objective Function*/  
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min z1= aw[1]*n + sum{i in j} weigh[i]*aw[2]+sum{i in j} height[i]*aw[3]; 

 

/*Linear Constraints*/ 

con c{i in 1..n}: 

ac[1]+ weigh[i]*ac[2]+height[i]*ac[3]-aw[1]-weigh[i]*aw[2]- 

height[i]*aw[3] <= Fish[i]; 

 

con c1{i in 1..n}: 

 ac[1]+ weigh[i]*ac[2]+ height[i]*ac[3]+aw[1]+ weigh[i]*aw[2]+ 

height[i]*aw[3] >= Fish[i]; 

 

expand; /* This provides all equations */ 

solve; 

print ac aw; 

quit; 

ods rtf close; 

Results 

A higher R-squared value indicated how well the data fit the model and indicates 

a better model. 
 
 
Table 2. Goodness-of-fit 
 

Goodness-of-Fit 

Statistic Value 
R-Square 0.8199 

AICR 5.5323 

BICR 9.4456 

Deviance 234.4750 

 
 

Method of Multiple linear regression (MLR), we obtained the result as shown in 

Table 3 

Table 4 shows the results by using bootstrapping method for fuzzy 

regression with n = 1000. The aim of bootstrapping procedure is to approximate 

the entire sampling distribution of some estimator by resampling (simple random 

sampling with replacement) from the original data (Yaffee, 2002). Table 4 

summarizes the findings of the calculated parameter. 
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Table 3. Parameter Estimates for Final Weighted Least Squares Fit 
 

Parameter Estimates for Final Weighted Least Squares Fit 

Parameter DF Estimate 
Standard 

Error 
95% Confidence 

Limits 
Chi-Square Pr > ChiSq 

Intercept 1 -6334.91 608.3789 -7527.31 -5142.51 108.43 <.0001 

x1 1 -3.0164 2.1608 -7.2516 1.2188 1.95 0.1627 

x2 1 65.2183 7.5704 50.3807 80.0559 74.22 <.0001 

Scale 0 7.1356      

 

Method of Fuzzy Regression (FR) (OPTMODEL) 

 
 
Table 4. Value of ac and aw 
 

 ac aw 

1 -5764.1545 0.000000 

2 -3.0958 0.000000 

3 59.8722 0.075811 

 
 

While using bootstrap procedure, different output for the ac and aw will be 

obtained: 

 

ac1= -5764.1545 

ac2= -3.0958 

ac3= 59.8722 

aw1= 0 

aw2=0 

aw3=0.075811. 

 

The next step is to compare the performance of multiple linear regression and 

fuzzy regression. 

 

The Fitted Model for Multiple Linear Regressions 

 

 6334.91 3.0164 62.21 Y weight height      (6) 

 

 Standard Error (608.3789) (2.1608) (7.5704) 
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The upper limits of prediction interval are computed by coefficient plus 

standard error 

 

 
     

     

6334.91 608.3789 3.0164 2.1608 65.21 7.5704

5726.53 0.86 72.78

Y weight height

Y weight height

       

    
  

 

The lower limits of prediction interval are computed by coefficient minus 

standard error 

 

 
     

     

6334.91 608.3789 3.0164 2.1608 65.21 7.5704

6943.29 5.1772 57.6396

Y weight height

Y weight height

       

    
  

 

The Fitted Model for Fuzzy bootstrap Regression Is 

 

      5764.1545,0 3.0958,0 59.8722,0.075811Y weight height       (7) 

 

The upper limits of prediction interval are computed by coefficient plus standard 

error 

 

 
     

     

5764.1545 0 3.0958 0 59.8722 0.075811

5764.15 3.10 60.00

Y weight height

Y weight height

       

    
  

 

The lower limits of prediction interval are computed by coefficient minus 

standard error 

 

 
     

     

5764.1545 0 3.0958 0 59.8722 0.075811

5764.15 3.10 59.80

Y weight height

Y weight height

       

    
  

 

The width of prediction intervals in respect of multiple linear regression 

model and fuzzy regression model corresponding to each set of observed 

explanatory variables is computed manually. 
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Table 5. Average Width for Former Multiple Linear Regression model and Fuzzy 
Bootstrap Regression Model 
 

Multiple Linear Regression model  Fuzzy Bootstrap Regression Model 
Lower limit Upper limit Width  Lower limit Upper limit Width 

-1535.37 1728.71 3264.09  97.23 117.98 20.75 
-1477.74 1800.92 3278.66  154.95 179.50 24.55 
-1445.48 1868.16 3313.64  200.87 222.01 21.14 
-1466.60 1836.84 3303.44  177.10 1988.15 21.05 
-1450.17 1850.95 3301.12  191.49 212.58 21.09 
-1467.93 1841.04 3308.99  178.06 199.13 21.07 
-1471.06 1825.99 3297.05  170.38 191.41 21.02 
-1459.81 1862.62 3322.43  191.03 212.16 21.13 

Average 3298.68  Average 21.48 

 
 

From Table 5, average width for former multiple regression was found to be 

3298.68 while using fuzzy regression, the average width is 21.48 this indicate that 

the superiority of fuzzy regression methodology. From this analysis, the most 

efficient method to obtained relationship between response and explanatory 

variable is to apply fuzzy regression method compared to linear regression 

method. 

Conclusion 

It was explained how to combine an algorithm between robust, fuzzy regression 

and the bootstrap method. A small sample size (8 observations only) was used  

 

(a) to apply a bootstrap method in order to achieve an adequate of 

sample size. 

(b) to compare the efficiency between original method and with the 

bootstrap method. 

(c) to give a better understanding on how the algorithm works 

 

According to biostatistics history, all the independent variables that we used 

in this case were significant to the number of fish caught. Without using 

bootstrapping, the result shows that two out of eight were significant. It is 

surprising that, using bootstrapping method (with n = 1000) the entire significant 

variable are included in the model as the finding from the biostatistics record. 

This algorithm provides us with the improved understanding of the modified 

method and underlying of relative contributions. For further study, it is possible to 
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approach response surface methodology for every each of significant variables in 

single algorithm. 
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We propose a least absolute deviation estimation method that produced a least absolute 

deviation estimator of parameter of the linear regression model. The method is as 

accurate as existing method. 

 

Keywords: Linear regression model, least absolute deviation (LAD), equation of a 

line, R statistical programming and algorithm 

 

Introduction 

Regression is a statistical methodology that is use to relate a variable of interest, 

which is called the dependent variable or response variable, to one or more 

predictors (independent/regressors) variables. The objective of regression analysis 

is to build a regression model or prediction equation that helps us to describe, 

predict and control the dependent variable on the basis of the independent 

variable(s). When we predict the dependent variable for a particular set of values 

of the independent variables, we wish to place a bound on the error of prediction. 

The goal is to build a regression model that produces an error bound that will be 

small enough to meet our needs. 

In the simple linear regression model, the Population Regression Function 

(PRF) is given by: 

 

 0 1   y x       (1) 

http://dx.doi.org/10.22237/jmasm/1478004180
mailto:ogundele.olaniyi@fupre.edu.ng


ALGORITHM AND CODE FOR LAD ESTIMATOR 

756 

In this model there is only one factor x to explain y. All the other factors that 

affect y are jointly captured by the error term denoted by ε. We typically refer to y 

as the endogenous or dependent variable and x as the exogenous or independent 

variable. 

The idea of the regression model is to estimate the population parameters, β0 

and β1 from a given sample. The Sample Regression Function (SRF) is the sample 

counterpart of the population regression function (PRF). Since the SRF is 

obtained for a given sample, a new sample will generate different estimates. The 

SRF, which is an estimation of the PRF is given by: 

 

 0 1
ˆ ˆˆ  i iy x     (2) 

 

Equation (2) is used to calculate the fitted value  ˆ
iy  for y when x = xi. In the 

SRF 0̂  and 1̂  are estimators of the parameters β0 and β1. For each xi we have an 

observed value (yi) and a fitted value  ˆ
iy . The difference between yi and ˆ

iy  is 

called the residual î  given by: 

 

   ˆ ˆ
i i iy y     (3) 

 

The ordinary least squares (OLS) method is the most widely used method of 

parameter estimation. The OLS criteria is to minimize the sum of squared error of 

prediction 

 

  
22ˆ   ˆ

i i iy y     (4) 

 

OLS regression yields estimates for the parameters that have the desirable 

property of being minimum variance unbiased estimators (Chatterjee & Hadi, 

2006). 

Ordinary least squares estimation places certain restrictive assumptions on 

the random component in the model, the errors of prediction. OLS estimation 

assumes, among others, that the errors of prediction are normally distributed, with 

a common error variance at all levels of X [ε ~ N (0, σ2)]. The normality 

assumption is frequently untenable in practice. Violation of this assumption is 

often manifested by the presence of outliers in the observed data (Nevitt & Tam, 

1998). Thus data containing outlying values may reflect non-normal error 

distributions with heavy tails or normal error distributions containing observations 
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atypical of the usual normal distribution with larger variance than the assumed σ2. 

It is well demonstrated that outliers in the sample data heavily influence estimates 

using OLS regression, sometimes even in the presence of one outlier (Rousseeuw 

& Leroy, 1987). 

If the assumption that the uncertainties (i.e., errors) in the data are 

uncorrelated and normally distributed are valid for the data at hand, then for most 

quantitative experiments, the method of least squares is the "best" analytical 

technique for extracting information from a set of data. The method is best in the 

sense that the parameters determined by the least squares analysis are normally 

distributed about the true parameters with the least possible standard deviations 

(Wolberg, 2006).  

However, the assumption of the general applicability of the normal law of 

errors has been under attack from the very beginning of the development of linear 

regression and, in particular, the least squares analysis hinges critically on the 

existence of the second moment of the error distribution. Thus, if it must assumed 

the error distribution follows, for instance, a Cauchy distribution or any long-

tailed distribution having no finite second moment, then the elegant arguments 

made in favour of the least squares regression estimators become invalid, and thus, 

it may become mandatory to look for other criteria to find best estimators for the 

linear regression model (Giloni & Padberg, 2002). For situations in which the 

underlying assumptions of OLS estimation are not tenable, the choice of method 

for parameter estimation is not clearly defined. Thus, the choice of estimation 

method under non-ideal conditions has been a long-standing problem for 

methodological researchers (Nevitt & Tam, 1998). The history of this problem is 

lengthy with many alternative estimation methods having been proposed and 

investigated (Birkes & Dodge, 1993). 

Robust estimation refers to the ability of a procedure to produce highly 

insensitive estimates to model misspecifications. Hence, robust estimates should 

be good under wide range of possible data generating distributions. In the 

regression context, under normality with identically and independently distributed 

errors, the least squares is the most efficient among the unbiased estimation 

methods. However, when the normality assumption not feasible, it is frequently 

possible to find estimation methods that are more efficient than the traditionaI 

least squares. This occurs when the data generating process has fat tails resulting 

to several outliers compared to the normal distribution. In these cases the least 

squares becomes highly unstable and sample dependent because of the quadratic 

weighting, which makes the procedure very sensitive to outlying observations 

(Pynnonen & Salmi, 1994). Examples of this type of robust estimation are Huber 



ALGORITHM AND CODE FOR LAD ESTIMATOR 

758 

M-estimation, the method of Least Median of Squares, and the method of Least 

Absolute Deviations (LAD). 

The robust LAD estimator is investigated in the present study and so we 

provide a brief description of the method. LAD was developed by Roger Joseph 

Boscovich in 1757, nearly 50 years before OLS estimation (see Birkes & Dodge, 

1993 for a review and historical citations). In contrast to OLS estimation which 

defines the loss function on the residuals as Σei
2, LAD finds the slope and Y 

intercept that minimize the sum of the absolute values of the residuals, Σ | ei |.  

Although the concept of LAD is not more diffucult than the concept of the 

OLS estimation but due to computational difficulties in obtaining LAD estimates 

and lack of exact sampling theory based on such estimates, the LAD method lay 

in the background and the LS method became popular (Rao & Toutenburg, 1999). 

Since there are no exact formulas for LAD estimates, an algorithm is used to 

iteratively obtain the estimate of the parameters.  

Methodology 

Propose Method 

Using the LAD criterion, the model 0 1
ˆ ˆˆ

i iy x    should be constructed by two 

pairs of data points that yield the minimum sum of absolute deviation, our 

approach is to investigate the sum of absolute deviation generated by all possible 

different combinations of data points and then select the two data points that 

produced the least absolute deviation to find the least absolute deviation estimator. 

The two points (xi, yi) and (xj, yj) yield the following system of equations: 

 

 
0 1

0 1

ˆ ˆ 

   ˆ ˆ

i i

j j

y x

y x

 

 

 

 
  (5) 

 

The solution of equation (5) yield the value of 0̂  and 1̂ , for the selected 

pair of data. Subtituting the value of 1̂  and 0̂  obtained from (5) into (1), we 

have 

 

 0 1  ˆ ˆˆ
i iy x     (6) 
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(6) is then used to determine the sum of absolute deviation of all other data points 

from the line joining (xi, yi) and (xj, yj) by substituting for xi (i = 1, 2,…, n) of all 

data points and calculating 

 

 
1

ˆ .
n

i i

i

y y


   (7) 

 

This procedure will be repeated for all other combinations of data points and 

the two data points that yielded the least absolute deviation determine the least 

absolute deviation estimator. 

The presence of personal computers make it possible to evaluate repeated 

process using any programming language of choice. The R program is employed 

for all calculations, and the program yields the least absolute deviation estimate 

for the data. 

 

Algorithm for Simple Linear Regression 

 

INPUT: Observations of x and y as vectors X and Y. 

OUTPUT: Slope and intercept.  

 

Step 1. Set i = 1 and j = 2 

Step 2. While i ≤ (n – 1); j ≤ n; i ≠ j, do steps 3 to 4 

Step 3. Select the pairs (xi, yi) and (xj, yj) from the data and calculate 

the values of 1̂  and 0̂  from the system of equations given 

by (5). 

Step 4. For i = 1 to n, determine the estimated value of  ˆy y  by 

substituting for (xi, yi) in (6) and calculate 

 

  
1

  , ˆ
n

i i

i

AbsDev i j y y


    

 

Step 5. Determine the minimum value among all AbsDev (i, j) and 

select the two data points that produced the minimum value. 

Step 6. Print out the values of 1̂  and 0̂  that correspond to the two 

selected data points. 

Step 7. If i > (n – 1) and j > n, then OUTPUT; stop. 
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Step 8. Set i = i + 1; j + 1 and go to step 2. 

Step 9. OUTPUT “Method failed after i > (n – 1) and j > n". 

 

This algorithm is improved upon for multiple linear regression and can be 

scaled to accommodate the numbers of independent variables present in the data. 

We provide the algorithm and the R program for the simplest form of the multiple 

regression with two independent variables 

 

Algorithm for Multiple Linear Regression 

 

INPUT: Observations of x1, x2 and y as vectors X1, X2 and Y. 

OUTPUT: Intercept, first parameter and second parameter.  

 

Step 1. Set i = 1, j = 2 and k = 3 

Step 2. While i ≤ (n – 2); j ≤ (n – 1); k ≤ n; i ≠ j ≠ k, do steps 3 to 4 

Step 3. Select the pairs (xi, yi), (xj, yj) and (xk, yk) from the data and 

calculate the values of 2̂ , 1̂  and 0̂  from the system of 

equations 

 

 

0 1 1 2 2

0 1 1 2 2

0 1 1 2 2

ˆ ˆ ˆ

ˆ ˆ ˆ

 

ˆ

 

ˆ ˆ 

i i i

j j j

k k k

y x x

y x x

y x x

  

  

  

  

  

  

  (8) 

 

Step 4. For i = 1 to n, determine the estimated value of  ˆy y  by 

substituting for (x1i, x2i, yi) in  

 

 0 1 1 2 2
ˆ ˆˆ  ˆ

i i iy x x       (9) 

 

 and calculate 

 

  
1

  , , ˆ
n

i i

i

AbsDev i j k y y


    

 

Step 5. Determine the minimum value among all AbsDev (i, j, k) and 

select the three data points that produced the minimum value. 
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Step 6. Print out the values of 2̂ , 1̂  and 0̂  that correspond to the 

three selected data points. 

Step 7. If i > (n – 2), j > (n – 1) and k > n, then OUTPUT; stop. 

Step 8. Set i = i + 1; j = j + 1; k = k + 1 and go to step 2. 

Step 9. OUTPUT “Method failed after i ≤ (n – 2), j ≤ (n – 1) and 

k ≤ n". 
 

Results 

The R program designed by applying this algorithm is presented in the Appendix. 

Application of the R program written for the algorithm to the data in Table 1 

yielded the same results with the iterative method by Birkes and Dodge (1993). 

The best two data points are given to be at (x5, y5) and (x14, y14). The least absolute 

deviation estimate of the model parameters are 

 

 
 0

46.3 4 4.ˆ 8 4
LAD

    

 

 
 1

ˆ 0.53778
LAD

     

 

Then, the LAD regression line is 

 

 46.38444 0.5377ˆ 8i iy x    

 
 
Table 1. Birth Rate Data 
 

Country Birth Rate (yi) Urban Percentage (xi) 
Canada 16.2 55 

Costa Rica 30.5 27.3 
Cuba 16.9 33.3 

Dominican Republic 33.1 37.1 
El Salvador 40.2 11.5 
Guatemala 38.4 14.2 

Haiti 41.3 13.9 
Honduras 43.9 19 

Jamaica 28.3 33.1 
Mexico 33.9 43.2 

Nicaragua 44.2 28.5 
Panama 28 37.7 

Trinidad-Tobago 24.6 6.8 
United States 16 56.5 
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The R program written for the multiple regression implementation of the 

proposed method was applied to find the least absolute deviation estimate of the 

parameter of subset of the supervisor data (Chatterjee & Hadi, 2006) which 

includes Y, X1 and X2. The data is presented in Table 2. The best three data points 

are given to be at (x8, y8), (x9, y9) and (x21, y21). 

The program gives the least absolute deviation estimate of the parameters as 

 

 
 0

28.3 87ˆ 34
LAD

    

 

 
 1

0.68 5 37ˆ 3 6
LAD

    

 

 
 2

0.ˆ 172043
LAD

     

 
 
Table 2. Subset of Supervisor Data 
 

Y X1 X2 
43 51 30 
63 64 51 
71 70 68 
61 63 45 
81 78 56 
43 55 49 
58 67 42 
71 75 50 
72 82 72 
67 61 45 
64 53 53 
67 60 47 
69 62 57 
68 83 83 
77 77 54 
81 90 50 
74 85 64 
65 60 65 
65 70 46 
50 58 68 
50 40 33 
64 61 52 
53 66 52 
40 37 42 
63 54 42 
66 77 66 
78 75 58 
48 57 44 
85 85 71 
82 82 39 
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Conclusion 

The proposed method produced a least absolute deviation estimate that is the 

same as the one provided by the iterative method by Birkes and Dodge (1993) and 

other existing methods 
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Appendix 

# Simple Linear Regression 

# Least Absolute Deviation Estimator (LAD) 

Y<-c(16.2,30.5,16.9,33.1,40.2,38.4,41.3,43.9,28.3,33.9,44.2,28,24.6,16) 

X<-c(55,27.3,33.3,37.1,11.5,14.2,13.9,19,33.1,43.2,28.5,37.7,6.8,56.5) 

p<-1 

n<-length(Y) 

Const<-rep(1,(p+1)) 

l<-0;AbsError<-0;EstError<-0;VecLAD<-c();Vecj<-c();Veck<-c();Vecx<-c();Vecy<-

c();VecB0<-c();VecB1<-c() 

TrialModel1<-function(Xi,Yi,B0,B1){(abs(Yi-(B0+(B1*Xi))))} 

LAD1<-function(n,X,Y,B0,B1){   

 for (i in 1:n){Xi<-X[i];Yi<-Y[i] 

  EstError<-TrialModel1(Xi,Yi,B0,B1) 

  AbsError<-AbsError+EstError 

 } 

 EstLAD<-AbsError 

} 

Kstart<-2 

for (j in 1:(n-1)){xj<-X[j];yj<-Y[j];    

 for (k in Kstart:n){xk<-X[k];yk<-Y[k]  

  if(k==n){Kstart<-Kstart+1}   

  Vecx<-c(xj,xk) 

  Vecy<-c(yj,yk) 

  A<-cbind(Const,Vecx) 

  Det<-round(det(A),4) 

  if(Det!=0){ 

   Beta<-solve(A,Vecy) 

   B0<-Beta[1] 

   B1<-Beta[2] 

   LADEst<-LAD1(n,X,Y,B0,B1)  

   l<-l+1 

   VecLAD[l]<-c(LADEst) 

   Vecj[l]<-c(j) 

   Veck[l]<-c(k) 

   VecB0[l]<-c(B0)   

   VecB1[l]<-c(B1) 
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  }   

 } 

} 

LADLoc<-sort.int(VecLAD,index.return=TRUE) 

PairLoc<-LADLoc$ix[1] 

Pair1<-Vecj[PairLoc] 

Pair2<-Veck[PairLoc] 

Intercept<-round(VecB0[PairLoc],5) 

Slope<-round(VecB1[PairLoc],5) 

Label1<-"Best two data points for LAD estimate are";Label2<-"and" 

Label3<-"The intercept of the LAD regression is" 

Label4<-"The slope of LAD regression is" 

Label1;Pair1;Label2;Pair2;Label3;Intercept;Label4;Slope 

 

 

# Multiple Linear Regression 

# Least Absolute Deviation Estimator (LAD) 

Y<-

c(43,63,71,61,81,43,58,71,72,67,64,67,69,68,77,81,74,65,65,50,50,64,53,40,63,66,

78,48, 

85,82) 

X1<-

c(51,64,70,63,78,55,67,75,82,61,53,60,62,83,77,90,85,60,70,58,40,61,66,37,54,77,

75,57, 

85,82) 

X2<-

c(30,51,68,45,56,49,42,50,72,45,53,47,57,83,54,50,64,65,46,68,33,52,52,42,42,66,

58,44, 

71,39) 

p<-2 

n<-length(Y) 

Const<-rep(1,(p+1)) 

l<-0;AbsError<-0;EstError<-0;VecLAD<-c();VecB0<-c();VecB1<-c();VecB2<-

c();Vecx1<-c();Vecx2<-c();Vecy<-c();Vecj<-c() 

Veck<-c();Vecv<-c() 

TrialModel2<-function(Yi,X1i,X2i,B0,B1,B2){(abs(Yi-(B0+(B1*X1i)+(B2*X2i))))} 

LAD2<-function(n,Yi,X1i,X2i,B0,B1,B2){   

 for (i in 1:n){X1i<-X1[i];X2i<-X2[i];Yi<-Y[i] 



ALGORITHM AND CODE FOR LAD ESTIMATOR 

766 

  EstError<-TrialModel2(Yi,X1i,X2i,B0,B1,B2) 

  AbsError<-AbsError+EstError 

 } 

 EstLAD<-AbsError 

} 

Kstart<-1;Vstart<-2;EndCount<-3 

for (j in 1:(n-2)){x1j<-X1[j];x2j<-X2[j];yj<-Y[j]; 

 Kstart<-Kstart+1      

 for (k in Kstart:(n-1)){x1k<-X1[k];x2k<-X2[k];yk<-Y[k] 

  if(Vstart<n){ 

   Vstart<-Vstart+1   

  }else{ 

   EndCount<-(EndCount+1) 

   Vstart<-EndCount 

  } 

   for (v in Vstart:n){x1v<-X1[v];x2v<-X2[v];yv<-Y[v] 

   Vecx1<-c(x1j,x1k,x1v) 

   Vecx2<-c(x2j,x2k,x2v) 

   Vecy<-c(yj,yk,yv) 

   A<-cbind(Const,Vecx1,Vecx2) 

   Det<-round(det(A),4) 

   if(Det!=0){ 

    Beta<-solve(A,Vecy) 

    B0<-Beta[1] 

    B1<-Beta[2] 

    B2<-Beta[3] 

    LADEst<-LAD2(n,Yi,X1i,X2i,B0,B1,B2)  

    l<-l+1 

    VecLAD[l]<-c(LADEst) 

    VecB0[l]<-c(B0) 

    VecB1[l]<-c(B1) 

    VecB2[l]<-c(B2) 

    Vecj[l]<-c(j) 

    Veck[l]<-c(k) 

    Vecv[l]<-c(v) 

   } 

  }   

 } 
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} 

LADLoc<-sort.int(VecLAD,index.return=TRUE) 

PairLoc<-LADLoc$ix[1] 

FirstPoint<-Vecj[PairLoc] 

SecondPoint<-Veck[PairLoc] 

ThirdPoint<-Vecv[PairLoc] 

Constant<-VecB0[PairLoc] 

Beta1<-VecB1[PairLoc] 

Beta2<-VecB2[PairLoc] 

Label1<-"The first LAD data point is";Label2<-"The second data point 

is";Label3<-"The third data point is" 

Label4<-"The constant of LAD regression model is";Label5<-"The first parameter 

is" 

Label6<-"The second parameter is" 

Label1;FirstPoint;Label2;SecondPoint;Label3;ThirdPoint;Label4;Constant;Label5;Be

ta1;Label6;Beta2 
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Fitting Flexible Parametric Regression 
Models with GLDreg in R 

Steve Su 
Covance 

Sydney, Australia 

 

 
This article outlines the functionality of the GLDreg package in R which fits parametric 

regression models using generalized lambda distributions via maximum likelihood 

estimation and L moment matching. The main advantage of GLDreg is the provision of 

robust regression lines and smooth regression quantiles beyond the capabilities of existing 

known methods. 

 

Keywords: Regression model, quantile regression, generalized lambda distributions, 

GLDreg, GLDEX, R 

 

Package GLDreq in R 

The GLDreg package in R is designed to implement the Generalized Lambda 

Distribution (GλD) regression model outlined in Su (2015) with some extensions. 

Currently, it is possible to fit GλD regression to data using maximum likelihood 

estimation (MLE) (Su, 2007a; b) and L moment matching (Asquith, 2007; 

Karvanen & Nuutinen, 2008). Users may also chose initial values to start the model 

building process, or use the default searching algorithm using the ordinary least 

square regression model (Su, 2015). The GLDreg package also allows user to fit 

quantile regressions parametrically and non-parametrically by: 1) fixing the 

intercept, 2) fixing coefficients other than the intercept, and 3) allowing all 

coefficients to vary. 

The GLDreg package requires GLDEX (Su, 2007a; 2010). The GLDEX 

2.0.0.1 package has a faster implementation of the GλD fitting algorithm compared 

to its predecessors. This is because a number of frequently used codes have been 

written in C. In addition, the GLDEX 2.0.0.1 package has faster maximum 

likelihood fitting functions fun.RMFMKL.ml.m, fun.RPRS.ml.m for FKML 

http://dx.doi.org/10.22237/jmasm/1478004240
mailto:allegro.su@gmail.com
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(Freimer, Kollia, Mudholkar, & Lin, 1988) and RS (Ramberg & Schmeiser, 1974) 

GλDs. 

Background 

Traditionally, the Pearson and Johnson systems are considered to be the standard 

approaches to identifying and fitting different types of statistical distributions to 

data. However, these systems require different mathematical functions to cover a 

range of symmetric and asymmetric distributions. Tukey’s lambda distribution 

contains a class of symmetric distributions which can approximate a number of 

common distributions such as Normal and Cauchy distributions, and provide an 

indication as to whether heavy tailed distributions are needed. Ramberg and 

Schmeiser (1974) then generalized Tukey’s lambda distribution to include both 

symmetric and asymmetric distributions, and this became known as the GλD. 

Although defined as a single mathematical function, GλD can cover a broad range 

of statistical distributions which is much more efficient than the use of Pearson and 

Johnson systems involving several mathematical functions. Since then, the 

flexibility of GλD has attracted a number of researchers. Today, along with the 

increased computation power and the introduction of dedicated packages for GλD 

in R, it is now possible to fit GλD to data and extend the use of GλD in many areas 

of statistical analysis. 

Generalized Lambda Distributions 

The RS GλD (Ramberg & Schmeiser, 1974) is defined by its inverse distribution 

function: 
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From (1), λ1, λ2, λ3, λ4 are respectively the location, inverse scale, and shape 

parameters of generalized lambda distribution GλD(λ1, λ2, λ3, λ4). Note that λ3, λ4 

are both shape parameters. Karian, Dudewicz, and McDonald (1996) noted that 

GλD is defined only if 
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where 0 ≤ u ≤ 1. 

Freimer et al. (1988) described another distribution known as FKML/FMKL 

GλD. This distribution is slightly different to RS GλD with respect to formulation. 

The FKML/FMKL GλD is defined as: 
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     (2) 

 

Under (2), λ1, λ2, λ3, λ4 are respectively the location, scale, and shape 

parameters of the generalized lambda distribution. Again, both λ3, λ4 are shape 

parameters. Technically, the correct abbreviation for this distribution is FKML 

distribution, based on the correct ordering of authorship in the original paper. 

However, the use of the term FMKL distribution had been widespread in the 

literature and this package, along with GLDEX 2.0.0.1, will allow both “fkml” and 

“fmkl” specifications in the implementation of FKML distribution. 

The fundamental motivation for the development of FKML GλD is that the 

distribution is defined over all λ3 and λ4 (Freimer et al., 1988). The only restriction 

on FKML GλD is λ2 > 0. 

An extensive discussion of the shapes and properties of GλDs can be found 

in the original papers (Ramberg & Schmeiser, 1974; Freimer et al., 1988), as well 

as in subsequent works such as in Su (2015). Note the probability density functions 

of GλDs is obtained by observing F-1(u) = x and so 
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This is calculated using the Newton-Raphson method in GLDEX. 

Sketch of the Regression Fitting Mechanism 

The full fitting algorithm of GλD regression models is provided in Su (2015). This 

section sketches the procedure in building these models. Consider the following 

regression model 

 

 Y X     (3) 
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The goal is to find estimated coefficients for β under the condition 

ε ~ GλD(λ1, λ2, λ3, λ4), with the property such that E(ε) = 0. Consequently, the 

average deviation of actual and estimated values should be zero. 

When deriving the probability density function of GλDs, λ1 will vanish, which 

means this parameter has no bearing on the overall shape of the distribution, only 

its location. The consequence is that it is possible to shift the GλDs to have exactly 

zero mean by calculating λ1 after estimating λ2, λ3, λ4.1 

The idea of fitting the GλD regression in Su (2015) is to find a set of ̂  by 

modelling the residuals using GλD through maximum likelihood estimation or L 

moment matching. The zero mean residual line is achieved by only allowing λ2, λ3, 

λ4 to vary in the optimization process, and the intercept of the line is adjusted to 

ensure the residuals add up to zero. Statistical properties of GλD regression 

coefficients are obtained by recreating actual values ˆˆ
k k ky y    for k = 1, 2, 3,…, 

n observations by simulating  1 2 3 4
ˆ ˆ ˆ ˆˆ ~ , , ,k G D       and refitting the entire 

model and repeating the process, say 1000 times. This can all be done using the 

GLD.lm.full function and the goodness of fit of the model is assessed using the 

Kolmogorov-Smirnoff test and QQ plots. To run a simple model without any 

simulations, the function GLD.lm can be used instead. 

Once a reference GλD regression line is found, quantile regression can be 

obtained by 1) fixing the intercept, 2) fixing coefficients other than the intercept, 

and 3) allowing all coefficients to vary. Case 1 and 3 are designed to fit non parallel 

lines for heteroskedastic data, and case 2 is primarily designed to fit parallel lines 

for homoskedastic data. 

GLDreg allows non-parametric and parametric fitting of quantile regression 

lines. The non-parametric approach uses the least squares approach to find a q-th 

quantile GλD line such that the percentage of observations below the line 

corresponds to the q-th quantile. The parametric approach uses the least squares 

approach to find a q-th quantile GλD line such that the percentage of observations 

below the line (under a GλD fit) corresponds to the q-th quantile. In the case of 1) 

and 3), the Nelder-Mead simplex algorithm from optim is used in the optimization 

process. In the case of 2), the Brent method from optim is used instead. The initial 

values for non-parametric quantile regression optimization are taken from the 

sample quantile of simulated regression coefficients obtained during the model 

building process. For the parametric approach, the initial values are taken from the 

non-parametric quantile regression. The estimates of both parametric and non-

parametric GλD quantile regression can be obtained using a single wrapper function 

(GLD.quantreg). 
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Using the Package 

GLDreg can be installed from CRAN2 through the R interface. Once installed, the 

following command will load the package. 

 

> library(GLDreg) 

 

Loading required package: GLDEX 

Loading required package: cluster 

 

As usual, ?GLDreg will take user to the main help menu. Table 1 shows the main 

functions available under GLDreg. 
 
 
Table 1. List of main functions 
 

Purpose Function 

Fit GλD Regression only GλD.lm 

Fit GλD Regression and obtain statistical properties through 
simulation 

GLD.lm.full 

Fit GλD quantile regression GLD.quantreg 

Plot summary graphics of GλD regression summaryGraphics.GλD.lm 

Plot quantile regression lines fun.plot.q 

 
 
Table 2. Fitting RS or FKML GλD regression using MLE or L moment matching under 
GLD.lm or GLD.lm.full 
 

Type of GλD Type of estimation Param fun 

RS MLE "rs" fun.RPRS.ml.m or fun.RPRS.ml 

RS L moment matching "rs" fun.RPRS.lm 

FKML MLE “fmkl” or “fkml” fun.RMFMKL.ml.m or fun.RMFMKL.ml 

FKML L moment matching “fmkl” or “fkml” fun.RMFMKL.lm 

 
 

GLDreg currently implements MLE and L moment matching for GλD 

regression. The associated param and fun inputs for GLD.lm and GLD.lm.full are 

given in Table 2. The fun.RPRS.ml.m and fun.RMFMKL.ml.m functions are faster 

implementations of MLE than the previous fun.RPRS.ml and fun.RMFMKL.ml 

functions. 
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Engel Dataset 

This example uses the well-known Engel dataset from the quantreg package in R. 

The following fits a full FKML GλD regression model using MLE, along with 

simulations (default is 1000 runs), and then fits a quantile regression for quantiles 

from 0.1 to 0.9 in 9 equal spacings with fixed intercept and varying slopes. 

 

> library(quantreg) 

> data(engel) 

> set.seed(1000) 

 

> engel.fit.all<-GLD.lmfull(foodexp~income,data=engel, 

+ param=”fmkl”,fun=fun.RMFMKL.ml.m,summary.plot=F) 

 

> result<-GLD.quantreg(seg(0.1,.9,length=9), 

+engel.fit.all,intercept=”fixed”) 

 

There are warnings associated with using the Nelder-Mead algorithm for 

single parameter optimization problems. To check whether optimization has indeed 

been achieved for quantile regression, the easiest way is to check whether the 

proportion of the fitted quantile line below the response variable corresponds to the 

level of quantile specified. The multiplication of 100 is to convert the quantiles into 

percentages, and the aim is to see how close these are to 10, 20, 30, 40, 50, 60, 70, 

80 and 90. 

 

> sapply(1:9,function(i) sum(engel$foodexp- 

cbind(1,engel$income)%*%(result[1:2,i])<0)/nrow(engel)*100) 

 

[1] 8.085106 22.127660 30.638298 38.723404 51.489362 58.723404 

67.659574 82.978723 90.638298 

 

The results are reasonably close to the intended quantiles. Note differences 

occur because the optimization here is based on matching the quantile of fitted GλD 

rather than the empirical data, the idea being that if the fitted GλD is close to the 

actual distribution, the quantile lines obtained here will be more robust to changes 

in empirical data. 

Alternatively, quantile lines could be obtained using the non-parametric 

approach using the following, and checked whether the desired quantile line has 
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been achieved despite warnings from the optim function. Obviously, the match is 

better, simply because optimization was done based on empirical data. 

Once the quantile lines are obtained, it is possible to plot them; in this case, 

the parametric GλD quantile lines are plotted in Figure 1. 

 

> fun.plot.q(x=engel$income,y=engel$foodexp,fit=engel.fit.all[[1]], 

result) 

 
 

 
 
Figure 1. FKML GλD quantile regression for Engel dataset 
 

 
 
 

It is also possible to speed up GLD.lm.full by reducing the number of 

simulations to 100 by setting n = 100, if the primary purpose is to obtain quantile 

regression rather than looking at the statistical properties of the coefficients. 

GLDreg also provides a graphic summary of regression coefficients based on object 

obtained from GLD.lm.full, using the summaryGraphics.gld.lm function, and the 

graphics are shown in Figure 2 and Figure 3. 
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> summaryGraphics.gld.lm(engel.fit.all) 

 

Shown in Figure 2 is the statistical distribution of coefficients obtained using 

simulation, and the 95% interval is obtained directly from simulated results. Shown 

in Figure 3 is how well FKML GλD fits the data; in this case the fit is quite good, 

with Kolmogorov-Smirnoff goodness of fit p-value exceeding 5% and the QQ plot 

indicating a close fit. 

 
 
 

 
 
Figure 2. FKML GλD quantile regression for Engel dataset coefficient summary plot 
 

 

Parameter Estimate Density
Summary 

 95% interval:

(Intercept) 32.2 -20.5,  85.1

income 0.603 0.55,  0.649
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Figure 3. FKML GλD quantile regression for Engel dataset – QQ plots 
 

 
 

 
 
Figure 4. Comparison of different regression techniques for Engel dataset 
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Note the FKML GλD regression line is the most robust to outliers compared 

to linear regression, robust regression, and quantile regression at median. This can 

be seen using the following code, which is displayed in Figure 4. 

 

> library(quantreg) 

> library(MASS) 

> par(mfrow=c(1,1)) 

 

> plot(foodexp~income,data=engel,xlab="income",ylab="food expense", 

+ main="Belgian Engel Dataset") 

 

> abline(lm(foodexp~income,data=engel),lty=2,lwd=3) 

> abline(rlm(foodexp~income,data=engel),lty=4,lwd=3) 

> abline(rq(foodexp~income,data=engel),lty=3,lwd=2) 

> abline(engel.fit.all[[1]][[3]][1:2],lty=1,lwd=3) 

 

> legend("bottomright",c("Standard Regression","Robust Regression", 

+ "Quantile Regression","GLD Regression"),lty=c(2,4,3,1),lwd=c(3,3,2,3)) 

Simulated Motorcycle Accident Dataset 

The mcycle dataset is a simulated motorcycle accident dataset from MASS library 

in R. It is possible to fit splines to this dataset, and a reasonable strategy is to fit 

time before 15 seconds separately as was done in Su (2015). In the same fashion as 

in Engel dataset analysis, the full GλD regression is fitted first, followed by 

evaluation of quantile regression lines, for which parallel lines appear to be quite 

suitable for this dataset. The only difference is that the modelling is split into two 

parts. In this case, the first part (before 15 seconds) was fitted using splines with 8 

degrees of freedom using RS GλD via maximum likelihood estimation. The second 

part (greater or equal to 15 seconds) was fitted using splines with 15 degrees of 

freedom using FKML GλD via maximum likelihood estimation. The code to 

produce Figure 5 is given below. 

 

> library(MASS) 

> library(splines) 

 

> cutoff<-15 

> mcycle.part1<-mcycle[mcycle$times<cutoff,] 
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> mcycle.part2<-mcycle[mcycle$times>=cutoff,] 

 

> mcycle.p1.fit<-GLD.lm.full(accel~bs(times,df=8), 

+ data=mcycle.part1,param="rs",fun=fun.RPRS.ml.m,summary.plot=F,n=100) 

> mcycle.p2.fit<-GLD.lm.full(accel~bs(times,df=15), 

+ data=mcycle.part2,param="fmkl",fun=fun.RMFMKL.ml.m,summary.plot=F, 

n=100) 

 

> mcycle.p1.fit.quant<-GLD.quantreg(seq(0.1,.9,length=9), 

+ mcycle.p1.fit,slope="fixed") 

> mcycle.p2.fit.quant<-GLD.quantreg(seq(0.1,.9,length=9), 

+ mcycle.p2.fit,slope="fixed") 

 

> plot(mcycle,ylim=c(-150,75)) 

 

> sapply(1:9,function(i) 

+ lines(mcycle$times,c( 

+ cbind(1,bs(mcycle[which(mcycle$times<cutoff),]$times, 

+ df=8))%*%mcycle.p1.fit.quant[1:9,i], 

+ cbind(1,bs(mcycle[which(mcycle$times>=cutoff),]$times, 

+ df=15))%*%mcycle.p2.fit.quant[1:16,i]))) 

 
 

 
 
Figure 5. Simulated motorcycle accident dataset 
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Modified Crime Data 

A fair exposition of GλD regression needs to include a discussion of its weaknesses. 

Being a regression model involving numerical computations, the initial values play 

an important role in deriving the final model results. While all numerical 

optimization problems suffer from bad choice of initial values and it is a general 

limitation of the Nelder-Mead optimization method, it is possible to still attain the 

attractive robust property of GλD regression by simply choosing a better set of 

initial values. 

This example used the crime dataset from UCLA website3 and examined the 

relationship between crime rate and percentage of single family parents. To 

examine the behavior of regression models under extreme outliers, two data points 

were altered in this illustration. The coding involved in extracting and altering the 

dataset is given below. 

 

> require(foreign) 

> require(MASS) 

> require(GLDreg) 

> require(quantreg) 

 

> cdata <- read.dta("http://www.ats.ucla.edu/stat/data/crime.dta") 

> mcdata<-subset(cdata,select=c("crime","single")) 

 

# Altering the data to create extreme outliers 

 

> mcdata[51,1]<-10 

> mcdata[25,2]<-22 

 

If the modeler begins with RS GλD using MLE using the default initial values, 

the resulting GλD regression line is shown in panel A of Figure 6, which is perhaps 

the worst model among all others (linear regression, robust regression, and quantile 

regression). This happens because the default initial values was based on linear 

regression and a less-than-optimal line was found using the Nelder-Mead simplex 

algorithm. 

 

> par(mfrow=c(2,2)) 

 

> plot(crime~single,data=mcdata,ylab="Violent crimes per 100,000 people", 
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+ xlab="Percentage of population that are single parents", 

+ main="GLD Regression fails due to 

+ improper initial value selection (A)") 

 

> abline(rlm(crime~single,data=mcdata),lty=2,lwd=3) 

> abline(lm(crime~single,data=mcdata),lty=4,lwd=3) 

> abline(rq(crime~single,data=mcdata),lty=3,lwd=2) 

> abline(GLD.lm(crime~single,data=mcdata, 

+ param="rs",fun=fun.RPRS.ml.m,diagnostics=FALSE)[[3]][1:2], 

+ lty=1,lwd=3) 

 

> legend("topright",c("Standard Regression","Robust Regression", 

+ "Quantile Regression","GLD Regression"), 

+ lty=c(2,4,3,1),lwd=c(3,3,2,3),bg="white") 

 

It is possible to improve the quality of fit by using different initial values. In 

the following, init1 uses quantile regression coefficients, init2 uses robust 

regression coefficients, and init3 uses GλD regression coefficients obtained by 

removing the outliers at the bottom right corner of the graph. 

 

> init1<-rq(crime~single,data=mcdata)$coeff 

> init2<-rlm(crime~single,data=mcdata)$coeff 

> init3<-GLD.lm(crime~single, 

+ data=rbind(mcdata[1:24,],mcdata[26:50,]), 

+ param="rs",fun=fun.RPRS.ml.m,diagnostics=FALSE)[[3]][1:2] 

 

The modeler can then refit RS GλD regression model using maximum 

likelihood estimation by using these initial values using the following code. 

 

> plot(crime~single,data=mcdata, 

+ ylab="Violent crimes per 100,000 people", 

+ xlab="Percentage of population that are single parents", 

+ main="GLD Regression with quantile regression coefficients 

+ as initial values (B)") 

 

> abline(rlm(crime~single,data=mcdata),lty=2,lwd=3) 

> abline(lm(crime~single,data=mcdata),lty=4,lwd=3) 

> abline(rq(crime~single,data=mcdata),lty=3,lwd=2) 
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> abline(GLD.lm(crime~single,data=mcdata, 

+ param="rs",fun=fun.RPRS.ml.m,diagnostics=FALSE, 

+ init=init1)[[3]][1:2],lty=1,lwd=3) 

 

> plot(crime~single,data=mcdata, 

+ ylab="Violent crimes per 100,000 people", 

+ xlab="Percentage of population that are single parents", 

+ main="GLD Regression with robust regression coefficients 

+ as initial values (C)") 

 

> abline(rlm(crime~single,data=mcdata),lty=2,lwd=3) 

> abline(lm(crime~single,data=mcdata),lty=4,lwd=3) 

> abline(rq(crime~single,data=mcdata),lty=3,lwd=2) 

> abline(GLD.lm(crime~single,data=mcdata, 

+ param="rs",fun=fun.RPRS.ml.m,diagnostics=FALSE, 

+ init=init2)[[3]][1:2],lty=1,lwd=3) 

 

plot(crime~single,data=mcdata, 

+ ylab="Violent crimes per 100,000 people", 

+ xlab="Percentage of population that are single parents", 

+ main=" GLD Regression using modified data  

fitted by GLD regression as initial values (D)") 

> abline(rlm(crime~single,data=mcdata),lty=2,lwd=3) 

> abline(lm(crime~single,data=mcdata),lty=4,lwd=3) 

> abline(rq(crime~single,data=mcdata),lty=3,lwd=2) 

> abline(GLD.lm(crime~single,data=mcdata, 

+ param="rs",fun=fun.RPRS.ml.m,diagnostics=FALSE, 

+ init=init3)[[3]][1:2],lty=1,lwd=3) 

 

The results are shown in Panel B to D in Figure 6. In these cases, the GλD 

regression line is now the most robust among all regression lines. The importance 

of checking the resulting fit and trying out different sets of initial values for 

optimization is highlighted in this example. 
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Figure 6. Modified crime data set 
 

Occupation Dataset 

The last example involves modelling beyond a single explanatory variable on the 

Duncan dataset from car in R. In this case, a FKML GλD regression using L 

moment estimation was fitted to the dataset with initial values taken from robust 

linear regression. It is worthwhile to plot the fitted values against actual values, and 

to see whether the observations correspond to a 45 degree line from the origin. 

Large deviations from a linear trend would suggest the model does not fit well with 

respect to the response variable. The coding to carry the above tasks is given below. 

The resulting fit is similar to the robust regression result, and QQ plots and 

high p-value (Figure 7) suggest the GλD regression fit is a good one. Statistical 

properties obtained (Figure 8) suggest that the most important variable related to 

income is prestige. Figure 9 shows that, while the fitted values are not extremely 

accurate with respect to actual values, the general linear trend is still observed, 

indicating that the linear form of the model is appropriate. 

As a final remark, it can be worthwhile to fit quantile regression lines for fitted 

values against actual values to give a range of likely actual values that could be 

obtained using the linear model. 

 

> library(MASS) 
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> library(car) 

> data(Duncan) 

 

> job.fit.full<-GLD.lm.full(income~education+prestige, 

+ data=Duncan,param="fkml",fun=fun.RMFMKL.lm, 

+ init=rlm(income~education+prestige,data=Duncan)$coeff, 

+ summary.plot=F) 

 

> summaryGraphics.gld.lm(job.fit.full) 

 

 # Plot actual vs fitted observations: 

 

> plot(job.fit.full[[1]]$Fitted, 

+ job.fit.full[[1]]$y,xlab="Fitted",ylab="Actual") 

 

> abline(0,1) 

 
 

 
 
Figure 7. Occupation data set modelling – QQ plots 
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Figure 8. Occupation data set modelling – summary plots 
 

 
 

 
 
Figure 9. Occupation data set modelling – actual vs. fitted values 
 

Parameter Estimate Density
Summary 

 95% interval:

(Intercept) 7.69 -3.07,  19.8

education 0.109 -0.13,  0.337

prestige 0.597 0.403,  0.841
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Conclusion 

The flexibility of GλD regression models was illustrated; rather than confining the 

regression model to only examining the mean or median as is the case of linear 

regression or classic quantile regression model, the GλD regression models attempt 

to fit a line that represent a typical value for the dataset which may or may not 

correspond to standard measures such as the mean or median. Some extensions 

were also shown beyond the methodology described in Su (2015), and two different 

optimization schemes (L moment matching and maximum likelihood estimation) 

were implemented to increase the versatility of GλD regression in different 

modelling situations. Potential shortcomings of GλD regression in initial value 

selection were illustrated, as well as how different initial values could lead to better 

regression fits, which is a problem for many model fitting problems involving 

numerical computations. Since its inception, GλDs have been used to model a wide 

range of empirical data, and the flexibility and robustness of GλD regression is 

particularly attractive either as a check for standard results or as a replacement. It 

is hoped that the introduction of this work would encourage future researchers to 

develop new methodological improvements to further enhance the usability of 

GλDs in practice. 
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Footnotes 

1. The theoretical mean for RS GλD is 

 

 3 4
1

2

1 1

1 1 





 

   

 

and the theoretical mean for FKML GλD is 

 

 3 4
1

2

1 1

1 4 





 

   

 

2. CRAN can be accessed at http://cran.r-project.org/ 

3. The UCLA crime dataset can be accessed at 

http://www.ats.ucla.edu/stat/data/crime.dta 

http://cran.r-project.org/
http://www.ats.ucla.edu/stat/data/crime.dta
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The Lomax-Weibull distribution, a generalization of the Weibull distribution, is 

characterized by four parameters that describe the shape and scale properties. The 

distribution is found to be unimodal or bimodal and it can be skewed to the right or left. 

Results for the non-central moments, limiting behavior, mean deviations, quantile function, 

and the mode(s) are obtained. The relationships between the parameters and the mean, 

variance, skewness, and kurtosis are provided. The method of maximum likelihood is 

proposed for estimating the distribution parameters. The applicability of this distribution 

to modeling real life data is illustrated by three examples and the results of comparisons to 

other distributions in modeling the data are also presented. 

 

Keywords: Estimation, moments, quantile function, Shannon’s entropy, T-

Weibull{Y} family 

 

Introduction 

The Weibull distribution is a popular distribution for modeling phenomena with 

monotonic failure rates (Weibull, 1939; 1951). It is used to model lifetime data. 

However, it cannot capture the behavior of lifetime data sets that exhibit bathtub or 

upside-down bathtub (unimodal) failure rate, often encountered in reliability and 

engineering studies. A number of new distributions were developed as 

generalizations or modifications of the Weibull distribution. Xie and Lai (1995) 

introduced the additive Weibull model, which was obtained by adding two Weibull 

survival functions. Mudholkar and Srivastava (1993) proposed the exponentiated 

Weibull distribution. Xie, Tang, and Goh (2002) studied the modified Weibull 

extension. Bebbington, Lai, and Zitikis (2007) proposed a flexible Weibull 

http://dx.doi.org/10.22237/jmasm/1478004300
mailto:malmheidat@uop.edu.jo
mailto:carl.lee@cmich.edu
mailto:felix.famoye@cmich.edu


ALMHEIDAT ET AL. 

789 

distribution and discussed its properties. For a review of some generalized Weibull 

distributions, one may refer to Lai (2014). 

Different methods to generate probability distributions continue to appear. 

Eugene, Lee, and Famoye (2002) introduced the beta-generated family and some 

properties of the family were studied by Jones (2004). Many beta-generated 

distributions were studied (e.g., Eugene et al., 2002; Nadarajah & Kotz, 2004; 

Famoye, Lee, & Eugene, 2004; Famoye, Lee, & Olumolade, 2005; Nadarajah & 

Kotz, 2006; Akinsete, Famoye, & Lee, 2008; Barreto-Souza, Santos, & Cordeiro, 

2010; Mahmoudi, 2011; Alshawarbeh, Lee, & Famoye, 2012). For a review of beta-

generated distributions and other generalizations, see Lee, Famoye, and Alzaatreh 

(2013). 

Alzaatreh, Lee, and Famoye (2013) extended the idea of beta-generated 

distributions to using any continuous random variable T with probability density 

function (PDF) r(t) as a generator and developed a new class of distributions called 

the ‘T-X family’. Given a random variable X with cumulative distribution function 

(CDF) F(x), the CDF of the T-X family of distributions is defined by Alzaatreh, Lee, 

and Famoye (2013) as 

 

    
  W F

G r
x

a
x t dt    (1) 

 

where W(F(x)) is a monotonic and absolutely continuous function of the CDF F(x). 

Alzaatreh, Lee, and Famoye (2013) studied in details the case when 

W(F(x)) = -log(1 – F(x)). Some members of the family have been investigated, 

including gamma-Pareto distribution (Alzaatreh, Famoye, & Lee, 2012), Weibull-

Pareto distribution (Alzaatreh, Famoye, & Lee, 2013), and gamma-normal 

distribution (Alzaatreh, Famoye, & Lee, 2014a). 

Aljarrah, Lee, and Famoye (2014) used the quantile function QY of a random 

variable Y to define the transformation W(.) in the T-X family in (1) and called it 

the T-R{Y} family. Following the notation proposed by Alzaatreh, Famoye, and 

Lee (2014b), the CDF of the T-R{Y} family, as defined by Aljarrah et al. (2014), is 

given by 

 

    
  

   
Q F

F f F Q F
Y R x

X T T Y R
a

x t dt x    (2) 

 

where FT(x), FR(x), and FY(x) are, respectively, the CDFs of the random variables 

T, R, and Y. The PDF corresponding to (2) is 
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f
f f Q F

f Q F

R

X T Y R

Y Y R

x
x x

x
   (3) 

 

Almheidat, Famoye, and Lee (2015) used the T-R{Y} framework to define 

and study different approaches to the generalization of the Weibull distribution, the 

T-Weibull{Y} family. The authors defined the T-Weibull{Y} family by taking R in 

(2) to be a Weibull random variable with CDF    
F 1 e

k
x

R x


   and using the 

quantile function of the random variable Y, where Y has uniform, exponential, log-

logistic, Fréchet, logistic, or extreme value distribution. When Y follows log-

logistic distribution with parameters θ and β, the CDF and PDF of the 

T-Weibull{log-logistic} (T-Weibull{LL}) family are, respectively, given by 

 

  
 

 

1

F
F F

1 F

R

X T

R

x
x

x




   

       

  (4) 
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f f

1 FF 1 F

R R

X T

RR R

x x
x

xx x



  







   
        

  (5) 

 

Setting β = 1 = θ and taking T in (4) to be a Lomax random variable with CDF 

FT(x) = 1 – (1 + (x/θ))-α, Almheidat et al. (2015) defined the Lomax-Weibull{LL} 

distribution (LWD) as an example of T-Weibull{LL} family. 

The purpose of this study is to investigate the LWD as a generalization of the 

Weibull distribution and a member of T-Weibull{Y} family. 

Definition and Some Properties of the LWD 

The CDF of the LWD defined in Almheidat et al. (2015) is given by 

 

     F 1 1 e 1
k

x

X x







    
  

  (6) 

 

and the PDF corresponding to (6) is 
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  (7) 

 

Special cases of the LWD are as follows: 

 

 when θ = α = 1, the LWD reduces to the Weibull distribution with 

parameters k and λ. 

 when θ = k = 1, the LWD reduces to the exponential distribution with 

mean λ/α. 

 when α = 1/2, θ = 1, and k = 2, the LWD reduces to the Rayleigh 

distribution with parameter λ. 

 

Lemma 1: (Transformations) 

 

1. If a random variable T follows a Lomax distribution with parameters 

α and θ, then the random variable X = λ{ln(T + 1)}1/k follows the LWD. 

2. If a random variable T follows an exponential distribution with mean 

1/α, then the random variable X = λ{ln(θeT – θ + 1)}1/k follows the 

LWD. 

3. If a random variable T follows a standard uniform distribution, then 

the random variable X = λ{ln[θ(1 – T)-1/α – θ + 1)}1/k follows the 

LWD. 

 

Proof: Using the transformation technique, it is easy to show that the random 

variable X follows the LWD as given in (7). 

Hazard Function 

The hazard function associated with the LWD in (7) is 

 

  
 

 
    

1 1f
h e 1 e 1

1 F

k k
k

x xX

X

X

x k x
x

x

 


 

 
            

  (8) 

 

The following Lemma addresses the limiting behaviors of the hazard function in 

(8). 
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Lemma 2: The limits of the LWD hazard function as x → 0 and as x → ∞ 

are, respectively, given by 

 

    
0

0, 1 , 1

lim h , 1, lim h , 1

, 1 0, 1

X X
x x

k k

x k x k

k k

 

  

   
 
 

    
 
    

  (9) 

 

Proof: This result is obtained by taking the limit of the hazard function in (8). 

 

The following theorem is on the limiting behaviors of the PDF in (7). 

 

Theorem 1: The limit of the LWD as x → ∞ is 0 and the limit as x → 0 is 

given by 
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  (10) 

 
 

 
 
Figure 1. The PDFs of LWD for various values of α, θ, k, and λ 
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Proof: The  lim f 0X
x

x


 . If k ≤ 1, the result follows from Lemma 2 and the 

fact that fX(x) = hX(x)(1 – FX(x)). If k > 1, using L’Hôpital’s rule, we have 
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This completes the proof of the limit as x → ∞. The result in (10) follows directly 

by taking the limit of the LWD. 

In Figures 1 and 2, various graphs of fX(x) are provided for different values of 

the parameters. The graphs in Figure 1 indicate that the LWD is unimodal with 

different shapes such as left-skewed, right-skewed with long right tail, or 

monotonically decreasing (reversed J- shape). The graphs in Figure 2 show that the 

LWD can be bimodal with two positive modal points (when k > 1) or one positive 

mode and the other mode at zero (when k < 1). The parameters α and k are shape 

parameters which characterize the skewness, kurtosis, and bimodality of the 

distribution. However, the parameter λ is a scale parameter and the parameter θ is 

a shape and scale parameter. 
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Figure 2. The PDFs of LWD for various values of α, θ, and k when λ = 1 
 

 
 

 
 
Figure 3. Hazard function of LWD for various values of α, θ, k, and λ 
 

 

Displayed in Figure 3 are different graphs of the hazard function related to 

the LWD for various values of α, θ, k and λ. When k = 1, the LWD failure rate is 

either constant (when θ = 1) or first increases (when θ > 1) or decreases (when 

θ < 1) and then becomes a constant. When k < 1, the failure rate of the LWD is 

either monotonically decreasing or decreasing followed by unimodal (reflected N-

shape). When k > 1, the failure rate of the LWD is either increasing or unimodal 

followed by increasing (N-shape). These different failure rate shapes provide more 

flexibility to the LWD over the Weibull distribution, which has only increasing, 

decreasing, or constant failure rate. 
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Quantile Function 

The quantile function is commonly used in general statistics (Steinbrecher & Shaw, 

2008). Many distributions do not have a closed form quantile function. For the 

LWD, the quantile function has a closed form as given in the following lemma. 

 

Lemma 3: The quantile function of the LWD is given by 

 

     
1

1
Q ln 1 1 , 0 1

k

X p p p


  
      

 
  (11) 

 

Proof: The result follows directly by using part (iii) of Lemma 2 in Almheidat 

et al. (2015) when the random variable T follows a Lomax distribution. 

 

Using the formula in (11), the quantile function of the LWD is 

 

 an increasing function of λ when α, θ, and k are held fixed. 

 a decreasing function of α when θ, λ, and k are held fixed. 

 an increasing function of θ when α, k, and λ are held fixed. 

 a decreasing (increasing, or constant) function of k, if θ < B (θ > B, or 

θ = B), when α, θ, and λ are held fixed, where B = (e – 1)/[(1 – p)-

(1/α) – 1]. 

 

The closed form quantile function in (11) makes simulating the LWD random 

variates straightforward. If U is a uniform random variate on the unit interval (0, 1), 

then the random variable X = QX(U) follows the LWD. Note that the median (M) 

can be calculated by setting p = 0.5 in the quantile function in (11). The median of 

the LWD is given by M = Q(0.5) = λ{ln[θ(0.5)-1/α – θ + 1]}1/k. 

Mode(s) 

From Almheidat et al. (2015), the mode(s) of T-Weibull{LL} family satisfy the 

implicit equation 
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where FR(x) and F̅R(x) are, respectively, the CDF and the survival function of the 

Weibull distribution. When T is a Lomax random variable, (12) can be simplified 

to 
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  (13) 

 

Thus, the mode(s) of the LWD satisfy (13). Consider the variational behavior 

with respect to changes in the parameter values. When k ≠ 1, (13) can be simplified 

to 

 

 
      

    

1

1 1 1 e

1 e

k

k

k
x

x

k
x

k








 





   
 


 

   

  (14) 

 

Rewriting (14), 
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Setting u = (x/λ)k in (15), 
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Both x and u have the same variational behaviors with respect to changes in the 

parameters α and θ. The first derivatives of u with respect to α and θ are, 

respectively, given by 
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From (17), the mode is a decreasing function of α when k > 1 and an increasing 

function of α when k < 1. On the other hand, the mode is an increasing function of 

θ when k > 1 and a decreasing function of θ when k < 1. When k = 1, (13) can be 

simplified as 
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or, equivalently, 
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On simplifying (18), 

 

  log 1x         (19) 

 

Therefore, when k = 1, the mode is an increasing function of θ and a decreasing 

function of α. The mode is an increasing function of the scale parameter λ. However, 

it is not easy to determine increasing/decreasing behavior of the mode with respect 

to changes in parameter k. 

From Figures 1 and 2, the LWD can be unimodal or bimodal depending on 

the parameter values. This property gives more flexibility to the LWD over the 
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Weibull distribution, which is only unimodal. The following theorem shows some 

cases when the LWD is only unimodal. 

 

Theorem 2: The LWD is unimodal whenever (i) k = 1 or (ii) k < 1 and 

θ ≤ 1. 

 

i) If k = 1, then the mode is at the point x = 0 whenever θ – 1 ≤ α and the 

mode is at the point x = λln[(θ – 1)/α] whenever θ – 1 > α. 

ii) If k < 1 and θ ≤ 1, the mode is at the point x = 0. 

 

Proof: The derivative with respect to x of the PDF in (7) is given by 
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  (20) 

 

where 

 

          
m 1 1 e 1 e

k kkx x
x k k x

 
            
      

  (21) 

 

By using (20) when k ≤ 1, the critical points of fX(x) are x = 0 and x = x0 where 

m(x0) = 0. Hence, if there is a mode of the LWD, then it will be either at x = 0 or at 

x = x0 where m(x0) = 0. Note that the signal of  fX x  is the same as that of m(x). 

If k = 1, then m(x) = (θ – 1) – αe(x/λ). Equating m(x) to zero and solving for x 

we get x = λlog[(θ – 1)/α], the same result we obtained in (19). If θ – 1 > α, then the 

modal point is at x = λlog[(θ – 1)/α], otherwise the mode is at x = 0. If k < 1, it is 

easy to see that m(x) < 0 whenever θ ≤ 1, therefore  f 0X x  , so fX(x) is strictly 

decreasing. From Theorem 1,  
0

lim fX
x

x


   and  lim f 0X
x

x


 . Thus fX(x) has a 

unique mode at x = 0. 

Graphical displays of the LWD for many combinations of the parameters 

when k < 1 and θ > 1, and when k > 1 indicate that the LWD is unimodal or bimodal 

depending on the parameter values. However, no analytical method has been used 

to show when the distribution is unimodal or bimodal. 

Numerical methods are applied to study the regions of unimodality and 

bimodality. To study the modes of the LWD, the number of turning points of fX(x) 
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in (7) is examined, which is equivalent to examining the sign of  fX x . This is 

equivalent to studying the sign of the equation m(x) in (21). 

Consider the situation when k < 1. Select a fixed value of k < 1 (k = 0.5, 0.7, 

0.9) and allow the values of α and θ to change from 0.001 to 15 at an increment of 

0.001 and the values of x to change from 10-6 to 30 at an increment of 0.001. 

A matrix M1 is constructed with two entries {0, 2} which indicates the 

number of turning points of fX(x). For each combination of α and θ, if the sign of 

m(x) is negative for all values of x between 10-6 and 30, then it is indicated by 0 in 

the matrix M1. If the sign of m(x) starts as being negative, turns positive, then turns 

negative, it is indicated by 2 in the matrix M1. This leads to the following two 

regions: In the first region (the values corresponding to 0 in the matrix M1), fX(x) 

contains no turning points. This region indicates that the distribution has only one 

mode, which is at zero (reversed J-shape). In the second region (corresponding to 

2 in the matrix M1), fX(x) contains two turning points. This region indicates that the 

distribution has two modes (one of them at zero). By using the boundary between 

the two regions, we draw a regression line which is a linear function relating α to θ 

for each value of k in the set {0.5, 0.7, 0.9}. The regression lines all have R2 = 100%. 

Shown in Figure 4 is the region when LWD is unimodal or bimodal for 

different values of k and three PDFs for the bimodal case when k is 0.5, 0.7, and 

0.9. Values of k < 1, k = 0.1 to 0.9 are also considered at an increment of 0.1, and 

the relationship between α and θ on the boundary points of the bimodality region 

remains linear. 

For the case k > 1, a matrix M2 is constructed with entries {1, 3}. If the sign 

of m(x) starts as being positive then turns negative for x values between 10-6 and 

30, then it is indicated by 1 in the matrix M2. If the sign of m(x) starts as being 

positive, turns negative, then turns positive again and finally becomes negative, it 

is indicated by 3 in the matrix M2. 

This leads to the following regions: In the first region (where the values in the 

matrix M2 are 1), fX(x) contains one turning point. This region indicates that the 

distribution has only one positive mode. In the second region (where the value in 

the matrix M2 are 3), fX(x) contains three turning points. This region indicates that 

the distribution has two positive modes. By using the boundary between the two 

regions, we draw two regression lines which are non-linear functions relating α to 

θ for each value of k in the set {2, 4, 6}. Each regression line has R2 = 100%. 
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Figure 4. Regions of modality of LWD when λ = 1 and k = 0.5 (a); k = 0.7 (b); k = 0.9 (c); 
Some PDFs of LWD when λ = 1 and k = {0.5, 0.7, 0.9} (d) 
 

 
 

Shown in Figure 5 are the regions when LWD is unimodal or bimodal and 

three PDFs for the bimodal case when k is 2, 4 and 6. Note that, from Figures 4 and 

5, the bimodal region increases as k increases when k < 1 and the bimodal region 

decreases as k increases when k > 1. Notice when k is large (k > 20), the region of 

bimodality does not change with respect to changes in the value of parameter k. 
 
 

(a) (b) 

(c) (d) 
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Figure 5. Regions of modality of LWD when λ = 1 and k = 2 (a); k = 4 (b); k = 6 (c); Some 
PDFs of LWD when λ = 1 and k = {2, 4, 6} (d) 
 

 

Moments, Mean Deviations, and Shannon’s Entropy 

Moments 

The nth non-central moment E(X n) of the LWD can be computed by using an 

infinite sum as shown in the following theorem: 

 

Theorem 3: The nth non-central moment of the LWD is given by the 

expression 

 

(a) (b) 

(c) 

(d) 
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where     
2, 21, log 1i j n k i j        , (a)r = a(a + 1)…(a + r – 1) is the 

ascending factorial, Γ(a, x) is the incomplete gamma function given in Abramowitz 

and Stegun (1972) by 
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Proof: By definition, 
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Using the substitution u = (x/λ)k, the integral in (23) can be simplified as 
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Using the generalized binomial expansion 
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the integral I1 in (24) reduces to 
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where (α + 1)i is the ascending factorial. Using the binomial expansion 
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equation (25) can be simplified as 
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On using the series representation for the exponential function 
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where 
1,i jw  is as defined after equation (22) in Theorem 3. 

By using the generalized binomial expansion 
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the integral I2 in (24) reduces to 
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Using the generalized binomial expansion 
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equation (28) reduces to 
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where 
2,i j  is as defined after equation (22) in Theorem 3. Substituting I1 given by 

(27) and I2 given by (29) into (24) completes the proof of the result in (22). 
 
 
Table 1. Mean and variance of LWD for some values of α, θ, and k 
 

  k = 0.5  k = 1.0  k = 7.0  k = 10.0 

θ α Mean Var   Mean Var   Mean Var   Mean Var 

0.5 0.5 2.9207 59.5720  0.7854 0.8435  0.4894 0.0087  0.4906 0.0044 
 0.7 1.3477 13.7330  0.5290 0.3941  0.4628 0.0077  0.4718 0.0040 
 1.0 0.5822 2.7659  0.3466 0.1710  0.4364 0.0066  0.4529 0.0036 
 5.0 0.0132 0.0013  0.0549 0.0036  0.3392 0.0035  0.3798 0.0022 
 7.0 0.0063 0.0003  0.0382 0.0017  0.3226 0.0031  0.3667 0.0020 

             

1.0 0.5 4.0000 80.0000  1.0000 1.0000  0.5164 0.0075  0.5098 0.0037 
 0.7 2.0408 20.8240  0.7143 0.5102  0.4922 0.0068  0.4929 0.0035 
 1.0 1.0000 5.0000  0.5000 0.2500  0.4677 0.0062  0.4757 0.0032 
 5.0 0.0400 0.0080  0.1000 0.0100  0.3716 0.0039  0.4050 0.0023 
 7.0 0.0204 0.0021  0.0714 0.0051  0.3542 0.0035  0.3916 0.0022 

             

5.0 0.5 7.8417 149.0700  1.6140 1.3158  0.5704 0.0048  0.5474 0.0023 
 0.7 4.8301 49.3640  1.2789 0.7795  0.5518 0.0046  0.5348 0.0022 
 1.0 2.9624 16.5910  1.0059 0.4694  0.5327 0.0044  0.5218 0.0022 
 5.0 0.3447 0.2425  0.3302 0.0633  0.4493 0.0042  0.4628 0.0023 
 7.0 0.2123 0.1009  0.2555 0.0409  0.4319 0.0041  0.4501 0.0023 

             

7.0 0.5 8.9207 167.7400  1.7588 1.3671  0.5800 0.0043  0.5539 0.0020 
 0.7 5.6703 57.9240  1.4168 0.8279  0.5624 0.0041  0.5421 0.0020 
 1.0 3.6049 20.5970  1.1351 0.5140  0.5445 0.0040  0.5299 0.0020 
 5.0 0.4999 0.4265  0.4070 0.0844  0.4649 0.0041  0.4742 0.0022 
 7.0 0.3196 0.1925   0.3206 0.0570   0.4480 0.0041   0.4619 0.0023 

 
 

Given in Table 1 are the mean and the variance of LWD for various 

combinations of α, θ, and k when λ = 0.5. Many parameter combinations were used 

but, to save space, only a few of them are reported in Table 1. For fixed θ and k, the 

mean is a decreasing function of α. The mean is an increasing function of θ when 
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α and k are fixed. For fixed α and θ, the mean decreases first and then increases as 

k increases. However, there is no clear pattern for the variance with respect to 

changes in the parameter values. 

The skewness (Sk) and kurtosis (Ku) of LWD are given in Table 2 for some 

values of α, θ, and k. For fixed α and θ the skewness of LWD decreases as k 

increases. For fixed values of α and k, the skewness of LWD decreases as θ 

increases. Note that when θ = 1, at which the LWD reduces to the Weibull 

distribution with shape parameter k and scale parameter λα-1/k, the skewness and the 

kurtosis do not depend on α. However, there is no clear pattern for the kurtosis with 

respect to changes in the parameter values. 
 
 
Table 2. Skewness and kurtosis of LWD for some values of α, θ, and k 
 

  k = 0.5  k = 1.0  k = 7.0  k = 10.0 

θ α Sk Ku   Sk Ku   Sk Ku  Sk Ku 

0.5 0.5 7.6717 116.0500  2.3412 10.9980  -0.0566 2.6407  -0.2648 2.8196 
 0.7 8.1298 130.0700  2.4656 11.9600  -0.0263 2.7001  -0.2391 2.8675 
 1.0 8.7698 152.0000  2.5946 13.1370  -0.0146 2.7708  -0.2321 2.9339 
 5.0 10.1060 233.5900  2.4961 13.3190  -0.1419 2.8924  -0.3596 3.1300 
 7.0 9.4602 206.0800  2.3840 12.3250  -0.1696 2.8902  -0.3853 3.1450 

             

1.0 0.5 6.6188 87.7200  2.0000 9.0000  -0.2541 2.8803  -0.4632 3.1872 
 0.7 6.6188 87.7200  2.0000 9.0000  -0.2541 2.8803  -0.4632 3.1872 
 1.0 6.6188 87.7200  2.0000 9.0000  -0.2541 2.8803  -0.4632 3.1872 
 5.0 6.6188 87.7200  2.0000 9.0000  -0.2541 2.8803  -0.4632 3.1872 
 7.0 6.6188 87.7200  2.0000 9.0000  -0.2541 2.8803  -0.4632 3.1872 

             

5.0 0.5 4.8668 49.7400  1.4377 6.5163  -0.6390 3.9785  -0.8628 4.6405 
 0.7 4.3383 40.2360  1.2518 5.6651  -0.7372 4.0188  -0.9569 4.7131 
 1.0 3.7677 30.7260  1.0804 4.8592  -0.7984 3.9727  -1.0117 4.6712 
 5.0 2.9128 16.2010  1.0097 3.9304  -0.6615 3.2898  -0.8568 3.8290 
 7.0 3.0655 17.4180  1.0952 4.1609  -0.6009 3.1715  -0.7960 3.6733 

             

7.0 0.5 4.5966 44.8970  1.3539 6.2417  -0.6997 4.2784  -0.9275 5.0251 
 0.7 4.0149 35.1060  1.1402 5.3288  -0.8240 4.3688  -1.0481 5.1612 
 1.0 3.4034 25.7610  0.9440 4.4858  -0.9047 4.3469  -1.1222 5.1480 
 5.0 2.5039 12.4240  0.8373 3.4387  -0.7689 3.5053  -0.9640 4.1107 
 7.0 2.6408 13.3050   0.9238 3.6191   -0.6991 3.3404   -0.8931 3.8997 
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Figure 6. Galton’s skewness and Moors’ kurtosis for LWD when α = 0.5 
 

 

A measure of skewness and kurtosis, based on the quantile function, is 

obtained by using Galton’s skewness (Galton, 1883) and Moors’ kurtosis (Moors, 

1988). By using the quantile function defined in (11), Galton’s skewness and Moors’ 

kurtosis for LWD, respectively, are given by 
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Presented in Figure 6 are three dimensional graphs of Galton’s skewness and 

Moors’ kurtosis for the same parameter values as in Table 2. To save space, these 

values are not reported but are compared with the values in Table 2. The results 

show similar patterns to those in Table 2. 

Mean Deviations 

Let X be a random variable with mean μ and median M. The mean deviation from 

the mean is defined as 
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where    F fX X x dx





   can be calculated using (6). Similarly, the mean 

deviation from the median can be defined as 
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The integrals  
0

fXx x dx


  and  
0

f
M

Xx x dx  from (31) and (32), respectively, 

can be obtained as follows: Let u = (x/λ)k. Then 
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Again, using the approach in Theorem 3, the integrals *

1I  and *

2I  can be simplified 

as 
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The integral  
0

f
M

Xx x dx  can be obtained in a similar fashion. 

Shannon’s Entropy 

The entropy of a random variable X is a measure of variation of uncertainty. 

Shannon (1948) defined the entropy of a random variable X with PDF g(x) to be 
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 E ln gX X     . Entropy has various applications in many fields including 

science, engineering, and economics. Using Theorem 2 in Almheidat et al. (2015), 

the Shannon’s entropy of LWD is given by 
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where 
k  is the kth non-central moment of the LWD and    ln 1 1T       

is the Shannon’s entropy of the Lomax random variable. Thus, from (36), the 

Shannon’s entropy of LWD can be simplified as 
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Parameter Estimation 

Let X1, X2,…, Xn be a random sample from LWD with parameters α, θ, k, and λ. 

The log-likelihood function  , , ,k    for the PDF in (7) is given by 
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On taking the first partial derivatives of the log-likelihood function in (38) with 

respect to the parameters α, θ, k, and λ, 
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By setting (39) to (42) equal to zero and solving them simultaneously, obtain 
ˆˆˆ , , ,k   and ̂ , the maximum likelihood estimates (MLEs) for the parameters α, θ, 

k, and λ, are respectively obtained. The computations are done using the NLMIXED 

procedure in SAS. In this procedure the initial estimates of α, θ, k, and λ can be 

obtained as follows: First, assume that the sample data (x1, x2,…, xn) is from a 

Weibull distribution. The parameter estimates given in Johnson, Kotz, and 

Balakrishnan (1994, pp. 635-643) are used for k and λ as the initial estimates, which 

are 
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where wi = log(xi), w̅ and sw are respectively the mean and the standard deviation 

of w random sample, and γ = -Γ(1) ≈ 0.57722 is the Euler’s constant. By using 

Lemma 1, the sample data (x1, x2,…, xn) can be transformed to a data set from 

Lomax distribution by using 
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The initial estimates for α and θ are the moment estimates of α and θ from the 

Lomax distribution and they are given by 
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where y̅ and vy are, respectively, the mean and the variance of (y1, y2,…, yn). 

Applications 

Three applications of the LWD using real life data sets are considered. Each of the 

three data sets exhibits right skewed, left skewed, or bimodal distribution shape. In 

these applications, the maximum likelihood estimates of the parameters of the fitted 

distributions are obtained. The LWD is compared with other distributions based on 

the maximized log-likelihood, the Kolmogorov-Smirnov (K-S) test along with the 

corresponding p-value, and Akaike Information Criterion (AIC). In addition, the 

histogram of the data and the PDFs of the fitted models are presented for graphical 

illustration of the goodness of fit. 

Wheaton River Data 

The data set in Table 3, from Choulakian and Stephens (2001), is the exceedances 

of flood peaks (in m3/s) of Wheaton River, Yukon Territory, Canada. The data 

consists of 72 exceedances for the years 1958-1984, rounded to one decimal place. 

It is a right-skewed data (skewness = 1.5 and kurtosis = 3.19) with a long right tail. 

The data set was analyzed using several distributions. Akinsete et al. (2008) 

used this data set as an application of beta-Pareto distribution (BPD). Alshawarbeh 

et al. (2012) fitted the data set to beta-Cauchy distribution (BCD). It was also used 

by Al-Aqtash, Famoye, and Lee (2014) to illustrate the flexibility of Gumbel-

Weibull distribution (GWD) to fit different data sets. We fit the LWD to the data 

set. The MLEs and the goodness of fit statistics are presented in Table 4. The results 

for BPD, BCD and GWD are taken from Al-Aqtash et al. (2014). 

The goodness of fit statistics indicate that the BCD, GWD, and LWD provide 

good fit based on the p-value of K-S statistic. But the LWD seems to provide the 

best fit among these distributions in Table 4, since it has the smallest AIC and K-S 

statistics and the largest log-likelihood value. The LWD seems to be very 

competitive to other distributions in fitting the data. This suggests that LWD fits 

highly right-skewed data with a long tail very well. Figure 7 contains the histogram 

of the data with the fitted distribution and supports the results in Table 4. 
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Table 3. Exceedances of the Wheaton River data 
 

1.7 2.2 14.4 1.1 0.4 20.6 5.3 0.7 1.9 13.0 12.0 9.3 

1.4 18.7 8.5 25.5 11.6 14.1 22.1 1.1 2.5 14.4 1.7 37.6 

0.6 2.2 39.0 0.3 15.0 11.0 7.3 22.9 1.7 0.1 1.1 0.6 

9.0 1.7 7.0 20.1 0.4 2.8 14.1 9.9 10.4 10.7 30.0 3.6 

5.6 30.8 13.3 4.2 25.5 3.4 11.9 21.5 27.6 36.4 2.7 64.0 

1.5 2.5 27.4 1.0 27.1 20.2 16.8 5.3 9.7 27.5 2.5 27.0 

 
 
 
Table 4. MLEs for Wheaton River data (standard errors in parentheses) 
 

Distribution BPD BCD GWD LWD 

Parameter estimates α̂  = 7.6954 α̂  = 317.0256 μ̂  = -0.6548 α̂  = 0.1449 

 
b̂  = 85.75 (312.5864) (1.1214) (0.0472) 

 
θ̂  = 0.1 b̂  = 1.4584 σ̂  = 3.3672 θ̂  = 0.03124 

 
k̂  = 0.0208 (0.4899) (0.7295) (0.0383) 

  
θ̂  = -0.0482 α̂  = 1.4848 k̂  = 1.6396 

  (1.2301) (0.3665) (0.2842) 
  

λ̂  = 0.09617 λ̂  = 8.0323 λ̂  = 6.3766 
  (0.0688) (2.8206) (2.1724) 

Log Likelihood -272.1280 -260.4813 -247.8373 -247.4916 

AIC 552.256 528.952 503.700 503.000 

K-S 0.1625 0.1219 0.0662 0.0587 

(p-value) (0.0446) (0.2350) (0.9101) (0.9652) 

 
 
 

 
 
Figure 7. The histogram and the PDFs of the Wheaton River data 
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Strengths of 1.5cm Glass Fibers Data 

The second application represents fitting the LWD to the strength of 1.5 cm glass 

data set given in Table 5. The data set is “sample 1” of Smith and Naylor (1987) 

and deals with the breaking strength of 63 glass fibers of length 1.5 cm, originally 

obtained by workers at the UK National Physical Laboratory. 

Barreto-Souza et al. (2010) applied the beta generalized exponential 

distribution (BGED) to fit the data and Barreto-Souza, Cordeiro, and Simas (2011) 

fitted beta Fréchet distribution (BFD) to the data. Recently, Alzaghal, Famoye, and 

Lee (2013) used the data in an application of the exponentiated Weibull-exponential 

distribution (EWED). 
 
 
Table 5. Strength of 1.5 cm glass fibers data 
 

0.55 0.74 0.77 0.81 0.84 0.93 

1.04 1.11 1.13 1.24 1.25 1.27 

1.28 1.29 1.30 1.36 1.39 1.42 

1.48 1.48 1.49 1.49 1.50 1.50 

1.51 1.52 1.53 1.54 1.55 1.55 

1.58 1.59 1.60 1.61 1.61 1.61 

1.61 1.62 1.62 1.63 1.64 1.66 

1.66 1.66 1.67 1.68 1.68 1.69 

2.00 2.01 2.24 1.76 1.76 1.77 

1.70 1.70 1.73 1.84 1.84 1.89 

1.78 1.81 1.82    

 
 
 
Table 6. MLEs for the strength of 1.5 cm glass fibers data (standard errors in 
parentheses) 
 

Distribution BFD BGE EWED LWD 

Parameter estimates α̂  = 0.396 α̂  = 0.4125 α̂  = 23.614 α̂  = 1.1907 
 (0.174) (0.3020) (3.954) (0.7232) 
 

b̂  = 225.720 b̂  = 93.4655 γ̂  = 7.249 θ̂  = 21.9641 
 (164.476) (120.0850) (0.994) (9.4167) 
 

λ̂  = 1.302 α̂  = 22.6124 ĉ  = 0.0033 k̂  = 2.9842 
 (0.270) (21.925) (0.0030) (1.2329) 
 σ̂  = 6.863 λ̂  = 0.9227  λ̂  = 1.0889 
 (1.992) (0.5010)  (0.3105) 

Log Likelihood -19.5900 -15.5995 -14.3300 -11.9905 

AIC 47.200 39.199 34.700 32.000 

K-S 0.2140 0.1673 0.1370 0.1013 

(p-value) (0.0060) (0.0588) (0.1950) (0.5373) 
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Figure 8. The histogram and the PDFs for the glass fibers data 
 

 

The LWD is fitted to the data and the estimation results and goodness of fit 

statistics are presented in Table 6. From Table 6, the BGE, EWED, and LWD 

provide an adequate fit to the data with the LWD providing the best fit among all 

distributions in Table 6 based on every criterion. The distribution of the data is 

skewed to the left (skewness = -0.95 and kurtosis = 1.10). This suggests that the 

LWD performs well in modeling left skewed data. Contained in Figure 8 are the 

histogram of the data and the PDFs of the fitted distributions. 

Australian Athletes Data 

In this example, a data set reported by Cook and Weisberg (1994) about Australian 

Athletes is considered. It contains 13 variables on 102 male and 100 female athletes 

collected at the Australian Institute of Sport. Jamalizadeh, Arabpour, and 

Balakrishnan (2011) used the heights for the 100 female athletes and the 

hemoglobin concentration levels for the 202 athletes to illustrate the application of 

a generalized skew two-piece skew-normal distribution. Choudhury and Abdul 

Matin (2011) also used percentage of the hemoglobin blood cell for the male 

athletes to illustrate the application of an extended skew generalized normal 

distribution. In this example we consider the percentage of body fat (%Bfat) 

variable for the 202 athletes.  
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Table 7. MLEs for the %Bfat data (standard error in parentheses) 
 

Distribution WD BND LND LWD 

Parameter estimates k̂  = 2.354 α̂  = 0.1896 λ̂  = 0.3000 α̂  = 0.2650 
 (0.125) (0.0549) (0.0235) (0.0448) 

 
λ̂  = 15.313 β̂  = 0.2513 μ̂  = 14.632 θ̂  = 0.0065 

 (0.4852) (0.0241) (0.369) (0.0062) 
  μ̂  = 15.289 σ̂  = 2.5330 k̂  = 5.626 
  (1.286) (0.0682) (0.635) 
  σ̂  = 2.495  λ̂  = 18.538 
  (0.165)  (1.136) 

Log Likelihood -642.416 -649.471 -644.047 -623.427 

AIC 1288.8 1306.9 1294.1 1254.9 

K-S 0.1091 0.1425 0.1599 0.0468 

(p-value) (0.0163) (5.4400×10-4) (6.4700×10-5) (0.7676) 

 
 
 

 
 
Figure 9. The histogram and the PDFs for %Bfat data 
 

 

The LWD, the beta-normal distribution (BND) defined by Eugene et al. 

(2002), the logistic-normal{logistic} distribution (LND) defined by Alzaatreh et al. 

(2014b), and the Weibull distribution (WD) are applied to fit the data set. Table 7 

contains the estimates, standard errors of the estimates, log-likelihood values, AIC, 

K-S test statistic, and the corresponding p-values. 
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The histogram and the densities of the fitted distributions are provided in 

Figure 9. From Figure 9, the distribution of this data appeared to be bimodal and 

skewed to the right (skewness = 0.759, kurtosis = 2.827). 

From Table 7, LWD has the smallest AIC and K-S statistics and the largest 

log-likelihood value, which indicates that LWD seems to be superior to the other 

distributions in fitting the data. Even though the BND has the ability to fit bimodal 

data, it could not capture the bimodality property in fitting the data. On the other 

hand, the LND capture the bimodality property but with poor fit to the data. This 

application suggests that LWD has the ability to adequately fit bimodal data. 

Conclusion 

A four-parameter LWD was proposed as an extension of the Weibull distribution 

and a member of T-Weibull{Y} family defined by Almheidat et al. (2015). The 

LWD is found to be unimodal or bimodal and reduces to some existing distributions 

that are known in the literature. Various properties of the LWD are investigated, 

including the hazard function, the quantile function, and the regions of unimodality 

and bimodality. Expressions for the moments, the Shannon’s entropy, and the mean 

deviations are derived. The parameters are estimated by the method of maximum 

likelihood. 

The LWD is fitted to three real data sets to illustrate the application of the 

distribution. The first data set is the exceedances of flood peaks of Wheaton River, 

the second is the strength of 1.5 cm glass fibers, and the third is the percentage of 

the body fat of 202 Australian Athletes. In fitting these data sets, different 

distributions are compared with the LWD based on goodness of fit statistics. The 

two most competitive distributions to the LWD are the GWD (used in the flood 

data set) and the EWED (used in the glass fibers data set). The results show that the 

LWD outperformed these two distributions in fitting both data sets. LWD has an 

advantage over several other distributions due to the flexibility of this distribution 

and its ability to model different shapes in real life data sets, including unimodal 

and bimodal cases. 
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This letter addresses some of the immediate consequences of Basic and Applied Social 

Psychology’s (BASP) ban on null hypothesis significance testing (NHST) and confidence 

intervals. The letter concludes with three suggestions to improve research in general. 
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NHST, confidence intervals, null hypothesis significance testing 

 

 

The editorial board of Basic and Applied Social Psychology (BASP) made a bold 

and unequivocal move by outright banning the use of Null Hypothesis Significance 

Testing (NHST) and confidence intervals, along with giving Bayesian methods at 

best conditional consideration (see Trafimow & Marks, 2015). BASP’s reasoning 

behind said ban is based on common concerns of Frequentist statistics in particular, 

though concerns of Bayesian statistics were also considered. The reasons for said 

ban are not of interest here, but rather BASP’s particular solution. They stated: 

 

…BASP will require strong descriptive statistics, including effect sizes. We 

also encourage the presentation of frequency or distributional data when this 

is feasible. Finally, we encourage the use of larger sample sizes than is typical 

in much psychology research, because as the sample size increases, 

descriptive statistics become increasingly stable and sampling error is less of 

a problem. (Trafimow & Marks, 2015, p. 1) 

 

Although BASP’s intentions to improve the quality of research are 

commendable, what is not immediately evident is how the use of strong descriptive 

http://dx.doi.org/10.22237/jmasm/1478004360
mailto:grayson_baird@brown.edu
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statistics and larger sample sizes constitute a framework by which inference on a 

population may be made. By relying on descriptive statistics alone, BASP removed 

the notion of probability from their statistical methodology, save for the 

occasionally sanctioned Bayesian analysis. As a consequence, the scope of BASP’s 

scientific inquiry is therefore limited to the description of samples rather than 

inference to populations. The danger here is this limitation will not stop some 

readers from making inferences to populations, but will instead only remove the 

theoretical basis for doing so–thus blurring the distinction between interpretations 

of inferential and descriptive statistics. 

What is especially curious about BASP’s aforementioned stance is their 

notion of sample size and its curative effects over the stability of descriptive 

statistics and the size of the sampling error (which are the foundational elements of 

the confidence interval, simply removing probability). Though descriptive statistics 

can become more stable and sampling error can decrease as sample size increases, 

this is only true in part. 

The point can be illustrated by use of M&M’s©. Assume there is a single 

42oz “party-size bag” of M&M’s and 20 bags of the regular 1.69oz store-size bags 

(totaling only 33.8oz), randomly sampled from different stores. Which would 

produce the better estimate of the color proportions from the factory machine 

settings: the proportions of the 42oz bag or the mean of the proportions of the 20 

1.69oz bags? Granted, there is probably only a small difference between the two 

estimates, by design due to quality control. But if one machine goes out of control 

and fills a bag with too many green M&M’s, the 42oz bag will be both large and 

largely biased, while the 1.69oz bag will be just one sample out of many. 

The issue is clear: sample size alone cannot ensure better estimates of a 

population, the sampling methods by which a sample is procured are of the upmost 

importance. To quote former American Statistical Association president Peter 

Lachenbruch “A large n means nothing if the sampling is biased” (Cochran, 2015, 

p. 17). The nicety of the M&M’s example is presumably the factory settings 

(population) are known and we could randomly sample the 1.69oz bags of M&M’s, 

if we so desired. Unfortunately, this is difficult in the social and behavioral sciences, 

all the more reason why Morrison and Henkel (1969) asserted: 

 

…for statistical inference to be possible one must first specify the population 

and then probability sample from that population. The notions of sampling 

distribution and sampling error have no meaning in statistical inference apart 

from the assumption of randomness in the sample selection procedure–
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randomness being a central feature incorporated in all probability sampling 

designs. (p. 133) 

 

Indeed, sampling error consists of two components: random and systematic. By 

increasing the sample size, only the random component of sampling error becomes 

less of a problem, while the systematic part remains unchanged. As for the stability 

of descriptive statistics, the law of large numbers ensures statistical consistency of 

estimates as sample size increases, but again, this property is predicated on the 

sampling being random; thus, biased sampling using large sample sizes can result 

in consistent and biased samples.  

The point here is not to condemn research done without random sampling–

random sampling is difficult if not prohibitive for many studies, more especially 

those in the behavioral, educational, and medical sciences; rather, it is to illustrate 

how BASP’s newly adopted methodology is not somehow more resilient to the 

aforementioned issues, relative to Frequentist and Bayesian methods. Ironically, by 

requiring authors to use large sample sizes and report descriptive statistics, BASP’s 

prescripts would only help these inferential frameworks, if they were allowed. 

Instead of removing inference from their methodology, BASP could improve the 

quality of research by requiring authors to do the three following things: 

 

1. Clearly state the population of interest; not only does this help readers 

understand the scope of the research, it also provides useful 

information for conducting meta-analyses and replication studies. 

2. Use random sampling methods, when possible. When random 

sampling is not possible, authors should be required to report what 

sampling methods were used, why random sampling could not be used, 

and likely sources of bias in the existing sample, including reporting 

detailed demographic statistics. This allows readers to evaluate the 

quality of the study sample, in reference to the population of interest. 

3. Instead of relying on one all-or-nothing sample, authors should be 

required to collect multiple samples when possible (e.g., multiple 

schools, hospitals, etc.). In addition, BASP should promote publication 

of replication studies from existing research. 

 

Implementation of these requirements could certainly be considered state of the art. 
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