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SUMMARY

The motivation behind this thesis mainly stems from previous work performed

at Hispano-Suiza (Safran Group) in the context of the European research project

�Power Optimised Aircraft�. Extensive testing on the COPPER Bird®, a test rig

designed to characterize aircraft electrical networks, demonstrated the relevance of

transient regimes in the design and development of dynamic systems.

Transient regimes experienced by dynamic systems may have severe impacts on the

operation of the aircraft. For example, the switching on of a high electrical load might

cause a network voltage drop inducing a loss of power available to critical aircraft

systems. These transient behaviors are thus often regulated by dynamic constraints,

requiring the dynamic signals to remain within bounds whose values vary with time.

The veri�cation of these peculiar types of constraints, which generally requires high-

�delity time-domain simulation, intervenes late in the system development process,

thus potentially causing costly design iterations.

The research objective of this thesis is to develop a methodology that integrates

the veri�cation of dynamic constraints in the early speci�cation of dynamic systems.

In order to circumvent the ine�ciencies of time-domain simulation, multivariate dy-

namic surrogate models of the original time-domain simulation models are generated,

building on a nonlinear system identi�cation technique using wavelet neural networks

(or wavenets), which allow the multiscale nature of transient signals to be captured.

However, training multivariate wavenets can become computationally prohibitive

as the number of design variables increases. Therefore, an alternate approach is for-

mulated, in which dynamic surrogate models using sigmoid-based neural networks are

used to emulate the transient behavior of the envelopes of the time-domain response.
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Thus, in order to train the neural network, the envelopes are extracted by �rst sep-

arating the scales of the dynamic response, using a multiresolution analysis (MRA)

based on the discrete wavelet transform. The MRA separates the dynamic response

into a trend and a noise signal (ripple). The envelope of the noise is then computed

with a windowing method, and recombined with the trend in order to reconstruct the

global envelope of the dynamic response.

The run-time e�ciency of the resulting dynamic surrogate models enable the im-

plementation of a data farming approach, in which a Monte-Carlo simulation gener-

ates time-domain behaviors of transient responses for a vast set of design and opera-

tion scenarios spanning the design and operation space. An interactive visualization

environment, enabling what-if analyses, will be developed; the user can thereby in-

stantaneously comprehend the transient response of the system (or its envelope) and

its sensitivities to design and operation variables, as well as �lter the design space to

have it exhibit only the design scenarios verifying the dynamic constraints.

The proposed methodology, along with its foundational hypotheses, are tested on

the design and optimization of a 350VDC network, where a generator and its control

system are concurrently designed in order to minimize the electrical losses, while en-

suring that the transient undervoltage induced by peak demands in the consumption

of a motor does not violate transient power quality constraints.

xxiii



Chapter I

INTRODUCTION

This thesis deals with the design of aircraft dynamic systems that experience transient

regimes during �ight. This chapter gives some background on the topic and elements

of motivation for this work, which will result in the formulation of an overall research

objective.

The motivation behind this thesis mainly stems from previous work performed at

Hispano-Suiza (Safran Group) in the context of a project called the Power Optimised

Aircraft (POA), a research e�ort on the topic of More-Electric Aircraft (MEA), con-

ducted by the major stakeholders of the European aeronautical industry, and funded

by the European Union [3]. In the �nal stages of the POA program, innovative

electrically powered system prototypes were developed, integrated, and tested in the

COPPER Bird®, the electrical test bench at Hispano-Suiza. The result of the inte-

gration of the POA system prototypes in the COPPER Bird® formed the Aircraft

System Validation Rig (ASVR).

In this context, Phan et al. generated computer models of the behavior of the

ASVR after performing multiple runs on the actual Hispano-Suiza test bench [127].

This activity enabled the authors to gain valuable insights on the relevance of transient

regimes for design considerations.

As will be elaborated in this chapter, the study of transient regimes on the ASVR

highlighted the fact that transient regimes play a critical role in the development of

aircraft dynamic systems. In addition to lessons learned during the POA program

and the corresponding work on the COPPER Bird®, the next sections present the

results of a preliminary literature review on the role of transient regimes in the design
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of aircraft dynamic systems. The identi�ed challenges of current design processes will

serve as motivation for this thesis and its research objective.

1.1 Dynamic Systems and Transient Regimes

This section sets the stage for this thesis by de�ning some of the essential concepts

that will be employed hereafter.

Aircraft are becoming more and more complex, as they consist of ever more highly

sophisticated components that form higher-level systems. In literature, there exist

numerous de�nitions of the word �system�. In order to avoid any ambiguity, the

de�nition adopted herein is that of the International Council on System Engineering

(INCOSE)[2] :

A system is �an integrated set of elements to accomplish a de�ned ob-

jective. These include hardware, software, �rmware, people, information,

techniques, facilities, services, and other support elements.�

This very broad de�nition encompasses concepts as diverse as groups of people or

software, as long as they serve the ful�llment of a common objective. In the context

of aircraft design, the objective is usually called �function�. The aircraft can be viewed

as a system constituted by other systems dedicated to the ful�llment of the major

functions, such as the engine, the wings, and the electrical power system. These

systems are themselves comprised of lower level systems (or subsystems), and so on

until the end of the system breakdown tree is reached. In this thesis, a system will

refer to any system or subsystem within the system tree.

During its operation, a system can be described by its state variables (or simply

�its states�). For example, an aircraft aileron's operations may be described by the

de�ection angles taken by the control surface. Most aircraft systems are dynamic,

i.e. their states change with time [8]. On the contrary, a system whose states remain

constant is called static.
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This opposition between �dynamic� and �static� is also applicable to parameters in

general. A dynamic parameter (or dynamic signal, or signal) will see its value evolve

with time while a static parameter will not. For example, the voltage of a perfect sine

voltage generator is a dynamic parameter, while the amplitude and frequency of the

sine voltage are static parameters. Another illustration of the concepts of static and

dynamic parameters are given by the weight of the aircraft. As the aircraft �ies its

mission and burns fuel, the overall aircraft weight decreases. Therefore, the aircraft

weight is a dynamic parameter. However, the maximum takeo� gross weight or the

zero fuel empty weights are static parameters. Table 1 lists examples of dynamic

parameters and related static ones. Formally, a dynamic parameter can thus be

de�ned as a function of time y : t 7→ y(t) while a static parameter is a real (or

complex) value yεR (or C).

Table 1: Examples of Dynamic and Static Parameters
Dynamic Parameters Static Parameters

aircraft weight maximum takeo� gross weight
engine thrust maximum engine sea level static thrust

periodical voltage frequency of the periodical voltage
power delivered by the generator maximum power of the generator

During their operation, dynamic systems generally go through a variety of regimes,

ranging from equilibrium or stationary points, which are called �steady-state regimes�,

to short and abrupt variations of state, which are termed �transient regimes�. It is

important to note that while transient regimes are by nature described by states that

are dynamic, a dynamic state may not necessarily indicate that the system lies outside

a steady-state regime. Indeed, a system whose state is dynamic but periodic may

be considered as in steady-state [136]. This is due to the periodicity of the signal,

whereby any dynamic parameter or state describing a steady-state regime of this

signal can be de�ned with a �nite collection of static parameters, such as variation

amplitude, frequency, and Fourier coe�cients. For instance, an electric generator
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whose voltage output follows a sine wave is in steady-state. Its voltage is a dynamic

signal that can be fully described by two static parameters: the sine amplitude and

frequency.

Throughout an aircraft mission, transient regimes occur often and may a�ect many

systems. Examples of transient events that may occur during operation are shown in

Figure 1. When the engine starts, the speed of the engine shaft goes from 0 RPM to

thousands of RPM's in less than a second, thus inducing a transient perturbation on

the electrical network that it drives. The electrical system also experiences transient

events due to switching of loads (such as onboard cabin equipment being turned on or

o�, or the sudden shutdown of an engine) or exterior events (such as lightning). When

an aileron or a spoiler is de�ected, the aerodynamic load varies abruptly, thereby

experiencing a transient state before reaching a new equilibrium. Another source

of transients is the actuation of the thrust reverse system at landing, which creates

transient thermal and mechanical stress on the nacelle as well as electrical transient

perturbations of the electrical system. In the next section, it will be established that

transient regimes may have serious consequences on the operation of the aircraft and

are therefore of prime importance when designing dynamic systems.

Figure 1: Examples of Transient Events Experienced by Aircraft Systems
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1.2 Relevance of Transient Regime Considera-

tions in Aircraft Design

As aircraft system architectures grow in complexity, it has become essential to improve

the design and development process. Because the bulk of the Life Cycle Cost (LCC)

of the aircraft depends on the decisions made in the early stages of the design, one

of the most potentially rewarding research e�orts deals with making the conceptual

and preliminary design phases more e�cient: one area of such e�orts focuses on the

integration of subsystem design considerations into these early design stages [4].

The design of a subsystem (or simply �system�) derives from a set of operations

that the system will be expected or required to perform. Throughout the aircraft

mission, most dynamic systems experience transient regimes. One obvious example

of transient regime is the oscillatory response of the aircraft body incurred by a

step command given by the pilot to the aileron. Transient regimes experienced by a

system may have signi�cant impacts on the operation of other systems. For example,

a sudden and heavy increase in electrical power consumption from a system equates

to an increase in the power required from the electrical generator. If the electrical

generator is driven by the engine shaft, this variation of power demand may induce

a short oscillatory variation of torque on the engine shaft, which in turn may a�ect

the level of available thrust. Not only is this undesirable, but it can even reduce the

surge margin to a point where the engine might fail during a transient maneuver[27].

Transient regimes may be induced by external and uncontrollable events. For

instance, lightning may cause serious transient disturbances on the electrical net-

work. These disturbances, which are a particular case of Electromagnetic Interfer-

ence (EMI), can a�ect �ight critical systems, and as documented in Clarke et al., they

could lead, in the worst scenarios, to engine shutdowns and fatal crashes[25]. EMI

relates to the growing �eld of power quality assurance, which de�nes a set of stan-

dards and rules that the behavior of the electrical network should respect in order for
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the electrical equipment to remain operational. Power quality requirements govern

steady-state regimes as well as transient ones. Other relevant examples of transient

power quality issues besides EMI pertain to the level of network voltage. For instance,

when a heavy electrical load is switched on, it experiences a high and extremely brief

current, called current inrush, which induces a drop in network voltage [80]. This

voltage drop (or voltage sag, or undervoltage) is felt by the entire network and thus

a�ects the power available to the other systems, including the critical ones. This is

illustrated in Figure 2, which exhibits the network voltage response of a 350 VDC test

bench to a step consumption of a prototype electrically-powered Electrohydrostatic

Actuator (EHA) [52, 127].

Figure 2: Power Quality Impact of Load Switching: Voltage Sag

Similarly, when a heavy load is switched o�, for example in the case of a sys-

tem failure, the electrical network experiences a short voltage increase (or voltage

surge, or overvoltage), which can reach 600 V on a 115 VAC network for up to 1 ms

[25]. These transients put an unacceptable level of stress on susceptible components

causing loss of function and irreversible damage [19]. Such power quality issues pose
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growing challenges in the aeronautical industry, with the current development of in-

novative �more-electric� architectures capable of meeting the ever increasing demand

for electrical power [116]. Compared to traditional aircraft, these more-electric archi-

tectures incorporate more systems that are powered by the electrical network, which

may potentially enable the downsizing (or even the elimination) of systems like the

hydraulic and pneumatic networks. This is the direction taken by the �Power Opti-

mised Aircraft� (POA) research project [3, 52]. Under the POA project, subsystems

were more-electric, the engine bleed was reduced, and the electrical generators were

directly mounted on the engine shafts, thus enabling the suppression of the engine

accessory gearbox, as shown in Figure 3. These challenges are becoming ever more

relevant since in these more-electric architectures, �ight critical systems may draw

power from the electrical network [65].

Figure 3: POA Architecture Concept [52]

From the examples above, it is now evident that transient regimes have potentially

frequent and serious impacts on the operation of the aircraft and its subsystems. This

important observation will be referred to as �Observation 1�:

Observation 1: Transient regimes experienced by dynamic systems can have poten-

tially serious impacts on the operation of the aircraft.

Therefore, transient regimes must be closely monitored and controlled throughout the

aircraft operation. Because of the inherent relationship between the operations and
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the design of systems, transient regimes therefore intervene in the design of many

systems. For example, Ganthony et al. explain that �ight control actuators are

sized according to the maximum transient load they may face during the mission

[55]. These transient loads are very short and of a higher intensity compared to the

steady-state current they normally draw from the electrical generator, as illustrated

in Figure 4. Therefore, it is the transient regime operations, accountable for only a

small portion of the mission, that drive the sizing of the actuator.

Figure 4: Transient Input Phase Current to an Aircraft Flight Control Surface
Actuation System during a Typical Actuation Maneuver [55]

Similarly, an electrical generator is sized so that it can meet the maximum power

required by transient peak demands of the electrical loads [1]. Also, some systems

contain components whose sole purpose is to smooth the e�ects of transients, such

as �lters for electronic components. For hydraulic systems, accumulators and other

control devices ensure that the system doesn't experience drastic transient spikes in

�uid pressure, as illustrated in Trikha [150]. These components, dedicated to transient

regimes, thus increase the weight, the cost and the complexity of the overall system.

This important role that transient regimes occupy in the design of dynamic systems

is formally stated in �Observation 2�:

Observation 2: Transient regimes play a critical role in the design of dynamic

systems.
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1.3 Transient Constraints in Design: Dynamic

Constraints

The design and development of systems are thus a�ected by the transient regimes the

systems are expected to encounter. In particular, transient regimes sometimes induce

a peculiar type of constraints on design responses: the value of these constraints vary

with time, as illustrated in Figure 5. This �gure depicts the transient constraint on the

voltage of a 350 VDC network, as de�ned in the standards developed by the �Power

Optimised Aircraft� research project [52]. From the instant at which the transient

event is triggered (t=0), the voltage level has to stay within the bounds shown in the

�gure. One can see that depending on how long it has been since the transient regime

was triggered by the perturbation, the maximum voltage allowed can vary from 427.8

V to 363 V.

Figure 5: Transient Voltage Constraint for 350VDC Networks [52]

Dynamic constraints are not exclusively encountered with transient problem stud-

ies. An example of dynamic constraint can be found in the minimum time-to-climb

problem for an aircraft evolving in a constrained airspace, where the allowable alti-

tude boundaries, obviously tight in the vicinity of airports, vary with time along the

mission [34].
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As often with constraints, transient dynamic constraints can be subject to un-

certainty. For instance, the voltage constraint of Figure 5 was applied by the POA

program to a 350VDC network, for which no norm existed. It was thus derived from

the existing power quality norms for 270VDC networks de�ned in the Military Stan-

dard 704 [41], and one of the research goals of the POA program was to study the

pertinence of the new resulting 350VDC norm. The main point of this section can be

summarized in the following formal observation:

Observation 3: In the design of dynamic systems, transient regimes are often ad-

dressed by means of dynamic constraints.

1.4 Aircraft Development Process

The previous paragraph showed that transient regime analysis was an in�uential part

of the development of a dynamic system, and that it may intervene by means of

dynamic constraints. Before discussing the speci�cs of the development process of a

dynamic system and the challenges that arise from dynamic constraints, it is useful to

comprehend the larger picture of the development process of the aircraft as a system.

1.4.1 Speci�cation and Veri�cation

Aerospace systems are complex by nature; a system is often composed of several

subsystems, which are themselves assemblies of components and parts. The devel-

opment of aerospace systems follows a cascade �top-down� process, where the design

of higher-level systems induces requirements for the subsequent design of the subsys-

tems, as shown in the traditional �waterfall diagram� represented in Figure 6 [36, 104].

The top-level requirements are mostly functional requirements, but as the system de-

velopment advances through the lower stages, the requirements become technical

speci�cations. One should note that in general, a system design activity (bloc at level

N) will trigger several concurrent subsystem design activities (blocs at level N-1).
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Figure 6: Aircraft Development Process: Waterfall View [36]

Each constitutive bloc of the waterfall diagram is itself a multi-step architecting

process, as illustrated in Figure 7[86]. First, a design concept is selected. Based on

the set of functional requirements received from the upper level, a choice is made on

the components that will physically constitute the system under consideration. For

instance, when designing an electrical circuit, one must �rst choose the components

(resistors, inductors, capacitors, etc.). A �rst set of design parameters, characterizing

the components, may be derived at the same time. The outcome of the concept selec-

tion activity is passed on to the design synthesis phase, where the design parameters

of the system and its components are tuned. In the electrical circuit example, this

corresponds to assigning values to the various resistances, inductances and capaci-

tances [149]. This design synthesis phase often involves some optimization, where

the outcome is a set of design parameters that minimizes or maximizes an objective

function [151].

At the bottom of the waterfall (Figure 6), the aircraft and its systems are fully

speci�ed. But as one can see on the diagram, the process is not over, as there

are feedbacks going from the bottom levels to the top ones. These feedbacks are

the results of the veri�cations that occur at every step of the aircraft development
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Figure 7: Design of Level N Subsystem

process. Indeed, after the speci�cation of a subsystem, if requirements or constraints

are violated, one course of action may be to go back up one or several levels, and

go over the speci�cation process again. This illustrates the highly iterative aspect of

design. These feedback loops obviously conduce to ine�ciencies of the design process,

as they may induce rework costly rework and schedule delays.

One shortcoming of the waterfall representation of the aircraft development pro-

cess is that it treats the feedbacks as merely a byproduct of design while they are in

fact the output of the essential �veri�cation and validation� activity. This shortcom-

ing is addressed by another view of the development process, also widely adopted by

the systems engineering community: the �V-diagram�, given in Figure 8[13, 2].

The V-diagram illustrates the role and interactions of the two major types of activ-

ity of the development process: speci�cation and veri�cation. Speci�cation consists of

making design choices, tuning the design parameters and deriving �ner requirements

to the lower-levels. It corresponds to going down the waterfall diagram. During

veri�cation, which goes up the waterfall diagram, the design is tested against the

constraints and requirements.
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Figure 8: Aircraft Development Process: V-Diagram [13]

Before the advent and growth of computing capabilities, the bulk of veri�cation

and validation was done in the second branch of the V-diagram, where physical pro-

totypes are assembled and integrated. For example, test benches incorporating the

various �ight control surfaces and their control systems, commonly referred to as

�iron birds�, have become the norm within the aircraft manufacturing community for

veri�cation and certi�cation [125]. Another example of test bench for the veri�cation

of integrated systems is the COPPER Bird® developed by Hispano-Suiza (Safran

Group) in order to assess the behavior of aircraft electrical networks. Felix et al.

describe the use of this test bench in the context of the POA program [52].

The veri�cation process on a test rig follows stringent prede�ned procedures. For

the POA program, the test scenarios as well as the procedures were de�ned in order

to test the extreme cases. Test scenarios and procedures are often de�ned by regula-

tions for the certi�cation of aerospace systems. For instance, the testing procedures

of 270VDC networks are documented in the corresponding �MIL-HDBK� guidance

procedures [40].

If testing on the physical test rig exhibits failure of the system to meet require-

ments, the development of the system is delayed, the problem is investigated, and
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eventually the design has to be revisited. The engineering work at this stage of the

development thus involves an additional cost that can be high if a redesign is triggered.

1.4.2 Simulation: an Analysis Tool for Veri�cation

With the development of computing capabilities, veri�cation and validation now ad-

vantageously intervene earlier in the development process through computer simula-

tion. As described in Law and Kelton, simulation consists in �imitating the operations

of various kinds of real-world facilities or processes� [92]. In the context of aircraft

system design, simulation consists in computing the behavior or the performance of

the systems during their operations. The use of simulation can be represented in the

V-Diagram by adding an intermediary �veri�cation branch�, as shown in the modi�ed

V-Diagram of Figure 9 [13]. Simulation requires the creation of a mathematical model

of the system, which is a �representation of the system in terms of logical and quan-

titative relationships� between input and output parameters [92]. This is illustrated

in Kelemen and Imecs [81], where a substantive amount of e�ort is put into deriving

the mathematical model of a motor system before simulating it.

Figure 9: V-Diagram and Virtual Veri�cation [13]
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Simulation has gained wide acceptance and is now the norm, partly due to the de-

velopment of software packages such as Simulink [106] or Dymola [45], which contain

libraries that facilitate the creation of simulation models. In an example of the use of

such software packages, an electrically-powered electro-hydrostatic actuator is mod-

eled and simulated in Crowder and Maxwell in order to compute the time-behavior

of motor velocity, �uid pressure and other actuator parameter [30]. The simulation

helped the authors to conclude that their design has the capability of meeting the

requirements of a power-by-wire technology.

On preliminary steps of the V-diagram, the lower-level subsystems are not fully

designed yet, and assumptions on their behavior and performance are made, as illus-

trated in Woods, where a whole aircraft electrical system is modeled and simulated

[158]. After each step of the speci�cation branch of the V-diagram, more re�ned com-

puter models of the systems are created and become more and more �physics-based�,

as in the example by Crowder and Maxwell discussed above [30]. These re�ned mod-

els produce analyses with higher-�delity, and correspond to the �Virtual prototype�

label of the V-diagram of Figure 9.

As computing capabilities grew in power, it became possible to integrate the high-

�delity models of various subsystems together, thus producing multi-domain virtual

test platforms that enable the system architects to analyze how the systems behave

once put together [39]. For example, Chen et al. modeled and simulated switch-

reluctance drives of aircraft electrical systems, and integrated the resulting detailed

model to a model of turbofan engine [22]. In another example, Bals et al. integrated

subsystem models into a �Virtual Iron Bird� in order to assess the performance of

aircraft electrical architectures for more-electric aircraft [11]. This higher level of

integration forms the core of the �virtual veri�cation� and �virtual aircraft� paradigms,

central to the Vivace research project [4], and illustrated by the modi�ed V-diagram

given in the labels �Virtual system integration� and �Virtual systems� in Figure 9.
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1.4.3 Simulation as a Tool for Speci�cation

Simulation became an essential part of the veri�cation process. Moreover, with the

improvement of computing capabilities, a new paradigm emerged in which simulation

became a tool for the speci�cation of systems. In this paradigm, several competing

design concepts are analyzed through simulation and the design concept that exhibits

better performance is selected for the next step of the development process. This

elementary approach for the use of simulation as a design tool is illustrated in Figure

10.

Figure 10: Simulation-based Design: Elementary Approach

By carrying more design choices longer in the development process, the design

team gets better assurance that the selected design solution is the best. Obviously,

the pertinence of this statement greatly depends on the ability of the design team

to downselect the most promising candidate design solutions for analysis. It is also

evident that the more design solutions are evaluated, the better con�dence the design

team will have on the �nal design concept choice. The ability of evaluating a high

number of design candidates depends on the e�ciency of the simulation tool. If the

simulation tool is easy and e�cient to run, then a vast number of design candidates

may be analyzed. This forms the basis for the more advanced design techniques that

are described in Chapter 2. On the other hand, if the simulation tool is heavy and

time-consuming to run, then only a few design concepts can be evaluated and the
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quality of the design relies more heavily on the expertise of the design team or on

previous analyses.

1.4.4 Uncertainty in the Development Process

It was seen in previous sections that there can be uncertainty in the values of dy-

namic transient constraints. Uncertainty is a phenomenon that is inevitably present

throughout the entire aircraft development process. In DeLaurentis and Mavris [38],

uncertainty is formally de�ned as follows:

�Uncertainty is the incompleteness in knowledge (either in information

or context), that causes model-based predictions to di�er from reality in

a manner described by some distribution function.�

As described in Dufresne [44], there exist di�erent types of uncertainty (epistemic,

aleatory), depending on the source and cause of uncertainty. In the aircraft devel-

opment process, uncertainty can stem from changing requirements. For example, an

aircraft may be designed with the objective of facilitating future upgrades, on which

requirements are not clearly de�ned at the time of the design of the �rst version of

the aircraft family, as illustrated in Lim [97]. Uncertainty can be induced by the

fact that regulations may change, as was the case for the dynamic constraint on the

350VDC voltage of the POA program. One source of uncertainty is the fact that the

design of a system at level N (cf. Figure 15) may necessitate making assumptions

on characteristics and requirements for its subsystems (at level N-1 or lower), which

are designed afterwards. Thus, these assumptions may be contradicted in subsequent

design activities.

The potential feedback loops in the development process (cf. V-diagrams in Fig-

ures 8 and 9), induced by the veri�cation activities, are often consequences of potential

uncertainty. For instance, these feedback loops may be due to simulation errors in-

troduced by mathematical assumptions in the modeling process. Another cause of

17



uncertainty that may lead to feedback loops is the lack of knowledge on the interrela-

tionships of subsystems. For instance, in the POA program, the individual behaviors

of system prototypes were well de�ned, but emerging behavior arose when the systems

were integrated in the COPPER® Bird, which led to observed violations of transient

constraints.

Because of the presence of uncertainty in the development process, traditional

design methods that produce a single point solution become questionable. Instead, it

is more advantageous to explore the design space, study the sensitivity of the design

candidates to uncertainty e�ects, and carry families of solutions across design stages.

Various advanced design methodologies have been developed in order to account for

uncertainty, most of which are based on stochastic methods. Examples include the

Robust Design Simulation process, described in Mavris et al., where a Monte-Carlo

Simulation is performed on deterministic analysis tools in order to study the dis-

tributions and sensitivities of design responses with respect to design variables that

are subject to uncertainty [107]. More details on the concepts of design space ex-

ploration, Monte-Carlo Simulation, and its applications to uncertainty analysis, are

given in Chapter II.

It should be noted that systematic uncertainty analysis falls beyond the scope of

this thesis. However, it is important to keep the issue in mind while investigating

the e�cient integration of transient constraints in the design of complex dynamic

systems.

1.5 Dynamic Systems Development Process

The previous section gave an overview of the development process of the whole air-

craft. It was seen that simulation now plays an essential role in the veri�cation of

system requirements and can also be used as a tool for the speci�cation of systems.
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This section focuses on the use of simulation in the development process of dynamic

systems.

1.5.1 Time-Domain Simulation: First Introduction

In order to verify the good operation of a dynamic system, it is necessary to analyze

the behavior over time of output signals of the system. Computing the behavior of

signals of a dynamic system is the essence of Time-Domain Simulation1 (TDS). As

shown in Figure 11, TDS produces the time response of the dynamic system, given

its design characteristics and a scenario under which it will operate. Thus, for a given

system design, several operation scenarios can be investigated. Similarly, for a given

operation scenario, several system designs can be evaluated.

Figure 11: Time-Domain Simulation Process

Current TDS approaches require models incorporating detailed descriptions and

behavioral laws of the components making the system. For example, in order to com-

pute the voltage and current responses of an electrical circuit to a transient perturba-

tion, one must know the nature of the components constituting the circuit (capacitors,

inductors, resistors, diodes, etc.), and what the characteristic values of these compo-

nents are (resistance, inductance, capacitance, diode threshold voltage, etc.) [60].

For example, in Arkada et al., the performance of two competing aircraft generator

1For the sake of simplicity, �simulation� will hereafter refer to TDS.
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designs is evaluated, after a complex and detailed modeling of the generators, tak-

ing into account the interactions between the armature windings, �eld, and damping

circuits [7].

Because of the level of complexity that TDS models require, TDS typically inter-

venes in the later stages of the speci�cation branch of the V-diagram (cf. Figure 8).

And as will be discussed in the next section, TDS is usually used as a tool for analysis

and virtual veri�cation rather than for system speci�cation.

1.5.2 Limitations of Time-Domain Simulation and Consequences

TDS has many limitations in terms of e�ciency. Indeed, despite advances in com-

puting power, simulation models can remain long to run for a variety of reasons.

Firstly, encouraged by these new computing capabilities and by the need for a holis-

tic approach to system design, models are becoming more and more integrated [10, 4].

Secondly, in a TDS model, each component, such as capacitor or inductance, is mod-

eled via laws that govern the behavior of the dynamic responses. These laws are often

formulated as di�erential equations. Thus, the simulation process often consists in

performing successive resolutions of di�erential equations, using numerical solving

methods [10]. The simulation time can thus increase exponentially as the simulated

system gains in complexity [79].

Another factor in�uencing the simulation time of dynamic systems is the sample

time interval of the simulation. This is the elementary time interval between two suc-

cessive iterations of the numerical solver during the simulation. The need for better

accuracy as well as the improvement in miniaturization has prompted the simulation

community to perform simulation with smaller sample time intervals. This is espe-

cially true in the �eld of electronics and aircraft power systems, where growing use

is made of power electronics systems with high-frequency switching semi-conductors.
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These semi-conductors have switching frequencies that typically amount to hundreds

of kilohertz [47, 115].

Therefore, TDS is primarily used as a veri�cation tool instead of a speci�cation

tool, as it enables the design team to discover and analyze the behavior of the system.

When used as a speci�cation tool for design, the number of analysis runs is limited

by the complexity of the model, and TDS is thus generally used as a �trial-and-error�

tuning tool, in the fashion described in Figure 10. For instance, in Tatizawa et al.,

TDS was used to help the design of a high voltage transducer for DC measurements

and power quality monitoring [143]. A few con�gurations, corresponding to di�erent

values of damping impedance, were tested with TDS, and the con�guration exhibiting

the better performance was selected. The e�ciency of this process greatly depends on

the expertise of the designers, who rely on rules-of-thumb or their experience during

the downselecting of potential design concept solutions and the subsequent tuning of

the design variables, as exempli�ed in Toumazou and Barry, where rules-of-thumb

are derived in order to facilitate the design of analog circuits [149].

1.5.3 Controlled Dynamic Systems

As de�ned earlier, dynamic systems are those whose states are dynamic. In many

instances, the dynamic system is required to behave a certain way in order for the

mission to be executed well. For example, when the pilot gives the aileron a certain

de�ection command, the aileron de�ection needs to attain the desired position within

an acceptable amount of time and error tolerance in order for the aircraft to be ma-

neuverable. With the high level of complexity in systems architectures, the physical

links between the pilot and the end systems tend to disappear, as exempli�ed by the

Fly-by-wire technology, whereby the pilot stick is linked with the �ight control sur-

face actuators through electrical signals [116]. Therefore, it became crucial to actively
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control some systems at all times in order to make sure their dynamic responses re-

�ect the input commands. These dynamic systems form a particular class of systems

called �controlled systems�.

1.5.3.1 Description and classi�cation

The control of dynamic systems is the subject of a vast �eld called �Control theory�

[119]. Controlling the dynamic behavior of a system is generally done by adding an-

other system (called �controller �) that feeds the controlled system (sometimes called

the �plant�) with an input command. The combined subsystems that form the con-

trolled system are generally designated by the term �control system�. There are two

main types of control strategies: open-loop control and closed-loop control.

In open-loop control, the response of the plant to the commands given by the

controller is well known. Therefore, no feedback on the current state of the plant is

necessary [119]. The generic architecture of an open-loop control system is given in

Figure 12.

Figure 12: Open-loop Control System

In the case of closed-loop control, the command will be adjusted by the controller

depending on the instant response of the controlled system. The latter thus needs to

be monitored and fed back to the controller. This is the purpose (function) of a third

kind of system (called �sensor �). The generic architecture of a control system with

a feedback controlled loop is represented in Figure 13. It should be noted that the

sensor is sometimes grouped with the plant to form a larger system called �machine�,
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as in Ellis [46]. In other cases, the sensor is considered as exterior to the control

system, as in Jeong et al. [70].

Figure 13: Closed-loop Control System

Most systems are however too di�cult to predict to implement the open-loop

strategy. This is because the controller usually incorporates a power converter that

feeds power to the plant. The latter then uses this power and transforms it to produce

the desired response. Because the behavior of the power converter may be a�ected

by external perturbations, this additional level of power transformation generally

requires instant monitoring of the system response and thus a feedback-loop control

strategy [46].

1.5.3.2 Design of Controlled Systems

The design of a controlled system is a complex iterative process, as outlined in Nagrath

[119]. Generally, the controller is designed after the design speci�cation of the plant.

Because the controller is a subsystem on its own, its design process can be related to

the one outlined in Figure 7 (where requirements and design characteristics of higher-

level systems trigger a series of design tasks). After a mathematical model of the

plant is created, a controller concept is selected. Then begins a tuning process where

the controller design parameters are adjusted. At this point, the control system is

speci�ed, and Time-Domain Simulation is executed to verify that the control system

meets the requirements and constraints by checking if the dynamic response behaves
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as desired. If this veri�cation proves non satisfactory, then the design team has to go

back to the �ne-tuning process or, worse to the previous steps.

Figure 14: Controller Design Process

As explained in Ellis [46], tuning the control laws is often an �intimidating� process:

�often [tuning the control loops] is a combination of formal requirements

and know-how gained with years of experience. Usually, only the most

senior engineers in a company are capable of judging when a system is

performing well enough.� [46]

Tuning the controller is thus a painstaking activity, that often relies on �trial-and-

error� methods, as quali�ed by Ellis [46]. The induced ine�ciencies result in long

installation times for the controllers, from several days to weeks.

More modern techniques for tuning controllers involve formal optimization tech-

niques. These techniques, which form the complex �eld of Optimal Control Theory

[84, 68, 120], will be more thoroughly discussed in Chapter 2. Other potential ap-

proaches for reducing the ine�ciencies of the design process of controllers are outlined
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by Ellis [46]. They take advantage of the expertise of the control engineer earlier in

the design process. This amounts to treating the controller and the plant as a single

system and thus concurrently designing the two subsystems.

1.5.4 Dynamic Constraints: Challenges for the Design of Dynamic Sys-
tems

The design of a system often comprises an optimization process subjected to con-

straints. But as seen previously, in the case of dynamic systems, constraints may

relate to their transient regimes and may therefore be dynamic. In order to verify

that the proposed design solution satis�es a dynamic constraint, one must obtain the

time evolution (or behavior) of the system, as it is generally not enough to ensure

that the constraint is met at a limited number of time instants. Indeed, transient

regimes often induce responses with fast dynamics.

Therefore, transient constraints that are dynamic require TDS or testing on a

physical test bench. As seen previously, TDS presents limitations in terms of e�-

ciency. Moreover, testing on a physical test bench generally takes even longer and is

more costly. As a consequence, dynamic transient constraints are generally not fully

taken into account during the design optimization, but in a subsequent veri�cation

activity (via TDS or physical testing), as illustrated in Figure 15.

If during this veri�cation, TDS (or physical testing) shows that the proposed

design does not meet the dynamic constraints, then design rework may be triggered.

For example, in the case of an electrical circuit design, after the circuit components

are selected and their design parameters are optimized, a TDS model is created and

the circuit's behavior is simulated. If dynamic constraints are violated, the design

team goes back to the optimization of the component parameters. This feedback

process induces potential process ine�ciencies and rework costs.

It was seen that at best, TDS can be used as a speci�cation tool by analyzing a

selected few candidate designs. Sometimes, the limitations of TDS make it so that
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Figure 15: Design of Level N Subsystem with Dynamic Constraints

the transient regimes are not fully evaluated until the physical tests on the test bench.

This was the case for the POA project, where the VIB simulation tool was used to

design the more-electric architecture and the COPPER® Bird was used to validate

the VIB [52, 11]. The complexity of the aircraft architecture combined with the

limitations of TDS made it so that the VIB performed simulations of the electrical

network at a sampling rate of 500 Hz, which was too low to capture the transient

e�ects. Therefore, these were tested for on the physical test bench. Any design

reiteration would therefore be costly. For instance, in Miri and Keyhani, the system

under consideration, a power conditioning system aimed at improving the power

quality of the electrical network, did not behave well enough in transient regimes. In

order to improve the transient performance, one approach was to redesign the choke

inductances and retest the improved system using TDS [112].

A more extreme example of design feedback due to dynamic transient constraints

is the case of the International Space Station (ISS), exposed in Aintablian et al.

[6]. Despite some use of TDS, testing on the test bench was the primary method

of veri�cation. This testing phase revealed that the design of the power system
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did not meet the dynamic transient constraints related to power quality. Thus, the

designers were left with the options of a costly redesigning the system or asking for an

exception. The latter path was chosen, which required performing extensive analysis

and testing to gain assurance that the design �aw was harmless. Therefore, the

unforeseen additional engineering labor that was incurred had a negative impact on

the cost of the development of the system.

The challenges induced by transient-related dynamic constraints can be summa-

rized in �Observation 4�:

Observation 4: Dynamic constraints are generally not treated in the design opti-

mization, but are dealt with subsequently during veri�cation, using time-

domain simulation (TDS) or physical testing on a test bench. This induces

feedback loops in the development process, with potential for ine�ciencies

and rework costs.

1.6 Summary and Research Objectives

In the previous sections, observations were made on the importance and the role of

transient regimes in the design and development of aircraft dynamic systems. These

observations and �rst deductions can be summarized as follows:

Observation 1: Transient regimes experienced by dynamic systems can have poten-

tially serious impacts on the operation of the aircraft.

Observation 2: Transient regimes play a critical role in the design of dynamic

systems.

Observation 3: In the design of dynamic systems, transient regimes are often ad-

dressed by means of dynamic constraints.
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Observation 4: Dynamic constraints are generally not treated in the design opti-

mization, but are dealt with subsequently during veri�cation, using time-

domain simulation (TDS) or physical testing on a test bench. This induces

feedback loops in the development process, with potential for ine�ciencies

and rework costs.

The main objective of this thesis is to develop a design methodology for aircraft

dynamic systems, aiming at reducing the impact of feedback loops induced by the

veri�cation of transient related dynamic constraints. More speci�cally, the research

strives to include these dynamic constraints in the design synthesis activity of Figure

15. This is summarized as follows:

Research Objective 1: Develop a methodology that integrates transient regime

analysis and pertaining dynamic constraints into the design synthesis of

aircraft dynamic systems.

This research objective will be the major driver behind all subsequent activities of this

work. As the problem is re�ned and analyzed, it will be decomposed into intermediate

objectives that are more manageable.

1.7 Organization of the Dissertation

Chapter I introduced the key concepts and gave the motivation for this thesis by

identifying the need for a design methodology capable of capturing the veri�cation of

transient constraints early in the design of aircraft dynamic systems.

Chapter II delves deeper into the modeling, simulation and design of dynamic sys-

tems, describes modern optimization methods for design under transient constraints,

and exposes the limitations of these methods before building the �rst elements of the

design methodology that this thesis develops. Finally, chapter II exposes the need for

the incorporation of a system identi�cation approach into the design methodology.
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Chapter III details the required characteristics of the system identi�cation ap-

proaches to be selected. Then various candidate techniques are described before

wavenets are eventually selected as the most promising approach. However, the po-

tential shortcomings of wavenets are described, and in order to address them, an

alternate approach is formulated based on the identi�cation of the envelopes of the

dynamic transient responses.

In chapter IV, methods for the extraction of signal envelopes are described, and

a scheme for envelope identi�cation of transient responses is formulated.

In chapter V, the hypotheses are summarized and the resulting design methodol-

ogy is laid out in detail. Particular emphasis is put on the di�erences of implemen-

tation of the two competing approaches.

Chapter VI presents results of the implementation of the methodology, which

is tested, along with its foundational hypotheses, on experiments that incrementally

grow in complexity. First, the wavenet system identi�cation approach is implemented

on a conceptual dynamic system, represented by a simple mathematical law. Finally,

the full methodology is implemented for the design of a notional 350 VDC electrical

network.
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Chapter II

ADVANCED DESIGN METHODS FOR

DYNAMIC SYSTEMS AND FIRST HYPOTHESES

The previous chapter stated that the main objective of the proposed research is to

develop a methodology aimed at improving the design process of aircraft dynamic

systems by integrating the veri�cation of transient dynamic constraints in the design

optimization activity. This chapter explores the state of the art in the design of

dynamic systems and explains in more detail the challenges that hinder the realization

of the research objective. From these challenges arise research questions, which need

to be investigated in order to ful�ll the research objective. As an answer to the

research questions, a �rst set of hypotheses is also formulated in this section. These

hypotheses point to the foundations of a design methodology that will help attain the

research objective.

2.1 Design Space Exploration of Dynamic Sys-

tems

2.1.1 Design Space and Operation Space

In the design of a system, a set of design variables is adjusted so that the design metrics

(or responses) form a solution that is in accordance with the design requirements and

constraints. A candidate solution is fully described by its design variables. It is

referred to as a design case (or design point), and the set of all possible design cases

constitute the design space. For example, the design space for a commercial aircraft

includes all possible combinations of wing spans, wing areas, fuselage lengths, numbers

of engines, tail con�gurations, etc. Designing a system can therefore be regarded as
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selecting one point in a typically vast and highly multi-dimensional design space.

In order to locate the �best� design point, one must gain knowledge on how the

design metrics vary across the design space: this is design space exploration. This is

the purpose of the study carried out in Briceno et al., where the design space for a

supersonic business jet was explored [20]. Figure 16 shows a sample of wing planforms

that were assessed during the design space exploration.

Figure 16: Design Space Exploration: Wing Planforms [20]

Similarly, veri�cation can be viewed as the exploration of an operation space.

Indeed, when verifying that a dynamic system behaves as desired, the system model

or prototype is tested under several operating conditions. Each operating condition

(or operation scenario) is described by a set of operation variables, which are generally

included in the set of the system's state variables. Examples of operation variables

include the level of power that is drawn from an electrical generator, or the altitude

of the aircraft.

The concepts of design space and operation space, and their relationship, are rep-

resented in Figure 17. In this example, the dynamic response of interest is computed

for two speci�c operation conditions, for two candidate design cases. It must be

noted that in the �gure, the design and operation spaces are represented as cubes,
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suggesting that all combinations of design variables and operation variables are fea-

sible. This might not be the case, as incompatibilities might exist within the design

space or within the operation space [21].

Figure 17: Design and Operation Spaces

Ideally, in the design of a system, all possible design points are evaluated (the

design space is fully explored or scanned), and for each design point, all operation

points are tested (the operation space is fully explored or scanned). Since many design

and operation variables are continuous, this means analyzing an in�nite number of

design and operation points.

It was seen that the evaluation of transient dynamic constraints requires TDS, a

single run of TDS corresponding to one design and operation points. Therefore, it

is generally not possible evaluate transient dynamic constraints for the entire design

and operation spaces.

The design and operation spaces are therefore discretized. Still, even with a now

�nite number of design and operation points to evaluate, the size of the design and

operation spaces impedes the thoroughness of their exploration. This was seen in the
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�rst chapter with the example given in Tatizawa et al., where TDS was used to explore

a few points of the design space of a high voltage transducer for DC measurements

and power quality monitoring [143].Similarly, when testing the transient behavior of a

controlled system, the latter is veri�ed on a limited number of points of the operation

space.

The relationship between the design space and the operation space is an intricate

one: as it was seen in the �rst chapter, the operation space has a direct impact on the

design space exploration since systems are sized according to critical operation con-

ditions. Therefore, the exploration of the design space must include the exploration

of the operation space.

2.1.2 Optimization-based Methods

In the previous section, it was explained that performing a thorough design space

exploration was a di�cult task. To circumvent the obstacles against a thorough

design space exploration, traditional design methods may use statistical regressions

based on historical data. For instance, these statistical equations form core of the

conceptual aircraft design methods found in Raymer. [129]. Simple examples of such

statistical equations are given in Table 2, where statistical estimation equations of

the thrust-to-weight ratio, de�ned as the ratio between the Sea Level Static (SLS)

Thrust and Take-O� Gross Weight (TOGW), are based on existing aircraft.

Table 2: Thrust-to-Weight Ratio Estimation [129]

Aircraft type Typically installed T/W

Jet trainer 0.4

Jet �ghter (dog�ghter) 0.9

Jet �ghter (other) 0.6

Military cargo/bomber 0.25

Jet transport 0.25
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The �rst shortfall of this approach is that it cannot be used for the design of

systems that use revolutionary technologies, which bring a disruption to the past

trends. For these, it is necessary to go back to fundamental models that are physics-

based. Furthermore, this approach is clearly better-suited for the �rst stages of the

conceptual design, where practical estimations of important metrics are sought, but

it is not su�cient for dynamic systems subject to dynamic constraints, since, as seen

previously, these require TDS (and thus a higher-�delity model of the system) to be

evaluated.

2.1.2.1 Optimization

The more sophisticated design methods rely upon the use of optimization algorithms,

where design points are successively assessed, in an order determined by some logic.

Optimization usually consists in determining a set of values for design variables that

minimize (or maximize) an objective function (or a compound objective function).

The problem at hand can be subject to constraints. A constrained optimization

problem can be formalized in the following way:

minimize: f(x)

subject to: fi (x) ≤ 0, i = 1..m

hi (x) = 0, i = 1..p

where: xεRn is the design variable

fi : Rn −→ R, i = 1..m are the inequality constraints

hi : Rn −→ R, i = 1..p are the inequality constraints

By nature, optimization minimizes or maximizes an objective function. However,

most design problems are multiobjective: there may exist several concurrent responses
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to minimize or maximize. For example, the design process of an aircraft tries to min-

imize the take-o� gross weight while maximizing the dispatch reliability. In the case

of the presence of multiple responses, these can be assigned weights and congregated

into a single objective function, called Overall Evaluation Criterion (OEC). An ex-

ample of OEC is given in Equation 1, where weights wiare assigned to the responses

Ri.

OEC =
∑
i=1,n

wi.Ri (1)

Complex �real-world� optimization problems are solved using numerical optimiza-

tion algorithms, which generally fall into either of two main categories: domain-

spanning and path-searching optimization algorithms. For a good overview of opti-

mization algorithms, the reader can study Van der Plaats [151], which served as the

main source for the subsequent introduction paragraphs.

The mechanism of domain-spanning optimization is straight-forward: in a �rst

step, a number of design points, spanning the design space, are each evaluated, and

their performance is stored. In the next step, the design point that produced the

better performance is chosen as the optimized solution. Path-searching optimization

algorithms are more complex, and a generic form is given in Figure 18. The philosophy

here can be viewed as advancing step by step closer to the optimal point. For example,

in the case of the minimization of an objective function with two design variables, the

goal can be viewed as �nding the point on the corresponding surface with the lowest

altitude. A path-searching optimization algorithm will start at an initial point, and

will then go down the valley. At each step, the algorithm will use information from

the previous steps or from the shape of the local area (by means of the gradient for

example) to decide in which direction and by how much to advance. The search will

end when a prede�ned convergence criterion is satis�ed. For example, the algorithm
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may consider that it has reached the lowest point in the valley when no signi�cant

change of altitude has been experienced for the last few steps.

Figure 18: Generic Path-Searching Optimization Algorithm

In the presence of constraints, these are evaluated at each iteration of the optimiza-

tion process (within the activity �Evaluate objective function� in Figure 18). In the

previous example of the altitude minimization in a valley, there may be a constraint

on the minimum altitude not to go under. In this case, at each step, the optimizer

will evaluate if the altitude constraint is violated and by how much. There can be sev-

eral strategies for ensuring that the �nal optimized point falls within the acceptable

bounds. The optimizer may be forbidden to ever cross the altitude constraints. Or

on the contrary, it may be allowed to do so, with a prede�ned margin, knowing that

at some point of the process it will have to go uphill to reach an acceptable altitude.

Besides domain-spanning and path-searching optimization algorithms, there exist

other forms of optimization, one of the most popular being genetic algorithms (GA).

Genetic algorithms are based on Darwin's principle of the survival of the �ttest. In

these optimization techniques, a pool of design points (population) are carried and

modi�ed across iterations. At each iteration, the performance (�tness) of every design
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point of the population is evaluated, and a new population of design points (the next

generation) is created such that characteristics of the better design points are favored

[114].

Optimization is thus an iterative process, whether the chosen algorithm is domain-

spanning, path-searching, or of another kind. When the system being optimized is

subject to constraints, the latter are usually evaluated at each iteration, so that the

outcome of the optimization is a candidate solution that satis�es these constraints.

2.1.2.2 Optimization for Dynamic Systems and Simulation-based Optimization

Optimization can be used advantageously in the design of dynamic systems. As one

can see in the standard formulation of an optimization problem that was stated in

the previous section, optimization is usually carried out on a static parameter f(x).

Therefore, when a dynamic system is optimized, static parameters describing the

dynamic behavior (transient and steady-state) of the dynamic response are derived

for optimization. Examples of typical transient-related parameters that are used for

optimization are given in Kundur[91] and in Figure 19.

Figure 19: Transient Static Parameters for a Typical Response to a Step Input [91]

The parameters of Figure 19, which describe the transient behavior of the dy-

namic signal, may be subject to optimization when designing controllers of controlled

dynamic systems. Optimizing the characteristics of a controller in order to assure
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that controlled dynamic system behaves as desired is the subject of optimal control

theory [84, 68, 120]. For example, in Crnosija et al., the speed response overshoot for

a speed controller of a permanent magnet brushless DC motor drive is a response to

be minimized [29].

In order to produce the transient static parameters, it is necessary to �rst compute

the dynamic response, which is generally done through Time-Domain Simulation, as

seen in the previous sections. Thus, at every evaluation of the objective function in an

optimization activity, TDS is executed. The integration of TDS in the optimization

process forms the essence of �simulation-based optimization�. Good review papers on

the topic can be found in Fu [53, 54].

Examples of application of simulation-based optimization abound. For instance,

in Jouannet et al., TDS was used to simulate the hydraulic �ight control actuation sys-

tem and to calculate the �ight mechanics. The resulting TDS models were integrated

within a more global sizing framework in order to determine the optimal geometrical

con�guration of an unmanned combat air vehicle [75]. The �Complex� optimization

algorithm, derived from the popular �Simplex� algorithm, was used, during which the

TDS models were run at each iteration.

Simulation-based optimization has been used e�ectively in the design of dynamic

systems subject to transient-related constraints. For example, in Filizadeh et al., de-

sign characteristics of a DC current controller (composed of two subsystems) are opti-

mized in order to minimize an OEC, sum of two individual objective functions. Each

objective function is the integral squared deviation between the (dynamic) current

response and the command for one of the subsystems[51]. The individual objective

functions ObF1 and ObF2 are given by Equation 2.

ObFi(x) =

TFˆ

t=0

K(t). (Id(t)− Iref (t))2 dt , i = 1, 2 (2)
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The result of the optimization is a dynamic system that will see the current

respond quickly to a command. However, because the transient regime has a shorter

duration than the steady-state regime, the optimizer initially favored solutions that

exhibited a dynamic response with large overshoots for extremely short durations. In

their work, Filizadeh et al. thus included a weighting factor K(t) that would �expand�

the deviation of the current in the initial instants after the transient perturbation.

The weighting factor, which forces the optimizer to focus on the transient regime, is

represented in Figure 20.

Figure 20: Weighting Factor K(t) for Transient Regime [51]

At every iteration of the optimization, a new design point is produced for subse-

quent iteration. This new design point is evaluated by a TDS that was created for

the simulation of transient perturbations. An overview of the optimization process is

shown in Figure 21.

The transient optimization process used in Filizadeh et al. [51] is representative of

a typical simulation-based optimization. The system under consideration in Filizadeh

et al. was optimized to maximize the transient performance, but was not subject to

the type of dynamic constraints discussed in Chapter 1. If the optimization had

included dynamic constraints, these would have been evaluated at each iteration of

the optimization.
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Figure 21: Simulation-Based Optimization for a Transient Controller [51]

2.1.2.3 Limitations of Optimization

The output of optimization is generally a unique solution that is carried on to the

subsequent design phases. Conventional optimization thus perpetuates the paradigm

of �point design�. In the context of the design of dynamic systems subject to dynamic

transient constraints, conventional optimization methods, along with their point de-

sign philosophy, are victim to several shortcomings, which will be detailed hereafter.

Firstly, there are instances where the optimizer settles on a local optimum that

is not a global one: it might be the best solution across a region, but not across the

entire design space [151]. The concepts of global and local optimum are illustrated in

Figure 22, where one can see the presence of a local minimum (a well) and that of a

global one (the deeper well).

Secondly, having a unique solution makes it di�cult to perform sensitivity anal-

ysis, which deals with studying the variability of the responses with respect to the

design inputs. Sensitivity analysis thus gives a measure of the robustness of the so-

lution, which is of great value since the design process is subject to many sources of

uncertainty [44].
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Figure 22: Local and Global Minima

Furthermore, in the design of a system, there are often several responses to mon-

itor, minimize or maximize. Improving a response might be detrimental to another

response. As explained in the previous paragraph, when an optimization algorithm

is used, these multiple objectives are weighted and grouped into one single objective

function, called the Overall Evaluation Criterion, which will be optimized [37]. The

weighting assignment on the various responses implies the attribution of a hierarchy

among them, which might introduce an improper bias towards particular responses.

There might also be some uncertainty on the appropriate weightings, which increases

the risk of later rework.

A major issue with the use of conventional optimization for the problem at hand

is the fact that the constraints are �hard-coded� within the optimization algorithms.

This constitutes a shortfall because constraints may be a�ected by uncertainty them-

selves, as discussed in Chapter 1. This makes it di�cult to evaluate how robust

the optimized solution is with respect to constraint uncertainty. Moreover, if the

constraints are to be modi�ed, one would have to redo the whole simulation-based

optimization process from the start, an activity that the use of TDS makes slow. For

instance, it was seen in Chapter 1 that in the context of the POA project, norms for
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the innovative 350 VDC power networks did not exist, and the power quality con-

straints (cf. Figure 5) were derived by extrapolation from norms for 270 VDC power

architectures [41]. Those newly-derived constraints may be modi�ed when norms

are subsequently set, which would require a complete and time-consuming repetition

of the optimization process. This induces rework costs associated to the feedback

described in the previous chapter.

The above-mentioned shortcomings are particularly relevant to path-searching

optimization algorithms, since by nature, these provide a �best� solution without

giving much insight on the shape of the global design space. The superiority of

domain-spanning methods over path-searching is especially astute for the problems

of local minimum avoidance and robustness to constraint uncertainty. Thus, domain-

spanning optimization seems to be more appropriate for the problem at hand.

However, for most �real-world� problems, the high-number of design variables to

adjust during optimization forms a design space that is often too large for a domain-

spanning method to handle and span e�ciently. This is especially true when dealing

with dynamic transient constraints since these require time-consuming TDS in order

to be taken into account.

In a nutshell, advanced design methods that rely on conventional optimization,

perpetuate the paradigm of �point design� and fail to provide a means to e�ciently

explore multidimensional design and operation spaces while mitigating the e�ect of

uncertainty. This leads to the formulation of the �rst research question, whose inves-

tigation will be crucial to achieve the research objective 1:

Research Question 1 (RQ1): How can one e�ciently and thoroughly explore the

design and operation spaces while accounting for dynamic responses and

pertaining uncertain dynamic constraints?
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2.1.3 Data Farming for Design Space Exploration

As explained in the previous section, traditionally favored design approaches stem

from a point design philosophy. With the increase of computing capabilities, data

farming, a more thorough method for design space exploration, has been developed.

This method enables the designer to e�ciently sample, visualize, and interactively

query the design space through advanced visualization techniques.

2.1.3.1 Visual Analytics, Data Mining and Data Farming

This section provides a brief introduction to data mining, data farming, and visual

analytics, three disciplines that are interconnected and that will be enablers for the

e�cient exploration of the design space of dynamic systems.

Data Mining: Discovering Knowledge in Data

With the coming of the age of information, the amount of collected and stored

data has increased exponentially. A need arose to develop new tools that would enable

to systematically explore the vast collection of data at hand. This is the purpose of

Data Mining. As de�ned by Han and Kamber:

Data Mining �is the automated or convenient extraction of patterns rep-

resenting knowledge implicitly stored or captured in large databases, data

warehouses, the web, other massive information repositories, or data streams.�

[61]

Data mining can be viewed as an activity that is encompassed by another one called

Knowledge Discovery in Databases (KDD). As de�ned by Fayyad et al.:

�KDD refers to the overall process of discovering useful knowledge from

data, and data mining refers to a particular step in this process. Data

mining is the application of speci�c algorithms for extracting patterns

from data.� [50]
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Data mining has been used in a wide array of applications. For example, in Bhandari

et al., a PC-based software is designed for the purpose of discovering patterns in the

large statistic database of the National Basketball Association [16]. The resulting

software, �Advanced Scout�, can detect anomalies and particularities, such as an un-

usually high �eld goal percentage for a player. The outcomes of the data mining

process are presented as simple graphs or plain texts, which that can then be used

by NBA coaches.

The example above demonstrates the use of data mining for discovering knowledge

within �observational data�, which is passively collected (the basketball matches were

not scheduled for the purpose of collecting statistics). Another instance of observa-

tional data is constituted by large databases collected in hospitals. These databases

are formed by thousands of patients, treated over a number of years. It is obviously of

vital interest for the biomedical and pharmaceutical communities to e�ciently process

these databases in order to discover interesting patterns and correlations. It is for the

purpose of this kind of data mining activity that Cooper, in [26], presents a computer

algorithm for the discovery of causal relationships in observational databases.

Visual Analytics: an Enabler for Data Mining

In the early 2000s, sectors like genomics (the study of the genomes of organisms)

realized that they needed innovative tools to deal with the size, variety, and com-

plexity of their data [157, 131]. A new discipline based on advanced visualization

techniques and dubbed �Visual analytics�, started to grow, fostered by the growing

capabilities of computing technology. As de�ned by Thomas et al.,

�Visual analytics is the science of analytical reasoning facilitated by inter-

active visual interfaces.� [146]

In a special issue of the �IEEE Computer Graphics and Applications� journal ded-

icated to the topic of visual analytics, the editors Wong and Thomas re�ne this

de�nition:
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�Visual analytics is the formation of abstract visual metaphors in combination with

a human information discourse (interaction) that enables detection of the expected

and discovery of the unexpected within massive, dynamically changing information

spaces.� [157]

Visual analytics takes advantage of the high visual bandwith of the human eye,

colors, interaction, shape, etc. The principle of visual analytics lies in the use of

advance visualization in order to foster the analysis of complex systems. Thus, vi-

sual analytics provides powerful techniques that push the barriers of data mining

and KDD, by enabling the users to immerse in the data through their senses and

interactively query it.

The popularity of visual analytics keeps growing, and numerous domains of ap-

plication can be encountered. For instance, in the wake of the terrorist attacks of

September 11th 2001, the United States Department of Homeland Security (DHS)

increased the amount of surveillance data collected, and identi�ed the need for new

techniques for data mining. Visual analytics was identi�ed as a potential solution,

and the DHS established the National Visual Analytics Center [146].

In Wong et al., visual analytics techniques were used to visualize climate phe-

nomena such as the typhoon that devastated the south of China in 1991 [156, 137].

The resulting maps were the fusions of multiple maps that focused on one parame-

ter in particular. In the advanced maps, such as the overlay map shown in Figure

23, it became possible to comprehend several characteristics of the typhoon at the

same time. In Figure 23, the colors and the streamlines represent the direction of

the winds and the their structure respectively. The typhoon is the swirl seen in the

bottom right corner. In another map, the wind speed was superimposed by means

of relief shades.The aggregation of features into one advanced visual map is called

data fusion. The data fusion techniques developed by Wong et al. will facilitate the

visualization of the behavior of future typhoons and forecast their trajectories.
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Figure 23: Visual Analytics for Typhoon Monitoring [156, 137]

As mentioned in the beginning of this section, genomics is a scienti�c domain that

handles extremely large datasets. It has been found that in the human being, about

twenty thousand genes express the proteins that are synthesized by the body. This

amounts to billions of DNA base pairs [131]. Visual analytics has been a powerful

enabler for the data mining of these genomics datasets. For instance, in the phar-

maceutical industry, it is of great interest to pinpoint the genes that might be used

as a drug's �point of action�. Advanced visualization techniques described in Sa�er

et al. can help do that, for example by means of the heat map, shown in Figure

24 [131]. This heat map is similar to a spreadsheet that lists the response of the

genes to di�erent test conditions. Each row corresponds to a gene while each column

corresponds to a test condition. The peculiarity of the heat map is that the response

level is represented by a color instead of a number, which makes the spreadsheet more

easy to comprehend. Test conditions (and genes) with similar characteristics can be

clustered (grouped) to give the heat map more visible structure. The heat map is
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interactive: when pointing at a colored region, the user can instantly query the name

of the corresponding gene, test condition and response value.

Figure 24: Heat Map for Genomics [131]

Sa�er et al. lists another application of visual analytics in genomics, which is a

visual correlation matrix [131]. A visual correlation matrix, shown in Figure 25, is

used to identify patients who share similar characteristics. The correlation matrix

shows the correlation with respect to 2856 genes for each pair of patients. The level

of correlation is indicated by color (red for positive correlation and blue for negative

correlation). Since each patient is correlated to themselves, the diagonal appears as

a red line.

The human brain can visualize up to three spatial dimensions. Thus, many vi-

sual analytics techniques use three-dimensional plots to present the information in

the data. For example, in Zudilova-Seinstra et al., streamlines in three dimensions

were used to visualize the �uid �ow streamlines computed by a Computational Fluid
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Figure 25: Correlation Matrix for Genome Matching [131]

Dynamics (CFD) model, as shown in Figure 26 [163]. Additional information such as

speed can be overlaid using color schemes.

Figure 26: Three-dimensional Visualization of a CFD Model [163]

Visual analytics thus produces maps where multiple features are superimposed.

However, the high complexity of the data often makes it impossible to collapse all the

information into one single visualization map. In this case, multiple maps, showing

di�erent aspects of the multidimensional data, can be used concurrently and can be
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linked so that user interaction on one map can be visualized on the other maps. An

example is shown in Figure 27, where a heat map of the kind of Figure 24 (on the left

side), exploring properties of various proteins, is linked to another visualization (the

�galaxy view� on the right side) [131]. The proteins in the study have ligands (small

compounds that bind to the proteins), and the complete library of ligands is visualized

in the galaxy view, which plots them with respect to certain structural characteristics.

When proteins are highlighted in the heat map (in yellow), the corresponding ligands

are highlighted on the right side (the red points).

Figure 27: Linked Interactive Visualizations [131]

When the number and size of visualizations increase and when the amount of infor-

mation overwhelms the screen, the data mining of the dataset may become tedious,

which defeats the purpose of a visual analytics approach. Large displays, coupled

with high resolution technology, o�er a powerful remedy to this problem and enable

the visualization of a large quantity of information at the same time [163, 153, 76].

An example of implementation of large displays for advanced visualization is given

in Mavris et al., where the Collaborative Visualization Environment (CoVE), an ad-

vanced display wall at the Aerospace Systems Design Laboratory (Georgia Institute

of Technology), is described (cf. Figure 28) [42].
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Figure 28: Large Displays for Collaborative Visualization Environment [42]

Visual analytics thus facilitates the activity of data mining and knowledge dis-

covering within existing data. It was seen for example that data mining is used to

discover knowledge in the data accumulated by hospitals over years of service. An-

other kind of application of visual analytics for data mining is in the �eld of design.

For example, the CoVE, which can expose the totality of the information related to a

problem while typical displays typically represent about 15% of it, is linked to high-

performance computing clusters. With this setting, multiple interactive parametric

environments can be linked, so that the design team can, for example, make a change

in the design parameter of a subsystem and study how the overall aircraft design

changes [42].

Data Farming: Planting the Seeds for Design Space Exploration

In the previous sections, it was seen that data mining and visual analytics can

enable the discovery of knowledge within large and complex datasets. In most of

the examples cited above, data mining was carried on observational data that was

collected without much control on the information. For example, a hospital has
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no control on the type of patients that they treat. A hospital treats a localized area

whose population has a limited genetic diversity. Thus, the hospital cannot rigorously

derive knowledge about the entire humanity. For the purpose of design, it may be

advantageous to have this control so that the data collected corresponds to the entire

design space. Hence the more proactive concept of data farming. As described by

Horne and Meyer, the main idea of data farming is to �grow more data in the areas

of interest�[62]. A generic data farming process is illustrated in Figure 29.

Figure 29: Data Farming Process

The de�ning element of data farming is the �rst step, which consists in populating

the design space. This can be viewed as planting the seeds that will later produce

interesting information for subsequent data mining. Ideally, the goal is to generate a

vast number of design points that sample the entire design space, so that in the next

steps, the extracted information allows for the thorough exploration of the design

space. In the hospital example, this would be the equivalent of �growing� human
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beings whose genes sample all the possible DNA combinations. Populating the design

space for a thorough sampling may be done by means of techniques using random

number generators, as in Ender [49]. This will be discussed more thoroughly in the

next section.

After the seeds have been planted by populating the design space, the next step

consists in �growing� data and information by running experiments, analysis tools, or

simulation models. At the outcome of this step, the responses of interest for all the

design points (seeds) are obtained.

The next step is data mining, where visual analytics techniques may be used to

explore the design space, and perform trade-o� studies. By interactively immersing

within the data, the designer may play �what-if� analysis games and gain knowledge

on the designed system.

After the data mining activity, it may be apparent that additional data is needed

for some regions of the design space that are found to be interesting. In this case,

the design team may wish to �zoom in�, and grow more data in this region, which

amounts to performing another iteration of the process. This iterative approach is the

one taken in Horne and Meyer, where the design team farms more data, depending

on the results of the data mining activity [62].

In a nutshell, data farming leverages the capabilities of data mining by �rst fully

seeding the design space. The resulting process provides a methodology that enables

the thorough exploration of the design space. The next section will describe the

implementation of a data farming approach in Ender[49].

2.1.3.2 A Data Farming Approach: Filtered Monte-Carlo for Static Parameters

Data farming has been used with success to e�ciently explore the design space of

systems with static responses. The Filtered Monte-Carlo technique, found in Ender
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[49], is an example implementation of data farming for the exploration of a design

space where static responses are subject to static constraints.

Populating the Design Space: Monte-Carlo Simulation

As suggested by the technique's name, Filtered Monte-Carlo uses Monte-Carlo

Simulation (MCS) to populate the design space and obtain the response data that is

later investigated for thorough design space exploration.

The term �Monte-Carlo Method�, coined in the 1940s by physicists working in

nuclear weapon projects [110], designates an array of methods based on statistical

sampling, used to study a process that is a function of input variables. As illustrated

in Figure 30, the essential principle consists of assigning distributions to the input

design variables, using these distributions to statistically sample the design space

thanks to a random number generator, and performing multiple runs on the Modeling

and Simulation (M&S) tools (or on experimental workbench) such that the simulated

design scenarios form a grid that samples the entire design space.

Figure 30: Monte-Carlo Simulation Process

The input distributions generally are uniform distributions. However, when one

wishes to obtain more information on a particular region of the design or operation
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space, other types of distributions, such as normal or triangular distributions, may

be chosen to introduce a bias towards that region.

Monte-Carlo simulation has been widely used for uncertainty analysis. Most mod-

els used in design are deterministic in nature: to a set of input values corresponds

a unique set of responses. However, most processes are subject to uncertainty. The

reasons of this uncertainty are numerous. For example, there may be noise induced

by uncontrollable parameters or hard assumptions that were made when creating the

design tools. A Monte-Carlo simulation on the deterministic design tools can be used

to model the uncertainty of the design outcome by assigning distributions to noise pa-

rameters. For example, in Mavris et al., Monte-Carlo simulation was used to analyze

the uncertainty in the design of a High-Speed Civil Transport and to produce a �ro-

bust� solution that would be less sensitive to potential variations of noise parameters

(such as fuel price) [107].

Within the Filtered Monte-Carlo technique, the outcome of Monte-Carlos simu-

lation is a set of responses that corresponds to design points that span the entire

design space. Thus, this activity encompasses the �rst two main activities of the data

farming process illustrated in Figure 29.

Visual interactive environment for design space exploration

After the responses are obtained by Monte-Carlo Simulation, the next step of the

data farming approach is to perform data mining in order to obtain knowledge on

the design space. In the Filtered Monte-Carlo technique, the knowledge harvested

pertains to how the responses of interest vary across the design space. In the end,

the designer can instantly select the design points that match design criteria.

The simulated design points, along with their responses generated by Monte-

Carlo simulation, are imported into an interactive visualization environment [49].

The purpose of this technique is to allow the designer to instantly visualize the entire

design space, and determine regions that verify design constraints or other regions of
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interest. The design points and their response values are visualized in clusters within

a multivariate scatterplot matrix, as shown in Figure 31.

Figure 31: Scatterplot Matrix for the Filtered Monte-Carlo Technique

The scatterplot matrix is one of the oldest, simplest, and still most popular vi-

sualization techniques for multidimensional data [48]. It essentially consists of an

aggregation of plots of pairwise dimensions. In the scatterplot matrix, each row or

column represents a parameter, whether it is an input parameter or a response, and

these parameters are plotted against one another, thus forming cells. The example

shown in Figure 31 is representative of a design problem with two design variables (X1

and X2) and two design responses (R1 and R2). Each point within a cell corresponds

to an operating/design point, i.e. to a setting of the input parameters. One can see

on the �gure that in the cell plotting X1 against X2, the entire space is �lled, which
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indicates that all the design regions are explored. It is worth noting that the usual

representation of the scatterplot matrix is the square scatterplot, which is symmetri-

cal. The scatterplot shown in Figure 31 represents the upper triangle of the square

matrix. Obviously, each cell of the diagonal line of the square matrix (plotting X1 vs.

X1, X2vs. X2, etc.) is �lled with points that exclusively fall on the y = x identity

line.

In the Filtered Monte-Carlo of Ender [49], the environment is interactive and the

cells are linked to one another, so that any action of the user in one cell is instantly

propagated to the other cells. Thus, when the user selects a point in a cell, the

environment indicates the location of the corresponding design point in the other

cells.

Another feature of the visualization environment is the ability for the user to add

constraints on the parameters and instantly �lter-out the design points that meet (or

do not meet) the constraints, as illustrated in Figures 32 and 33. Feasibility regions

can thus be highlighted and selected. The interactivity of the environment enables

quick investigation of several constraint scenarios and the visualization of how the

design options are sensitive to the uncertainty on the constraints.
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Figure 32: Scatterplot Matrix with Constraints for the Filtered Monte-Carlo Tech-
nique

Figure 33: Scatterplot Matrix after Filtering for the Filtered Monte-Carlo Technique

So far, the Filtered-Monte-Carlo technique has been applied to design problems

with static metrics. In Ender [49], it was applied to e�ciently investigate the complex

design space of a system-of-system problem with multiple levels of responses. These
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levels corresponded to the position of a subsystem in the overall system hierarchy.

The metrics considered were purely design metrics, related to the characteristics and

capabilities of the system. In Phan et al. [127], the Filtered-Monte-Carlo technique

was used to visualize the operational behavior of an electrical test rig for electrical

signals. These signals were, by de�nition, dynamic; however, the responses used in

this study were static metrics derived from the signals, such as voltage amplitude or

voltage peak level. It was shown that for these static metrics, the Filtered-Monte-

Carlo technique enabled the e�cient and thorough exploration of the operational

behavior of the electrical test rig.

The capabilities of the Filtered-Monte-Carlo can be succinctly summarized in the

following observation:

Observation 5: The Filtered-Monte-Carlo technique enables the e�cient and thor-

ough exploration of the design/operation space composed of static metrics.

2.1.4 An Innovative Data Farming Approach for the Design of Dynamic
Systems: Time-Domain Filtered Monte-Carlo

Because the notion of time does not exist in the multivariate scatterplot of the

Filtered-Monte-Carlo, the technique cannot be readily applied to problems dealing

with dynamic signals. However, the promises exhibited above lead to hypothesize

that the technique may serve as a basis for a new methodology that allows the e�-

cient and thorough exploration of design and operation spaces with dynamic signals

and dynamic constraints. This can be reformulated as follows:

Hypothesis 1 (H1): A data farming approach, based on the integration of time

as a dimension in the Filtered-Monte-Carlo approach, will conduce to

the e�cient and thorough exploration of the design/operation space for

dynamic signals with dynamic constraints.
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This extended Filtered-Monte-Carlo technique, which will be called hereafter Time-

Domain Filtered-Monte-Carlo, would thus help ful�ll the research objectives and an-

swer the research question formulated above.

The essential principle of the Time-Domain Filtered-Monte-Carlo remains the

same as that of the Filtered-Monte-Carlo: populating the design space and growing

the data are done running a Monte-Carlo Simulation. However, at this stage, the

data to be explored not only consists of static responses, but of dynamic signals.

Therefore, the main idea to be investigated here consists in adding a new type of

elementary cell to the multivariate scatterplot matrix of the Filtered-Monte-Carlo

technique. While in the original technique, the elementary cells are all bivariate plots

of the static metrics, the new cells will visualize the massive datasets representing the

time-behavior of the dynamic signals obtained after the Monte-Carlo Simulation. The

design of the new time-domain cells will be discussed in the next section. Because

the objective of the Time-Domain Filtered Monte-Carlo is to interactively explore

the design space of dynamic systems, the components of the visual environment (the

scatterplot matrix and the time-domain cells) will be automatically linked. The �rst

vision of the structure of the visual environment for the implementation of the Time-

Domain Filtered-Monte-Carlo is shown in Figure 34.

2.1.4.1 Data Mining and Visualization of Time-Domain Signals

There are many ways of visually representing massive datasets of dynamic responses

and performing visual data mining on signals. In order to choose the most appropriate

one for the implementation of the Time-Domain Filtered Monte-Carlo, a brief survey

of visual data mining on time-domain signals is presented in this paragraph, based

on a few examples found in literature and on the more thorough overview given in

Lin et al [98].
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Figure 34: Time-Domain Filtered-Monte-Carlo: First Description of the Visual
Environment

One way to visualize a collection of dynamic signals is to plot them in three

dimensions. The axes correspond to time, signal number, and response value. An

example, shown in Figure 35, can be found in Wijk and Van Selow, where each signal

represents the hourly electrical power consumption, over a day, of a research center

[155]. Depth is added to the plot by adding an axis corresponding to the day of the

year. The signals are then placed side by side so that the power consumption over a

year can be visualized.

The visualization shown in Figure 35 enables a global understanding of the behav-

ior of the signals. However, it can be di�cult to investigate some regions that may be

obstructed by surrounding regions. For example, in Figure 35, the �at consumption

levels of week-end days are hidden between the crests corresponding to week days. A

solution for this problem is proposed by the �clustering and calendar-based� approach,

described in Wijk and Van Selow [155]. The �rst step of this technique consists in

�clustering� the data, a very common technique for data mining, where the elements
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Figure 35: Three Dimensional Visual Representation of Power Consumption [155]

of the dataset are grouped into homogeneous clusters according to speci�c features.

Clustering techniques for time-domain signals are numerous and surveyed in Liao

[95]. In the example of the power consumption monitoring above, a few typical power

consumption pro�les are identi�ed and taken as the bases of the categories. Then,

every power pro�le is assigned to the category of the base pro�le most similar to

it. Finally, the time-domain signals are viewed in two dimensions using the calendar

based approach, where the days of the year are marked by color depending on the

cluster they belong to (cf. Figure 36). For instance, the �at consumption lines are

grouped into one cluster, represented by the �at blue line. The corresponding days,

which are mostly week-end days, are highlighted in the calendar.

In some cases, it may be desirable to be able to visualize all the time-domain

signals, without (or before) clustering. This is true for the implementation of the

Time-Domain Filtered-Monte-Carlo, where the user may need to isolate signals during

the design space exploration. A way to visualize sets of signals is simply to aggregate

them in a single bi-dimensional �overlay� plot. Figure 37 gives an example of such

an overlay plot developed for �TimeSearcher�, a visualization tool for dynamic data

[155].
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Figure 36: Clustering and Calendar Based Representation of Signals [155]

Figure 37: TimeSearcher Visual Interface

In order to avoid the di�culties arising from clutter and be able to make sense of

the data, the overlay plot must be interactive. In TimeSearcher, the user can zoom

in and out within the data. The user can also specify a shape of interest (the red

box in the �gure), and the data mining tool then �nds the signals of the dataset that

contain the desired pattern.

When the signals of the dataset contain periodicity information, they can be

visualized using the �Spiral Visualization� technique de�ned in Weber et al [154]. This

technique was used in Lin et al. to visualize the dataset of the power consumption
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example described above [98]. In the resulting graph, shown in Figure 38, the periodic

structure of the data becomes apparent.

Figure 38: Spiral Visualization of Power Consumption [154, 98]

As one can see from these examples, there are various ways of representing time

and time-domain datasets. The design of a visualization environment for the Time-

Domain Filtered-Monte-Carlo developed in this thesis is therefore a task subject to

several design criteria. These criteria are formalized in Aigner et al., where the main

features and design options for such a visual environment is exposed [5]. The resulting

table is presented in Table 3.

Table 3: Design Options for Visualization of Time-Domain Data [5]

Category Criterion Design Options

Time
Temporal primitive time points time intervals

Structure of time linear branching cyclic

Frame of reference abstract spatial

Data Number of variables univariate multivariate

Level of abstraction data data abstractions

Representation
Time dependency static dynamic

Dimensionality 2D 3D
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This table will now be discussed, while explaining the choices made for the imple-

mentation of the innovative time-domain cells of the Time-Domain Filtered-Monte-

Carlo (TD-FMC). The �rst category of design choice pertains to the modeling and

representation of time. In the TD-FMC, the elementary points of the signals (similar

to pixels for images) will designate time instants rather than time intervals. Time will

be viewed as linear, rather than cyclical (as in the Spiral representation) or branching

(branches stem from time instants, corresponding to di�erent scenarios or designs).

The second category of design options for the visual mining of signals corresponds

to how the data (the responses) is modeled. For the TD-FMC, the data pertaining

to the design of dynamic systems is multivariate and in the more general cases, it

does not depend on geospatial position, therefore falling in the �abstract� frame of

reference type. As explained previously, clustering of the data is not desirable for

the TD-FM, which makes the desire level of abstraction refer to data instead of data

abstractions.

The last category of design options pertains to how the data is visually represented.

One option consists in performing dynamic animation of the data, i.e. presenting a

snapshot of the dataset for a time instant, and then advancing in time. The user can

thus get a feel of the time evolution of the system. However, as pointed out in Aignier

et al. [5], animation loses its value as the number of dimensions of the data increases.

Therefore, for the implementation of the TD-FMC, a static representation of the time-

domain data will be used, in which the full time behavior of the dataset is visualized

at once. Finally, the data can be represented in three dimensions, as seen in Figure

35, or in two dimensions. As explained previously, three-dimensional visualization

can help get a grasp of the global trends, but the fact that data can easily be hidden

hinders further interaction with the data. Thus, a bi-dimensional representation of

the data will be adopted in the TD-FMC, similar to the data representation in the

original Filtered Monte-Carlo technique for static metrics.
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2.1.4.2 Description of the Innovative Visualization Environment

The previous section described the possible design options and the �rst choices for

the development of the visualization environment that will enable the implementa-

tion of the Time-Domain Filtered-Monte-Carlo. This environment, whose purpose

is to help investigate and explore the design space for dynamic systems subject to

dynamic transient constraints, will be named the Visual Transient Response Explorer

(VisTRE). As explained after the statement of Hypothesis 1, VisTRE will contain the

multivariate scatterplot matrix (showing the input design parameters and the static

responses), to which will be added the new cells visualizing the time-domain signals.

Figure 39: Overlay Plot for One Time-Domain Cell of VisTRE

Based on the design criteria derived above, overlay plots are chosen as the solution

for the implementation of those new cells. In these, each design case is no longer

represented by a point in the cell, but by a behavior curve. Each cell corresponds to

a particular signal and a particular transient event, and plots the clustering of all the

behavior curves that are taken by this signal when the design space is entirely sampled
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through a Monte-Carlo simulation. A notional overlay plot for the visualization of

the transient response of a dynamic signal is shown in Figure 39.

The environment resulting from the combination of the time-domain cells and the

scatterplot matrix for static parameters is shown in Figure 40. In this �gure, only one

design scenario is represented, in order to illustrate one of the fundamental concepts

of ViSTRE: a design case (or design scenario, or design point in the design space) is

represented as a point in each cell of the scatterplot matrix, while it is visualized as

a curve in the time-domain cell, which exhibit the transient behavior of the system.

Figure 40: VisTRE: Visualization of One Design Scenario

In order to thoroughly explore the design space, the �rst step of the Time-Domain

Filtered-Monte-Carlo was to run a Monte-Carlo simulation that produces the static

and dynamic responses for a vast number of design scenarios. Then, the data can

be imported in VisTRE so that the full design space can be visualized and explored.

The resulting environment is illustrated in Figure 41.

The time-domain part and the static cells are interactively linked so that the

selection of a behavior curve in the time-domain cell triggers the selection of the

corresponding points in the static cells, and vice versa. In each of these time-domain

cells, the user can then add or modify dynamic constraints. In the �gure shown
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Figure 41: VisTRE: Visualization of the Full Design Space

above (Figure 41), dynamic constraints of the shape of the power quality constraints

discussed in chapter 1 are shown as the red dashed lines.

The interactivity of the environment will then allow the user to visualize the

behavior curves that meet (or do not meet) those constraints, as illustrated in Figure

42, where the design scenarios that violate the constraints are represented as red

curves in the time-domain cells and as red points in the static scatterplot. Finally, as

in the original Filtered-Monte-Carlo, the user can �lter the design space so as to keep

only those design scenarios that meet the dynamic constraints. This is illustrated in

Figure 43, where a sizeable portion of the design space (�rst cell X1 vs.X2) has been

removed, and where all the dynamic signals on the right hand-side remain within the

required bounds.

In addition to the new capabilities for �ltering dynamic constraints, the original

capability of the Filtered-Monte-Carlo to �lter design scenarios based on static con-

straints is still an option as well. Thus, when used in conjunction with the static

multivariate scatterplot, the time-domain scatterplots enable to select and visualize

the design scenarios that meet the static constraints as well as the dynamic ones.
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Figure 42: VisTRE: Visualization of Undesirable Design Scenarios

Figure 43: VisTRE: Visualization of the Design Space after Filtering

Further optimization can be carried on from there, using the static scatterplot matrix

in the same way as in the original Filtered-Monte-Carlo.

In the �rst chapter, it was explained that there may be uncertainty on the values

of the constraints, whether they be static or dynamic. In VisTRE, the addition or

modi�cation of a constraint is practically done instantly. Thus, when VisTRE is

used as the visualization end of the Time-Domain Filtered-Monte-Carlo, the user can

rapidly investigate the e�ect of changing constraints on the design space.
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In a nutshell, after the Monte-Carlo Simulation, the resulting data is imported

into the innovative interactive visualization environment VisTRE. Then, a few sim-

ple steps are performed in order to obtain a set of design solutions that meet the

static constraints as well as the dynamic ones. The procedure for the design space

exploration in VisTRE of dynamic systems subject to dynamic transient constraints

is summarized in Figure 44.

Figure 44: Using VisTRE for Design Space Exploration of Dynamic Systems: Al-
gorithm

2.1.4.3 Generation of Time-Domain Signals: a Challenge for the Implementa-
tion of the Time-Domain Filtered-Monte-Carlo

At the conceptual and preliminary design stages, the time-domain behavior of the

dynamic system is usually obtained through TDS, as explained in the previous chap-

ter. Hence, the behavior curves generated by the Monte-Carlo Simulation for the
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proposed Time-Domain Filtered-Monte-Carlo technique should ideally be computed

using the TDS models.

However, as explained in Chapter 1, the use of TDS for design space exploration

is limited by the slow run times that TDS models often exhibit. Even when the

transient regime of interest only spans a very short time interval, TDS still needs

to compute the behavior of the dynamic system leading to the steady-state point at

which the transient is triggered. This is illustrated in Figure 45.

Figure 45: Time-Domain Simulation: Settling Time Before Perturbation

Because the Filtered-Monte-Carlo technique typically requires thousands of runs

in order to thoroughly sample the design and operation space, these limitations in

the simulation time of traditional TDS models pose a hindrance to the application

of the proposed Time-Domain Filtered-Monte-Carlo technique. Therefore, in order

to generate the points and curves in the Time-Domain Filtered-Monte-Carlo, the

simulation process needs to be made more e�cient. This leads to the formulation of

the following research question, the answer to which will be a major area of focus for

this thesis:

Research Question 2 (RQ2): How can one make the system simulation process

more e�cient in order to speed up the optimization/veri�cation of dy-

namic systems and facilitate the implementation of the proposed Time-

Domain Filtered Monte-Carlo approach?
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2.2 Advanced Modeling and Simulation of Dy-

namic Systems

In the �rst part of the present chapter, an innovative data farming approach, the

Time-Domain Filtered-Monte-Carlo (TD-FMC), was formulated for the thorough ex-

ploration of the design space of dynamic systems. In the TD-FMC, the design space

is thoroughly sampled via Monte-Carlo Simulation, which produces a vast dataset,

corresponding to the values of static responses and to the behavior curves of dynamic

responses. Finally, because of limitations of TDS, advanced modeling of dynamic

systems is needed in order to make the Monte-Carlo Simulation more e�cient and

manageable. In this part, options for e�cient modeling and simulation of dynamic

systems are investigated, after a brief overview is given on traditional modeling meth-

ods, in the context of the enforcement of dynamic constraints.

2.2.1 Modeling of Dynamic Systems

In order to simulate their behavior, dynamic systems need to be modeled mathemat-

ically. The type of mathematical model that is used for simulation greatly depends

on the type of system and on the purpose of the simulation.

The most general form of the mathematical model of a dynamic system with a

dynamic response y is given by Equation 3, where x̄ is the vector of design and

operation variables (that may vary with time).

y = f(x̄, t) (3)

For more clarity, in this section, x̄ will only designate the design characteristics

of the system (such as resistance value, capacitance). The operation variables, which

are the inputs of the system with �xed design characteristics, will be designated by

the vector ū. In this section, the term �input� will designate the operation variables,

unless speci�ed otherwise. These operation variables, such as the power consumption
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demand from a motor, typically vary with time. The model of the dynamic system

can then be rewritten:

y = f(x̄, ū, t) (4)

However, in most complex systems, the function f is unknown. The systems are

modeled by di�erential equations, to which f is a solution. For example, a single

input and single output system can generally be represented by the following nth-

order di�erential equation:

z
(
y,
dy

dt
, ...,

dny

dtn
, u,

du

dt
, ...,

dmu

dtm
, t

)
= 0 (5)

2.2.1.1 Classi�cation of Time-Domain Models

Depending on the modeling choice, the properties of the di�erential equation of Equa-

tion 5 vary. Kulakowski et al. gives a good overview of the di�erent options available

to the designer for the modeling and simulation of dynamic systems [89].

One important classi�cation category relates to the linearity of the system. A

system is linear when f (in Equation 4) is linear with respect to the parameter ū, i.e.

the principle of superposition applies:

f(x,u1 + u2, t) = f(x,u1, t) + f(x,u2, t)

In this case, the function zof the di�erential equation (Equation 5) is linear with

respect to x and y. Multivariate Linear systems have the interesting property that

they can be analyzed by considering them as a superposition of single variable systems:

f (x, u1, u2, ..., xl, t) = f (x, u1, 0, ..., 0, t) + f (x, 0, u2, ..., 0, t) + ...+ f (x, 0, 0, ..., ul, t)
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An essential consequence of linearity is that for each operation variable, the re-

sponse of the system can be entirely derived from the response to certain types of

operation inputs. For instance, if one knows the response of the system to pure sine

inputs for all frequencies, then one can derive the system response to any input signal

that can be decomposed into a sum of sine waves via the Fourier transform. Or, if

one is interested in the response of the system to any input step function, one only

needs to know the response for one value of step function.

The second type of modeling option pertains to the spatial dependence of the

model: if the system response depends on the spatial coordinates x, y, z, then the

model is said to be distributed, and lumped otherwise. In the case of a �distributed�

model, the system is represented by Partial Di�erential Equations (PDE). Other-

wise, the system is called a �lumped system�, and Ordinary Di�erential Equations

(ODE) are used. A widely used example of distributed models are the Navier-Stokes

equations for the modeling of �uid motions in �uid mechanics.

Equation 5 is an example of a di�erential equation describing a system whose

characteristics vary with time. Such a system is called �time-varying�. A system

that is not time-varying is called �stationary� (or �time-invariant�). An example of

stationary system is a circuit with constant resistance. If the resistance varies with

time, then the circuit is a time-varying system. In the stationary case, the system

is modeled by a di�erential equation with coe�cients that are constant in time. In

the example of the single input/single output system described by Equation 5, the

di�erential equation for a stationary system becomes:

z
(
y,
dy

dt
, ...,

dny

dtn
, u,

du

dt
, ...,

dmu

dtm

)
= 0 (6)

Finally, if the dynamic response that is monitored is not continuous, then the

system is called a �discrete system�. For example, a tra�c light can be modeled as

a discrete system, since its light color may only alternate between three states (red,
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amber, green). Discrete systems are modeled by time-di�erence equations instead of

di�erential equations.

Several types of classi�cation for dynamic systems have been presented. They are

summarized in Table 4, which is adapted from Kulakowski et al [89].

Table 4: Classi�cation of System Models [89]

Criterion Type of model Description

Linearity
nonlinear Principle of superposition does not

apply
linear Principle of superposition applies

Spatial
dependency

distributed Dynamic response functions of spatial
coordinates

lumped Dynamic responses independent of
spatial coordinates

Time
dependency

time-varying Model parameters vary in time
stationary Model parameters are constant in time

Continuity
continuous Continuous range of independent variables
discrete Distinct values of independent variables

2.2.1.2 State-Space Representation

The models discussed so far are traditional input-output models, where the variable

that varies is the dynamic signal under consideration (and the coe�cients of the dif-

ferential equations in the case of time-varying systems). A powerful (and dominant)

tool for the simulation of dynamic systems is provided by the state-space representa-

tion of systems [89]. The state of a dynamic system is the minimum set of variables

q1, q2, ..., qn that is su�cient to describe the system at any instant in time: if one

knows the values of the input for t > t0 and the state of the system at the instant

t = t0, then one can determine the behavior (the future states) of the system at all

instants t ≥ t0. The state variables q1, q2, ..., qn are grouped into the state vector

q = (q1, q2, ..., qn). For example, if the system of interest is a rock that is thrown

in the air and if the response of interest is the position of the rock, then the vector
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composed of the position and the velocity of the rock can be considered as a state

vector.

The state vector is thus a combination of the dynamic responses of interest and

other parameters such as their derivatives. In state-space representation, each re-

sponse of interest (output of the model) can be written as an algebraic function of

the state and input variables, as stated in Equation 7 [89].

y1 = g1 (q1, q2, . . . , qn, u1, u2, . . . , ul, t)

y2 = g2 (q1, q2, . . . , qn, u1, u2, . . . , ul, t)

...

yn = gn (q1, q2, . . . , qn, u1, u2, . . . , ul, t) (7)

For a lumped-parameter system, the essential property of the state-space rep-

resentation is that the system can be represented by a set a �rst-order di�erential

equations, listed in Equation 7. A compact form is given in Equation 9.

q̇1 = f1 (q1, q2, . . . , qn, u1, u2, . . . , ul, t)

q̇2 = f2 (q1, q2, . . . , qn, u1, u2, . . . , ul, t)

...

q̇n = fn (q1, q2, . . . , qn, u1, u2, . . . , ul, t) (8)

q̇ = f(q,u, t) (9)

Because of the latter property, state-space models are typically much easier to

simulate than the input-output models represented by complex high-order di�eren-

tial equations. Simulating the system behavior using state-space theory consists of

computing the state vector, modeled by Equation 9, and converting the state vector
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into the output vector of interest, given by Equation 7. This is illustrated in Figure

46 [89], for a system with l input variables, n state variables (or states), and p output

variables (the dynamic responses).

Figure 46: Block Diagram of a State-Space Simulation [89]

2.2.1.3 Frequency Domain Representation

Traditional input/output modeling with di�erential equations and state-space repre-

sentations are two major ways of representing a dynamic systems. For Linear Time-

Invariant systems (LTI), there is another way of converting the di�erential equations

into a more convenient representation form: the frequency domain representation [46].

At the foundation of LTI theory lies the fact that the behavior of a system is entirely

characterized by its impulse response, ie its theoretical response to the unit-impulse

input [133]. The unit-impulse function δ (t) can be de�ned as the limit, when ε→ 0+,

of the functions δε (t) de�ned by:

δε (t) = 0 when t > ε, with

ˆ
δε (t) dt = 1 (10)

The impulse response of the LTI system is called the transfer function and is

denoted h (t), and the response of the system y(t) to an input signal u(t) is given by

the convolution of h (t) with u (t) [133]:
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y (t) = h (t) ∗ u (t)

=

ˆ ∞
−∞

h (τ) .u (t− τ) dτ (11)

The frequency domain representation for LTI system is obtained by taking the

Laplace transform of the transfer function. The Laplace transform at the frequency

s is given by the Equation 12:

H (s) =

ˆ ∞
0

h (t) .e−stdt (12)

The advantage of using the frequency domain is that it is easier to interpret.

In particular, many phenomena in dynamic systems (especially in control systems)

contain combinations of frequencies [46]. The linearity of the system allows for the

analysis of the e�ect of each frequency separately.

However, the frequency domain representation is limited to LTI systems. Even

though many systems can in practice be considered as linear or be linearized around

their points of operation, there are still many complex systems that cannot be treated

as linear, especially in modern power systems that heavily rely on electronics. More

importantly, dynamic constraints are de�ned in the time domain, and thus the be-

havior of the system is needed in the time-domain. If one chooses to study the

frequency-domain behavior, one would need to then obtain the time-domain behavior

by performing the inverse Laplace transform, which can be complex.

2.2.1.4 Focusing the Scope of this Research

As was seen in this section, there exist numerous types of dynamic systems and var-

ious ways of modeling them. It will be seen in Chapter III that transient responses

often present nonlinear characteristics. The signals of interest are in general con-

tinuous, and time-varying. The vast majority of systems onboard an aircraft do not
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present geospatial dependencies. Therefore, in this thesis, the dynamic systems under

consideration will be modeled as nonlinear, time-varying, lumped and continuous.

As explained previously, in order to evaluate the compliance of the system with

the transient dynamic systems, the time-domain response of the system needs to be

computed. Thus, the frequency-domain representation will be not be considered, and

this thesis will focus on the modeling and simulation of dynamic systems in the time-

domain, whether using input/output models with di�erential equations or state-space

models.

Usually, dynamic systems are too complex to obtain an analytical expression of

their behavior, and numerical methods need to be used. Numerically obtaining the

time-domain behavior of the system from time-domain models is the essence of Time-

Domain Simulation. The next section will brie�y explore the most usual options for

the implementation of TDS.

2.2.2 Methods for Time-Domain Simulation

There are two types of time-domain simulation: continuous simulation and discrete

(or discrete-event) simulation [92]. They di�er in how they take time into account.

In continuous simulation, time is viewed as a continuous parameter, and models are

generally represented by di�erential equations. The output of continuous simulation is

therefore the full behavior of the system: the response of the system can be obtained at

any instant t. Thus, computer continuous simulation generally involves the computing

of an analytical solution to the di�erential equations. For most dynamic systems, the

level of complexity prohibits the use of continuous simulation.

In discrete-event simulation, time is viewed as a discrete entity: the simulation is

run at a �nite number of time instants, and the state variables describing the system

change instantaneously at those instants [92]. Therefore, a mechanism needs to be

designed to decide the sequence of instants at which the states are computed.
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There are two main categories of such time-advance mechanisms, de�ned by

whether the time step between two events is �xed or varying. In the �xed-increment

(or �xed-step) time advance, the time step between two events is prede�ned and con-

stant over the simulation. The �ner the time step, the more accurate the simulation

results will be. However, if the system response does not vary much, the simulation

will be run at many instants that will see little change in the state variables. These

unnecessary runs may consume a lot of computing time. In next-event time advance

mechanisms, the time step between two events varies. At every instant, a routine is

called to compute the next time instant at which the model will be simulated [92].

Time-Domain Simulation typically marches in time to numerically solve di�er-

ential equations, whether they are the high-order di�erential equations of the in-

put/output models or (more commonly) the �rst order di�erential equations of the

state-space representation. When the state-space representation is used, the numer-

ical solving of di�erential equations is a process called integration. There are many

integration methods found in TDS . Well-known examples of numerical integration

methods are the Euler method and the Runge-Kutta method [89].

The Euler integration method was the �rst published numerical method for solving

a �rst-order ODE of the following form:

dx

dt
= f (x, t) (13)

with the initial condition x (t0) = x0.

The Euler method is based on the following approximation of the derivative, with

a time step ∆t:

dx

dt
≈ [x (t0 −∆t)− x (t0)]

∆t

This yields the numerical approximation of the solution:
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x (t0 + ∆t) ≈ x (t0) + f (x0, t0) .∆t (14)

Figure 47 gives a geometrical interpretation of the approximation error introduced

in the Euler method, induced by considering the derivative as constant between t0

and t0 + ∆t.

Figure 47: Approximation Error of the Euler Integration Method [89]

Modern numerical integration methods, such as the Runge-Kutta method, include

higher-order terms of the Taylor series to approximate the derivatives. They have

been shown to induce smaller approximation error, especially when the time step

length decreases. In the Runge-Kutta methods, the solver explores intermediate

points within the time steps in order to evaluate the higher-order derivatives [89].

The widely used fourth-order Runge-Kutta method uses four tentative steps between

t0 and t0 + ∆t, and the resulting approximation of the output parameter is given by:

x (t0 + ∆t) ≈ x (t0) +

(
∆t

6

)
. (k1 + 2k2 + 2k3 + k4) , (15)
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where k1 = f [x (t0) , t0]

k2 = f
[
x (t0) + ∆t.k1

2
, t0 + ∆t

2

]
k3 = f

[
x (t0) + ∆t.k2

2
, t0 + ∆t

2

]
k4 = f [x (t0) + ∆t.k3 , t0 + ∆t]

Implementations of numerical Time-Domain Simulation of dynamic systems are

also characterized by other parameters, as seen in Kulakowski et al [89]. They include

the initial and �nal simulation time, minimum and maximum step size, and error

tolerance.

The set of implementation choices and options discussed above forms the core of

a larger process whose goal is to simulate the behavior of a dynamic system through

TDS. Law and Kelton formalized the process of performing a simulation study [92],

as given in Figure 48.
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Figure 48: Steps in a Simulation Study [92]

This process outline is generic, and it should be noted that in real applications,

alterations may be made to the process, or there may exist more iteration loops

within the process. The process starts with the statement of the study objectives and

a general planning. Then, data on the system of interest is collected, and the designer

decides what modeling option is chosen to represent the system. First validation tests

are performed on the model, and if successful, they lead to the next step, which is

the development of a computer program for the simulation of the systems. This
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simulation program is run on a few pilot cases, and if validation is successful, then

the designer decides what design cases will be simulated. It is worth pointing out that

this activity should have been partly done in the �rst step when planning the study.

Indeed, a simulation environment is always developed with its possible future use in

mind. After the experiments have been designed, the simulation program is actually

run, performing what is termed �production runs�. This activity produces data that

is analyzed in the next step, and �nally, the results are presented or implemented in

the next level of the overall system development process. Interestingly, when a vast

number of production runs is performed, the last two steps correspond to the data

mining and visualizing processes described in previous sections.

This section gave an overview of traditional methods for time-domain simulation of

dynamic systems. As explained in Chapter I, TDS often is a time-consuming process,

especially when the system under consideration is a complex system represented by

higher-order di�erential equations. In order to produce the vast number of behavior

curves required by the implementation of the proposed Time-Domain Filtered-Monte-

Carlo methodology, the TDS process needs to be made more e�cient.

2.2.3 Surrogate Modeling for E�cient Simulation

2.2.3.1 Surrogate Modeling of Static Responses

The challenge posed by time-domain simulation and other dynamic simulation tools

was already existent for problems dealing with design and operation spaces composed

of static parameters only. For example, in Phan et al. [127], the Filtered-Monte-

Carlo was applied on an actual electrical test rig and each run would take dozens of

minutes, therefore impeding the direct application of a Monte-Carlo simulation. To

circumvent this obstacle, a surrogate model of the electrical test rig was created. A

surrogate model of a tool, or meta model, is a parametric approximation of this tool,

created by using statistical regression techniques on experimental data (or �training

data�). Thus, a surrogate model consists of equations giving output metrics (the

83



�responses�) as a function of input parameters (the �variables�). These statistical

approximation equations are generally simple to evaluate, which makes the surrogate

models run quickly and e�ciently. Therefore, the essential concept behind surrogate

modeling is that the surrogate models are used as a substitute to the original Modeling

and Simulation (M&S) tool, allowing the user to perform more runs at a cheaper

cost (in terms of time, e�ciency, cost). This is illustrated in Figure 49, where the

original produces an output y that is a function of design and operation variables

(X), and where a surrogate model produces an approximation of y, ŷ = f̂
(
X
)
. The

approximation error is obviously given by ε
(
X
)

= ŷ − y.

Figure 49: Static Surrogate Model

The generation of surrogate models is a multi-step process. A representative

example is found in Kirby [83], where surrogate models of aircraft sizing and cash �ow

analysis tools are created in order to enable the thorough and e�cient exploration of

the design space for the aircraft. The �rst step is to de�ne the problem: the responses

of interest need to be identi�ed, as well as the most in�uential design variables. Then

ranges of variation for the design variables are de�ned. This is of special importance,

because the surrogate model being an approximation of the M&S tool, it will only

be valid within the ranges of variation for which it has been created, unless proved

otherwise. The next step is to carefully select the runs that will be performed on

the original M&S tool, and which will produce results that will serve to create the

surrogate models. This activity is the subject of a formal theoretical domain, called
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Design of Experiments (DoE), which will be detailed later in this thesis (Chapter

IV). Then, these runs are performed in a �test campaign�, during which the M&S

tool is run multiple times with di�erent input settings (training cases). Then the

mapping between the output and the inputs is created by performing a statistical

regression, which minimizes the approximation error. There exist several regression

techniques commonly used for surrogate modeling [33, 117]. These techniques can be

categorized in two main branches: parametric regressions, which assume beforehand

an equation form, and non-parametric regressions, which allow for more �exibility in

the form of the regression equation. Finally, a validation test is performed in order

to ensure that the surrogate model reproduces the behavior of the M&S tool in a

satisfactory manner. This step is sometimes called �veri�cation of the goodness of

�t�, and in addition to verifying that the regression error is low for the training data,

it generally includes performing additional runs of the original M&S tool for random

settings of the design vector X, and verifying that the corresponding outputs closely

match the outputs predicted by the surrogate models. The process for the generation

of surrogate models is summarized in Figure 50.
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Figure 50: Generic Process for the Generation of a Surrogate Model

The regression on the training data produces simple equations that approximate

the M&S tool. During this activity, the goal is to minimize the error between the

responses predicted for the training cases by the surrogate model and the actual

responses that were collected at the output of the original M&S tool. Typically, the

metric quantifying the approximation error induced by the surrogate model is the

Mean Squared Error (MSE) on the training dataset. The MSE, representing the

average of the squared error for each training case, is de�ned as follows [152]:
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MSE = E

[(
Ŷ −Y

)2
]

=
1

m

m∑
i=1

(ŷi − yi)2 (16)

where m is the number of training cases

Y = (y1, . . . , ym) is the vector of responses calculated by m training cases

Ŷ = (ŷ1, . . . , ŷm) is the corresponding vector of responses

predicted by the surrogate model

The two following examples of regression techniques, which are widely used for

surrogate modeling, are instances of parametric regression and non-parametric re-

gression.

Polynomial Response Surface Equations (RSE) are a class of parametric regression

that is widespread for surrogate modeling [117, 118, 49, 33]. The principle is to assume

that the response R follows a polynomial law. The most general form of a quadratic

polynomial RSE is as follows :

R = b0 +
n∑
i=1

bixi +
n∑
i=1

biix
2
ii +

n−1∑
i=1

n∑
j=i+1

bijxixj (17)

where n = number of design variables xi

b0 = intercept regression coe�cient

bi = regression coe�cients for linear terms

bii = regression coe�cients for pure quadratic terms

bij = regression coe�cients for cross product terms

xi , xj = design variables or factors
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Arti�cial Neural Networks (ANN) constitute a wide class of non-parametric regres-

sion techniques [66, 140, 33]. They have become a popular choice for the regression of

nonlinear parameters, since it has been demonstrated that they can approximate any

arbitrary continuous function [64, 140]. Moreover, they generally perform well when

approximating discontinuities for integrable functions. ANN's are structured as a col-

lection of interconnected simple processing units called perceptrons, nodes or neurons,

which act as a transfer function, thus mimicking the way the brain functions. For

each connection between two neurons, there is an associated weight representing the

strength of the connection. A neuron's output will be the transform of the weighted

sum of inputs, as shown in Figure 51 [32]. In addition to the weighted sum of inputs,

an o�set term (or intercept term) b is often added.

Figure 51: Schematics of a Neuron with Transfer Function f

These neurons can be arranged in multiple ways to form more or less complex

neural network architectures. Usually, within an architecture, neurons are organized

into several groups called layers. When there is no feedback from a neuron layer to

another, i.e. when all the neuron connections �ow in the same direction, then the

neural network is quali�ed as �feedforward �. In the presence of feedback connections,

the neural network is termed �recurrent�. More details on recurrent neural networks

are given in the next chapter.
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In his seminal papers [64, 63], Hornik gave proof that a three-layer feedforward

neural network architecture, with the middle layer comprised of neurons with sigmoid

transfer functions (cf. Equation 18), can approximate any continuous (or integrable)

function, provided that the number of neurons in the middle layer (called �hidden

layer�) is su�cient and that the weights of the neuron connections are adjusted. The

plot of the sigmoid function and a schematic of the feedforward ANN are given in

Figures 52 and 53 respectively.

S(z) =
1

1 + e−z
(18)

Figure 52: Sigmoid Function
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Figure 53: Example of Arti�cial Neural Network Architecture with One Hidden

Layer

The output of a neural network is thus a response ŷ that depends on the values of

the inputs and on the weights of the connections between neurons. For a three-layer

feedforward network, the expression of the response ŷ can be given explicitly:

ŷ = d+

NH∑
j=1

(
cjk

(
1

1 + e−(bj+
∑N

i=1(aij .xi))

))
(19)

where N is the number of input design variables

xi is the ithdesign variable

aij is the weight of the connection from the

ithdesign variable to the jth hidden node

bj is the intercept term for the jth hidden node

cjk is the weight of the connection from the jth

hidden node to the output layer node

d is the intercept term for the output layer node
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The training of a three-layer ANN consists in adjusting the coe�cients aij, bj,

cjk, d so that the total regression error for the training data (measured by metrics

such as the MSE) is minimized. This training process, called supervised learning [85],

is thus an optimization problem where the objective function is the total error, and

the variables of the optimization are the network coe�cients. There is a number of

methods available to perform supervised learning, one of the most commonly used

being the back propagation algorithm [130]. The essential principle of the latter resides

in the computation, at each iteration, of the gradients of the regression error with

respect to the weights for each neuron, and the use of these gradients to determine

the new values of the weight for the subsequent iteration.

Because it generates statistical approximation equations that are quick to evalu-

ate, surrogate modeling can be used to speed up simulation processes. The inherent

e�ciency of surrogate models is thus employed as an enabler for the e�cient ex-

ploration of complex design spaces. In the case of static metrics, it has also been

employed to simulate the thousands of design scenarios for the creation of the mul-

tivariate scatterplot in the Filtered-Monte-Carlo technique. This can be summed up

in the following observation:

Observation 6: In the case of static metrics, the e�ciency of static surrogate mod-

eling can be leveraged in order to enable the e�cient design/operation

space exploration through the Filtered-Monte-Carlo approach.

2.2.3.2 Dynamic Surrogate Modeling: Surrogate Modeling for Dynamic Responses

It was shown in the previous section that static surrogate modeling may be used

advantageously to speed up simulation processes dealing with static output responses.

Because of the e�ciency of these types of stochastic approximation models, they have

proved to be an enabler for the implementation of the Filtered-Monte-Carlo technique

for static responses, as shown in Ender [49], for the design of a system-of-systems, or
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in Phan et al. [127], for the exploration of the operation space of an electrical test

rig.

For design problems based on time domain simulation, the concept of dynamic

surrogate modeling has been developed in order to speed up simulation times: here,

the output of the surrogate models are dynamic responses instead of static ones. For

example, in Balchanos [10], dynamic surrogate models were generated for elementary

power system sub-components and then assembled in order to facilitate the simulation

of the higher-level system.

The enabling capability o�ered by static surrogate modeling for the implemen-

tation of the Filtered-Monte-Carlo, coupled with the e�ciency promises shown by

dynamic surrogate models in terms of improvement of simulation times for TDS

tools, allows for the formulation of the following hypothesis:

Hypothesis 2 (H2): Dynamic surrogate modeling of time domain simulation mod-

els will enable the e�cient implementation of the Time-Domain Filtered

Monte-Carlo technique for the exploration of design/operation spaces for

dynamic systems subject to dynamic constraints.

The concept of dynamic surrogate modeling is illustrated in Figure 54. Evidently,

the output response ŷ of the surrogate model is now an approximation function that

depends not only on the inputs X, but also on time t. It is worth noting that in the

most general case, the input components may themselves be dynamic parameters, i.e.

they depend on time. For instance, the aircraft electrical network voltage depends

on operation variables such as the power consumption requirements of the electrical

loads [127]. These power consumption requirements typically vary with time during

the aircraft mission [55].
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Figure 54: Dynamic Surrogate Model

As with static responses, the generation of dynamic surrogate models thus consists

in determining a mathematical model of the TDS tool, based on a set of observed

data signals for di�erent design/operation scenarios. This activity, which deals with

dynamic signals, forms the essence of a discipline called �system identi�cation� [100].

System identi�cation is a wide �eld that has been mainly used by controls theory,

in the design of control systems for dynamic systems. For instance, in aircraft system

design, system identi�cation is a major activity in the design of control systems

for �ight control surfaces [148]. There are multiple sub-disciplines and approaches

pertaining to system identi�cation. Hence the following research question:

Research Question 3 (RQ3): What system identi�cation approach is suitable

for the generation of dynamic surrogate models in the context of tran-

sient time-domain simulation of dynamic systems subject to dynamic con-

straints?

This research question is investigated in the next chapter, which provides a literature

review of the potential alternatives for a system identi�cation approach that is suitable

for the problem at hand.
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2.3 Summary: First Elements of the Methodol-

ogy

In this chapter, it was seen that optimization-based methods pose a di�culty to the

thorough exploration of the design space for dynamic systems subject to dynamic

transient constraints. Furthermore, these methods fail to provide the necessary �ex-

ibility to account for the potential uncertainty in those constraints. Therefore, a

new methodology is needed for the integration of dynamic transient constraints in

the design of dynamic systems. The quest for this new methodology necessitates the

investigation of the following research question:

Research Question 1 (RQ1): How can one e�ciently and thoroughly explore the

design and operation spaces while accounting for dynamic responses and

pertaining uncertain dynamic constraints?

The foundations of an innovative methodology have been formulated. This method-

ology builds on a new data farming approach formulated herein as an extension of

the Filtered-Monte-Carlo technique to the time domain. The resulting Time-Domain

Filtered-Monte-Carlo (TD-FMC) approach is the product of the �rst hypothesis of

this thesis:

Hypothesis 1 (H1): A data farming approach, based on the integration of time

as a dimension in the Filtered-Monte-Carlo approach, will conduce to

the e�cient and thorough exploration of the design/operation space for

dynamic signals with dynamic constraints.

The TD-FMC uses a Monte-Carlo Simulation, which samples the entire design and

operation space and produces a vast set of static design responses and time-domain

signals, representing the transient behavior of the system across the design and op-

eration space. These Monte-Carlo outputs are then imported into an innovative

interactive visualization environment, which allows the designer to explore and query
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the design and operation space. In this proposed Visual Transient Response Explorer

(VisTRE), which handles a combination of the multivariate scatterplots for static

parameters and overlay plots for transient time-domain responses, the designer can

instantly de�ne and modify dynamic constraints, and �lter the design space so that

only the design solutions that verify the dynamic transient constraints are kept for

subsequent design re�nement.

The Monte-Carlo Simulation activity of the TD-FMC produces a vast number of

time-domain transient responses. Because of the limitations or Time-Domain Simu-

lation explained in Chapter I, a new approach for the TDS of dynamic system needs

to be formulated in order to enable the implementation of the TD-FMC. This is the

issue raised in the following research question:

Research Question 2 (RQ2): How can one make the system simulation process

more e�cient in order to speed up the optimization/veri�cation of dy-

namic systems and facilitate the implementation of the proposed Time-

Domain Filtered-Monte-Carlo approach?

In existing implementations of the original Filtered-Monte-Carlo technique, static

surrogate models, which are statistical approximations of Modeling and Simulation

(M&S) tools, have exhibited the desired e�ciency, thus enabling the e�cient ex-

ploration of the design space. Therefore, it is hypothesized that dynamic surrogate

models, which emulate the behavior of time-domain simulation tools, will enable the

implementation of the TD-FMC:

Hypothesis 2 (H2): Dynamic surrogate modeling of time domain simulation mod-

els will enable the e�cient implementation of the Time-Domain Filtered

Monte-Carlo technique for the exploration of design/operation spaces for

dynamic systems subject to dynamic constraints.
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The activity of generating dynamic surrogate models is akin to performing system

identi�cation on the time-domain simulation model. Since there exist many ap-

proaches for the system identi�cation of a dynamic system, it is necessary to in-

vestigate the third research question:

Research Question 3 (RQ3): What system identi�cation approach is suitable

for the generation of dynamic surrogate models in the context of tran-

sient time-domain simulation of dynamic systems subject to dynamic con-

straints?

The investigation of the latter research question will be done in the following chapter.

The core elements of the methodology formulated in this thesis are summarized in

Figure 55.

Figure 55: Time-Domain Filtered-Monte-Carlo: First Overview
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Chapter III

SYSTEM IDENTIFICATION: CLASSIFICATION

AND BENCHMARKING

As was seen in the previous chapter, one enabler of the interactive Time-Domain

Filtered-Monte-Carlo will be dynamic surrogate models that approximate the time-

behavior of the output signals of the dynamic systems; this activity relates to sys-

tem identi�cation. In order to determine potentially suitable system identi�cation

approaches for the generation of dynamic surrogate models, it is �rst necessary to

determine the category to which the problem at hand belongs.

3.1 Characterization of the Problem

As was explained in the opening chapter of this thesis, the objective of this research

work is the integration of transient-related constraints in the early design of aircraft

dynamic systems. In this context, it is assumed that there exists a parametric time-

domain simulation model of the system under consideration. In order to enable the

e�cient and thorough exploration of the design/operation space, one speci�c aim of

this work is to formulate a methodology for the generation of surrogate models based

on the TDS model of the dynamic system.

3.1.1 Number of Parameters

The �rst characterization criterion is the number of parameters involved in the mod-

els. This is further re�ned into the classi�cation according to the number of input

parameters (the variables) and the number of output parameters (the responses).
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For aircraft dynamic systems, the design/operation space is generally highly mul-

tidimensional: there are multiple variables and multiple responses. Essentially, the

problem thus belongs to the category of �Multiple Inputs Multiple Outputs� (MIMO)

system identi�cation problems [148]. However, it is assumed that the responses de-

pend only on the inputs and on time and are mutually independent. Therefore, the

problem can be decoupled into many subproblems: a multiple response model can

be viewed as an aggregation of single response models [148]. Therefore, the system

identi�cation problem will be considered as a �Multiple Inputs Single Output� one

(MISO).

3.1.2 Response Linearity

The nature of the response plays a fundamental role in the selection of the appropriate

type of system identi�cation. It was seen detail in the previous chapter that when

the response behaves linearly with respect to its input parameters, the system is said

to be linear and can be modeled by a set of linear di�erential equations, which have

the advantage of being easier to solve than their nonlinear counterpart. It was also

explained that the response of a linear system can be fully derived from its response

to a few speci�c inputs. Even though rigorous linearity is practically impossible to

achieve in physical systems, many dynamic systems may be approximated as linear

systems around their typical operating points. Linear system identi�cation is indeed a

vast �eld of study that has generated many theories and applications [148]. However,

in the present case, linearity cannot be assumed since transient regimes often exhibit

nonlinear responses [60]. This is especially true in the design of today's aircraft electric

networks, which increasingly include highly nonlinear power electronics systems [115,

78]. The responses of the dynamic surrogate models to be created are therefore

considered nonlinear.
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3.1.3 Black Box vs. Grey Box Modeling

When a system identi�cation model of a dynamic system is constructed, the type

of approach depends of the level of prior knowledge that the designer has about the

system. If the latter has su�cient knowledge to assume a mathematical form for the

approximation model, the approach is termed �grey-box � approach [139]. In most

cases, the designer cannot assume a form for the mathematical approximation of

the dynamic system, and the system identi�cation approach is quali�ed as a �black-

box � one [139]. In system identi�cation, it is generally considered as a rule to �avoid

estimating what is already known� [139]. Therefore, a grey-box approach should be

used when possible.

Because of the need for �exibility for the generation of dynamic surrogate models of

dynamic systems subject to transient dynamic constraints, the system identi�cation

approach will be a �black-box� one. However, black-box approaches that can be

readily adapted into grey-box ones will be favored.

3.1.4 Static Nature of Input Parameters

It was stated earlier that the inputs of a dynamic system may be dynamic. The

example of the voltage response of an aircraft electrical network to the time-varying

power consumption of the various loads was given. Another example is the attitude

response of a �ight control surface to commands from the pilot.

However, in the course of the design of these dynamic systems, designers typically

limit their �eld of study to critical design/operation cases that will constitute the

extremes of the design/operation space. For example, in the case of the electrical

network behavior, only the voltage response to the step increase or ramp increase

of load power consumption is characterized [52, 127]. An example of a generic test

carried out on the electrical test rig modeled in Phan et al. is given in Figure 56 [127].

The test shown here aimed at analyzing the impact of levels of load consumption
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and associated transient perturbations on the 350 VDC network voltage. The loads

in presence were three di�erent Electrohydrostatic Actuators (EHA), an Air Cycle

Machine (ACM), a Recirculation Fan (RF), and a Programmable Load (PL).

Figure 56: Transient Perturbations for the Analysis of an Electrical Test Rig [127]

In most cases, if not all, extreme design/operation scenarios can be fully char-

acterized with static metrics. For example, a step increase is characterized by the

time at which the step occurs, and by the �nal level that is achieved. Similarly, a

ramp increase is characterized by the time at which the ramp occurs, the slope of the

ramp, and the �nal level that is achieved or the time at which the ramp stops. This

is illustrated in Figure 57.

Figure 57: Characterization of a Dynamic Ramp with Static Parameters
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Therefore, it will be assumed in this thesis that dynamic surrogate models with

static input variables will be su�cient to enable the e�cient and thorough exploration

of the design/operation space of dynamic systems via the Time-Domain Filtered-

Monte-Carlo technique. This can be restated as follows:

Assumption: In the context of an e�cient and thorough design/operation space

exploration of a dynamic system subject to transient dynamic constraints,

critical design/operation scenarios can be characterized by static input

variables.

Consequently, the input variables of the dynamic surrogate models that are to be

generated will be static parameters. This is illustrated in Figure 58.

Figure 58: Dynamic surrogate model with static variables

3.1.5 Multiscale Nature of the Responses

Finally, it is important to look more closely at the nature of the responses. These

have been identi�ed as nonlinear above. Besides their nonlinearity, another major

characteristic is the multiscale aspect of signals. The dynamic response signal may

indeed exhibit certain behavior at short time scales (high frequency) while it will show

another trend at longer time scales (low frequency). This is illustrated in Figure 59,

where a signal is decomposed into a signal with low frequencies and a signal with high

frequencies. Thus, when considering large time scales, the signal appears smooth and

with relatively little oscillation. On the other hand, if one considers small time scales,

which has the e�ect of �zooming in�, the signal will appear as highly oscillatory.
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Figure 59: Decomposition of a Multiscale Signal

An example found in industrial applications is described in Felix and Routex

[52], where the steady-state voltage of a 350VDC network exhibited high-frequency

components induced by the high-frequency switching of power electronics involved

in the control systems. This is illustrated in Figure 60, where at high time scales,

the signal might appear constant (350 VDC), but at low time scales it will appear

highly oscillatory around 350VDC and with spikes (corresponding to the transient

undervoltage induced by load consumption perturbations).

The multiscale aspect of dynamic signals is, therefore, a major area of investigation

of research endeavors such as the Vivace European project [4]. As emphasized in de

Weck et al.[37], it poses a challenge to the simulation of dynamic systems, as multiscale

models require small time steps as well as long simulation time windows in order to

capture the various time scales.
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Figure 60: Steady-state Voltage of a 350 VDC Network [52]

3.1.6 Simulation Time and Transient Perturbation Time

An important parameter describing a Time-Domain Simulation run is the simulation

time, which is the simulation clock time at which the simulation will stop. When sim-

ulating a dynamic system, the designer typically makes a few pilot runs to determine

the order of magnitude for the length of the transient regime (in the milliseconds, in

the seconds, in the minutes, etc.). Then the simulation time for the rest of the study

is set accordingly.

In this thesis, it is assumed that the designer knows the order of magnitude for the

length of the transient regime. Moreover, the simulation time tf will be �xed across

all the design space, in such a way as to ensure that the simulation encompasses

the entire transient regime throughout the design space. This is not unreasonable,

since the designer may make pilot runs beforehand, and since the dynamic transient

constraints typically impose a duration limit on the length of the transient regime.

Therefore, if for a simulated case the simulation time is large enough to encompass the
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transient constraint but too short to encompass the totality of the transient response,

the designer can reject this design case.

Finally, when simulating a dynamic system for the purpose of analyzing its tran-

sient response, the designer generally forces a transient perturbation to occur during

the simulation. The time tpert at which this transient event is triggered is controlled

by the designer, as will be the case in this thesis.

3.1.7 Summary and Desired Characteristics

As a summary, the generation of dynamic surrogate models for the exploration of the

design/operation space of dynamic systems subject to transient dynamic constraints

necessitates a nonlinear black-box system identi�cation approach. The models to

be generated are MISO, with static input parameters. Finally, the selected system

identi�cation approach should enable the dynamic surrogate models to capture the

potentially multiscale properties of the dynamic responses.

In addition to the above mentioned features, the selected system identi�cation ap-

proach should ideally meet certain desirable criteria. Firstly, the training time should

remain manageable. It is usually a given that the generation of surrogate models may

be a long and di�cult process, which is acceptable if the resulting e�ciency of the

models yields high payo�s in term of design/operation space exploration capabilities.

However, the speed of the training process should be kept to reasonable levels.

3.2 Benchmarking

This section presents a review of the literature on the most promising system iden-

ti�cation approaches for the problem at hand: these approaches are described and

assessed. The comparative assessment, or benchmarking, is performed according to

several criteria, derived from the discussion above.

These criteria are listed below:
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1. Universal nonlinear approximator : this measures the ability of the system iden-

ti�cation approach to model any nonlinear response with acceptable accuracy.

2. Multiscale capturing : this quanti�es the ability of the system identi�cation ap-

proach to capture the multiscale properties of the dynamic signal.

3. Training speed : this is a metric for the time it takes for the training process to

converge.

4. Algorithm complexity : this is a metric quantifying the structural complexity of

the training algorithm.

5. Adaptability to grey-box formulation: this relates to the capability of the black-

box system identi�cation approach to use prior knowledge about the behavior

of the dynamic system.

6. Surrogate simulation speed : this metric quanti�es the time it takes for the

resulting system identi�cation model to run the dynamic surrogate model. Since

the purpose of surrogate modeling is to accelerate the TDS process in order to

facilitate the Monte-Carlo Simulation, this criteria is of utmost importance.

3.2.1 Feedforward Neural Networks

Arti�cial Feedforward Neural Networks (FFNN) were introduced and extensively de-

scribed in the previous chapter. It was seen, from the proof given by Hornik [63], that

when structured with three layers and with sigmoid transfer functions in the hidden

layer nodes (or neurons), they can approximate any continuous nonlinear function

(and more generally, any integrable function).

Using a FFNN as a system identi�cation approach for the generation of a dynamic

surrogate model means treating the time t as an input parameter of the FFNN, as

illustrated in Figure 61.
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Figure 61: Time-Domain Feedforward Neural Network

Training a FFNN can be done using the Backpropagation algorithm, which is

an optimization algorithm that is quite e�cient. Because at each iteration of the

algorithm, the error is computed for all the time samples for all the training cases,

the training speed greatly depends on the number of time samples resulting from the

multiple training runs of the original TDS model. The training speed also depends on

the complexity of the architecture, i.e. on the number of nodes in the hidden layer.

This number of nodes, which is tuned by trial-and-error or by more sophisticated

iterations, drastically increases for high frequency signals. In order to show the latter

statement, the approximation with FFNN of a simple time series, with no other input

parameter for the network, will be considered here. For example, a simple sine wave

function over three periods, shown in Figure 62, is identi�ed. The FFNN architecture

approximating this time series is shown in Figure 63. One can see that the only input

node is the one corresponding to the unique input t.

Because the transfer function of the hidden nodes are sigmoid functions (the �S

curve�), the approximating output ŷ is a linear combination of sigmoid functions.

Since one sigmoid function only has one in�exion point, this means that a signal with

n in�exion points will require at least n hidden nodes to be approximated correctly.
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Figure 62: Sine Wave

Figure 63: Feedforward Neural Network for Approximating a Simple Time Series

Or, one can see it as each maximum peak requiring at least two sigmoid functions (one

ascending S curve, and one descending S curve) to be approximated. For the sine wave

example, this means a minimum of 7 nodes for only 3 periods. For multiscale signals

with high frequency components such as the controlled voltage shown in Figure 60, the

required number of nodes for satisfactory system identi�cation increases drastically,

even more so when the other inputs are added to the neural network.

The FFNN formulation is adaptable to grey-box modeling by tweaking the transfer

function of the neural network nodes. For example, if one knows that the output is
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a product of some term with the sine of t, then the transfer function of the output

node of the neural network can be multiplied by sin(t).

Dynamic surrogate models generated by FFNN are equations that are simple

functions of time and the other input variables. They are thus very e�cient to run.

Table 5: Feedforward Neural Network Assessment

3.2.2 Recurrent Neural Networks

Recurrent Neural Networks (RNN) form a popular class of system identi�cation ap-

proaches for nonlinear responses. Based on their ability to model dynamic signals

and store time-dependent e�ects, they have been applied to a wide diversity of prob-

lems related to dynamic systems, as seen in Medsker and Jain [108], or in Luo and

Unbehauen [101].

In the �eld of system identi�cation for control of dynamic systems, Narendra and

Parthasarathy showed in their seminal publication ([121]) that the use of RNN's was

a viable option. Lee et al. showed that RNN's perform better than feedforward

ANN's in approximating and identifying nonlinear signals [94]. Simple examples of

application of RNN's for the identi�cation and control of dynamic systems are given

in Sjöberg [138].

Other examples of applications of RNN's include signal �ltering and spectral es-

timation for the detection of seismic events [147], language learning in the domain of

speech recognition software [14], electric load forecasting [28] and �nancial prediction
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[56]. Interestingly, in Liang et al. [135], RNN's were successfully applied to synthesize

the sounds of traditional Chinese music instruments.

Because they present feedback loops within their neural architectures, the output

state of neurons may be dependent on the previous states of the system. This gives

the RNN the ability to store memory of previous states, and thereby to capture long

term e�ects in dynamic behaviors [108, 18]. Any neural network with a feedback loop

is a RNN, which implies that the number of possible types of RNN architectures is

virtually limitless [111]. In the Hop�eld Network, the most general RNN architecture,

all the neurons are connected to each other. Figure 64 shows a Hop�eld Network with

four neurons [130].

Figure 64: Hop�eld Network with Four Neurons [130]

As in the feedforward case, RNN's may be organized as multilayer networks.

The most general complex multilayer architectures, called Fully Recurrent Neural

Networks see all their neurons connected to each other, and are thus a particular case

of Hop�eld networks. Figure 65 shows a more simple yet very popular type of RNN

called Output Feedback Recurrent Neural Network [108].

One can see on Figure 65 that there is one feedback loop from the output layer

to the input layer. This feedback loop connects the output to two �delay neurons� in

the input layer, which store the values of y at the two previous time iterations: the
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Figure 65: Example of Recurrent Neural Network Architecture

output y at time t + ∆t thus depends on its past values at instants t and t − ∆t.

Additionally, the dynamic output y is a function of the static inputs x1and x2.

It has been shown that many types of RNN architectures are capable of exhibiting

good nonlinear system identi�cation properties. In particular, Jin et al. [72] proved

that a particular type of RNN architecture, called Globally Recurrent Neural Network

architectures, can be considered as a universal approximator for nonlinear dynamic

signals.

The learning process of a RNN can become challenging. Most of the well-established

learning algorithms derive from gradient-descent techniques such as the backpropa-

gation one discussed in a previous section. The backpropagation learning technique

is fairly straightforward to implement. However, it is an optimization approach that

has proved prone to lead to local minima, depending on the initial values given by

the optimizer [108]. As summarized by Bengio et al. in the title of their article [15]:

�Learning long-term dependencies with gradient descent is di�cult�.

Bengio et al. concludes that training RNN using gradient descent algorithms (such

as the backpropagation technique) becomes increasingly di�cult as the length of the

simulation time window increases. Therefore, the bulk of past research e�orts on RNN
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learning techniques has focused on extending and improving the backpropagation

technique for RNN, as reviewed by Pearlmutter in his comprehensive survey [126].

The work exhibits RNN gradient-descent learning algorithms that show acceptable

properties in terms of learning speed and computational complexity, while still not

achieving the performance of backpropagation with feedforward ANN's.

Besides gradient-descent learning algorithms, other optimization techniques have

been developed to train RNN's. Some have shown good results in terms of e�ciency

of the training process, such as the second-order methods presented in Dos Santos and

Von Zuben (third chapter in Medsker and Jain [108]). These optimization algorithms

are based on improved versions of the conjugate gradient method.

From the discussion above, it is clear that RNN's have levels of performance that

can di�er according to the chosen type of architecture and learning method. However,

average trends can be extracted so as to assess them with respect to the benchmarking

criteria derived above. The resulting assessment is summarized in Table 6.

Table 6: Recurrent Neural Network Assessment

3.2.3 Meijer's Dynamic Neural Networks

In the previous section, a review of recurrent neural networks was performed. It

was explained that training RNN's may be challenging; although novel methods have

improved the e�ciency of learning for RNN's, convergence rates and computational

complexity are still inferior to those for feedforward neural networks. For this reason,
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any nonlinear system identi�cation approach built on feedforward ANN's is preferable

at a �rst glance.

Meijer, in his PhD thesis [109], has proposed a new formulation of feedforward

ANN's that is capable of approximating nonlinear dynamic signals. Meijer's Dynamic

Neural Networks (MDNN) were developed in the context of electric and electronic

circuit modeling. After observing that the large simulation times of TDS models of

complex circuits impeded the thorough and e�cient behavioral analysis and optimiza-

tion of these circuits, Meijer proposed his MDNN's, which allowed him to replace TDS

circuit models by approximation models. Because these approximation models treat

the circuit holistically instead of as an aggregation of individual components, this

process is referred to as �macro-circuit� modeling in the �eld of electric and electronic

circuit analysis [43]. In essence, this is equivalent to generating surrogate models of

the dynamic system represented by the circuit.

MDNN's are extensions of multilayer feedforward arti�cial neural networks. Their

particularity lies in the fact that the neurons represent di�erential equations, thus

enabling the capture of the circuit's dynamics. The di�erential equation governing

the output yikof the i
th neuron of the kthlayer is given in Equation 20 below:

τ2 (σ1,ik, σ2,ik)
d2yik
dt2

+ τ1 (σ1,ik, σ2,ik)
dyik
dt

+ yik = F (sik, δik) (20)

where:

the σ's and the δ's are characteristic parameters of the neuron

the τ 's are �timing functions� set prior to the learning process

F is a nonlinear transfer function, typically a sigmoid

sik is the weighted sum of the outputs of the preceding layers connected to neuron

ik.
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For the ith neuron of the kthlayer, the weighted sum sik is given by Equations 21

and 22:

sik , wik · yk−1 − θik + vik ·
dyk−1

dt
(21)

=

Nk−1∑
j=1

wijkyj,k−1 − θik +

Nk−1∑
j=1

vijk
dyj,k−1

dt
(22)

where:

wijkand vijk are connection weights between the neuron j of layer k-1 and the

neuron i of layer k

θik is an o�set parameter.

The MDNN's therefore represent a cascading set of di�erential equations and can be

graphically described as shown in Figure 66.

Figure 66: Schematics of Meijer's Dynamic Neural Networks [109]

During learning, the connection weights wijk and vijk, along with the neuron char-

acteristic parameters θik, δik, σ1,ik and σ2,ik, are adjusted using a supervised learning
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approach, so that the input-output mapping approximates the training data. This

amounts to a larger number of parameters per neuron than for the common feedfor-

ward ANN's, but since MDNN's are feedforward ANN's as well, the learning process

should yield better converging rates than those of the RNN's discussed in the pre-

vious section. Meijer suggests using an extension of the traditional backpropagation

technique, associated to a gradient-descent optimizer such as the conjugate-gradient

method.

However, since the neurons represent di�erential equations, these need to be solved

at each iteration of the learning process. The time is thus discretized and a time

integration numerical solver such as the backward Euler scheme has to be employed

[9]. This considerably penalizes the learning time and the computational complexity.

The fact that the user can choose the discretization time step and that neurons can

be dedicated to di�erent kinds of dynamics (long-term vs. short term) makes the

MDNN's fairly good solutions for multiscale identi�cation.

Meijer showed that his MDNN's can be considered as universal approximators for

linear dynamic signals, as long as they are quasi-static in nature, i.e. their dynamic

is so fast that at any instant, the dynamic signal will have the same value across

the entire circuit. For example, under the quasi-static approximation, the current

has the same intensity across the circuit, regardless of whether it is an alternating

or a direct current. In practice, this quasi-static condition is almost always veri�ed

since the characteristic length of aircraft circuits is typically far smaller than the

wavelengths of signals [142]. In the case of nonlinear dynamic signals, Meijer explains

that feedback loops from the output neuron to the input neurons may need to be

added, thus transforming the MDNN's into dynamic RNN's with di�erential equations

as neurons. In this case, learning can be heavily penalized since the drawbacks of

RNN training reappear.
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Extensions of the MDNN's were proposed by [23, 128] to make the formulation

more general. This was done by proposing alternative nonlinear functions for the

transfer function F of Equation 20. It is also worth noting that allowing the transfer

function F to be customized for each neuron enables the learning process to use a

priori knowledge about the circuit/system. This is a step towards grey-box modeling

if needed.

The main drawback of the MDNN approach is that it produces a set of di�erential

equations, albeit of lower orders, approximating the original TDS models. Therefore,

in order to run a dynamic surrogate model generated with MDNN's, one needs to

solve these di�erential equations, using either analytical tools or numerical integration

methods such as those described in Chapter II. The surrogate run times can therefore

be high, which might severely prevent the MDNN's from being a good enabler for the

Monte-Carlo Simulation.

The results of the assessment of Meijer's Dynamic Neural Networks are summa-

rized in the Table 7.

Table 7: Meijer's Dynamic Neural Network Assessment

3.2.4 Wavelet Neural Networks

In the 1980s, a new mathematical tool was developed for signal processing: the wavelet

transform theory, for which a thorough introduction may be found in Daubechies
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[35]. Wavelets were originally formulated to circumvent the shortcomings of spectral

estimation tools, such as the Fourier transform, in terms of localization in time of

frequency components. More on the topic will be given further. Their elegance

and power quickly ensured their popularity. Wavelets have since been used in a

wide array of applications, related to the decomposition, �ltering, compression, and

reconstruction of dynamic signals. Perhaps the most well-known of such applications

is the creation of the JPEG2000 image compression standard [144].

The system identi�cation community has fostered the capabilities of the wavelet

transform and combined them with neural network techniques to create a new and

powerful nonlinear system identi�cation approach: theWavelet Neural Network (WNN),

also called �Wavelet Network� or more simply �Wavenet� [77]. Before explaining the

principles of wavenets, a brief overview of the underlying wavelet transform theory is

provided.

3.2.4.1 The Wavelet Transform

It is well-known that the Fourier transform decomposes a signal into a basis generated

by the sine and cosine functions. The wavelet transform acts in a similar fashion, but

with a di�erent basis, generated by a single function, which belongs to a speci�c

family: the wavelets.

The term �wavelet� originates from its French translation �ondelette�, which means

�little wave�. As this indicates, a wavelet is a function that satis�es two main condi-

tions [145]:

1. its energy is localized in a short time window

2. it contains some oscillations in time

There are numerous types of wavelets. Figure 67 shows the plots of two popular

examples of wavelets: the Morlet wavelet and the Mexican Hat wavelet.
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Figure 67: Mexican Hat Wavelet and Morlet Wavelet

The Wavelet transform theory has established that any L2 (R) function can be

decomposed into a basis formed by any wavelet ψ, called the �mother wavelet�, and

derived wavelets obtained by translation and dilation of the mother wavelet. These

derived wavelets ψa,b, called �daughter wavelets�, are thus each characterized by a dila-

tion (or scaling) parameter a and a translation parameter b, as expressed in Equation

23.

ψa,b (t) =
1√
a
ψ

(
t− b
a

)
(23)

The concepts of dilation and translation are illustrated in Figure 68, where a

mother wavelet is plotted along with daughter wavelets resulting from a dilation, a

translation, and a combination of both.

From the wavelet transform theory, a fundamental result is that any signal f can

be approximated by a truncated portion of the series of the wavelet decomposition.

This is expressed in Equation 24:

f(t) ≈
∑

wa,bψa,b(t) (24)

Reducing the original function f to its set of wavelet coe�cients wa,b is a process

called �Wavelet Transform� (WT), or �Wavelet Decomposition�. The reconstruction

of the original signal from a series of wavelet coe�cients and wavelet functions is
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Figure 68: Dilation and Translation of the Mother Wavelet

called the �Inverse Wavelet Transform� (IWT). This terminology is similar to that of

the Fourier theory, where Fourier Transforms compute series of Fourier coe�cients,

and where Inverse Fourier Transforms reconstruct the original function from the set

of Fourier coe�cients.

In the wavelet decomposition expressed in Equation 24, the dilation and trans-

lation parameters vary in a continuous fashion. The wavelet decomposition is thus

called the �Continuous Wavelet Transform� (CWT). In the same way that the Discrete

Fourier Transform discretizes the sine functions basis according through a discrete set

of frequencies, the dilation and translation parameters can be discretized to form a

discrete lattice of possible values. The wavelet transform process is then called �Dis-

crete Wavelet Transform� (DWT), and the associated signal reconstruction process

is called �Inverse Discrete Wavelet Transform� (IDWT). A formal introduction on

wavelet theory is given in Appendix A.

When one looks at Figure 68, one can start to apprehend that the dilation factor

of a wavelet relates to the frequencies captured by that wavelet. Hence the alternate

term �scaling�. Similarly, the translation factor of a wavelet characterizes the loca-

tion in time of the frequency component. Therefore, the wavelet decomposition of a

signal can be viewed as the localization in time of the various frequency components
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constitutive of the signal [35]. This is the area where the wavelet transform is clearly

advantageous compared to the Fourier transform, since the latter can only give the

frequency components present within a time window.

To help the understanding of what time-frequency localization means, one can

make the analogy with music sheets. Scaling is equivalent to varying the pitch of a

note, while translation relates to the instant at which the note is played. Performing a

wavelet decomposition is thus analogous to transcribing a piece of music into a music

sheet.

The ability to perform time-frequency localization is highly relevant for the anal-

ysis of transient signals, since the onset of a transient event will typically generate

frequency components that quickly vanish. Thus, wavelet analysis has become a

prime tool for transient and fault detection in power systems, as seen in Misrikhanov

[113], in Lee et al. [93], and in Hua and Fang [67].

Time-frequency localization is an enabler for the multiscale analysis of dynamic

signals. Indeed, the terms in the wavelet decomposition of Equation 24 can be re-

ordered so that increasing the number of terms included in the truncated approxi-

mation series is equivalent to considering smaller dilation parameter values. In other

words, re�ning the time scales is done by including more terms in the wavelet de-

composition approximation. Thus, the wavelet decomposition of the signal can be

viewed as the aggregation of secondary signals, each with a di�erent grain of time

resolution[24]. This process is called Multiresolution Analysis (MRA) and was for-

malized in Mallat [103].

So far, only the one-dimensional case has been treated. The results have been

extended to multidimensional cases with signals in L2 (Rn)(one of the dimensions

being time). For instance, Kugarajah and Zhang have constructed multidimensional

wavelets that are frames for L2 (Rn) [88]. The construction of multidimensional

wavelets is straightforward; there are a few alternative options, the most simple of
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which is the tensor wavelet, obtained by multiplying the one-dimensional wavelets.

The resulting multidimensional wavelet is given by Equation 25:

ψ̄a,b(x̄, t) = ψa0,b0 (t) .
N∏
i=1

ψai,bi (xi) (25)

where N is the number of design variables xi

a0 is the dilation parameter for t

b0 is the translation parameter for t

ai is the dilation parameter for xi

bi is the translation parameter for xi

a = (a0 , a1 , . . . , aN ) and b = (b0 , b1 , . . . , bN )

An example of multidimensional wavelet is illustrated in Figure 69. The wavelet

shown here was obtained by the tensor product of the Gabor wavelet [31].

Figure 69: 3D Gabor Wavelet [31]

Thus, for the multivariate case, the dynamic signal can now be approximated by

Equation 39.

f (x̄, t) ≈
Nw∑
k=1

wak,bk
ψ̄ak,bk

(x̄, t) (26)

where Nw is the number of wavelets in the approximation
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3.2.4.2 Wavelet Neural Networks for System Identi�cation

The popularity of the wavelet transform theory prompted its extension to the �eld of

signal approximation and system identi�cation [77]. The wavelet decomposition of a

signal f formulated in Equation 39 is readily transposable into a feedforward arti�cial

neural network formulation, in which the neurons, now called wavelons, correspond

to the daughter wavelets ψ̄a,b, as formulated by Zhang and Benveniste [162]. A

schematic of a multidimensional wavelon, with a mother wavelet ψ, is given in Figure

70. A wavelon is thus de�ned by the mother wavelet and by the scaling and dilation

parameters ai and bi.

Figure 70: Schematic of a Wavelon with Mother Wavelet ψ

These new ANN's, which build on the theory of wavelet decomposition, are termed

Wavelet Neural Networks (WNN) (or Wavelet Networks, or Wavenets). Considering

the wavelet decomposition of Equation 39, wavelons such as that described in Figure

70 can be used as neurons in the hidden layer of the neural network in order to produce

an approximation ŷ, as illustrated in Figure 92. As one can see on the architecture

diagram, the resulting neural network is a feedforward neural network.
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Figure 71: Wavenet Architecture

Originally, wavenets were developed for static function approximation [160, 71].

But they were quickly generalized to the wider �eld of nonlinear system identi�cation

[99, 161, 139, 77, 17]. Practical applications include the modeling of vehicle dynamics

[122], time-series forecasting for �nancial prediction [141], and power quality distur-

bance detection [67].

Depending on what parameters are �xed before training, WNN's can be classi�ed

in two categories: �xed grid WNN's and adaptive WNN's [17]. In the �xed grid

WNN, which stems from the DWT of signals, the dilation and translation parameters

are �xed in advance, and do not vary during training. On the contrary, the adaptive

WNN's stem from the CWT, and the dilation and translation parameters vary during

training and make take continuous values.

Training a wavenet is very similar to training an ANN. Given a set of training

data, the learning process of a wavenet will adjust, for all the wavelons, the weight w

as well as, in case of an adaptive wavenets, the values of the dilation and translation

parameters a and b, in order to minimize the regression error on the training data

[161, 162, 160].
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As shown in Judisty et al., wavenets perform very well when identifying nonlinear

dynamic systems, especially for mono-dimensional systems (where the system charac-

teristics are �xed and the experimental dynamic response is identi�ed) [77]. However,

in order to capture the time-dependencies of dynamic signals, they sometimes need

the addition of feedback loops from the output wavelons to the input wavelons, thus

transforming them in a particular case of RNN.

When in their feedforward form, the backpropagation algorithm used in sigmoid

based feedforward ANN's can be applied, and wavenets are quick to train. In the

presence of feedback loops, the learning time is penalized as the challenges of RNN's

arise here as well. Training of the WNN's also becomes more di�cult when the

number of input variables increases, as explained in Billings [17] and in Kugarajah

and Zhang [88]. Therefore, the training speed of a WNN can vary from excellent to

poor, depending on the presence of feedback and on the number of variables. In the

benchmarking activity, it will then be rated as fair.

If a priori knowledge about the system exists, this knowledge can be easily cap-

tured by adding neurons with transfer functions re�ecting the insight on the system's

behavior. For instance, if it is known that the output behavior of the system contains

a sine wave, one can add to the wavenet architecture a neuron with the sine function

as the transfer function.

One of the most valuable advantages o�ered by wavenets is their natural ability

to capture the multiscale aspect of dynamic signal. Thus, the wavelet decomposition

obtained as an output of the wavenet has a physical meaning that can help analyze

and interpret the signal.

The characteristics of wavenets are summarized in Table 8 below.

123



Table 8: Wavenet Assessment

3.2.5 Benchmarking Summary and Alternative System Identi�cation For-
mulation

The assessments of each of the potential nonlinear system identi�cation approaches

with respect to the benchmarking criteria set at the beginning of the chapter are

recapitulated in Table 9.

Table 9: Benchmarking Summary

Because wavenets can either be structured as feedforward neural networks or re-

current neural networks, they essentially rate as well as recurrent neural networks

in terms of approximation capabilities, and theoretically exhibit better learning and

computational e�ciency metrics, on par with those of Meijer's dynamic neural net-

works. However, training wavenets can become computationally cumbersome when

increasing the number of dimensions (i.e. the number of design variables xi). But it is
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in their ability to capture the multiscale dynamics of signals that wavenets fare much

better than their competitors. For these reasons, wavenets were selected as the most

promising nonlinear system identi�cation approach for the ful�llment of the research

objectives of this thesis.

Hypothesis 3 (H3): A nonlinear system identi�cation approach based on wavelet

neural networks will enable the generation of dynamic surrogate models

of the transient behavior of dynamic systems.

3.3 Contingency Plan: Formulation of an Al-

ternate Hypothesis

After benchmarking the nonlinear system identi�cation approaches, wavenets were

chosen as the most promising techniques for the generation of dynamic surrogate

models. However, training problems arose when increasing the number of dimensions

[17]. Therefore, a contingency approach will be de�ned in this section.

The basis for the formulation of this alternate approach stems from a reformulation

of the veri�cation of transient dynamic constraints. Indeed, instead of verifying that

the signal remains within the required dynamic constraints, it is su�cient to verify

that the envelope of the signal is contained within these dynamic constraints. The

envelope is constituted by two signals, hereafter called the �Sup Envelope� and the

�Inf Envelope�, de�ned such that all points of the signals are comprised between them.

The concept of envelope is illustrated in Figure 72.

In this alternate approach, only the envelopes of the signal are generated for each

case generated by the Monte-Carlo Simulation of the Time-Domain Filtered-Monte-

Carlo. Thus, time-domain overlay cells of the interactive visualization environment

(VisTRE) will only plot the envelopes of the dynamic responses, for each design case.

Thus, the new approach is equivalent to applying dynamic transient constraints

on a new dynamic system, composed of the original system and a hypothetical ��lter�
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Figure 72: Signal Envelope

that returns the envelope of the signal. The envelopes of signals vary with time,

and thus are signals themselves. In order to be computed, they need time-domain

simulation coupled with an envelope detection scheme. This is illustrated in Figure

73.

Figure 73: Equivalent System Model for Envelope Detection

Therefore, the limitations of time-domain simulation still hinder the implemen-

tation of the Time-Domain Filtered-Monte-Carlo, and dynamic surrogate models of

the envelopes will be needed to circumvent these di�culties. In a nutshell, the alter-

nate approach based on envelopes rather than the original time-domain responses is

compatible with Hypothesis 1 and Hypothesis 2. By analogy with system iden-

ti�cation, the generation of dynamic surrogate models of the envelopes will be called

�envelope identi�cation�.
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The advantage of dealing with envelopes, which are �smoother� signals, resides

in the fact that the high frequency content, corresponding to small time scales, is

removed from the original signal. Thus, the nonlinear envelope identi�cation ap-

proach does not need to be able to handle multiscale signals. From the benchmarking

summary table (Table 9), the corresponding criterion can be disregarded, and feed-

forward sigmoid-based neural networks seem to be the most promising approach for

envelope identi�cation. This can be formulated as an alternate hypothesis, Hypoth-

esis 3b, whileHypothesis 3 will be renamedHypothesis 3a. The two �competing�

hypotheses are listed below.

Hypothesis 3a (H3a): A nonlinear system identi�cation approach based on wavelet

neural networks will enable the generation of dynamic surrogate models

of the transient behavior of dynamic systems.

Hypothesis 3b (H3b): A nonlinear system identi�cation on the envelope of the

signals, using sigmoid-based feedforward neural networks, will enable the

generation of dynamic surrogate models of the transient behavior of dy-

namic systems, and the implementation of the Time-Domain Filtered-

Monte-Carlo.

3.4 Summary

In this chapter, a benchmarking was performed in order to select an appropriate

system identi�cation method for the generation of dynamic surrogate models of dy-

namic systems under transient dynamic constraints. Wavenet Neural Networks (or

wavenets) were chosen as the most promising nonlinear system identi�cation tech-

nique, for their documented ability to capture the multiscale aspect of time-domain

signals. However, feedforward wavenets may fall in the �curse of dimensionality� and

become di�cult to train as the number of design variables increases. Therefore, in

this thesis, an alternative approach will be taken, where transient constraints will be
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applied to the envelope of the system's transient response. Because the multiscale con-

tent has been removed, the generation of dynamic surrogate models of the envelopes,

termed �envelope identi�cation�, will be performed with sigmoid-based feedforward

neural networks. The two concurrent approaches are formulated in the hypotheses

below:

Hypothesis 3a (H3a): A nonlinear system identi�cation approach based on wavelet

neural networks will enable the generation of dynamic surrogate models

of the transient behavior of dynamic systems.

Hypothesis 3b (H3b): A nonlinear system identi�cation on the envelope of the

signals, using sigmoid-based feedforward neural networks, will enable the

generation of dynamic surrogate models of the transient behavior of dy-

namic systems, and the implementation of the Time-Domain Filtered-

Monte-Carlo.

In the alternate approach corresponding to H3b, the envelope of the transient dynamic

response of the system has to be obtained. Therefore, an envelope detection scheme

needs to be added at the output of the Time-Domain Simulation model of the system.

The next chapter will brie�y treat envelope detection methods for dynamic signals

exhibiting multiscale properties.
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Chapter IV

ENVELOPE DETECTION METHODS FOR

ENVELOPE IDENTIFICATION

In the previous chapter, an alternate approach was formulated in which the dynamic

response of interest is the envelope of the original dynamic response. In this formu-

lated approach, dynamic surrogate models are created for the envelopes instead of

the original response: envelope identi�cation is performed. Thus, given a candidate

architecture for the dynamic system and its Time-Domain Simulation model, an en-

velope detection scheme is needed, in order to compute the envelope of the dynamic

response produced by the original TDS model. This chapter gives a brief overview of

possible envelope detection methods that can be used.

The problem addressed in this chapter, illustrated in Figure 74, can be summarized

as selecting an appropriate method for the detection of the envelope signals (sup-

envelope and inf-envelope), given an input signal that is highly multiscale. It should

be noted that because the input signal is the output of a Time-Domain Simulation

activity, it is composed of a �nite set of points, thus forming a �nite time series

(yt1 , yt2 , . . . , ytn), also noted (y1, y2, . . . , yn). Moreover, the methods described in this

chapter will focus on the extraction of the sup-envelope, since the inf-envelope can

be obtained from the sup-envelope of the original signal multiplied by −1.

The detection (or extraction) of the envelope of a signal is a core activity in

the processing of amplitude modulated signals. Modulation is a process used in

telecommunications, whereby a signal that contains information is altered in order

to be more easily transmitted. Demodulation is the inverse process, which consists
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Figure 74: Schematics of an Envelope Detection Scheme

in extracting the information signal from the received signal. Modulating signals is

commonly used in the transmission of Radio Frequency (RF) signals (see Kundert

[90]).

One popular kind of modulation is the Amplitude Modulation (AM)process. In

AM, the signal representing the information to be transmitted, m (t), is multiplied by

a �carrier� signal c (t), which is generally a sine wave of high frequency, as described

in Equations 27 and 28 :

y (t) = m (t) .c (t) (27)

= C.m (t) .sin (ωc.t+ φc) (28)

where C is a constant, the amplitude of the carrier

ωc is the angular frequency of the carrier

φc is the phase of the carrier

In the case of an amplitude modulated signal with a sine wave carrier, the in-

formation signal is the envelope (provided the carrier frequency is high enough) of

the modulated signal, divided by the constant C. This is illustrated in Figure 75.

Thus, the extraction of the information signal (demodulation) consists in detecting

the envelope of the modulated signal.
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Figure 75: Amplitude Modulated Signal with a Sine Wave Carrier

4.1 Simple Methods for Envelope Detection

In this section, simple methods for envelope detection are described. First, a method

involving peak detection is described, which will be called the �sliding window method�.

Then, a more sophisticated method, based on the Hilbert Transform, is introduced.

4.1.1 Sliding Window

The �rst method for envelope detection described here is the sliding window method.

The idea is to divide the signal according to n∆t time windows of a certain time length

∆t. For each window, the maximum value taken by the signal is found and kept as a

point of the envelope. The envelope is then obtained by linear interpolation between

these n∆t points. This is illustrated in Figure 76.

Figure 76: Sliding Window Method
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The envelope obtained by the sliding window process can be smoothed by per-

forming a polynomial interpolation instead of a linear one, or by performing a moving

average on the resulting envelope, i.e. by taking the average of the envelope, at each

point in time, over its contiguous region. This smooths the e�ect of any abrupt

change, which is not desirable for the study of transient regimes.

Also, one can see on Figure 76 that the envelope obtained by the sliding window

method does not guaranty that all points of the signal remain below the envelope.

However, when the window length is adjusted, one can see, as illustrated in Figure

77, that the computed envelope can represent the behavior of the signal more closely.

Figure 77: Sliding Window Method with Smaller Window Size

As was hinted at in the previous paragraphs, the accuracy depends on the rate

of variation of the signal. If the latter is high, then the window length needs to be

small in order for the envelope to carry any physical signi�cance. However, if the

window length is too small, the envelope will �t the signal more and more, to the

point that it might lose its purpose of �ltering out the small time scales. This is

a particular challenge for the envelope detection of transient responses since these

typically exhibit high rate of variation around the transient perturbation time, thus

requiring small window length for the sliding window to be applied e�ectively.
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4.1.2 Hilbert Transform Based Envelope Detection

A more sophisticated and widely used method for the extraction of envelopes of

amplitude modulated signals is the envelop detection method based on the Hilbert

transform. An overview of the method can be found in Ktonas and Papp [87]. As

its name implies, the method relies on the Hilbert transform of a signal. The Hilbert

transform f1 (t)of a function f (t) is given by Equation 29:

f1 (t) = − 1

π
PV

ˆ +∞

−∞

f (x)

t− x
dx (29)

where the notation PV
´
refers to the Cauchy principal value :

PV

ˆ +∞

−∞
f (x) dx = lim

R→+∞

ˆ +R

−R
f (x) dx (30)

The envelope m (t) of a signal can be given analytically by Equation 31:

m (t) =

√
f (t)2 + f1 (t)2 (31)

The envelope detection method using the Hilbert transform is very convenient

because it gives an analytical solution. Also, the Hilbert transform, which in fact

shifts the signal by a phase of 90o, is generally computationally e�cient to calculate.

However, this method is only accurate for bandpass signals, i.e. for signals with

frequency spectra that are compactly supported (zero outside a �nite interval), with

supports that do not include zero. Figure 78 shows an example of the frequency

spectrum of a bandpass signal. This condition means that the Hilbert transform

envelope detection method is not suitable for signals that contain a DC component

(low frequencies).
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Figure 78: Frequency Spectrum of a Bandpass Signal

4.2 Envelope Detection Method Based on Mul-

tiresolution Analysis with Wavelets

In the previous sections, two simple methods were introduced: the sliding window

method and the Hilbert transform based method. It was seen that the multiscale

aspect of the signal and the potential high rate of variation induced by transient per-

turbations pose a challenge to the application of those methods. Because wavelets

allow to deal with multiscale signals and separate the scales, they have been increas-

ingly used within envelope detection methods, as shown in Sheen and Hung [134].

4.2.1 Multiresolution Analysis

By using a Multiresolution Analysis (MRA), a process that was brie�y introduced

in Chapter III, the scales of a multiscale signal can be separated. The MRA process

based on wavelets will be explained in more detail here. As seen in Mallat [103],

discrete lattices of wavelets can be used to study the signal at di�erent scales. Indeed,

if one takes a mother wavelet ψ , the family formed by the set de�ned in Equation

32 is a complete orthonormal basis of L2 (R), provided the mother wavelet veri�es

certain conditions. In this case, the family of daughter wavelets are said to o�er a

multiscale resolution.

{
ψj,k (t) =

1√
2j
ψ

(
t− k.2j

2j

)
: i , j εZ

}
(32)
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In the notation given above, the scaling factor is s = 2j and the translation factor

is τ = k.2j. The relationship between the scaling factor and the translation factor

shows that their discretization forms a kind of lattice of allowable values that is

referred to as a �dyadic grid�. The dyadic grid, representing the values taken by the

scaling and translation factor is given in Figure 79. As one can see, as the s decreases

(j decreases), the resolution obtained from the wavelet decomposition increases.

Figure 79: Dyadic Grid of Scaling and Translation Factors in a MRA

The orthonormality of the MRA implies that the discrete wavelet decomposition

in this basis is unique and is given by Equation 33:

y (t) =
∑
jεZ

∑
kεZ

〈y, ψj,k〉 . ψj,k (t) (33)

The coe�cient of the wavelet decomposition expressed above is theoretically ob-

tained with an integral. The associated numerical complexity can be avoided by the

introduction of an auxiliary function, called �scaling function�, that exhibits certain

properties. For a given MRA associated with a mother wavelet ψ, there exists a

unique scaling function ϕ [103, 35, 69, 73]. Given a scaling function ϕ, daughter

scaling functions are de�ned in the same fashion as the daughter wavelet functions

were in Equation 32.
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In literature, there are many options for the selection of appropriate mother

wavelets for MRA. One of the most used sets of wavelets is the set of functions

that were constructed by Daubechies [35]. The Daubechies set of wavelets, called

Daubechies wavelets, was constructed recursively, and the couple of scaling and

mother wavelet functions for the fourth order (noted �db4�) is plotted in Figure 80.

Figure 80: Daubechies Wavelet and Scaling Functions at the Order 4 [105]

The scaling functions complement the mother wavelets in the wavelet decomposi-

tion, so that for a given desired resolution J , the function f can be expressed as in

Equation 34.

f (x) =
∑
kεZ

cJ,k.ϕJ,k (x) +
∑
j≥J

∑
kεZ

dj,k.ψj,k (x) (34)

From the equation above, one can see that the �rst term, related to the scaling

function, contains information on the function at the resolution J , while the second

term contains information on the �ner scales j ≥ J . Thus, the �rst term can be

taken as the approximation of f at the resolution level J and the second term can be

considered as the detail of the function f for higher resolutions. The approximation

at level J and the detail at level J are noted AJ (f) and DJ (f).

An essential property of the combination of scaling and wavelet functions is that

they exhibit �self-similarity� laws, as expressed in Equations 35 and 36for levels j and

j + 1:
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ϕ
(
2jt
)

=
∑
k

hj+1 (k) .ϕ
(
2j+1t− k

)
(35)

ψ
(
2jt
)

=
∑
k

gj+1 (k) .ϕ
(
2j+1t− k

)
(36)

These self-similarity laws imply that the decomposition at any level can be re-

cursively computed from the decompositions at higher levels J , as seen in Equation

37.

AJ = AJ+1 +DJ+1 (37)

This means that the approximation at the resolution J + 1 is obtained by the

subtracting the details, with high frequency components, to the approximation at

higher resolution J . This is represented in the MRA decomposition tree of Figure 81.

Figure 81: Multiresolution Analysis Decomposition Tree [105]

The process that computes the approximation and detail at level J can be obtained

in a computationally e�cient manner by applying �lters to the approximation at level
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J − 1: a lowpass �lter (keeping the low frequencies) for the computation of AJ and

a highpass �lter (keeping the high frequencies) for the computation of DJ . When

dealing with discrete signals, such as the output of a Time-Domain Simulation, the

outcome of each �ltering process is downsampled by a factor 2, which is justi�ed by

the fact that each level increment corresponds to going up the scales of the dyadic

grid of Figure 79, with half the number of time samples.The whole process constitutes

the basis of the Fast Wavelet Transform (FWT) [35, 103].

4.2.2 Envelope Detection Method Based on MRA Decompositions

It was seen that by applying a MRA, scales can be segregated and noisy signals can

be separated into a global trend (the result of the approximation AJ at a certain level

J) and the noise (the sum of Dj for all levels j ≤ J), centered around zero. This

decomposition is illustrated in Figure 82.

Figure 82: Signal Denoising

As one can see from the �gure, the noise signal, corresponding to the ripple around

the global trend and resulting from the aggregation of details, has envelopes that

present lower rates of variation. Therefore, the sliding window method can be applied

with more precision to the ripple signal.
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Therefore, the envelope (sup or inf) of the signal will be obtained by summing

the trend and the corresponding envelope of the ripple signal. The overall envelope

detection method is summarized in Figure 83.

Figure 83: Envelope Detection Method Based on MRA

4.3 Summary: MRA-Based Envelope Detection

Method for Envelope Identi�cation

In this chapter, envelope detection methods were discussed. The �traditional� meth-

ods that were discussed are the sliding window method (or �windowing method�), and

the Hilbert transform method.

139



Then the envelope detection method used in this thesis was introduced: it consists

of using a wavelet-based multiresolution analysis (MRA) to separate the time-domain

signal into an �approximation signal�, which gives the global trend of the transient

response, and a ripple signal, corresponding to the aggregation of all the �detail

signals� obtained in the course of the MRA. The envelope of the original signal is

the sum of the approximation and the envelope of the ripple signal. The latter is

obtained by the application of a sliding window method.

In the alternate approach of this thesis, resulting from the alternate Hypothesis

3b, sigmoid-based feedforward neural networks are generated in order to approximate

the envelope of the signal, for which transient dynamic constraints are then evaluated.

There are potentially several options for the application of neural networks. Neural

networks can be trained in order to �t the envelope of the original signal, output of

the summation in Figure 83. However, since in the process, the approximation (at

a certain resolution level) is generated, one might as well keep this information for

the subsequent transient response analysis activity in VisTRE. Thus, a �rst neural

network will be trained to �t the approximation (trend signal). Moreover, the en-

velopes of the ripple signal typical exhibit less rate of variation, therefore presenting

the advantage of being easier to �t. Therefore, two neural networks will be trained

to �t the sup-envelope of the ripple, and its inf-envelope. Thus, for each dynamic

response of interest (e.g. voltage, current, etc.), three dynamic neural networks will

be generated, as illustrated in Figure 84, which shows how the envelope detection

method is used in the context of envelope identi�cation.

Naturally, the envelope of the original signal will be obtained by summation of

the output of the neural network for the approximation signal and the outputs of the

neural networks for the ripple envelopes. The process is illustrated in Figure 85.
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Figure 84: Envelope Identi�cation Process

Figure 85: Envelope Reconstruction with Dynamic Surrogate Models
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Chapter V

HYPOTHESES AND METHODOLOGY

FORMULATION

The objective of this thesis is to develop a methodology that facilitates the integration

of transient related constraints earlier into the design speci�cation of aircraft dynamic

systems. Several challenges were identi�ed, and these challenges led to the formulation

of research questions that allow the decomposition of the problem into manageable

ones. The investigation of the research questions in turn serves as sub-level objectives

for this thesis. Based on observations and a literature survey on the topic of system

identi�cation, a set of hypotheses has been formulated as answers to the research

questions. These hypotheses will translate into a design methodology, parts of which

have already been described in the previous chapters.

5.1 Recapitulation

Before the proposed methodology is described, the research questions and the hy-

potheses are restated below, as a way to clearly establish the thought process that

led to its formulation.

Research Objective 1: Develop a methodology that integrates transient regime

analysis and pertaining dynamic constraints into the design synthesis of

aircraft dynamic systems.

Research Question 1 (RQ1): How can one e�ciently and thoroughly explore the

design and operation spaces while accounting for dynamic responses and

pertaining uncertain dynamic constraints?
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Hypothesis 1 (H1): A data farming approach, based on the integration of time

as a dimension in the the Filtered-Monte-Carlo approach, will conduce to

the e�cient and thorough exploration of the design/operation space for

dynamic signals with dynamic constraints.

Research Question 2 (RQ2): How can one make the system simulation process

more e�cient in order to speed up the optimization/veri�cation of dy-

namic systems and facilitate the implementation of the proposed Time-

Domain Filtered Monte-Carlo technique?

Hypothesis 2 (H2): Dynamic surrogate modeling of time domain simulation mod-

els will enable the e�cient implementation of the Time-Domain Filtered

Monte-Carlo technique for the exploration of design/operation space of

dynamic systems subject to dynamic constraints.

Research Question 3 (RQ3): What system identi�cation approach is suitable

for the generation of dynamic surrogate models in the context of tran-

sient time domain simulation of dynamic systems subject to dynamic

constraints?

Hypothesis 3a (H3a): A nonlinear system identi�cation approach based on wavelet

neural networks will enable the generation of dynamic surrogate models

of the transient behavior of dynamic systems.

Hypothesis 3b (H3b): A nonlinear system identi�cation on the envelope of the

signals, using sigmoid-based feedforward neural networks, will enable the

generation of dynamic surrogate models of the transient behavior of dy-

namic systems, and the implementation of the Time-Domain Filtered-

Monte-Carlo.
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5.2 Methodology

The hypotheses formulated in the previous section can be transposed into a method-

ology for the design of aircraft dynamic systems subject to transient-related dynamic

constraints. This methodology consists of several steps that are detailed in the follow-

ing sections. Because an alternate approach, based on the analysis of the envelopes

of the dynamic response, was formulated, the methodology formulated in this thesis

consists of two competing approaches, and some of the steps outlined hereafter will

be subdivided into competing sub-steps.

5.2.1 Step 1: De�ne the Problem

First, it is crucial to identify the parameters that will be considered during the design

of the dynamic system. Most of these parameters will be directly derived from the

requirements issued by the earlier design phases. These parameters can be grouped

into two categories: the responses and the input variables.

The responses are the parameters that are being optimized or that are under

constraints. For each response, the designer has to determine whether they are static

or dynamic, and determine the constraints that regulate them.

The input variables are the controllable parameters that have an impact on the

responses. For each response, the design team has to ask the following questions:

�what are the factors in�uencing the response? � and �what are the ranges of variation

for these input variables? �. For the dynamic responses, it is essential to determine the

operation scenarios that might trigger transient behaviors, and determine the input

variables that have an in�uence on the shape of these transient behaviors.

5.2.2 Step 2: Create the Modeling and Simulation Environment

The next step consists in setting up a M&S environment. From the functional and

physical speci�cations passed from the previous design phases, and in light of the

parameters and constraints identi�ed in Step 1, the design team now creates models
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capturing the behavior of the responses with respect to the input variables. As seen

in the �rst and second chapters, if the dynamic responses are subject to transient-

related dynamic constraints, a time-domain simulation (TDS) environment has to be

created in order to compute their time-domain behavior.

In general, at this phase, the design team has identi�ed a physical decomposition

that can potentially meet the design requirements. The system is thus composed of

elementary components, for which simulation models are often already available in

popular TDS software packages such as Simulink [106] or Dymola [45].

As seen in Chapter II, setting up a TDS framework requires the designer to

make choices regarding the simulation time step and time window. The designer

has to choose between a �xed-increment time advance mechanism or a next-event

one: whether the time step will be �xed or varied in an adaptive manner over the

course of the simulation. This has a direct impact on simulation run time. But

because the outputs of dynamic surrogate models are explicit functions of time, the

choice of the time-advance mechanism of the original TDS environment has no im-

pact on the simulation run time of the dynamic surrogate models. Thus, for the

purpose of generating data for the training of the surrogate models, one might use

�xed-increment time on the original TDS tool, without preventing the designer to

use the resulting dynamic surrogate model with a next-event type of time advance

mechanism.

Because �xed-increment time advance is a particular case of the next-event type,

the latter would be preferred. But for the generation of wavenets (subjects of H3a),

a �xed-increment time advance mechanism is chosen, as it simpli�es the way data is

treated during training.
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5.2.3 Step 3: Test Planning - Design of Experiments

As explained in the previous chapters, the design and operation space exploration

environment will not directly run the time-domain M&S environment created in Step

2. Instead, a dynamic surrogate model of the latter, generated with wavenets (H3a)

or sigmoid-based feedforward neural networks on the response envelopes (H3b), will

be created. This is done in two phases: �rst, in a process called �test campaign�, the

TDS model is run multiple times in order to compute the behavior of the responses

for various design/operation scenarios. The resulting collection of inputs and outputs

constitutes the training data. The second phase is the training (or learning), where the

neural networks are set up and optimized so that the neural architecture approximates

the TDS outputs (or the envelope) for the training data. In Step 3, the design and

operation scenarios (or test cases) that will be simulated during the test campaign

are determined. The output of this step is thus a test plan.

In system identi�cation, the input variables are often dynamic, and the training

data is created by running the TDS model at random input settings: for each case,

the dynamic input signals are allowed to �uctuate randomly [148]. However, the in-

puts here are considered to be static, as explained in Chapter III. Therefore, a more

sophisticated approach will be used to create the test plan: Designs of Experiments

(DoE). DoE's are statistical techniques that allow for an e�cient sampling of the

design and operating space with a minimal number of tests [117]. Because of the

way the variable settings are arranged, it is possible to isolate the e�ects of variables

independently from one another. For a given number of input variables, there are

several possible designs [59]. The choice of the design depends on the number of runs

that can be a�orded, and on where in the design and operating space the attention

is focused. In the context of neural network training, Latin Hyper Cube (LHC) de-

signs (or other �space-�lling� designs) are generally favored, as they e�ciently sample

the entire input space without creating much bias of the resulting model towards a
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particular input variable [159]. LHC's are a generalization of the well-known Latin

Squares, in which two cells that belong to the same row or column cannot have the

same value. In LHC's, the number of tests to be performed is selected in advance.

Figure 86 depicts an example of LHC sampling in the case of two dimensions. In

this �gure, the points were obtained randomly and rearranged in such a way that the

latin square condition (2 points cannot have the same value of x or y) is satis�ed. It

is a case of Random Latin Hyper Cube (RLHC).

Figure 86: Random Latin Hyper Cube Design for Two Dimensions [12]

In order to sample the design space more thoroughly, LHC designs can be improved

by an optimization process [124, 96]. The result is then called Optimal Latin Hyper

Cube (OLHC). Given the number of design variables and the number of desired runs

m, corresponding to settings of design variables, the algorithm will place them design

points in the design space and maximize the minimum distance between points [159].

This will e�ectively �spread� the points across the design space. In Bates et al., the

example of Figure86 was optimized using a genetic algorithm. The resulting OLHC

is given in Figure 87.

The DoE produces a test table describing the runs that will be performed in order

to produce data that will be used subsequently during training, in order to generate

dynamic surrogate models. As was seen in the �gure depicting the generic process
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Figure 87: Optimal Latin Hyper Cube Design for Two Dimensions [12]

for a simulation study (Figure 48), a model needs to be validated. Therefore, the test

plan generated by this step includes, besides the DoE cases (called training cases),

a set of additional cases that will be run in order to obtain data points that will

be used to validate the approximation capability of the dynamic surrogate models.

These additional cases, called validation cases, are generated randomly.

As mentioned in previous sections, when simulating a dynamic system with a TDS

model, an important parameter to consider is the simulation sampling time for the

discretization of the problem. This step should de�ne, along with the test plan, the

sampling time intervals at which the various design/operation scenarios should be

simulated.

5.2.4 Step 4: Test Campaign - Collect the Training Data

In Step 4, the test plan designed in Step 3 is carried out so as to obtain the transient

behavior of the signals of interest for each test case, as well as the static responses

that will be used to populate the static scatterplot of the Visual Transient Response

Explorer (VisTRE), the interactive visualization environment de�ned in Chapter II.

For the static responses, the output of step 3 is a set of matrices, one for each static

response of interest, giving the response value for each case of the test campaign. For

each static response Rk (e.g. weight, cost, etc.), the results of the test campaign are
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lumped into a vector
(
Rk

1 , R
k
2 , . . . , R

k
m

)
,where m is the number of test cases in the

test plan generated by the DoE in step 3.

For the dynamic responses, which will populate the innovative time-domain cells

of VisTRE, the output of step 3 is a set of matrices, where each matrix contains the

time behavior for a particular dynamic response. This is illustrated in Figure 88.

Figure 88: Test Campaign Output for the Dynamic Response Y k

Now the data needs to be processed and arranged in such a way that it is ready

for the subsequent generation of dynamic surrogate models. The process will di�er

depending on whether the wavenet-based methodology or the envelope-based one is

implemented.

5.2.4.1 Data Postprocessing for Wavenet System Identi�cation (H3a Method)

Because the wavenets deal directly with the dynamic outputs of the TDS activity

of step 3, little postprocessing is needed. For each dynamic response yk (t), the time

series produced by each test case in the test campaign are lumped into a time-domain

training matrix. This is illustrated in Figure 89. One can see that if there is only

one time sample simulated during the test campaign, then the time-domain training

matrix is reduced to a single column matrix, similar to the training matrix obtained

for a static response R described above. This is coherent since a signal simulated for

only one time instant should be considered as a static response.
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Figure 89: Training Data Collection for the Dynamic Response Y k

5.2.4.2 Data Postprocessing for Envelope Identi�cation (H3b Method)

In the alternate method, the data resulting from the test campaign needs to be

processed in order to facilitate the training of the neural networks. Thus, the envelope

detection scheme, discussed in Chapter IV and described in Figure 84, needs to be

applied to each test case of the test campaign. For each test case, this produces

three time series per dynamic response: one for the trend of the signal, one for the

sup-envelope of the ripple, and one for the inf-envelope of the ripple. These time

series will be the input to the training activity of the sigmoid-based feedforward

Arti�cial Neural Networks (ANN). However, in order to make the training data less

heavy to handle, subsampling of the time series (for the trend and ripple envelope) is

performed. Because the transient perturbation often induces high rates of variation,

the sampling will be �ner around the perturbation instant, so that as to introduce

a bias in the training of the ANN's. As a result, the ANN's will be able to capture

the behavior around the transient perturbation with more accuracy. The concept of

adaptive sampling rate is illustrated in Figure 90.

At this stage, for each test case of the test campaign (DoE table and validation

cases), this step has produced three time-series (of the trend and the two envelope

signals of the ripple) per dynamic responses. These time series need to be aggregated
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Figure 90: Subsampling of the Trend Signal

and arranged in order to be handled by the neural network training procedures.

The outcome of this step is therefore a set of three training matrices per dynamic

response: one training matrix for the training of the signal trend neural network

(ANN_Trend), one training matrix for the training of the ripple sup-envelope neural

network (ANN_RippleSup), and one training matrix for the training of the ripple

inf-envelope neural network (ANN_RippleInf).

During training of the sigmoid-based feedforward neural networks, the time pa-

rameter t is treated in the same manner as design variables xi are treated. Therefore,

each training case of the training procedure will not be the full (subsampled) output

signal of a test case of the test campaign, but a sample at an instant t of these output

signals. Therefore, if the number of test cases run in the test campaign of step 4 is

m, and if the number of sampled points obtained after subsampling the ith signal is

ni, then the training matrix contains
∑m

i=1 ni rows, corresponding to actual training

cases. This is illustrated in Figure 91.

151



Figure 91: Training Matrix for the Trend Signal of the Dynamic Response Y k

5.2.5 Step 5: Create Dynamic Surrogate Models - Train the Neural Net-
works

After the test campaign, the collection of the training data and its preparation,

the training (or learning) process of the wavenet (or, for the alternate method, the

sigmoid-based feedforward neural networks) can start. The process described in this

step applies to one dynamic response y (with samples Y ), and should be repeated for

each dynamic response yk. Learning is an optimization process in which an objective

function, modeling the total regression error, is minimized. There are multiple ways

to formulate the regression error. Introduction of various possible error metrics is

given in Sjoberg et al. and in Judistky et al. [139, 77]. As mentioned in Chapter

III when discussing the training of feedforward neural networks, popular choices of

regression error are based on MSE. This will be the case in this methodology, where

the formulation adopted here is adapted from Zhang and Benveniste [162], and given

in Equation 38.

Err =

√√√√ m∑
i=1

∑
j

(
Yi,j − Ŷi,j

)2

(38)
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where Yi,j is the training data value of the dynamic signal for the ith test case

at the instant tj

Ŷi,j is the regressed output of the wavenet for the ith test case

at the instant tj

The learning process, which is iterative in nature, is similar for the training of

the wavenets on the time-domain signals and for the training of the neural networks

on the trend and ripple envelopes of the signal. The training processes for both

competing approaches are now described.

5.2.5.1 Training the Wavenets

The input of the training process is the training matrix pictured in Figure 89. The

objective of the process is to determine a wavenet architecture that produces an

output that best approximates the training matrix. This architecture is de�ned by the

number of wavelons Nw in the hidden layer, the values of the scaling and translation

coe�cients, and the values of the weights of the connections between wavelons. Recall

the equation of the wavelet decomposition, which the wavenet implements:

y (x̄, t) ≈
Nw∑
k=1

wak,bk
ψ̄ak,bk

(x̄, t) (39)

where x̄ = (x1 , . . ., xN )is the vector of design variables

Nw is the number of wavelets in the approximation

ak = (ak ,0 , ak ,1 , . . . , ak ,N ) are the scaling coe�cients of wavelet k

bk = (bk ,0 , bk ,1 , . . . , bk ,N ) are the translation coe�cients of wavelet k

wak,bk
is the weighting coe�cient associated to wavelet k
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Figure 92: Wavenet Architecture

Each wavelet in the equation above is a multidimensional wavelet, that is modeled

by a wavelon in the wavenet architecture, recalled in Figure 92, where the wavelons

are represented as the rounded rectangles.

As with any neural network, training the wavenet is an iterative process. First,

a wavenet architecture, with a number of wavelons, is assumed. Given this archi-

tecture, the wavenet output Ŷi,j, and thus the regression error Err, depends on the

values of the wavelon connection weights w and the wavelon dilation and translation

parameters a and b. During training, these parameters are grouped into a vector θ̄,

so that the error Err is now a function of θ̄ only. Learning can now be formulated

as an unconstrained optimization process where the vector θ̄ is adjusted in order to

minimize the regression error Err
(
θ̄
)
. Here, a conjugate-gradient optimization algo-

rithm will be used. If the regressive performance of the wavenet is not satisfactory

after convergence of the optimization algorithm, the process is reset and repeated

with a higher number of wavelons. The overall process for the training of wavenets is

summarized in Figure 93. At the outset of the wavenet learning process, the wavenet

output neuron provides an approximation of the dynamic signal, thus constituting a

dynamic surrogate model of the dynamic system.
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Figure 93: Wavenet Training Process

5.2.5.2 Training the Feedforward Sigmoid Neural Networks

For the alternate approach, derived from Hypothesis 3b, traditional sigmoid-based

feedforward neural networks are trained in order to approximate the trend signal of

the dynamic response, the sup-envelope of the ripple, and its inf-envelope. Training

these feedforward neural networks is a process similar to training wavenets. In Figure

94, the architecture of the neural networks to be trained is recalled.
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Figure 94: Dynamic Feedforward Neural Network

The input of the training process is a training matrix depicted in Figure 91. The

objective of learning is to determine a neural network architecture that minimizes

the error for the points corresponding to the training matrix. A neural network

architecture is de�ned by the number of neurons in the hidden layer, and the weights

w and b of the connections (or synapses) between neurons (cf. Figure 51 of a neuron

in Chapter II for exact descriptions of w and b).

As with the wavenets, �rst, a number of neurons in the hidden layer is assumed.

Then, for this architecture, the synaptic weights w and b are optimized in order

to minimize the MSE-based error metric de�ned in Equation 38. The optimization

process is carried out using the widely popular backpropagation algorithm, presented

in detail in Appendix B. The overall process for the training of neural networks is

summarized in Figure 95.
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Figure 95: Neural Network Training Process

Finally, the same process is used to create surrogate models on the static responses

Rk, which will be used to populate the static scatterplot in VisTRE, the interactive

visualization environment of the Time-Domain Filtered-Monte-Carlo approach for-

mulated in Chapter II.

5.2.5.3 Check the Goodness of Fit

Whether dynamic surrogate models have been generated for the output transient

responses or for their envelopes and trend (as in the alternate approach), the regressive

performance of the resulting neural networks needs to be assessed, in order to gain

con�dence on their approximating capabilities. The process is called the veri�cation

of the goodness of �t. The evaluation of the goodness of �t is done on the data that

was used for training the neural networks (resulting from the DoE). This measures

how well the training optimization process succeeded. In parallel, the goodness of �t

is also evaluated for the random validation cases. This validation test measures how

well the surrogate model can be generalized to the full design space.

157



The outcome of the evaluation of the goodness of �t is thus a margin of con�dence

with which the user may use the parametric surrogate models. If the goodness of �t

is judged unsatisfactory, then the surrogate models should be rejected and the neural

networks should be trained again, with di�erent architectures. Checking the goodness

of �t consists of verifying several �tting parameters and plots, as seen in Kirby [83].

The �rst statistic to check is the coe�cient of determination (R-square, or R2),

which measures how much of the data is explained by the regression. By de�nition, R2

is lower than 1 and can be negative for non-linear regression. An R2 of 1 means that

the regression �ts the data perfectly, while a negative R means that the regression

induces more error than just taking the mean of the data (cf. Equation 40):

R2 ≡ 1− SSE

SST
(40)

where SSE is the sum of squared errors (or residual sum of squares)

SST is the total sum of squares

SSE and SST are de�ned by the following equations:

SSE ≡
∑
i

∑
j

(
Yi,j − Ŷi,j

)2

(41)

SST ≡
∑
i

∑
j

(
Yi,j − Y

)2
(42)

where Yi,j is the value of the response resulting from the test campaign

Ŷi,j is the corresponding value predicted by the surrogate model

Y is the mean of all the Yi,j's

Looking at the value of R2 is not su�cient. Indeed, the �t can be perfect (R2=1)

while not representing the physics of the problem. For example, a sine wave can be
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used to �t 3 points that are aligned, as illustrated in Figure 96, where both the green

sine wave and the black line �t the red data points perfectly (R2=1 in both cases).

Thus, one of these regressions is misleading in terms of representation of the physics.

This problem is particularly acute for the present study since the transient signals are

often multiscale by nature. This phenomenon, where data points are regressed to the

point that the physics of the problem is no longer captured, is called over�tting. In

order to check how well the regression represents the physics of the problem, one must

consider the random validation points and evaluate how well they are predicted by

the regression equation. Therefore, R2 is also evaluated while including the validation

cases.

Figure 96: Illustration of Over�tting

The second way of measuring the goodness of �t is to look at the �Actual by

Predicted� plot (cf. Figure 97). In this graph, each point represents a test case,

training or validation. For each point, the x-axis value is the value ŷ predicted by

the regression and the y-axis value is the actual one y, computed during the test

campaign by the TDS model (and the envelope detection scheme for the alternate

method). For a perfect regression, where those values are equal, the data point lies

on the diagonal line y = ŷ. Therefore, for a good �t, the data points are distributed

closely to the line. In red are the points of the training set, while the blue points

correspond to the random validation test cases. Since the training points are used in
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Figure 97: Actual vs. Predicted

the tuning and optimization of the neural networks, they are typically closer to the

diagonal line than the validation points are.

The �Residual by Predicted� chart (cf. Figure 98) plots the residual error e = ŷ−y

(the di�erence between the regressed value and the actual value) against the predicted

value of the response. For a good �t, the points should be randomly distributed

around the vicinity of the horizontal line e = 0. If, on the contrary, an identi�able

pattern emerges, then it can be inferred that the regression fails to take into account

e�ects such as interactions among the variables.

Another way to look at the regression error is to plot the distribution of relative

error, given in Equation :

Relative error =
ŷ − y
y

(43)

Ideally, in order to have con�dence in the model, the error distribution must have

a normal distribution shape, centered on 0, and the standard deviation must be low.

The desired shape for the error distribution is pictured in Figure 99. A low prediction

error on the training points, indicated in the Model Fit Error (MFE), ensures that the

regression is accurate. When validation points are included in the MFE, the Model
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Figure 98: Residual vs. Predicted

Figure 99: Desired Distribution Shape for MFE and MRE

Representation Error (MRE) is evaluated. A low prediction error on the validation

points, indicated in the MRE, ensures that the regression can be interpolated and

thus can be used as a good representation of the physics of the system. Thus, the

MFE and MRE give a direct visualization of the con�dence that the designer can

have in the accuracy and representativity of the dynamic surrogate model.

5.2.6 Step 6: Perform a Monte-Carlo Simulation Using the Dynamic
Surrogate Models

The outcome of Step 5 is a set of dynamic surrogate models that approximate the

transient behavior of the dynamic system. The design process can now leverage the

e�ciency of those surrogate models to generate the behavior curves needed for the
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thorough exploration of the design/operation space via the Time-Domain Filtered

Monte-Carlo technique.

In Step 6, these behavior curves are generated with a Monte-Carlo simulation.

As explained in Chapter II, uniform distributions are applied to the static input

variables. The Monte-Carlo engine uses a random number generator to draw NMC

design/operation scenarios that sample the entire design/operation space. The num-

ber of random scenarios NMC is chosen arbitrarily. It should be assigned a high

enough value so that the generated design scenarios cover all regions of the design

space.

For each of these scenarios, the dynamic surrogate models are run, taking advan-

tage of their e�ciency. Thus, the outcome of Step 6 is a set of NMC static data points

(one set per static response) as well as a set of time-domain signals. In the case of

the wavenet-based methodology (from Hypothesis 3a), NMC behavior curves per dy-

namic response are generated. In the alternate approach, based on the approximation

of envelopes (from Hypothesis 3b), 3.NMC behavior curves per dynamic response are

generated: NMC signals representing the trend of the transient response, NMC signals

representing the sup-envelope of the signal ripple, and NMC signals representing the

inf-envelope of the signal ripple.

5.2.7 Step 7: Populate the Interactive Visualization Environment

Once the behavior curves and the static data points have been generated by the

Monte-Carlo simulation engine coupled with the dynamic surrogate models, they can

now be imported into VisTRE, the interactive data farming visualization environment

that was discussed in Chapter II (cf. Figure 42). In the case of the alternate approach

stemming from Hypothesis 3b, the 3.NMC behavior curves (per dynamic response) are

combined in order to generate the NMC sup-envelopes of the dynamic response and its

NMC inf-envelopes, in the process described in Figure 85. The NMC reconstructions
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performed in the Monte-Carlo Simulation is illustrated in Figure 100. The resulting

visualization environment in VisTRE is illustrated in Figure 101. At this point, the

stage is set for interactive design space exploration and the evaluation of dynamic

transient constraints.

Figure 100: Envelope Reconstruction after the Monte-Carlo Simulation

Figure 101: VisTRE Populated with the Outputs of the Monte-Carlo Simulation
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5.2.8 Step 8: Explore and Filter the Design/Operation Space

At this stage, the behavior curves and the static data points have been imported into

the interactive visualization environment VisTRE. The user can now take advantage

of the capabilities of the environment to explore the design/operation space, and

visualize correlations between parameters.

In addition to the insight on the design/operation space that it may o�er, the

interactive visualization environment allows the designer to add static and dynamic

constraints, and �lter-out the static design points and dynamic behavior curves that

do not meet these constraints, as explained in Chapter II (cf. Figure 43). The result

is therefore a set of design/operation points that meet the design and operation

constraints. The designer can further restrict the design/operation space by selecting

the design/operation points that correspond to optimal values of design criteria (e.g.

minimal weight, minimal cost).

The value of the methodology is apparent: the reward for the e�ort put into gener-

ating dynamic surrogate models is the capability to instantly visualize design regions

while ensuring that all constraints are met, whether they be static or dynamic. The

interactive environment also enables the user to instantaneously vary the constraints

and redo the design space exploration and �ltering, thus providing some insight on

the robustness of the optimal design region with respect to the uncertainties on the

constraints.

5.2.9 Summary

The methodology presented in this chapter encapsulates the hypotheses formulated

in this thesis proposal. Thus, the proposed methodology is in itself the expression of

an implicit hypothesis:

Hypothesis 4 (H4): The proposed methodology ful�lls the research objective, i.e.

it integrates transient regime analysis and pertaining dynamic constraints
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into the design speci�cation of aircraft dynamic systems. The output of

the methodology is an optimal design region that veri�es the transient-

related dynamic constraints.

The multi-step methodology outlined in this chapter is summarized in Figure 102.
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Figure 102: Methodology Overview
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Chapter VI

METHODOLOGY IMPLEMENTATION AND

PROOF OF CONCEPT

In the previous chapters, hypotheses were formulated as tentative answers to the

research questions. Following the guidelines of the scienti�c process, these hypotheses,

which have been translated into a methodology, need to be tested in order to infer their

validity. Hypotheses are tested by experimentation. Thus, it is essential to properly

design the experiments that will be performed in order to test the hypotheses.

Testing the hypotheses will be carried out in four progressively complex experi-

ments, the later ones building on the successes of the previous ones.

6.1 Experiment 1: System Identi�cation of a

Simple Mathematical System

6.1.1 Objectives and Plan

The goal of this �rst experiment is to test hypothesis 3a regarding the system iden-

ti�cation capabilities of wavenets. Recall hypothesis 3a:

Hypothesis 3a (H3a): A nonlinear system identi�cation approach based on wavelet

neural networks will enable the generation of dynamic surrogate models

of the transient behavior of dynamic systems.

Testing this hypothesis requires the development of a wavenet training module im-

plementing the learning strategies laid out in the previous chapter. The wavenet

training module will be implemented in Matlab [105]. For this �rst experiment, the
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performance of the wavenet training module will be tested for a simple notional dy-

namic system experiencing a transient regime. The multivariate dynamic system will

be designed so that its transient behavior is representative of a typical system, i.e. it

exhibits oscillations that dampen with time.

Hence the mathematical expression of the simple dynamic system was chosen to

be:

y =

(
x1.e

− (t−1)2

2 + 1

)
. cos(x2.(t− 1)) (44)

where 8 ≤ x1 ≤ 10 and 1 ≤ x2 ≤ 3

0 ≤ t ≤ 10

The function y is plotted with respect to time in Figure 103, for di�erent values

of x1and x2 within their ranges of variations.

Figure 103: Representation of the Simple Dynamic System

In order to enable the generation of dynamic surrogate models, the wavenet should

exhibit good approximation properties and should be e�cient to run, once learning

is over. The tasks to be performed for this experiments are listed below:

� Task 1.1: Build the wavenet training module
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� Task 1.2: Train the wavenet for the system expressed in Equation 47 and verify

the approximation performance of the wavenet training module.

Because the benchmarking of Chapter III concluded that wavenets might become

more di�cult to train as the number of variables increases, two test functions will be

approximated by the wavenet.

First, x2 will be �xed to the value 3. Thus, the function y becomes bi-dimensional,

since it depends on t and on x1. Then, in a second stage, both x1 and x2 are allowed

to vary within their range.

Thus, the complexity of the function to approximate increases incrementally,

which allows for the study of how the complexity in the wavenet training increases.

� Task 1.3: Verify that the wavenet output is e�cient to run

6.1.2 Implementation and Results

6.1.2.1 Task 1.1: Build the Wavenet Training Module

The wavenet training module was implemented in Matlab and is given in Appendix

C. The optimization, by which the training module adjusts the wavenet coe�cients

in order to minimize the regression error, is carried out with the Matlab built-in

function fmincon. The optimization algorithm used is active-set, based on sequential

quadratic programming algorithms. The algorithms for active-set optimization are

given in Gills et al. (1981) and Gills et al. (1991) [57, 58].

As suggested in Zhang and Benveniste [162], constraints are put on the optimizer

in order to force the wavelets to have their support stay within limits: outside a prede-

termined range for time that encompasses the simulation time window, the wavelets

should have values close to zero. Indeed, a wavelet has a compact support (or a nearly

compact support): outside an interval [a, b], its value is zero (or asymptotically close

to so). If during training, this interval is allowed to drift too far from the time interval
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of simulation, then the contribution of this wavelet to the output of the wavenet is

null, and the wavelet would be carried by the optimizer like a �dead weight�.

6.1.2.2 Task 1.2: Train the Wavenet

As explained in the introduction of this section, the wavenet was trained for two

systems:

- A reduction of the system described in Equation 47 to a bi-dimensional system,

where time and x1 vary and the variable x2 is kept at a constant level x2=3.

- The full three-dimensional system of Equation 47, where all three variables t,

x1, x2 vary.

Bi-Dimensional System

For the training cases, x1 was varied between 8 and 10, by increments of 0.5.

A total of 10 random validation cases was performed. Training gave satisfactory

results for 10 wavelons. Table 10 lists, for each of the 10 wavelons, the resulting

coe�cients for the wavelon connection weight, the scaling and translation coe�cients

for the wavelet capturing the time t, and the scaling and translation coe�cients for

the wavelet capturing the design variable x1.
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Table 10: 2D Wavenet - Table of Coe�cients

Wavelon Weight wi

Wavelet t Wavelet x1

Scaling a Translation b Scaling a Translation b

1 371.88 1.47 0.71 -0.10 37.29

2 88.95 1.19 0.55 0.35 -25.39

3 9.60 5.77 -1.04 -0.10 -10.33

4 4.55 8.83 -0.66 -0.10 -9.43

5 -325.90 1.59 -0.64 -0.08 -36.03

6 -115.77 -91.50 -18.94 -22.39 6.03

7 -25.32 5.74 -0.75 164.48 76.51

8 734.61 23.40 4.12 -2108.62 924.97

9 -156.42 117.17 158.35 -286.90 -704.52

10 75.45 -328.55 117.28 44.94 -23.09

As a �rst step of the evaluation of the goodness of �t, the result of the training

process can be visualized in the actual vs. predicted plot shown in Figure 104, where

the training cases are represented by red points and validation cases by blue points.

One can see that the points fall on the perfect �t line almost exactly. This good �t is

re�ected in the R2 values, which are extremely close to 1 (above 0.999) for both the

training set and the validation set.
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Figure 104: 2D Wavenet - Actual vs. Predicted

In the residual plot, shown in Figure 105, one can see that the residual oscillates

in the vicinity of zero. However, some distinctive patterns appear, which is usually

not desirable for static surrogate models. However, for dynamic surrogate models of

time-domain signals, this does not necessarily indicate a bad �t, as explained below.

This presence of patterns in the Residual vs. Predicted plot for a dynamic sur-

rogate model is natural since for each training (or validation) case i, the residual

can actually be regarded as a signal ei (t), de�ned by Equation 45. Therefore, if for

a training case, the signal varies continuously (in the sense that the output of the

TDS model represents a continuous physical phenomenon), the residual points cor-

responding to a training case will belong to a continuous parametric curve de�ned

by Equation 46, where Yi and Ŷi are the actual signal of the i
th training case and its

prediction respectively.

ei (t) = Ŷi (t)− Yi (t) (45)
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Figure 105: 2D Wavenet - Residual vs. Predicted


x (t) = Ŷi (t)

y (t) = ei (t)

(46)

In the residual vs. predicted plot of Figure 105, in addition to points that aligned

to form parametric curves, one can notice the presence of a denser cluster of points

for predicted values around zero. This is explained by the fact that the transient

response oscillates around zero, as seen in Figure 103. As time increases, the oscilla-

tion amplitude stabilizes and reaches the steady-state regime. Thus, the set of points

outside this cluster correspond to the transient regime.

Because the residual error can be regarded as a signal, it is useful to consider the

residual vs. time plot, composed of an overlay of all residual signals. This allows

for the visualization of the quality of the approximation with respect to time. If

a particular time region presents systematically high values of residual, then the

surrogate model fails to appropriately capture the behavior of the dynamic system

for this time region. The residual vs. time plot for the 2D system is given in Figure
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106. It is apparent that the residual signals oscillate around zero, which is desirable.

However, the �gure shows, that for the �rst instants after the transient perturbation,

the wavenet underestimates the response value. In the present case, the residual

remains within 0.3, which is low and therefore acceptable.

Figure 106: 2D Wavenet - Residual vs. Time

The distribution of the relative error is shown in Figure 107. As desired, the shape

of the distribution is close to that of a normal distribution. However, the relative error

induced by the regression reaches values higher than 4000%. This is due to the fact

that the response signal takes values around zero. Therefore, the relative error around

the points near zero can quickly reach high proportions. For instance, an prediction

error of 0.01 when the actual value is 0.001 yields a relative error of 1000%. When

considering that the values taken by the signal approximately range from -10 to 10,

this error can be considered as low.
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Figure 107: 2D Wavenet - MFE for the Relative Error

Therefore, for signals that take values close to zero, it is more appropriate to con-

sider the MFE (distribution of errors on the training points) and MRE (distribution

of errors on the training and validation points) for the absolute error (or residual)

rather than the relative error. The plots of the corresponding MFE and MRE ob-

tained after training of the wavenet on the 2D system are given in Figures 108 and

109.

One can see on the MFE and MRE �gures that the error distributions have a

shape similar to than of a normal distribution centered on zero, which is indicative

of a good �t. The means and standard deviation are given in Table 11. Their values,

close to zero, con�rm the goodness of �t.

Table 11: 2D Wavenet - MFE and MRE Statistics
MFE MRE

Mean µMFE = −7.78 10−5 µMRE = −1.61 10−5

Standard Deviation σMFE = 6.24 10−4 σMFE = 3.38 10−4
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Figure 109: 2D Wavenet - MRE for the Residual Error

Figure 108: 2D Wavenet - MFE for the Residual Error
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In a nutshell, the wavenet training with 10 wavelons on the 2D system showed

satisfactory results. Indeed, the R2 values are excellent, and the residual distributions

exhibit the desired properties. Moreover, it was seen that the inherent peculiarities

of dynamic responses make the study of the residual vs. predicted plot challenging.

What would be indicative of poor �ts for static responses are not necessarily bad for

dynamic responses. Hence, it is necessary to also study the residual vs. time plot,

which gives a better visualization of the regressive performance of the wavenet, and

which highlights the time regions at which the wavenet regression yields questionable

approximations. Thus, the set of tools to evaluate the goodness of �t for the surrogate

modeling of dynamic responses has been expanded.

Tri-Dimensional System

In this experiment, one design variable has been added: the system now has three

variables. The mathematical equation representing the system is given in Equation

47.

As described in step 3 of the methodology, a training dataset was generated with

a Design of Experiments (DoE). For this purpose, a Latin HyperCube DoE with 12

runs was created in JMP, the statistical analysis and visualization software by SAS

Institute [132]. The resulting DoE table is listed in Table 12 and visualized in Figure

110. One can see that the points generated by the LHC optimization process are well

spaced across the design space. In addition to the 12 DoE runs for the training of the

wavenet, 10 random validation cases were generated.
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Table 12: DoE Table for the Tri-Dimensional Mathematical System

Case x1 x2

1 8.18 2.64

2 8.00 1.55

3 8.55 1.18

4 9.64 1.91

5 9.45 2.82

6 8.36 2.09

7 9.82 1.36

8 9.09 2.27

9 8.91 1.73

10 10.00 2.45

11 8.73 3.00

12 9.27 1.00

Figure 110: LHC DoE Table for the Training of the 3D System

The addition of a dimension meant adding a term in the multidimensional tensor

wavelet, for each wavelon. Moreover, the added complexity of the multivariate signal
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to approximate necessitated a higher number of wavelons, in the same fashion as it

requires more neurons for the training of traditional sigmoid-based neural networks.

The combination of the higher number of wavelet terms and the higher number of

wavelons results in a longer training time. Training the wavenet on the 3D system

yielded the actual vs. predicted plot shown in Figure 111, for a total of 57 wavelons.

Figure 111: 3D Wavenet - Actual vs. Predicted

In the actual vs. predicted plot, one can see that the �t is not satisfactory, as

there is a clear pattern of points that are overestimated (below the diagonal line) by

the wavenet, despite R2 values of 0.87376 and 0.83559 for the training and validation

cases respectively, which is honorable. The patterns of points that are overestimated

are visualized in the residual vs. time plot (cf. Figure 112), where one can see that it is

the early time region (corresponding to the transient) that is overestimated (positive

residual).
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Figure 112: 3D Wavenet - Residual vs. Time

These results were obtained after a long training process, which lasted 3,955 sec-

onds (nearly 66 minutes, compared to 4 minutes for the 2D case). The bad �t can

be explained by the fact that the training procedure stalled into a local minimum, as

depicted in Figure 113.

Figure 113: 3D Wavenet - Evolution of the Total Regression Error During Training
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6.1.3 Summary

In this experiment, Hypothesis 3a was tested on a simple notional mathematical

dynamic system. Indeed, the system identi�cation approach based on wavelet neural

networks (wavenets) was tested �rst on a reduction of the system to two variables

(time and one design variables), and then on the full system with three variables

(time and two design variables).

For the �rst test, the results showed close to perfect �t, thus con�rming the

validity of the mathematical formulation of wavenets. However, the addition of a

design variable in the second test increased the complexity so much that the resulting

�t was poor. The fact that the training algorithm fell into a local minimum suggests

that a more e�cient training optimization approach is needed for the implementation

of wavenets.

The di�culties encountered with the training of wavenets leads to the conclusion

that the envelope approach formulated in the alternate Hypothesis 3b should be

preferred except for low numbers of dimensions.

6.2 Experiment 2: Visual Transient Response

Exploration

6.2.1 Objectives and Plan

The goal of the second experiment is to test Hypothesis 2 and Hypothesis 1, which

are recalled below:

Hypothesis 1 (H1): A data farming approach, based on the integration of time

as a dimension in the the Filtered-Monte-Carlo approach, will conduce to

the e�cient and thorough exploration of the design/operation space for

dynamic signals with dynamic constraints.
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Hypothesis 2 (H2): Dynamic surrogate modeling of time domain simulation mod-

els will enable the e�cient implementation of the Time-Domain Filtered

Monte-Carlo technique for the exploration of design/operation space of

dynamic systems subject to dynamic constraints.

The testing of Hypotheses 1 and 2 is performed on the simple 2D mathematical ex-

ample discussed above. The 2D equation representing the notional system is recalled

in Equation 47.

y =

(
x1.e

− (t−1)2

2 + 1

)
. cos(3.(t− 1)) (47)

In addition to the dynamic response y (t, x1), a static response R will be added

to the notional dynamic system, as de�ned in Equation 48, where x2 is an additional

design variable:

R (x1, x2) =
(x1 + x2)2

x1

(48)

The input of Experiment 2 is the dynamic surrogate models generated by the

wavenets of Experiment 1, and de�ned by the wavenet coe�cients listed in Table 10.

Testing Hypothesis 2 amounts to verifying that the Monte-Carlo simulation process,

designated as �Step 6� in the methodology, takes little time to complete using the

dynamic surrogate models.

Testing Hypothesis 1 includes testing the applicability and usefulness of the Vi-

sual Transient Response Explorer (VisTRE), the proposed interactive visualization

environment for the rapid �ltering of transient signals. Thus, the interactive visual-

ization environment VisTRE �rst needs to be developed. This will be attempted in

JMP, the statistical software package by the SAS Institute [132], in order to leverage

the capabilities of the software for static parameters. It will have to be shown that

with the visualization environment, the design/operation space is entirely sampled
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(thorough exploration) and that once the visualization environment is populated, the

interaction with the user is quick enough to enable instant �what-if� analyses on the

dynamic signals and on the constraints.

The tasks to be performed for Experiment 2 are:

� Task 2.1: Run the Monte-Carlo simulation and verify the speed of the process

� Task 2.2: Develop the interactive visualization environment for Time-Domain

Monte-Carlo Filtering

� Task 2.3: Design Space Filtering. The aim is to verify that dynamic constraints

can be rapidly added or changed, and that behavior curves are easily �ltered

6.2.2 Implementation and Results

6.2.2.1 Task 2.1: Run the Monte-Carlo Simulation and Verify the Speed of The
Process

Since only one design variable is considered, the Monte-Carlo Simulation, instead of

using random cases, was performed by discretizing the range of variation (x1ε [8, 10])

uniformly into 200 cases. Then, for each of theses cases, the wavenet was run in order

to generate the corresponding 200 signals.

For these 200 Monte-Carlo cases, the total duration of the simulation using the

wavenet surrogate models took a total of 0.175 seconds. This is of the same order

of the time needed to run the 200 cases for the original equations, since these were

chosen in order to be simple. However, compared to the simulation run times for

TDS models, which can reach dozens of minutes, this is satisfactory.

6.2.2.2 Task 2.2: Develop the Interactive Visualization Environment (VisTRE)
for Time-Domain Monte-Carlo Filtering

The Visual Transient Response Explorer (VisTRE) was implemented in JMP, using

the native scripting language JSL, thus taking advantage of the readily available built-

in function for multivariate scatterplot matrices. Thus, the task consisted of creating
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the building function for overlay plots of transient signals, as well as implementing the

automatic linking between the static response scatterplot and these signal overlays.

The elementary constructs of JMP are data tables, such as the example given in

Figure 114, where two design variables x1 and x2 are given for 3 design cases (the

rows of the table). A third column represents the response y = x1 + x2.

Figure 114: JMP Data Table

The essential principle of JMP resides in the fact that datasets, columns, and

tables, can be dynamically linked such that changes in data can be propagated. Also,

JMP o�ers a set of powerful visualization tools such as interactive scatterplots. The

visualization tools can be linked with data tables such that any interaction with the

charts corresponds to dynamic queries and manipulations of the data tables. Con-

versely, manipulating the data in tables will automatically update the visualization

plots.

Another main feature of JMP is the possibility to de�ne scripts in the native

scripting language JSL. These scripts allow to automate the manipulation of data

tables and the creation of corresponding visualization plots.

In order to process the results from the Monte-Carlo simulation and implement

the Time-Domain Filtered-Monte-Carlo, a framework is created in JMP. First, for
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each dynamic signal Y k (e.g. voltage, current, or instantaneous temperature), the

outputs of the Monte-Carlo simulation are aggregated into a single JMP table, called

Monte-Carlo Signal Table (MCST), as illustrated in Table 13.

Table 13: JMP Monte-Carlo Signal Table (MCST) for Response Y k

Then, a main JMP table, referred to as the Monte-Carlo Main Table (MCMT),

is created. The MCMT groups all static outputs from the Monte-Carlo simulation.

Thus, they include, for each Monte-Carlo case, the values of the static design (and

operation) variables, as well as the values of the static responses. In addition to that,

the MCMT includes one column per dynamic response Y k, containing the path of the

corresponding Monte-Carlo Signal Table.

Table 14: JMP Monte-Carlo Main Table (MCMT)
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Once the output data from the Monte-Carlo simulation is imported in JMP and

segregated into Monte-Carlo Signal Tables and a Monte-Carlo Main Table, the visu-

alization environment VisTRE, described in Chapter II, can be generated. For this

purpose, a script, called �Create VisTRE� was created in JSL. The script contains

the procedure to create VisTRE, as well as procedures that control the interactive

transient analysis features that are implemented in VisTRE.

When called, the script �Create VisTRE� reads the MCMT in order to get the

paths of each MCST. Then, for each Y k, the script collapses all the data of the MCST

into a single table, denoted Y k_Aggregate, depicted in Table 15.

Table 15: JMP Y k_Aggregate Table

Then, for each Y k_Aggregate table, the built-in function Overlay is called, which

creates an overlay plot for the aggregate table. This is an interactive feature, so that

the user can select points in the overlay plots, which highlights the corresponding rows

of the data table. JMP also enables to change the colors of selected points, or hide

them, which will be useful for the subsequent �ltering of data. The correspondence
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between the Y k_Aggregate table, for the dynamic response Y k, and its overlay plot,

for the visualization of the transient behavior, is illustrated in Figure 115.

Figure 115: Interaction between the Y k_Aggregate Table and its Overlay Plot

The next step is to generate the scatterplot matrix for the static responses. The

script �Create_VisTRE� reads the Monte-Carlo Main Table (MCMT), and for the

variables and responses that are identi�ed as static, it calls the built-in function

�Scatterplot�. This generates the desired multivariate scatterplot, which is dynami-

cally linked to the MCMT, as illustrated in Figure 116.
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Figure 116: Interaction between the MCMT and the Scatterplot

At this stage, the main scatterplot for the static parameters as well as all the

overlay plots for the visualization of the transient signals are generated. Each of

these plots are linked to a data table. The next step performed by the script �Cre-

ate_VisTRE� consists in implementing the links between plots, so that changes in

one chart can be propagated to the other charts and tables. For this purpose, a set

of action buttons is created by �Create_VisTRE� in each visualization chart, as de-

picted in the snapshots of the ViSTRE environment in Figures 117 and 118 (where

the dynamic signal is the voltage). One can see that the scatterplot represented here

is a symmetrical square matrix instead of a triangular one, so that for any combina-

tion of parameters p1 and p2, both plots p1vs. p2 and p2 vs. p1 can be visualized as

cells in the scatterplot.
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Figure 117: VisTRE: Scatterplot for Static Parameters

Figure 118: VisTRE: Overlay for Dynamic Transient Response (Voltage)
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When performing design space exploration and �ltering with VisTRE, the designer

thus interacts with the plots (scatterplot or overlay) �rst, and then clicks on the action

buttons in order to propagate the changes to the other windows. Thus, clicking an

action button calls a speci�c subscript of �Create_VisTRE�, developed for a particular

task. The most important button is the �Update� button, which calls a subscript that

propagates the state of the plot to all the other plots (overlays or scatterplot).

One of the elementary tasks is the visualization of the full signals corresponding to

speci�c points of interest in the overlay. For this purpose, a button called �Highlight

Signals� is implemented for the time-domain overlays. When calling this button,

the corresponding subscript of Create_VisTRE reads the points highlighted in the

overlay plot, reads the corresponding Monte-Carlo case numbers in the associated

Aggregation Table (cf. Figure 115), and searches for all the rows of the aggregation

table that correspond to the case numbers. Then these rows are selected by the scripts,

thus selecting all the time instants for the Monte-Carlo case numbers. Because the

overlays are automatically linked with the aggregation table, the corresponding signals

are highlighted. If the designer presses the button �Update�, the signals corresponding

to the selected Monte-Carlo cases are highlighted in the other time-domain overlays,

and the points corresponding to the selected Monte-Carlo cases are highlighted in

the scatterplot. This is illustrated in Figure 119, where the selected signals and

points appear in black. Conversely, the user can select design points in the static

scatterplot, and update all charts (by clicking the action button �Update Signals� so

that the corresponding signals in the time-domain overlays are highlighted.
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Figure 119: VisTRE: Highlighting Signals and Design Points

In order to implement the proposed Time-Domain Filtered-Monte-Carlo, the de-

signer should have the possibility to quickly and easily add constraints, whether they

be static constraints in the scatterplot, or dynamic constraints in the time-domain

overlays. For this purpose, a set of action buttons are created in each time-domain

overlay plot. These buttons call scripts that prompt the designer to either manually

enter the points de�ning the vertices of the dynamic constraints, or load a prede�ned

dynamic constraint, de�ned in a JMP table with two columns (time and constraint

value). After adding a constraint, it is superimposed as a new red signal in the overlay

plot, as seen in Figure 120.
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Figure 120: VisTRE: Adding a Dynamic Constraint for a Dynamic Response

By pressing the appropriate buttons, the user can modify the dynamic constraints,

assign them roles (minimum or maximum constraint), and activate or deactivate

them. The scripts control the constraints for each dynamic response Y k by means

of an additional data table Y k_Constraints, which lists all the constraints de�ned

for Y k with their attributes. Furthermore, for each constraint, a column is created

in the Y k_Aggregate table, listing the value of the constraint for each row (which

corresponds to a time instant for a particular Monte-Carlo case). This is illustrated

in Table 16. The addition of this column will be useful when �nding the points that

violate the dynamic constraints and �ltering the corresponding signals.
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Table 16: JMP Y k_Aggregate Table after Adding Constraint C

After adding the constraints and de�ning their attributes, the designer can �nd

the points in the time-domain overlays that violate the constraints. This is done by

pressing the action buttons developed for this purpose. These buttons call scripts that

compare the dynamic response and the constraints for each row of the aggregate table

(Table 16). Then the points that are found to violate the constraints are highlighted,

as depicted in Figure 121.

Once the points violating the constraints are highlighted, the entire signals corre-

sponding to these points can be highlighted (using the �Highlight_Signals� button)

and hidden. Then, the designer can update all charts to propagate the change. Thus,

only the signals meeting the dynamic constraints and the corresponding design points

in the scatterplot are kept, as illustrated in Figure 122.
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Figure 121: VisTRE: Finding the Points Violating the Dynamic Constraint

Figure 122: VisTRE: Filtering the Signals the Meet the Dynamic Constraint
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In a nutshell, a script �Create_VisTRE� was created in JSL, the native scripting

language of JMP, to generate the interactive visualization plots for the scatterplot

and time-domain overlay plots, as well as action buttons that enable the user to

interact with the plots and propagate the changes. These buttons call subscripts

of Create_VisTRE that manipulate the background data tables that control the

visualization plots. By interacting with the plots and performing a series of simple

tasks with the action buttons, the designer can �lter the design space so as to keep (or

hide) only the signals (and their corresponding design points in the scatterplot) that

meet the dynamic constraints. The script �Create_VisTRE� is given in Appendix D.

6.2.2.3 Task 2.3: Design Space Filtering

The procedure for design space �ltering under dynamic transient constraint was ap-

plied to the system de�ned by Equations 47 and 48. The signals that violated the

constraints were able to �ltered out in the fashion shown in Figure 122.

6.3 Experiment 3: Proof of Concept - Imple-

mentation of the Methodology for the De-

sign of an Electrical Network

In this experiment, the full methodology is implemented for the design of a simple

350 VDC electrical network, in order to test Hypothesis 4, which is recalled below:

Hypothesis 4 (H4): The proposed methodology ful�lls the research objective, i.e.

it integrates transient regime analysis and pertaining dynamic constraints

into the design speci�cation of aircraft dynamic systems. The output of

the methodology is an optimal design region that veri�es the transient-

related dynamic constraints.
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6.3.1 Objectives and Plan

The electrical network that will serve as a proof of concept for the methodology is a

simple 350 VDC electrical networks, composed of a controlled generator that feeds

power to an actuator motor. The variations of mechanical torque demanded by the

actuator to the motor induce variations of power demand from the motor, which in

turn induce transient perturbations on the electrical network. Thus, power quality

constraints will apply to the network voltage, which has to be controlled in order to

be maintained at a level of 350VDC. The network is depicted in the Simulink block

diagram of Figure 123.

Figure 123: Simulink Diagram of the 350VDC Network

The candidate architecture for the generator system is comprised of several sub-

systems, as depicted in Figure 124. First, a Permanent Magnet Generator (PMG),

which converts mechanical power provided by a rotating shaft into a three-phase alter-

nating electrical signal. The three-phase current is then converted into a DC voltage

by an Insulated-Gate Bipolar Transistor (IGBT) recti�er. IGBT's are fast-switching

power devices that are increasingly used in power electronics [82].
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Figure 124: Simulink Diagram of the Controlled 350VDC Generator

The generator system includes a Generator Control Unit (GCU). It was seen in

the �st chapter that controller systems are usually designed after the controlled sys-

tem is speci�ed, and that the succession of these activities may induce ine�ciencies.

Therefore, the present experiment attempted to concurrently design both the genera-

tor and its controller by treating them as part of a single system. Since the goal of the

experiment is to test the thesis methodology rather than actually design an industrial

aircraft electrical network, a simple Proportional-Integral (PI) control strategy was

chosen. The block diagram of a generic PI controller is depicted in Figure 125. A PI

controller is a popular closed-loop controller using a proportional gain in conjunction

with an integral gain [46, 123]. Tuning the controller thus consists of adjusting the

gains KP and KI .
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Figure 125: Block Diagram of a PI Controller

The actuator motor system is composed of a Permanent Magnet Motor (PMM),

fed by a three-phase electrical signal that is the output of an inverter, which converts

DC current into alternating three-phase currents. The inverter implemented here

is based on Metal-Oxide-Semiconductor Field-E�ect Transistors (MOSFET), which

are used to switch or amplify signals. The block diagram of the Simulink model

representing the actuator motor system is depicted in Figure 126.

Figure 126: Simulink Diagram of the Actuator Motor

For the purpose of the experiment, the network voltage will be subject to the tran-

sient dynamic constraint pertaining to power quality given in Figure 5 and recalled

in Figure 127.
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Figure 127: Power Quality Transient Constraint for the 350VDC Network Voltage

6.3.2 Implementation and Results

The methodology formulated in Chapter V of this thesis was applied to the design

of the 350VDC electrical network described above. The implementation is described

below for each step.

6.3.2.1 Step 1: De�ne the Problem

In this step, the problem is de�ned: the goal of the design activity is stated, the

responses (static and dynamic) are identi�ed, as well as the design and operation

variables that might have an impact on the responses. Constraints and requirements

are identi�ed as well.

The goal of the design of the 350VDC electrical network is to specify the design

characteristics of the generator and its controller, as well as those of the motor, in

order to minimize the electrical losses of the generator. The electrical loss (�loss�) is

represented by a simple model, taking the average value of the instantaneous Joules

losses induced by the phase currents iA, iB and iC in the stator of the Permanent

Magnet Generator.
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The design variables belong either to the generator subsystem or to the motor

subsystem. Their names have the pre�x �G� or �M�. Within these two groups, the

design variables can further be classi�ed into controller parameters (pre�x �Gcontr�),

recti�er parameters (�GRect�), permanent magnet generator (�GPM�), inverter pa-

rameters (�MInv�), and permanent magnet motor (�MPM�). This illustrates once more

that the controller parameters are treated like design characteristics of the whole gen-

erator system. A total of 17 design variables were identi�ed. They are listed in Table

17, along with a short description and their ranges of variation.

Table 17: Design Variables for the 350VDC Electrical Network
Variable name System Description Min Max

GContr_K Generator controller Proportional gain -2.00E-01 -1.00E-02

GContr_I Generator controller Integral gain -5.00E+00 -5.00E-01

GRect_Rs Generator recti�er Snubber resistance (Ω) 5.00E-01 5.00E+00

GRect_Cs Generator recti�er Snubber capacitance (F) 5.00E-06 1.20E-05

GRect_Ron Generator recti�er Internal resistance (Ω) 1.00E+01 2.00E+02

GPM_Rs Generator PM machine Stator phase resistance (Ω) 2.00E-01 5.00E+00

GPM_Ls Generator PM machine Stator phase inductance (H) 1.00E-03 1.00E-02

GPM_Flux Generator PM machine Flux linkage established by magnets (V.s) 1.50E-01 5.00E-01

GPM_J Generator PM machine Inertia (kg.m2) 1.00E-04 2.00E-03

MInv_Rs Motor inverter Snubber resistance (Ω) 1.00E+04 5.00E+04

MInv_Cs Motor inverter Snubber capacitance (F) 1.00E-05 5.00E-05

MInv_Ron Motor inverter Internal resistance (Ω) 1.00E-03 1.00E-02

MPM_Rs Motor PM machine Stator phase resistance (Ω) 1.00E-01 5.00E+00

MPM_Ls Motor PM machine Stator phase inductance (H) 1.00E-03 1.50E-02

MPM_Flux Motor PM machine Flux linkage established by magnets (V.s) 5.00E-01 1.20E+00

MPM_J Motor PM machine Inertia (kg.m2) 1.00E-04 2.00E-03

M_torque Motor Mechanical torque command (N.m) 2.00E+00 5.00E+00

As explained in the previous section, the network voltage is subject to a dynamic

transient constraint. It will thus be a dynamic response on which dynamic surrogate

models will be generated. Since the number of design variables is high, the alternate

approach is used here: the design space exploration will be carried out in order to

ensure that the envelope of the network voltage remains within the dynamic transient

constraints.
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As explained in Chapter I, when the power consumption of an electrical load

decreases suddenly, the network voltage will experience an overvoltage. The shape

and the value of the overvoltage depends on the control laws of the voltage source as

well as on the characteristics of the load, its level of power consumption before the

drop, and the level of the latter. Thus, in this experiments, the transient perturbation

induced by the motor is modeled by a step increase in the mechanical torque demand

from the actuator to the motor.

6.3.2.2 Step 2: Create the Modeling and Simulation Environment

A Modeling and Simulation (M&S) environment was created in Simulink. The corre-

sponding block diagrams are given in the previous paragraphs (Figures 123, 124, and

126).

A duration of 2 seconds will be simulated for each run of the TDS model. The

transient perturbation (step increase in motor torque) occurs at the instant t = 1s.

The behaviors of the generator rotor speed and of the network voltage are plotted in

Figures 128 and 129. At instant t = 0, all systems are o�. The generator starts: the

permanent magnet generator rotor speed increases, which produces a rise in voltage.

The controller then forces the generator to adjust its rotor speed in order to stabi-

lize itself at 350VDC. At t = 1s, the actuator motor experiences a step load in its

mechanical torque. This induces an increase in power demanded from the generator,

and a network voltage drop. In order to maintain the level of voltage to 350VDC,

the controller then increases the generator rotor speed.
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Figure 128: Generator Rotor Speed Behavior

Figure 129: Network Voltage Behavior

Thus, the network voltage experiences two transient regimes: a �rst one, corre-

sponding to the time when the generator starts, and a second one, induced by the step

load increase in the motor torque. It is the latter, delimited by the dashed lines in
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Figure 129, which will be studied in this experiment, and on which the power quality

transient constraint will be enforced. The constraint is depicted on a zoomed plot of

the network voltage in Figure 130.

Figure 130: Network Voltage: Focus on the Transient Region

The simulation, performed in Simulink, is of the discrete-event type. A next-

event time advance mechanism is used, where the simulation time step varies in an

adaptive manner. The numerical integration solver for the ODE's is the Dormand-

Prince method, which is a member of the Runge-Kutta class discussed in Chapter

II.

6.3.2.3 Step 3: Test Planning - Design of Experiments

In this step, the test table is derived using a Design of Experiments (DoE). A 17-

variable Latin HyperCube design was generated and optimized for 200 runs, using

the JMP software. The optimization process took 17 minutes.

In addition to the test cases generated by the DoE, which will be used to train

the neural networks, 50 validation cases were generated randomly. Therefore, the test

table, which is the output of Step 4, is composed of 250 cases.
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6.3.2.4 Step 4: Test Campaign - Collect the Training Data

Step 4 consists of running the cases de�ned in the test table resulting from step 3,

and post-processing the results of the simulation runs in order to prepare the data

for the training of the neural networks in Step 5.

The alternate method resulting from Hypothesis 3b is applied. Therefore, as

explained in Chapter V, after each run, the sup-envelope and the inf-envelope are

computed using the envelope extraction scheme described in Chapters IV and V. A

multiresolution analysis (MRA) is performed on the voltage response (truncated to

the time region of interest), in order to separate the signal into an approximation

(trend) and a detail (ripple) signal. After a few preliminary runs, it was determined

that the MRA yielded a denoised approximation after 10 decomposition levels. The

resulting trend signal and ripple signal for a test case are plotted in Figure 131. The

sliding windowing method is applied to the detail signal in order to get its inf-envelope

and its sup-envelope.

Figure 131: MRA at Level 10 on the Voltage Response

The outputs of step 4 are the data tables listing the values of the static responses

and the behaviors of the voltage trend (Vtrend), the voltage ripple sup-envelope
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(VripSupEnv), and the voltage ripple inf-envelope (VripInfEnv). For these dynamic

responses, the DoE table was rearranged in order to include the di�erent time instants

at which each signal was sampled, in the fashion depicted in Figure 91.

The simulation run times and the post-processing times are shown in Figure 132.

With the notable exception of the �rst case, which took longer due to the initialization

of variables, the simulation run times revolved around 34 seconds per case, while the

post-processing times fell in the vicinity of 0.75 seconds per case. The total time for

the test campaign and the post-processing amounted to 8,729 seconds, i.e. 2 hours

and 25 minutes.

Figure 132: Test Campaign: Simulation Run Times and Post-processing Times

6.3.2.5 Step 5: Create Dynamic Surrogate Models - Train the Neural Networks

In step 5, the neural networks for the static response (Loss) and for the three signals

(Vtrend, VripSupEnv, and VripInfEnv) are trained. Training was performed using a

neural network training suite, developed at the Aerospace Systems Design Laboratory

(ASDL) at the Georgia Institute of Technology, called the Basic Regression Analysis
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for Integrated Neural Networks (BRAINN) [74]. BRAINN is a Matlab suite that

integrates most functionalities implemented in the Neural Network toolbox of Matlab.

It enables the designer to quickly select values for the number of neurons in the

hidden layer, particular optimization algorithms for the training process, and other

optimization parameters such as convergence threshold values. A screenshot of the

BRAINN user interface is given in Figure 133.

Figure 133: BRAINN User Interface [74]

The process for training the neural networks is that described in Chapter V: for

each response, the neural network is trained for di�erent values for the number of

neural nodes in the hidden layer. The neural network architecture exhibiting the best

�t is retained.

The static response Loss presented values that spanned a large interval. In order

to facilitate the training, a transformation was applied to the response so that its

logarithm was regressed. The results of the training process are then validated by

performing the evaluation of the goodness of �t. The results for each response are

presented below.
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Static Response: Loss

The results of the �t for the natural logarithm of the electrical loss (ln(loss)) is

given in Figure 134, obtained for a neural network architecture with 4 neurons in the

hidden layer. The Rsquare values are close to 1, the points fall closely to the perfect

�t line in the Actual vs. Predicted plot, and the distributions of the relative error

have the desired shape, with low means and standard deviations, for both the MFE

and the MRE.

Figure 134: Goodness of Fit for ln(loss)

Dynamic Response: Vtrend

Vtrend is the approximation of the network voltage, obtained after a wavelet-

based MRA at level 10. The results of the training process are visualized in the
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charts of Figure 135. The optimal neural network architecture comprises 15 neurons

in the hidden layer.

Figure 135: Goodness of Fit for Vtrend

Dynamic Response: VrippleInf

VrippleInf is the inf-envelope of the ripple signal, obtained after �denoising� the

voltage responses with the MRA. The charts evaluating the goodness of �t of the

output of the training, for 10 neurons in the hidden layer, are shown in Figure 136.

As one can see in the relative error distributions, the maximum relative error reached

is high. This phenomenon was encountered in Experiment 2: the signal takes values

near 0, and small absolute regression errors may lead to extremely high relative errors.
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The absolute error, shown in the residual vs. predicted plot, stays within reasonable

bounds. Therefore, the �t is acceptable, though not excellent.

Figure 136: Goodness of Fit for VrippleInf

Dynamic Response: VrippleSup

VrippleSup is the sup-envelope of the ripple signal. The output neural network

that approximates the behavior of VrippleSup contains 29 neurons in the hidden

layer. The goodness of �t is evaluated with the charts shown in Figure 137. As with

VrippleInf, the relative error reaches high values. However, the residual vs. predicted

plot shows that the points are closely clustered around the zero error line.
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Figure 137: Goodness of Fit for VrippleSup

Summary

The �ts, obtained after training the neural networks, are globally satisfactory, even

though they are not excellent for the envelope signals. However, when recombined

with the trend signal (with its values of higher order of magnitude), the absolute

error will be �diluted� to yield low relative errors on the approximation of the global

envelope (the envelope of the full multiscale voltage signal).

The output of the training process are sets of parameters of the resulting neu-

ral networks for each response. These parameters are composed of the connection

weights, at the input of each neuron, as well as the �bias� parameters a and b for each

neuron (cf. the generic neuron schematic of Figure 51).
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One of the lessons learned from the training of neural networks is that despite

its automation using commercial toolboxes and in-house software, there is still an

element of trial-and-error, as the user can vary the initial number of nodes in the

architecture and the optimization algorithm. Also, it was found advantageous to

monitor the evolution of the regression errors during the training process since the

user can stop the training if the errors reach satisfactory low values.

Training the neural networks thus takes some time and e�ort. In this experiment,

an approximate average of 2 hours was needed to train each response. For the four

neural networks that were trained, this amounted to a total of 8 hours of training. This

is a signi�cant time investment, but it enables the e�cient design space exploration

through the Monte-Carlo Simulation performed in the next step.

6.3.2.6 Step 6: Perform a Monte-Carlo Simulation Using the Dynamic Surrogate
Models

Step 6 consists of running a Monte-Carlo Simulation (MCS) on the dynamic surro-

gate models generated in step 5 by training the neural networks. A total of 10,000

random settings for the design variables (thus forming 10,000 Monte-Carlo cases) was

generated using the built-in function in the JMP software.

At the same time, the time interval was discretized from 0.95s to 1.2, in such a

way that there were more samples in the �early transient� region. The �time vector�

used in the MCS process was eventually composed of 48 time instants.

Thus, for each of the 10,000 random cases generated by the MCS, the neural

networks were evaluated in Matlab for the static response Loss, and the dynamic

responses corresponding to the trend Vtrend, the ripple inf-envelope VRippleInf and

the ripple sup-envelope VRippleSup. The voltage inf-envelope and sup-envelope were

obtained for all of the 10,000 cases by adding the Vtrend and VRippleInf one one

hand, and Vtrend and VRippleSup on the other one. Therefore, the result of Step

6 is a set of data tables for each response, with 10,000 lines for Loss, and 48,000
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lines (one line per time instant) for the dynamic responses Vtrend, VRippleInf, and

VRippleSup.

The generation of the Monte-Carlo case table took less than a second, and the

total run time for the evaluation of the 10,000 Monte-Carlo cases took 13 seconds.

This means that on average, a run of a Monte-Carlo case, including the simulation

of 4 neural networks (for the responses loss, Vtrend, VRippleInf and VRippleSup),

took 0.0013 seconds. Each simulation run of a single neural network therefore took

approximately 0.3 milliseconds.

However, in order to rigorously assess the time savings yielded by surrogate mod-

eling, one must take into account the time it took to generate the surrogate models

as listed in the previous steps. It was seen that the test planning took 17 minutes,

that the test campaign took 2 hours and 25 minutes, and that the training of the

four neural networks took 8 hours. Therefore, the total time needed to generate and

evaluate the 10,000 Monte-Carlo cases was 10 hours and 42 min.

Without surrogate modeling, the 10,000 Monte-Carlo simulation runs would have

been performed on the original Time-Domain Simulation model in Simulink. It was

seen during the test campaign that on average, a run took 34 seconds, which is about

10,000 times longer that the simulation run of a neural network. Thus, without

surrogate modeling, the Monte-Carlo simulation, needed to populate the design space

visualization and exploration VisTRE, would have taken 10,000 * 34 sec = 340,000

sec, i.e. 94 hours and 26 minutes.

Therefore, static and dynamic surrogate modeling enabled a time savings of 84

hours. Moreover, the generation of surrogate models now enables a vast number of

additional Monte-Carlo to run in a matter of seconds. This could be desirable if

one wishes to re�ne the design space sampling or focus on a particular region of the

design space. Therefore, the time invested in training the neural networks pays o�,

as mentioned earlier.
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6.3.2.7 Step 7: Populate the Interactive Visualization Environment

In step 7, the data tables generated by Step 6 were formatted and manipulated in the

manner described in the previous experiment (describing the use of VisTRE). Thus,

the data and signals produced by the Monte-Carlo Simulation could be imported into

JMP, and were ready for visual mining through VisTRE.

Then, the visualization environment VisTRE was created and populated by calling

the script �Create_VisTRE� described in the previous experiment. The scatterplot

for the static responses and the overlay plots for the envelope signals (Vinf and Vsup)

of the dynamic response V were thus created, as illustrated in Figures 138 and 139.

One can see that the discretization of time is apparent in the overlay.
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Figure 138: VisTRE: Scatterplot Matrix for Design Variables and Loss
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Figure 139: VisTRE: Overlay Plot for Vinf

6.3.2.8 Step 8: Explore and Filter the Design/Operation Space

Now that the VisTRE environment is populated, the design space can be explored

and �ltered, as explained in chapter V. Because the transient perturbation under

consideration induces an undervoltage, only the results pertaining to Vinf are made

explicit here.

The interactivity of VisTRE enables the user to quickly query the design space.

For instance, on the scatterplot, the user can select the four points that show the

highest values for the electrical loss, as illustrated in Figure 140. Then the selected

design points can propagated to the overlay in order to visualize the corresponding

behavior for the Vinf signal, as seen in Figure 141.
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Figure 140: VisTRE: Maximum Loss Points
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Figure 141: VisTRE: Vinf Behavior for the 4 Maximum Loss Points

In order to �lter the points that violate the transient constraint, the user �rst

needs to load the dynamic constraint into VisTRE. The lower dynamic constraint of

the transient power quality constraint is added to the overlay for Vinf, the inf-envelope

of voltage. This is illustrated in Figure 118.

Figure 142: VisTRE: Overlay of Vinf with Minimum Constraint
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As one can see one the �gure above, a substantial portion of the overlay plot falls

below the dynamic constraint in red. In order to select this portion, the appropriate

script is called by pressing the action button �Highlight Undesirable Points�. Then the

full signals corresponding to the �bad� portion of the overlay can be highlighted and

selected. The results are shown in Figure 143, where only the time region violating

the constraint is highlighted in black, and in Figure 144, where the full signals are

selected and highlighted in black. Thus, all the signals that at some point in time fall

below the constraints are selected.

Figure 143: VisTRE: Finding the Points Violating the Constraint in the Vinf Over-

lay
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Figure 144: VisTRE: Selecting the Full Signals Violating the Constraints in the

Vinf Overlay

The results of the �ltering process can be propagated to the scatterplot, in order

to visualize the design points that violate the dynamic constraints in the overlay plot

of Vinf. This is shown in Figure 145, where the undesirable points are highlighted in

black. One can see that a signi�cant portion of the design space is covered in black.

However, a scatterplot completely covered in black does not necessarily imply that

the entire design space is covered in black.This is due to the fact that the scatterplot

represents 2-D projections on 2-D planes of a higher dimension space. For instance,

if the design space is a 3-D black cube that contains a blue ball inside, the scatterplot

will show black points scattered as if they covered the entire design space. Out of

the 10,000 Monte-Carlo cases, 2016 were found to violate the transient constraint for

Vinf and highlighted in black, which thus represented more than 20% of the design

space.
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Figure 145: VisTRE: Filtered Scatterplot

In the previous scatterplot, one can notice continuous regions that are entirely

blue, especially in the cell plotting the controller integral gain (GContr_I) against

the generator recti�er internal resistance (GRect_Ron). The presence of this region,

identi�ed as the �region of comfort� in Figure 146, means that choosing a design point

in this region ensures the designer that the system will meet the transient constraint,

regardless of the values of the other design variables.
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Figure 146: VisTRE: Filtered Scatterplot with Region of Comfort

The region of comfort, corresponding to values of GContr_I and GRect_Ron

de�ned in Equation 49, is highlighted in purple in Figure 147, where the axis of the

last row (corresponding to the electrical loss) has been adjusted in order to �zoom in�

and visualize the region of mimum losses.

−5 ≤ GContr_I ≤ −4.35 and 79 ≤ GRect_Ron ≤ 135 (49)
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Without the interactive visualization environment VisTRE, the designer might

have chosen design points within the region of comfort. However, one can see in the

scatterplot that the region of comfort can achieve, at best losses around 50W, while

the scatterplot shows that there are points in blue (which don't violate the transient

constraints) that can achieve losses with values below 30W.

Figure 147: VisTRE: Filtered Scatterplot with Highlighted Region of Comfort

In order to identify the most desirable design points among those that meet the

transient constraints, the regions that violate the dynamic transient constraints can
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�rst be ��ltered out� by eliminating them in the scatterplot and in the overlays. The

resulting �ltered design space is visualized in Figures 148 and 149. One can see in

the scatterplot that an important portion of the design space remains.

Figure 148: VisTRE: Filtered Overlay with Hidden Undesirable Region for Vinf
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Figure 149: VisTRE: Filtered Scatterplot with Hidden Undesirable Region for Vinf

At this stage, only the 7,984 design points (out of the original 10,000) remain,

corresponding to the design points that meet the transient constraint for Vinf. From

this point, further �ltering can be applied on the electrical losses (response �Losses�)

in order to reduce the design space to the minimal loss region. For example, one can

select, among the remaining points, those corresponding to values of loss lower than

30W, as shown in Figure 150. There were eight design points left, and the interactivity
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of the environment in JMP then allowed to create a subset of the original data table

in order to visualize the values of the design variables for these remaining points.

Figure 150: VisTRE: Filtered Scatterplot with Minimum Loss Points

6.3.3 Summary and Methodology Validation

The methodology formulated in this thesis was successfully applied for the design

space exploration of the 350VDC electrical network. The design space was itera-

tively trimmed down in order to keep only the design points that do not violate the

constraints.
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In order to fully validate the methodology, it is now compared to the results of

the traditional Filtered-Monte-Carlo, where only the static parameters are considered.

For this purpose a maximum constraint of 200W is applied on the Loss response of the

scatterplot matrix. The results of the corresponding �ltering is visualized in Figure

151.

Figure 151: Loss Constraint in the Scatterplot for the Original Filtered-Monte-Carlo

Method

Now, the same constraint for the electrical loss (Loss ≤ 200W) is applied to the

�ltered scatterplot of Figure 145 obtained in the previous paragraph, after applying

the Time-Domain Filtered-Monte-Carlo enabled by VisTRE. The resulting �ltered

scatterplot is shown in Figure 152, where the points that violate the dynamic transient

constraint for the lower envelope of the network voltage appear in black.
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Figure 152: Loss Constraint in the VisTRE Scatterplot for the Time-Domain

Filtered-Monte-Carlo

One can see in the VisTRE scatterplot that the region of minimum electrical losses

contains design points (in black) that violate the dynamic constraints for transient

power quality. Therefore, if done without taking into account the transient con-

straints as formulated in the methodology of this thesis, the design space exploration

would have carried design points that might later reveal themselves as violating these

constraints, which would have induced the type of design reiterations described in

Chapter I. In a nutshell, the methodology formulated in this thesis does enable a

more e�cient exploration of the design space of a dynamic system that is subject to

dynamic transient constraints.
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Chapter VII

CONCLUDING REMARKS

7.1 Recapitulation

Throughout the mission, aircraft dynamic systems experience transient regimes that

can severely a�ect the good operation of the aircraft. In order to ensure that tran-

sient behaviors do not have serious consequences, the transient responses of dynamic

systems to expected or unexpected perturbations are often regulated by dynamic

constraints, so called because their values vary with time. The veri�cation of these

constraints generally necessitates time-domain simulation, which intervenes late in

the speci�cation of systems, thus potentially inducing costly design iterations.

A design methodology has been formulated in which transient dynamic constraints

can be e�ciently evaluated while optimizing the system. As a building step for

this methodology, dynamic surrogate models of the original parametric time-domain

simulation models are generated in order to speed up the simulation process. To

generate these dynamic surrogate models, this thesis proposes to follow a nonlinear

system identi�cation approach based on multivariate wavelet networks. These are

built around the theory of wavelet decomposition, which has become popular for its

ability to capture the multiscale nature of transient signals.

However, as shown in Experiment 1, training wavenets becomes computationally

prohibitive with the optimization learning algorithm used in this thesis. Therefore,

an alternate approach was formulated, in which the envelope of the dynamic re-

sponse is extracted and regressed with traditional sigmoid-based feedforward neural

networks. The extraction of the envelope is performed via a wavelet-based MultiRes-

olution Analysis, which separates time-domain signals into an approximation signal
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(the trend) and a detail signal (the ripple or the noise). A sliding windowing method

is applied to the ripple signals in order to compute the envelopes.

The e�ciency of the resulting dynamic surrogate models enable the implementa-

tion of a data farming approach, in which a Monte-Carlo simulation is run to generate

a massive set of scenarios spanning the vast design and operation space. In order to

perform visual mining of the transient responses of the dynamic system, an interactive

visualization environment called the Visual Transient Response Explorer (VisTRE)

was developed. VisTRE enables visual queries of the design space and interactive

what-if analyses. The user can thereby instantaneously comprehend trends of the

transient response of the system, and its sensitivities to the design and operation

variables. This multivariate environment includes the visualization of the static and

dynamic responses, and provides the designer with the ability to instantly add con-

straints and to �lter the design space to have it exhibit only the design scenarios

verifying the dynamic and static constraints. Thus, the user can pursue the opti-

mization process on a design and operation region that is sure to meet the static and

dynamic transient constraints.

A series of experiments was performed in order to incrementally test the hypothe-

ses and the methodology. First, the wavenet system identi�cation approach was

tested, and it was shown that beyond a number of 2 design variables, the training

process becomes unmanageable. Then, the visual environment VisTRE was created

and tested on a simple case. Finally, the full methodology was tested for the design

space exploration of a 350VDC electrical network. The aim of the design activity

was to minimize the electrical losses incurred by the controlled generator while ensur-

ing that the network voltage did not violate the transient power quality constraints,

which were dynamic. By comparing the process to the outcome of the traditional
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Filtered-Monte-Carlo, which does not take into account dynamic constraints on dy-

namic responses, it was shown that the formulated Time-Domain Filtered-Monte-

Carlo methodology can be essential in order to reduce the risk of design iterations.

The methodology was derived after following a thought process derived from the

scienti�c method. After observations were made on the problem at hand, the research

objective was re�ned. This prompted a series of research questions and hypotheses.

The objectives, the research questions and the hypotheses are recalled once more

below, and the methodology is recalled in Figure 153.

Research Objective 1: Develop a methodology that integrates transient regime

analysis and pertaining dynamic constraints into the design synthesis of

aircraft dynamic systems.

Research Question 1 (RQ1): How can one e�ciently and thoroughly explore the

design and operation spaces while accounting for dynamic responses and

pertaining uncertain dynamic constraints?

Hypothesis 1 (H1): A data farming approach, based on the integration of time

as a dimension in the the Filtered-Monte-Carlo approach, will conduce to

the e�cient and thorough exploration of the design/operation space for

dynamic signals with dynamic constraints.

Research Question 2 (RQ2): How can one make the system simulation process

more e�cient in order to speed up the optimization/veri�cation of dy-

namic systems and facilitate the implementation of the proposed Time-

Domain Filtered Monte-Carlo technique?

Hypothesis 2 (H2): Dynamic surrogate modeling of time domain simulation mod-

els will enable the e�cient implementation of the Time-Domain Filtered

Monte-Carlo technique for the exploration of design/operation space of

dynamic systems subject to dynamic constraints.
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Research Question 3 (RQ3): What system identi�cation approach is suitable

for the generation of dynamic surrogate models in the context of tran-

sient time domain simulation of dynamic systems subject to dynamic

constraints?

Hypothesis 3a (H3a): A nonlinear system identi�cation approach based on wavelet

neural networks will enable the generation of dynamic surrogate models

of the transient behavior of dynamic systems.

Hypothesis 3b (H3b): A nonlinear system identi�cation on the envelope of the

signals, using sigmoid-based feedforward neural networks, will enable the

generation of dynamic surrogate models of the transient behavior of dy-

namic systems, and the implementation of the Time-Domain Filtered-

Monte-Carlo.

7.2 Contributions

While formulating and implementing this thesis, several contributions were made.

The most important one was the formulation of a methodology enabling the designer

to integrate the veri�cation of dynamic transient constraints into the early phases of

the speci�cation of dynamic systems. Instead of relying on trial-and-error or rules-of-

thumb, the methodology presents a systematic way of ensuring that transient dynamic

constraints are met.

Then, a framework for the generation of dynamic surrogate models was formu-

lated. This framework includes the wavenet approach as well as the approach that

integrates time as an input parameter of traditional sigmoid-based feedforward neu-

ral network. Initial guidelines for the applicability of wavenets to the generation of

multivariate dynamic surrogate models were derived. In order to implement the en-

velope approach, an simple envelope extraction scheme was formulated. This scheme

231



Figure 153: Methodology Overview
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was shown to handle the multiscale aspect of time-domain signals by separating them

through a wavelet-based MultiResolution Analysis (MRA) approach.

Moreover, a framework was derived for the evaluation of the goodness of �t of

dynamic surrogate models. Indeed, it was seen that the time dimension has peculiar-

ities that necessitated adaptation of the traditional goodness of �t methods. Also, a

framework for the application of Monte-Carlo simulation to time-domain simulation

models was created. For this activity, reusable Matlab templates were generated.

It was also shown that the methodology enabled the designer to concurrently and

e�ciently design dynamic systems and their controllers. If the methodology is applied

to more complex controllers, this is a potentially highly rewarding achievement, since

it was seen in Chapter I that the tuning of the controller parameters can be a tedious

and costly trial-and-error process.

Finally, a visual interactive environment, VisTRE, was created in JMP for the

visual mining of design spaces that include dynamic responses. For this purpose, a

set of JMP template tables and scripts were created.

7.3 Limitations and Recommendations for Fu-

ture Work

The methodology and its implementation presented some limitations, which can be

regarded as possible paths of research in future work. First, it was seen that the

wavenet approach, as implemented in this thesis, stalled when training networks

composed of more than three input parameters (including time). For higher num-

bers of design variables, the approach based on envelope identi�cation needs to be

implemented. However, working on the envelope looses information on the signal.

Thus, the methodology would greatly bene�t from the investigation of more e�cient

optimization algorithms for training. Also, a more intelligent way to initialize the

parameters of the wavenet architecture (number of wavelons, initial weights, initial
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dilation and translation factors) could be helpful in the quest for more e�cient and

robust training.

Another path for improving the methodology pertains to the envelope extraction

method. In this thesis, a sliding windowing method was used to extract the envelope

of the ripple signal (noise around the trend signal). The window length used in the

sliding windowing was chosen after a trial and error process. A more systematic set of

rules is needed for the choice of the windowing parameter and the level of resolution

in the MRA wavelet decomposition. The sensitivity of the quality of the extracted

envelope to these parameters should be studied.

In the implementation of the thesis methodology, the assignment of ranges to the

design variables was done arbitrarily. Typically, expert opinion is needed for this

step. For the controller parameters (gains), a few trial-and-error runs were performed

to ensure that the signal remained stable at the extremes of the controller parameter

ranges. A more systematic, e�cient, and intelligent way of determining these ranges

would be highly bene�cial. For instance, one could envisage the integration of tradi-

tional analysis tools of control theory, such as methods based on eigenvalues and the

root locus, which could be implemented as extensions of the static scatterplot.

Also, the �rst chapter suggested that the design of controlled dynamic systems

could be made more e�cient by performing a concurrent design of the controlled

plants and their controllers. The concept, which fell beyond the scope of the present

thesis, was successfully tested in the last experiment for a simple controller architec-

ture. Future research could thrive to develop robust methodologies for the concurrent

design of plants and controllers. For instance, the controller architecture could be

treated as a design variable (which would be discrete), or more complex architectures

could be investigated.

Finally, it was seen in the �rst chapter that uncertainty is present throughout the

development of complex systems. The interactivity of VisTRE coupled with the full
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exploration of the design space enables the designer to quickly study various constraint

scenarios. However, the methodology developed in this thesis does not provide a

systematic means of explicitly accounting for uncertainty. In a future work, one may

seek to extend the methodology so as to systematically and e�ciently integrate the

e�ects of uncertainty on design variables and on constraints.
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Appendix A

WAVELET THEORY: BACKGROUND

This section gives a formal introduction to wavelet theory, the continuous wavelet

transform, the discrete wavelet transform, which form the basis of the wavelet de-

composition and the multiresolution analysis theories described in chapters III and

IV. The background presented here is adapted from Mallat [102], Daubechies [35] and

Teolis [145].

A.1 Mother Wavelet and Daughter Wavelet

In most cases, mother wavelet ψ are chosen to be continuously di�erentiable functions,

in L1 (R)∩L2 (R). This allows to formulate conditions of zero mean and square norm

one:

ˆ ∞
−∞

ψ (t) dt = 0

ˆ ∞
−∞
|ψ (t) |2dt = 1

From a mother wavelet ψ, daughter wavelets ψa,b can be de�ned by scaling (with

scaling parameter a > 0) and translation (with translation parameter bεR) :

ψa,b (t) =
1√
a
ψ

(
t− b
a

)

A.2 Wavelet Transforms

Given a mother wavelet ψ, the Continuous Wavelet Transform (CWT) of a signal

x(t) in L1 (R) for a scaling parameter a and a translation parameter b is de�ned as:
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X (a, b) =
1√
a

ˆ ∞
−∞

x (t) .ψ∗
(
t− b
a

)
dt

where the operator * designates the complex conjugate.

In the continuous wavelet transform, the scaling parameter and the translation

parameter are allowed to take continuous values. If one discretizes the values taken by

a and b into a lattice formed by the set {(am, namb) : m,nεZ}, the wavelet transform

becomes the Discrete Wavelet Transform (DWT). The daughter wavelets are then

de�ned as:

ψm,n (t) = a−m/2ψ
(
a−mt− nb

)
In most practical cases, a = 2 and b = 1 so that the daughter wavelets form a

dyadic lattice:

ψm,n (t) = 2−m/2ψ
(
2−mt− n

)
There exists numerous mother wavelets ψ for which the family {ψm,n : m,nεZ}

forms a basis of L2 (R). In this case, the signal x(t) can be reconstructed using the

Inverse Discrete Wavelet Transform (IDWT):

x(t) =
∑
mεZ

∑
nεZ

〈x, ψm,n〉 .ψm,n (t)

where 〈x, y〉 is the scalar product
´
x.ȳ.
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Appendix B

BACKPROPAGATION ALGORITHM

This section gives a brief overview of the backpropagation algorithm, commonly used

to train neural networks, in conjunction with optimization techniques. Rojas provides

a detailed description of the backpropagation algorigthm [130]. The essential principle

behind backpropagation is that at each iteration of the training process, the output

regression error δ is computed and propagated backwards in order to compute new

connection weights.

The backpropagation algorithm is an iterative one. Each iteration is composed of

three main steps:

1. Feedforward computation

2. Backpropagation of the error

3. Weight updates

In the �rst step, the neural network is simulated with the current values of the

connection weights. The output regression error δ is then calculated (as the di�erence

between the output of the neural network and the actual target value in the training

set).

In the second step, the error is propagated backwards so that the contribution of

each neuron to the output error δ is estimated. This is done by reversing the directions

of the connections in the neural network and by assigning the identity function as

the transfer function of each neuron. As a result, if a neuron N1 output is fed to

two neurons N2 and N3 and if the error contributions of N2 and N3 are δ2 and δ3

respectively, then the error contribution for N1 is de�ned as the weighted sum of δ2

and δ3. This is illustrated in Figure 154.
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Figure 154: Error Backpropagation for Neuron N1

In the third and �nal step of the training iteration, the contribution errors δi

computed above are used to estimate the gradient of the error with respect to the

connection weights wi between the neurons. The connection weights wi (or biases)

are then updated accordingly. Rojas thoroughly describes this procedure [130].
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Appendix C

MATLAB SOURCE CODE FOR WAVENET

TRAINING

The Matlab source codes for training wavenets and processing the results in order to

evaluate the goodness of �t are given in this section.

C.1 Training

%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% Wavenet_Training.m

%

% Training of the wavenet

% Optimization with fmincon

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

initMode = questdlg('Init mode or restart mode?','Starting mode','Init','Restart', 'Init');

%% Initial Options

%Number of Wavelons

nbWavelons= 10;

%Optimization parameters

maxIter=1000; %Max number of iterations

maxFunEvals=100000000; %Max number of function calls

%initMode='restart'; %'restart' or 'init'

if strcmp(initMode,'Init')==1

%% Input Training points

%Static input cases:

% xMat?

timeSamplesTrainingMat = [0:0.01:10];

tMat= timeSamplesTrainingMat;

tRes= tMat(2)-tMat(1); %constant time sampling

[casesInputMat, trainingDataMat]= getTrainingData(tMat);

[nbCases, nbDesignVar] = size(casesInputMat);
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trainingSamplesMat = [tMat;trainingDataMat];

%[timesamples; signals_case1; signals_case2;...] for 1 test case

nbTrainingSamples = length(trainingSamplesMat(1,:));

ta= trainingSamplesMat(1,1);

tb= trainingSamplesMat(1, nbTrainingSamples);

%% Input Validation points

nbValidationCases = 10;

[casesValidationInputMat, validationDataMat]= getValidationData(tMat, nbValidationCases);

validationSamplesMat = [tMat;validationDataMat];

%[timesamples; signals_case1; signals_case2;...] for 1 test case

nbValidationSamples = length(validationSamplesMat(1,:));

end

%% Initialize the wavenet

% At the end of the wavenet initialization, we should have a lattice of

% alphas and betas for each static variable and for time t

% The outcome is also the parameter theta that will be the optimization

% input

if strcmp(initMode,'Init')==1

g0=mean(trainingSamplesMat(2,:));

wMat=10*ones(1,nbWavelons);

alphaMat=[];

betaMat=[];

%ta and tb

[alphaMat, betaMat] = initialize_x(ta, tb, nbWavelons);

for varNum=1:nbDesignVar

xa=min(casesInputMat(:,varNum));

xb=max(casesInputMat(:,varNum));

[alphaMatTemp, betaMatTemp] = initialize_x(xa, xb, nbWavelons);

alphaMat=[alphaMat, alphaMatTemp];

betaMat=[betaMat, betaMatTemp];

end

%theta is the parameter vector that will vary during optimization

theta0 = [g0, wMat, alphaMat, betaMat];

theta=theta0;

elseif strcmp(initMode,'Restart')==1

fprintf('\n%%%%%%%%%%%%%%%% RESTART FROM PREVIOUS OPTIMIZATION...

%%%%%%%%%%%%%%%\n\n');

[FileName,PathName] = uiget�le('*.mat','Select the �le of the optimization');

load(full�le(PathName, FileName));

theta0=theta;

g0=mean(trainingSamplesMat(2,:));
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tRes= tMat(2)-tMat(1); %constant time sampling

end

%% First Evaluations

xMat = casesInputMat(1,:);

fprintf('g0: %f', g0);

%calculate g_tilt (g_wavenet)

%g_wavenet = g0 + wavenetEval(timeSamplesTrainingMat,wMat, alphaMat, betaMat,nbTrainingSamples, nb-

Wavelons);

g_wavenet = wavenetEval(theta,tMat, xMat, nbTrainingSamples, nbWavelons);

%% Train the wavenet

tic;

%compute error (to be minimized)

%error = sqrt((g_wavenet- trainingSamplesMat(2,:)) * (g_wavenet- trainingSamplesMat(2,:))');

%threshold for error

epsilon= 1e-4;

%Time bounds for constrained optimization during training

lbTime= tMat(1)-10*tRes;

ubTime= tMat(length(tMat))+10*tRes;

%original = trainingSamplesMat(2, :);

%error = errorWavenet(theta,tMat, xMat, nbTrainingSamples, nbWavelons, trainingSamplesMat);

nbParamTheta = length (theta);

%gradError = grad (@errorWavenet, 0.00001, nbParamTheta, theta,tMat, xMat, nbTrainingSamples, nbWavelons,

original) ;

% Call errorWavenet(theta,tMat, nbSamples, nbWavelons, DataMat)

objectiveFun= @(thetaArg) errorWavenet (thetaArg,tMat, casesInputMat, nbTrainingSamples, nbWavelons, train-

ingDataMat);

% errorWavenet(theta,tMat, nbSamples, nbWavelons, DataMat)

fprintf('\nInitial point');

initValue = objectiveFun(theta);

fprintf('\nInitial point evaluation done');

LB = [];

UB= [];

fprintf('\ninitial error value: %f', initValue);

LB=-Inf*ones(1, length(theta));

UB=-LB;

LB(1, nbWavelons+2: 2*nbWavelons+1)= lbTime*ones(1, nbWavelons);

UB(1, nbWavelons+2: 2*nbWavelons+1)= ubTime*ones(1, nbWavelons);

options = optimset('Display','iter','MaxIter',maxIter, 'MaxFunEvals', maxFunEvals);

[X, FVAL,exit�ag,output]= fmincon(objectiveFun, theta, [], [], [], [], LB, UB, [], options);

%[X, FVAL, history] = runfmincon(theta, LB, UB, tMat, casesInputMat, nbTrainingSamples, nbWavelons, train-

ingDataMat);
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tElapsed =toc

theta=X;

%% Post Processing

Wavenet_PostProcessing;

fprintf('\n�����������\n\n END Wavenet_Training\n\n�����������');

C.2 Post-Processing

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Post Processing of the Wavenet Training

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Get Predicted Values

Predicted_Training=zeros(nbCases, nbTrainingSamples);

Predicted_Validation=zeros(nbValidationCases, nbValidationSamples);

for i=1:nbCases

Predicted_Training(i, :) = wavenetEval(theta,tMat, casesInputMat(i,:), nbTrainingSamples, nbWavelons);

end

for i=1:nbValidationCases

Predicted_Validation(i, :) = wavenetEval(theta,tMat, casesValidationInputMat(i,:), ...

nbValidationSamples, nbWavelons);

end

%% Calculate R-Square

R_Square=1-Calc_SSE(trainingDataMat,Predicted_Training)/Calc_SST(trainingDataMat);

R_Square_Validation=1-Calc_SSE([validationDataMat],[Predicted_Validation])/Calc_SST([validationDataMat]);

%% First Plots

%% Plot Actual vs Predicted

xmin=min(min(min(Predicted_Training), min(trainingDataMat)));

xmax=max(max(max(Predicted_Training), max(trainingDataMat)));

handle1=�gure('name', 'Actual vs. Predicted', 'Visible', 'on');

%�gure

hold on

title('Actual vs. Predicted');

XActVPred=[xmin, xmax];

plot(XActVPred, XActVPred, 'k')

plot(Predicted_Training, trainingDataMat, 'r.');

handle2=�gure('name', 'Actual vs. Predicted (with Validation Points)', 'Visible', 'on');

%�gure

hold on

title('Actual vs. Predicted (with Validation Points)');

XActVPred=[xmin, xmax];

plot(XActVPred, XActVPred, 'k')
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plot(Predicted_Training, trainingDataMat, 'r.');

plot(Predicted_Validation, validationDataMat, 'b.');

get(gca,'Position')

annotation('textbox',get(gca,'Position')+[0.02,0.66,-0.52,-0.68],'String',...

str2mat(['R^2_{training}= ', num2str(R_Square)],['R^2_{validation}= ', num2str(R_Square_Validation)]),...

'FitBoxToText','on');

%% Plot Signals and Approximations

for i=1:nbCases

�gure

plot(tMat, trainingDataMat(i,:))

hold

plot(tMat, Predicted_Training(i, :), 'r:')

legend('original signal', 'approximation');

title(['Case #' num2str(i)]);

end

%zoom out

tMat2=[-100:0.1:100];

g_wavenet2 = wavenetEval(theta,tMat2, casesInputMat(1,:), length(tMat2), nbWavelons);

%�gure

handle3=�gure('name', 'Zoom Out', 'Visible', 'on');

plot(tMat, trainingDataMat(1,:))

hold

plot(tMat2, g_wavenet2, 'r:')

legend( 'approximation');

%% Plot Residual vs. Predicted

handle8=�gure('name', 'residualVPredicted', 'Visible', 'on');

plot(Predicted_Training,trainingDataMat-Predicted_Training, 'r.');

%annotation('textbox',[x y w h])

hold

plot(Predicted_Validation,validationDataMat-Predicted_Validation, 'b.');

plot([xmin, xmax], [0,0]);

title('Residual vs. Predicted');

xlabel('Predicted Value');

ylabel('Residual Error');

%% Plot Residual vs. Time

handle9=�gure('name', 'residualVTime', 'Visible', 'on');

hold

ResidualTrainingMat=Predicted_Training-trainingDataMat;

ResidualValidationMat=Predicted_Validation-validationDataMat;

for i=1:length(Predicted_Training(:,1))

plot(tMat,ResidualTrainingMat(i,:), 'r.');
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end

for i=1:length(Predicted_Validation(:,1))

plot(tMat,ResidualValidationMat(i,:), 'b.');

end

title('Residual vs. Time');

xlabel('Time');

ylabel('Residual');

%% Plot Distribution Relative Error

RelativeErrorTraining=100*ResidualTrainingMat./trainingDataMat;

handle10=�gure('name', 'MFE_RelativeError', 'Visible', 'on');

[Distrib,xoutTraining] = hist(RelativeErrorTraining,1000);

a=sum(Distrib,2);

bar(xoutTraining,a);

%% Plot Distribution Residual (Absolute Error)

% Calculate means and standard deviations for training set and total set

ResidualTrainingMean=Calc_Mean(ResidualTrainingMat);

ResidualTrainingStdDev=Calc_STDDEV(ResidualTrainingMat);

ResidualTotalMean=Calc_Mean([ResidualTrainingMat;ResidualValidationMat]);

ResidualTotalStdDev=Calc_STDDEV([ResidualTrainingMat;ResidualValidationMat]);

handle11=�gure('name', 'MFE_Residual', 'Visible', 'on');

[Distrib,xoutTraining] = hist(ResidualTrainingMat,30);

a=sum(Distrib,2);

bar(xoutTraining,a);

title('MFE: Distribution of the Residual on the Training Points (Absolute Error)');

xlabel('Residual');

ylabel('Count');

get(gca,'Position')

annotation('textbox',get(gca,'Position')+[0.02,0.66,-0.54,-0.68],'String',...

str2mat(['\mu_{MFE}= ', num2str(ResidualTrainingMean)],...

['\sigma_{MFE}= ', num2str(ResidualTrainingStdDev)]),'FitBoxToText','on');

handle12=�gure('name', 'MRE_Residual', 'Visible', 'on');

[Distrib,xoutTraining] = hist([ResidualTrainingMat;ResidualValidationMat],30);

a=sum(Distrib,2);

bar(xoutTraining,a);

title('MRE: Distribution of the Residual on all Points (Absolute Error)');

xlabel('Residual');

ylabel('Count');

annotation('textbox',get(gca,'Position')+[0.02,0.66,-0.54,-0.68],'String',...

str2mat(['\mu_{MRE}= ', num2str(ResidualTotalMean)],...

['\sigma_{MRE}= ', num2str(ResidualTotalStdDev)]),'FitBoxToText','on');

%% Plot Original Signals and their Approximations

245



%Original function

%�gure;

handle4=�gure('name', 'Original Functions', 'Visible', 'on');

title('Original Functions');

hold on;

for i=1:nbCases

plot(tMat, trainingDataMat(i,:))

end

%Approximation

%�gure;

handle5=�gure('name', 'Approximations', 'Visible', 'on');

title('Approximations');

hold on;

for i=1:nbCases

plot(tMat, Predicted_Training(i, :), 'r')

end

%Original validation function

%�gure;

handle6=�gure('name', 'Original Validation Functions', 'Visible', 'on');

title('Original Validation Functions');

hold on;

for i=1:nbValidationCases

plot(tMat, validationDataMat(i,:))

end

%Approximated validation function

%�gure;

handle7=�gure('name', 'Approximated Validation Functions', 'Visible', 'on');

title('Approximated Validation Functions');

hold on;

for i=1:nbValidationCases

plot(tMat, Predicted_Validation(i,:), 'r')

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% SAVE

button = questdlg('Do you want to save the results?', 'Save Results');

if strcmp(button, 'Yes')

dateSerial= now;

direcSave = uigetdir('C:\Work\Thesis\Matlab Files','Select directory for �gures');

�lename= full�le(direcSave, 'Results.mat') ;

save(�lename, 'theta', 'tMat', 'timeSamplesTrainingMat', 'casesInputMat', 'trainingDataMat', ...

'casesValidationInputMat', 'trainingSamplesMat', 'nbCases', 'nbValidationCases',...
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'nbTrainingSamples', 'nbValidationSamples', 'validationDataMat','nbWavelons', 'theta0', ...

'exit�ag','output', 'maxIter', 'maxFunEvals', 'LB', 'UB','tElapsed', 'dateSerial') ;

%

type='.png';

for i=1:12

handle=eval(strcat('handle',int2str(i)));

saveas(handle, full�le(direcSave, strcat(int2str(i), '-',get(handle, 'Name'), type)) );

end

end

C.3 Wavenet Output Evaluation and De�nition

of the Mother Wavelet

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% COMPUTE WAVENET OUTPUT AND DEFINITION OF MOTHER WAVELET

%����������������-

% COMPUTE WAVENET OUTPUT

%����������������-

function wavenetResult= wavenetEval(theta,tMat, xMat, nbSamples, nbWavelons)

%wavenetResult is a vector: behavior of the wavelet approximation FOR ONE

%CASE

%alpha for translation

%beta for dilation

%dim alphaMat is nbWavelons

%dim betaMat is nbWavelons

%dim wMat is nbWavelons

%dim tMat is nbSamples

%dim wavenetResult is nbSamples

%nbSamples = length(tMat);

%nbWavelons = length(wMat);

nbVar=length(xMat)+1;

wMat=theta(2:nbWavelons+1);

%fprintf('\nindex %d %d',nbWavelons+2,(nbVar+1)*nbWavelons+1) ;

%fprintf('\nnbVar %d ',nbVar) ;

alphaVect= theta(nbWavelons+2:(nbVar+1)*nbWavelons+1);

%fprintf('\nindex %d %d',(nbVar+1)*nbWavelons+2,(2*nbVar+1)*nbWavelons+1) ;

betaVect= theta((nbVar+1)*nbWavelons+2:(2*nbVar+1)*nbWavelons+1);

alphaMat=zeros(nbWavelons, nbVar);

betaMat=zeros(nbWavelons, nbVar);

for i=1:nbWavelons

alphaMat(i,:)=alphaVect((i-1)*nbVar+1: i*nbVar);
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betaMat(i,:)=betaVect((i-1)*nbVar+1: i*nbVar);

end

alpha_t_MatLarge= alphaMat(:,1) * ones(1,nbSamples);

beta_t_MatLarge= betaMat(:,1) *ones(1, nbSamples);

tMatLarge = ones(nbWavelons, 1) * tMat;

%tempMatrix= (tMatLarge-alphaMatLarge)./betaMatLarge;

wMatCompound= waveletTensorCompound(wMat, xMat, alphaMat, betaMat, nbWavelons);

wavenetResult = theta(1)+...

wMatCompound * wavedefMother((tMatLarge-alpha_t_MatLarge)./beta_t_MatLarge);

%����������������-

%����������������-

% DEFINITION OF MOTHER WAVELET

%����������������-

function psi = wavedefMother(t)

psi = -t .* exp(-0.5 * t.^2);

%����������������-

%����������������-

% MULTI DIMENSIONAL TENSOR WAVELET

%����������������-

function wMatCompound= waveletTensorCompound(wMat, xMat, alphaMat, betaMat, nbWavelons)

wMatCompound= zeros(1,nbWavelons);

numberStaticVar=length(xMat);

% for i_t=1:length(tMat)

% waveletResult(i_t)=wavedefMother((x-alpha)/beta)

% end

%instant t=tk=tMat(k)

for i=1:nbWavelons

%compute

prod_i=1;

for j=1:numberStaticVar

prod_i=prod_i * wavedefMother((xMat(j)-alphaMat(i,j+1))/betaMat(i,j+1));

end

wMatCompound(i) = wMat(i)*prod_i;

%sum=sum+wMat(i) * wavedefMother((t-alphaMat(i,1))/betaMat(i,1)) * prod_i;

end

%����������������-
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Appendix D

JSL SCRIPT FOR THE GENERATION OF

VISTRE

currentDir=Pick Directory("Select Directory");

metaTable=CurrentDataTable();

NumCases= NRows(metaTable);

SignalRowsSelected={};

SignalRowsSelectedStates={};

metaTableRowStates={};

ListSignalTables={};

ListCasesSelected={};

ListSignalsSelected={};

windowsRef=Associative Array();

windowsRef1=Associative Array();

windowsRef2=Associative Array();

windowsRef3=Associative Array();

windowsRef4=Associative Array();

cstrTable={};

ListConstraintTables={};

tMat={};

cstrName="";

tableName="";

istart=0;

iend=0;

nSamples=0;

ConstraintTypeMat={"Min", "Max"};

///���������������������

// SELECT STATIC PARAMETERS AND DYNAMIC SIGNALS

//���������������������-

clusterDlg = NewWindow("Select Parameters, Responses and Signals",

BorderBox(left(3),top(2),

VListBox(

HlistBox(

VListBox(
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PanelBox("Select Columns",

colListData=ColListBox(All,width(130),nLines(min(ncol(metaTable),10)))

)

),

PanelBox("Select",

LineupBox(NCol(2),Spacing(3),

ButtonBox("Design Parameters and Static Responses",

colListStat<�<Append(colListData<�<GetSelected);

),

colListStat= ColListBox(width(230, nLines(5), Numeric)),

ButtonBox("Time-Domain Signals",

colListY<�<Append(colListData<�<GetSelected)

),

colListY = ColListBox(width(230),nLines(5),character)

)

),

PanelBox("Action",

LineupBox(NCol(1),

ButtonBox("OK",

ListSignals=eval(colListY<�<GetItems);

ListStaticParam=eval(colListStat<�<GetItems);

if (NItems(ListSignals)==0 & NItems(ListStaticParam)==0, print("No column selected"),

Action;clusterDlg<�<CloseWindow

)

),

ButtonBox("Cancel",clusterDlg<�<CloseWindow),

TextBox(" "),

ButtonBox("Remove",

colListY<�<RemoveSelected;

colListStat<�<RemoveSelected;

),

//ButtonBox("Recall",notImplemented),

ButtonBox("Help",notImplemented))

)

)

)

)

);

///���������������������-

// CREATE NEW DATA TABLE: AGREGATION OF ALL CASES FOR A SIGNAL

//����������������������
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Action=expr(

For(SignalNum=1, SignalNum<=NItems(ListSignals),SignalNum++,

SignalName=ListSignals[SignalNum]; //SignalName is the name of the column (string)

Print("Processing Signal " ||SignalName);

//SignalFileInput = :Voltage<�<get values;

SignalFileInput=Column(metaTable, SignalName)<�<get values;

signalFile=Open(currentDir || signalFileInput[1]);

TimeColumn = :t<�<get values;

nSamples=NRows(TimeColumn);

NumRows= NRows(SignalFile);

dt = New Table( SignalName||"Aggregate.jmp" );

dt<�<Minimize Window;

dt<�<NewColumn("Role",Character);

dt<�<NewColumn("Case",Numeric);

dt<�<NewColumn("t",Numeric);

dt<�<NewColumn("Response",Numeric);

dt<�<NewColumn("Selected_State", Numeric);

dt<�<Begin Data Update;

For( caseNumber = 1, caseNumber <= NumCases, caseNumber++,

ResponseColumn= Column(SignalFile, caseNumber+1)<�<get values;

For( i = 1, i <= NumRows, i++,

dt<�< Add Rows({:Role="case", :Case=caseNumber, :t=TimeColumn[i],

:Response= ResponseColumn[i], :Selected_State =0});

//dt:Column(4)[i]=ResponseColumn[i];

);

);

Column(dt, "Response")<�<Set Name(SignalName);

Close(signalFile);

dt<�<End Data Update;

ListSignalTables[SignalNum]=dt;

cstrTable=New Table(SignalName||"Constraints");

cstrTable<�<NewColumn("Name",Character);

//cstrTable<�<NewColumn("ID", Numeric);

cstrTable<�<NewColumn("Type", Character);

cstrTable<�<NewColumn("Activity", Character);

cstrTable<�<NewColumn("istart", Numeric);

cstrTable<�<NewColumn("iend", Numeric);

cstrTable<�<new column("Constraint Row States", row state);

cstrTable<�<Minimize Window;

ListConstraintTables[SignalNum]=cstrTable;

); // End For
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//����������������������

// CREATE VISUALIZATION WINDOWS

//����������������������

//Show(SignalName);

//Create Associative array: to each visualization window name is associated the reference of the table

mapWin2TableRef = Associative Array();

StaticWindow= New Window ("Visualization: Static Parameters",

mainBoxRef=OutlineBox("Transient Visualization Environment",

hboxRef=hlistbox(

OutlineBox("Static Parameters",

PanelBox("",

gb=metaTable<�<Scatterplot Matrix( Y( eval(colListStat<�<GetItems) ), Matrix Format( "Square" ) ),

hlistBox(

ButtonBox("UpdateSignals", UpdateSignals),

ButtonBox("Reset All", ResetAll),

ButtonBox("Close All", Close_All),

ButtonBox("TestWindowsRef", TestWindowsRef)

),

),

)

)

)

);

metaTable<�<Select All Rows;

metaTable<�<Colors (37);

metaTable<�< Clear Select;

For(SignalNum=1, SignalNum<=NItems(ListSignals), SignalNum++,

//Work with Associative Arrays

b2={};

dt={};

dt=ListSignalTables[SignalNum];

SignalName=ListSignals[SignalNum];

DynWindow=New Window("Visualization: Behavior of Signal "||SignalName,

b2=OutlineBox("Dynamic Signals",

Signal1=OutlineBox(SignalName,

panel1=PanelBox("",

overlay=dt<�<Overlay Plot(

X( Column(dt,"t" )),

Y( Column(dt,SignalName) ),

Separate Axes( 1 ),

SendToReport( Dispatch( {}, "Overlay Plot", FrameBox, Frame Size( 428, 345 ) ) )
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),

hlistbox(

PanelBox("Signal Selection",

LineUpBox(NCol(1),

ButtonBox("Highlight Signals", dt=CurrentDataTable();HighlightSignals),

ButtonBox("Add to Selection", dt=CurrentDataTable();AddSignalToSelection),

ButtonBox("Reset All", ResetAll),

ButtonBox("Clear States", dt=CurrentDataTable();Clear_Row_States_Dyn),

ButtonBox("Clear Selection",

//overlay<�<Data Table Window;

//dt=Current Data Table ();

SignalRef=mapWin2TableRef[SignalName];

eval(FunClear_Selection_Dyn(dt));dt<�<Select Where(1==0);),

ButtonBox("GetTableName", GetDataTableName)

)

),

PanelBox("Constraints",

LineUpBox(NCol(1),

ButtonBox("Add Constraint",dt=CurrentDataTable();AddConstraint),

ButtonBox("Remove Constraint", dt=CurrentDataTable();RemoveConstraint),

ButtonBox("Highlight Constraint",dt=CurrentDataTable();HighlightConstraint),

ButtonBox("Modify Constraint Properties",dt=CurrentDataTable();ModifyConstraint),

ButtonBox("Redraw", dt=CurrentDataTable();Redraw);

);

),

PanelBox("Filtering",

LineUpBox(NCol(1),

ButtonBox("Highlight Undesirable Points", FilterSignals),

ButtonBox("Highlight Desirable Signals", KeepSelection),

//ButtonBox("Hide Selection", HideSelection)

);

),

PanelBox("Propagate",

LineUpBox(NCol(1),

ButtonBox("Update", UpdateStaticPoints),

//ButtonBox("Propagate markers", dt=CurrentDataTable();PropagateMarkers)

);

)

)

)

)
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)

);

dt<�< Select All Rows;

dt<�<Colors (37);

dt<�< Clear Select;

windowsRef1[dt<�<GetName]=DynWindow;

windowsRef2[dt<�<GetName]=dt;

windowsRef3[dt<�<GetName]=SignalNum;

windowsRef4[dt<�<GetName]=b2;

mapWin2TableRef[Signal1<�<Get Title]=dt;

);

); //End of Action Script

//�����������������������

// SCRIPTS ON THE DYNAMIC SIGNALS SIDE

//�����������������������

Redraw=expr(

dt=CurrentDataTable();

//dt<�<AddRows({:Role="constraint", :Case=1, :t=5, :Selected_State=0}); //FOR TEST PURPOSES ONLY

dtName=dt<�<Get Name;

Show(dtName);

DynWindow=windowsRef1[dtName];

pos=DynWindow<�<Get Window Position;

//windowsRef2[dt<�<GetName]=dt;

SignalNum=windowsRef3[dtName];

//windowsRef4[dtName];

Show(SignalNum);

DynWindow<�<Close Window;

//For(SignalNum=1, SignalNum<=NItems(ListSignals), SignalNum++,

//Work with Associative Arrays

//b2={};

//dt={};

//dt=ListSignalTables[SignalNum];

SignalName=ListSignals[SignalNum];

Show(SignalName);

//Column(dt,SignalName)[NRows(dt)]=8;

DynWindow=New Window("NEWVisualization: Behavior of Signal "||SignalName,

b2=OutlineBox("Dynamic Signals",

Signal1=OutlineBox(SignalName,

panel1=PanelBox("",

overlay=dt<�<Overlay Plot(

X( Column(dt,"t" )),
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Y( Column(dt,SignalName) ),

Separate Axes( 1 ),

SendToReport( Dispatch( {}, "Overlay Plot", FrameBox, Frame Size( 428, 345 ) ) )

),

hlistbox(

PanelBox("Signal Selection",

LineUpBox(NCol(1),

ButtonBox("Highlight Signals", dt=CurrentDataTable();HighlightSignals),

ButtonBox("Add to Selection", dt=CurrentDataTable();AddSignalToSelection),

ButtonBox("Reset All", ResetAll),

ButtonBox("Clear States", dt=CurrentDataTable();Clear_Row_States_Dyn),

ButtonBox("Clear Selection",

//overlay<�<Data Table Window;

//dt=Current Data Table ();

SignalRef=mapWin2TableRef[SignalName];

eval(FunClear_Selection_Dyn(dt));dt<�<Select Where(1==0);),

ButtonBox("GetTableName", GetDataTableName)

)

),

PanelBox("Constraints",

LineUpBox(NCol(1),

ButtonBox("Add Constraint",dt=CurrentDataTable();AddConstraint),

ButtonBox("Remove Constraint", dt=CurrentDataTable();RemoveConstraint),

ButtonBox("Highlight Constraint",dt=CurrentDataTable();HighlightConstraint),

ButtonBox("Modify Constraint Properties",dt=CurrentDataTable();ModifyConstraint),

ButtonBox("Redraw", dt=CurrentDataTable();Redraw);

);

),

PanelBox("Filtering",

LineUpBox(NCol(1),

ButtonBox("Highlight Undesirable Points", FilterSignals),

ButtonBox("Highlight Desirable Signals", HighlightDesirable),

//ButtonBox("Hide Selection", HideSelection)

);

),

PanelBox("Propagate",

LineUpBox(NCol(1),

ButtonBox("Update", UpdateStaticPoints),

//ButtonBox("Propagate markers", dt=CurrentDataTable();PropagateMarkers)

);

)
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)

)

)

)

);

newPos=DynWindow<�<Get Window Position;

x=pos[1];y=pos[2];

xnew=newPos[1]; ynew=newPos[2];

show(x); Show(y); Show(xnew); Show(ynew);

//DynWindow<�<Move Window(x-xnew, y-ynew);

DynWindow<�<Move Window(pos);

windowsRef1[dt<�<GetName]=DynWindow;

windowsRef2[dt<�<GetName]=dt;

windowsRef3[dt<�<GetName]=SignalNum;

windowsRef4[dt<�<GetName]=b2;

mapWin2TableRef[Signal1<�<Get Title]=dt;

);

GetDataTableName=expr(

name=CurrentDataTable();

print(name<�<Get Name);

name:Selected_State[1]=10;

Column(name, "Selected_State")[1]=20;

);

AddSignalToSelection=expr(//APPEND LISTCASESSELECTED

FindSelectedSignals;//Updates ListSignalsSelected

For(i=1, i<=NItems(ListSignalsSelected),i++,

if(!Contains(ListCasesSelected, ListSignalsSelected[i]),

ListCasesSelected[NItems(ListCasesSelected)+1]=ListSignalsSelected[i];

)

);

Show(ListCasesSelected);//TEST

);

PropagateMarkers=expr(

print("Propagate for "||(dt<�<Get Name));

//SignalRowsSelected={};

//SignalRowsSelectedStates={};

GetRowStates;

for(SignalNum=1, SignalNum<=NItems(ListSignals), SignalNum++,

dt=ListSignalTables[SignalNum];

Current Data Table(dt);

print("Propagating Row States for "||(dt<�<GetName));
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dt<�<Begin Data Update;

//Show(NItems(SignalRowsSelectedStates));

//Show(NRows(SignalRowsSelected));

//Show(SignalRowsSelected);

for(j=1, j<=NItems(SignalRowsSelectedStates), j++,

rowstate(SignalRowsSelected[j])=SignalRowsSelectedStates[j];

);

dt<�<End Data Update;

//dt<�<Select Where(:Selected_State==1);

);

print("END PropagateMarkers");

);

GetRowStates=expr(//Find and "return" row states of selection

print("Propagate for "||(dt<�<Get Name));

//dtSel=dt<�<Next Selected;

//SignalRowsSelected={};

//SignalRowsSelectedStates={};

SignalRowsSelected=dt<�<Get Selected Rows;

//Show(NRows(SignalRowsSelected));

SignalRowsSelectedStates={};

SignalNum=windowsRef3[dt<�<GetName];

cstrTable=ListConstraintTables[SignalNum];

For(i=1, i<= NRows(SignalRowsSelected), i++,

if(Column(dt,"case")[SignalRowsSelected[i]]<=0,

//Revert Row State Constraint

cstrName=Column(dt,"Role")[SignalRowsSelected[i]];

cstrRow=cstrTable<�<Get Rows Where(:Name==cstrName);

rowState(SignalRowsSelected[i])=Column(cstrTable, "Constraint Row States")[cstrRow[1]];

print("Reverting Constraint Row State"),

//ELSE

SignalRowsSelectedStates[i]=RowState(SignalRowsSelected[i]);

);

);

//show(SignalRowsSelectedStates);

print("END GetRowStates");

);

HighlightSignals=expr(

//CLEAR SELECTION

Clear_Selection_Dyn;

//nCases=0;

//DETERMINE LIST OF CASES SELECTED IN SIGNAL PLOT
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FindSelectedSignals;

Print("DONE FIND SELECTED SIGNALS");

if(NItems(ListSignalsSelected)==0, print("No signal selected"),

//show(ListCases);

//SELECT ENTIRE SIGNALS

dt<�<Begin Data Update;

For(i=1, i<=NItems(ListSignalsSelected),i++,

Show(ListSignalsSelected[i]);//TEST

currentCase=ListSignalsSelected[i];

// y=dt<�<Get Rows Where(:Case==ListSignalsSelected[i]);

// Show(NRows(y));//TEST

// For(j=1, j<=NRows(y), j++,

// //Show(y[j]);//TEST

// //dt:Selected_State[y[j]]=1;

// //dt:Selected_State[1]=100;//TEST

// Column(dt, "Selected_State")[y[j]]=1;

// rowState(y[j])=color state(37);

// );

//y<�<Values(repeat(9,1));

//dt<�<ColorOf(row state(i)) = 3;

For(j=(currentCase-1)*nSamples+1, j<=currentCase*nSamples, j++,

Column(dt, "Selected_State")[j]=1;

rowState(j)=color state(0);

);

);

dt<�<End Data Update;

dt<�<Select Where(:Selected_State==1);

);

);

ResetAll=expr(

for(SignalNum=1, SignalNum<=NItems(ListSignals), SignalNum++,

dt=ListSignalTables[SignalNum];

Current Data Table(dt);

Clear_Selection_Dyn;

Clear_Row_States_Dyn;

//dt<�<Select Where(1==0);

//dt<�< Select All Rows;

//dt<�<Colors (37);

dt<�< Clear Select;

);

Clear_Selection_Static;
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Clear_Row_States_Static;

);

ResetAllDyn=expr(

for(SignalNum=1, SignalNum<=NItems(ListSignals), SignalNum++,

dt=ListSignalTables[SignalNum];

Current Data Table(dt);

Clear_Selection_Dyn;

Clear_Row_States_Dyn;

dt<�<Select Where(1==0);

);

//Clear_Selection_Static;

//Clear_Row_States_Static;

);

Clear_Row_States_Dyn=expr(

dt=CurrentDataTable();

Print("Clear Row States for "||(dt<�<Get Name));

//dt<�<Clear Row States;

ListSignalsSelected={};

listCaseRows=dt<�<Get Rows Where (:Role=="case");

for(i=1, i<=NRows(listCaseRows), i++,

rowState(listCaseRows[i])=CombineStates(color state(37), marker state(0),hidden state(0), excluded state(0));

);

);

Clear_Selection_Dyn_one=expr(//Clears selection of one signal window

//dt=CurrentDataTable();

print("Clear Selection for "||(dt<�< Get Name()));

y=dt<�<Get Rows Where(:Selected_State==1);

For(j=1, j<=NRows(y), j++,

//dt:Selected_State[y[j]]=0;

Column(dt,"Selected_State")[y[j]]=0;

);

ListSignalsSelected={};

//dt<�<Select Where(1==0);

);

Clear_Selection_Dyn=expr(

dt=CurrentDataTable();

print("Clear Selection for "||(dt<�< Get Name()));

y=dt<�<Get Rows Where(:Selected_State==1);

For(j=1, j<=NRows(y), j++,

//dt:Selected_State[y[j]]=0;

Column(dt,"Selected_State")[y[j]]=0;

259



);

ListSignalsSelected={};

//dt<�<Select Where(1==0);

);

FunClear_Selection_Dyn=Function({dt}, Clear_Selection_Dyn);

Clear_Selection_Dyn_ALL=expr(//CLEAR SELECTION OF ALL SIGNAL WINDOWS

//dt=CurrentDataTable();

print(dt<�< Get Name());

y=dt<�<Get Rows Where(:Selected_State==1);

For(j=1, j<=NRows(y), j++,

//dt:Selected_State[y[j]]=0;

Column(dt,"Selected_State")[y[j]]=0;

);

ListSignalsSelected={};

//dt<�<Select Where(1==0);

);

FindSelectedSignals=expr(//From selected points on graph, �nd the corresponding case numbers

print("FindSelectedSignals for "|| (dt<�< Get Name()));

selectedDynPoints = dt<�<Get Selected Rows;

nSelected=NRows(selectedDynPoints);

//ListCases={};

if(nSelected==0, print("No signal selected"),

nCases=NItems(ListSignalsSelected);

Show(nSelected);

For(i= 1, i<=nSelected, i++,

//Show(i);

//caseValue=dt:Case[selectedDynPoints[i]];

caseValue=Column(dt,"Case")[selectedDynPoints[i]];

//Show(caseValue);

if(caseValue<=0,selectedDynPoints[i]=0, //DESELECT CONSTRAINTS

if(!Contains(ListSignalsSelected, caseValue), ListSignalsSelected[nCases+1]=caseValue;nCases++;);

//dt<�<Select Where(:Case==caseValue););

);

);

Show(NItems(ListSignalsSelected));//TEST

);

);

SelectSignals=expr(// MIGHT BE OBSOLETE

//numRows=dt<�<NRows();

//selectedDynPoints = dt<�<Get Selected Rows;

//nSelected=NRows(selectedDynPoints);
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dt=CurrentDataTable();

print(dt<�< Get Name());

//CLEAR SELECTION

Clear_Selection_Dyn;

//nCases=0;

//DETERMINE LIST OF CASES SELECTED IN SIGNAL PLOT

FindSelectedSignals;

//Show(ListSignalsSelected);

if(NItems(ListSignalsSelected)==0, print("No signal selected"),

//show(ListCases);

//SELECT ENTIRE SIGNALS

dt<�<Begin Data Update;

For(i=1, i<=NItems(ListSignalsSelected),i++,

Show(ListSignalsSelected[i]);//TEST

y=dt<�<Get Rows Where(:Case==ListSignalsSelected[i]);

Show(NRows(y));//TEST

For(j=1, j<=NRows(y), j++,

//Show(y[j]);//TEST

//dt:Selected_State[y[j]]=1;

//dt:Selected_State[1]=100;//TEST

Column(dt, "Selected_State")[y[j]]=1;

);

//y<�<Values(repeat(9,1));

//dt<�<ColorOf(row state(i)) = 3;

);

dt<�<End Data Update;

dt<�<Select Where(:Selected_State==1);

);

);

//theList= selectedDynPoints<�<(:Case<�<get values);

//if (Contains(theList,2), b2<�< Append(t1 = Text Box (2 is there!)));

UpdateStaticPoints=expr(

Clear_Selection_Dyn;

//DETERMINE LIST OF CASES SELECTED IN SIGNAL PLOT

//FindSelectedSignals;

//ASSIGN SELECTED SIGNALS TO STATIC CASES

//ListCasesSelected=ListSignalsSelected; Should already be done

nSelected=NItems(ListcasesSelected);

if(nSelected==0, print("No signal selected"),

PropagateMarkers;

row_state=SignalRowsSelectedStates[1];
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CurrentDataTable(metaTable);

For(i=1, i<=nSelected,i++,

// y=metaTable<�<Get Rows Where(:Case==ListCasesSelected[i]);

// For(j=1, j<=NRows(y), j++,

// metaTable:Selected_State[y[j]]=1;

// rowState(y[j])=row_state;

// );

metaTable:Selected_State[ListCasesSelected[i]]=1;

rowState(ListCasesSelected[i])=row_state;

//metaTable<�<Select Where(:Selected_State==1);

);

BringWindowsToFront;

);

//HighlightSelectedSignals;

);

//�����������������������

// SCRIPTS ON THE STATIC SCATTERPLOT SIDE

//�����������������������

Clear_Row_States_Static=expr(

//dt=CurrentDataTable();

Print("Clear Row States for "||(metaTable<�<Get Name));

metaTable<�<Clear Row States;

metaTable<�< Select All Rows;

metaTable<�<Colors (37);

metaTable<�< Clear Select;

);

Clear_Selection_Static=expr(

//metaTable<�<Select Where(1==0);

y=metaTable<�<Get Rows Where(:Selected_State==1);

For(j=1, j<=NRows(y), j++,

metaTable:Selected_State[y[j]]=0;

);

ListCasesSelected={};

);

UpdateSignals=expr(

selectedStatPoints = metaTable<�<Get Selected Rows;

if(NRows(selectedStatPoints)==0, print("No Case Selected"),

ResetAllDyn;

Clear_Selection_Static;

metaTableRowStates={};

CurrentDataTable(metaTable);
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For(i=1, i<=NRows(selectedStatPoints), i++,

metaTable:Selected_State[selectedStatPoints[i]]=1;

ListCasesSelected[i]=metaTable:Case[selectedStatPoints[i]];

metaTableRowStates[i]=rowState(selectedStatPoints[i]);

);

//metaTable<�<Select Where(:Selected_State==1);

ListSignalsSelected=ListCasesSelected;

//SELECT ENTIRE SIGNALS

for(SignalNum=1, SignalNum<=NItems(ListSignals), SignalNum++,

dt=ListSignalTables[SignalNum];

Current Data Table(dt);

print("Selecting signals for "||(dt<�<GetName));

dt<�<Begin Data Update;

For(i=1, i<=NItems(ListCasesSelected),i++,

//Show(ListCases[i]);

rowState_i=metaTableRowStates[i];

//y=dt<�<Get Rows Where(:Case==ListCasesSelected[i]);

currentCase=ListCasesSelected[i];

//For(j=1, j<=NRows(y), j++,

// Column(dt, "Selected_State")[y[j]]=1;

// rowstate(y[j])=rowState_i;

//);

//y<�<Values(repeat(9,1));

//dt<�<ColorOf(row state(i)) = 3;

For(j=(currentCase-1)*nSamples+1, j<=currentCase*nSamples, j++,

Column(dt, "Selected_State")[j]=1;

rowState(j)=rowState_i;

);

);

dt<�<End Data Update;

//dt<�<Select Where(:Selected_State==1);

);

BringWindowsToFront;

);

);

UpdateSignals_OLD=expr(//Obsolete

selectedStatPoints = metaTable<�<Get Selected Rows;

if(NRows(selectedStatPoints)==0, print("No Case Selected"),

ResetAll;

Clear_Selection_Static;

For(i=1, i<=NRows(selectedStatPoints), i++,
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metaTable:Selected_State[selectedStatPoints[i]]=1;

ListCasesSelected[i]=metaTable:Case[selectedStatPoints[i]];

);

metaTable<�<Select Where(:Selected_State==1);

//CLEAR SELECTION

//Clear_Selection_Dyn;

//dt<�<Select Where(1==0);

//nCases=0;

ListSignalsSelected=ListCasesSelected;

//Show(ListSignalsSelected);

//show(ListCases);

//SELECT ENTIRE SIGNALS

for(SignalNum=1, SignalNum<=NItems(ListSignals), SignalNum++,

dt=ListSignalTables[SignalNum];

Current Data Table(dt);

print("Selecting signals for "||(dt<�<GetName));

dt<�<Begin Data Update;

For(i=1, i<=NItems(ListCasesSelected),i++,

//Show(ListCases[i]);

y=dt<�<Get Rows Where(:Case==ListCasesSelected[i]);

For(j=1, j<=NRows(y), j++,

Column(dt, "Selected_State")[y[j]]=1;

);

//y<�<Values(repeat(9,1));

//dt<�<ColorOf(row state(i)) = 3;

);

dt<�<End Data Update;

dt<�<Select Where(:Selected_State==1);

);

);

);

HighlightSelectedSignals=expr(

for(SignalNum=1, SignalNum<=NItems(ListSignals), SignalNum++,

dt=ListSignalTables[SignalNum];

Current Data Table(dt);

print("Selecting signals for "||(dt<�<GetName));

dt<�<Begin Data Update;

For(i=1, i<=NItems(ListCasesSelected),i++,

//Show(ListCases[i]);

y=dt<�<Get Rows Where(:Case==ListCasesSelected[i]);

For(j=1, j<=NRows(y), j++,
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Column(dt, "Selected_State")[y[j]]=1;

);

//y<�<Values(repeat(9,1));

//dt<�<ColorOf(row state(i)) = 3;

);

dt<�<End Data Update;

dt<�<Select Where(:Selected_State==1);

);

);

Close_All=expr(

for(SignalNum=1, SignalNum<=NItems(ListSignals), SignalNum++,

//Show(SignalNum);

tableRef=ListSignalTables[SignalNum];

print("Will close table "||(tableRef<�<GetName));

//CurrentDataTable(tableRef);

boxRef=(windowsRef4[tableRef<�<GetName]);

Show(boxRef);

title=boxRef<�<GetTitle;

print("Closing Window " || title);

boxRef<�<Close Window;

Close(tableRef, nosave);

Close(ListConstraintTables[signalNum], nosave);

//windowsRef[dt<�<GetName]={DynWindow, dt, SignalNum, b2};//

//mapWin2TableRef[Signal1<�<Get Title]=dt;

);

);

//����������������

// CONSTRAINTS SCRIPTS

//����������������

AddConstraint=expr(

SignalNum=windowsRef3[dt<�<GetName];

SignalName=ListSignals[SignalNum];

newOrExisting=NewWindow("Add a constraint",

BorderBox(left(3),top(2),

hlistBox(

PanelBox("",

vlistBox(

hlistBox(

tb1=TextBox("Name: "),//<�<Bullet Point(1);

teb=TextEditBox("", <�<Script(Print(teb<�<Get Text)));

),
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vlistBox(

tb2=TextBox("De�ne a new constraint or load a prede�ned one:"),

hlistBox(

ButtonBox("New Constraint", cstrName=teb<�<GetText;newConstraint=1;

newOrExisting<�<CloseWindow;AddNewConstraint),

ButtonBox("Load Constraint", cstrName=teb<�<GetText;newConstraint=0;

newOrExisting<�<CloseWindow;LoadConstraint)

);

),

);

),

ButtonBox("Cancel", Print("Canceling"); newOrExisting<�<CloseWindow;);

);

);

);

tb1<�<Bullet Point(1);

tb2<�<Bullet Point(1);

);

AddNewConstraint=expr(

cTable="NotDe�ned";

cstrDlg=NewWindow("Add Constraint",

BorderBox(left(3),top(2),

//dt = New Table( SignalName||"Aggregate.jmp" );

hlistBox(

vlistBox(

hlistBox(

tb=TextBox("Name: "),//<�<Bullet Point(1);

teb=TextEditBox(cstrName, <�<Script(Print(teb<�<Get Text)));

),

PanelBox("Type",

ConstraintType=RadioBox({"Min", "Max"});

),

//a=edit number(1);

//Show(a);

),

TextBox(" "),

vlistBox(

ButtonBox("Make Constraint Table", cstrName=teb<�<Get Text;MakeConstraintTable),

ButtonBox("OK",

print("OK!!!");

if(cTable=="NotDe�ned", print("Error: Constraint not de�ned"),
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tMat=Column(cTable,"t")<�<Get As Matrix;

ResponseMat=Column(cTable,SignalName)<�<GetAsMatrix;

//ResponseMat[NItems(Column(cTable,SignalName))];

//Show(ResponseMat);

cTable<�<Minimize Window;

);

cstrDlg<�<Close Window;

AppendConstraintToAggregate;

Redraw;

),

ButtonBox("Cancel", print("Cancelling!!!");cstrDlg<�<Close Window;),

)

)

),

);

tb<�<Bullet Point(1);

cstrDlg<�<Size Window(300, 250);

);

AppendConstraintToAggregate=expr(

//cstrID=1;

Print("Calling AppendConstraintToAggregate");//For Testing

Show(SignalNum);//For Testing

dt<�<New Column(cstrName, Numeric);

cstrTable=ListConstraintTables[SignalNum];

cstrTable<�<AddRows({:Name=cstrName, :Type=ConstraintTypeMat[typ],

:Activity="Active", :Constraint Row States=combine states(color state(19), marker state(0))});

Show(typ);

//if(typ=="Min", cstrTypeNum=-2, type=="Max", cstrTypeNum=-1, cstrTypeNum=0);

cstrTypeNum=typ-3;

Show(tMat);

Show(ResponseMat);

Show(dt<�<GetName);

//Find TimeColumn

SignalFileInput=Column(metaTable, SignalName)<�<get values;

signalFile=Open(currentDir || signalFileInput[1]);

TimeColumn = :t<�<get values;

Close(SignalFile);

//Show(NRows(TimeColumn));

//Find the index at which the constraint starts applying to dt

//by scanning TimeColumn until time is bigger that �rst element of constraint time column

For(istart=1, (istart<=NRows(TimeColumn)& TimeColumn[istart]<tMat[1]), istart++,
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//Do nothing

istart;

);

//Print("Done with istart");//For Testing

//Show(istart);//For Testing

//Find the index at which the constraint stops applying to dt

//by scanning TimeColumn from istart until time is bigger that last element of constraint time column

For(iend=istart, (iend<=NRows(TimeColumn) & TimeColumn[iend]<=tMat[NRows(tMat)]),

iend++, iend;);

//Print("Done with iend");//For Testing

//Show(iend); //For Testing

Column(cstrTable,"istart")[NRows(cstrTable)]=istart;

Column(cstrTable,"iend")[NRows(cstrTable)]=iend;

nSamples=NRows(TimeColumn);

temp=newTable("tempTable", invisible);

dt<�<Begin Data Update;

temp<�<Begin Data Update;

temp<�<NewColumn("Role",Character);

temp<�<NewColumn("Case",Numeric);

temp<�<NewColumn("t",Numeric);

temp<�<NewColumn(SignalName,Numeric);

temp<�<NewColumn("Selected_State", Numeric);

//cursor=1;

//Print("Starting populating Temp");//For Testing

//Show(istart);

For(j=istart, j<=iend-1, j++,

temp<�<AddRows({:Role=cstrName, :Case=cstrTypeNum, :t=TimeColumn[j], :Selected_State=0});

yInterp=Interpolate(TimeColumn[j], tMat, ResponseMat);

Column(temp,SignalName)[j-istart+1]=yInterp;

rowstate(j-istart+1)=combine states(color state(19), marker state(0));

For(k=1, k<=NumCases,k++,

Column(dt,cstrName)[(k-1)*nSamples+j]=yInterp;

);

);

temp<�<End Data Update;

dt <�< Concatenate(temp, Append to �rst table);

dt<�<End Data Update;

Close(temp, No Save);

);

MakeConstraintTable=expr(

//cstrName=teb<�<GetText;
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cTable=NewTable(cstrName);

cTable<�<NewColumn("Constraint Type",Character);

cTable<�<NewColumn("t",Numeric);

//SignalNum=windowsRef3[dt<�<GetName];

//SignalName=ListSignals[SignalNum];

Show(SignalName);

cTable<�<NewColumn(SignalName, Numeric);

typ=ConstraintType<�<Get;

//Show(typ);

//Show(ConstraintTypeMat[typ]);

cTable<�<AddRows({:Constraint Type=ConstraintTypeMat[typ]});

//Column(cTable,"Constraint Type")[1]="Alors????";

);

LoadConstraint=expr(

//LOAD CONSTRAINT PREVIOUSLY SAVED AS JMP TABLE

cTableFileName=Pick File("Select a Data Table", currentDir, {"JMP Files|jmp"});

cTable=Open(cTableFileName);

colNames=cTable<�<Get Column Names(String);

if(!Contains(colNames,"Constraint Type")|!Contains(colNames,"t")|!Contains(colNames,SignalName),

//TO DO: CHECK THAT FORMAT IS CORRECT

print("Error, not a constraint");

h=Dialog(Title("Error"),"Not a constraint table!");

Close(cTable),

//ELSE

print("Good constraint");

//Get Attributes

typString=Column(cTable, "Constraint Type")[1];

if(typString=="Min", typ=1, typString=="Max", typ=2);

tMat=Column(cTable,"t")<�<get values;

ResponseMat=Column(cTable,SignalName)<�<get values;

if(cstrName=="", cstrName=cTable<�<Get Name);

Close(cTable);

AppendConstraintToAggregate;

Redraw;

);

);

RemoveConstraint=expr(

SignalNum=windowsRef3[dt<�<GetName];

DynWindow=windowsRef1[dt<�<GetName];

SignalName=ListSignals[SignalNum];

cstrTable=ListConstraintTables[SignalNum];
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selectWindow=New Window("Select constraint to be deleted",

BorderBox(left(3),top(2),

cstrNameList=Column(cstrTable,"Name")<�<Get values;

Show(cstrNameList);

hlistBox(

PanelBox("Select constraint to be deleted",

radioB=RadioBox(cstrNameList);

),

PanelBox("Action",

ButtonBox("Delete",

cstrNameNum=radioB<�<Get;

cstrName=cstrNameList[cstrNameNum];

print("Delete "||cstrName);//TEST

DeleteSelectedConstraint;

selectWindow<�<Close Window;

CurrentDataTable(dt);

Redraw;

),

ButtonBox("Cancel", print("Cancel");selectWindow<�<Close Window;);

);

);

)

);

);

DeleteSelectedConstraint=expr(

//Name: cstrName

print("Calling DeleteSelectedConstraint For "||cstrName);//For Testing

//dt=windowsRef2[SignalName];

ListSignalTables[SignalNum]=dt;

dt<�<Delete Columns(cstrName);

cstrRows=dt<�<Select Where (:Role==cstrName);

dt<�<Delete Rows(cstrRows);

cstrRows=cstrTable<�<Select Where(:Name==cstrName);

cstrTable<�<Delete Rows(cstrRows);

);

HighlightConstraint=expr(

//get Min/Max, Active, Name, Color, Marker

SignalNum=windowsRef3[dt<�<GetName];

DynWindow=windowsRef1[dt<�<GetName];

SignalName=ListSignals[SignalNum];

cstrTable=ListConstraintTables[SignalNum];
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selectWindow=New Window("Select constraint to be highlighted",

BorderBox(left(3),top(2),

cstrNameList=Column(cstrTable,"Name")<�<Get values;

Show(cstrNameList);

hlistBox(

PanelBox("Select constraint to be highlighted:",

radioB=RadioBox(cstrNameList);

),

PanelBox("Action",

ButtonBox("Highlight",

cstrNameNum=radioB<�<Get;

cstrName=cstrNameList[cstrNameNum];

//print("Delete "||cstrName);//TEST

HighlightSelectedConstraint;

selectWindow<�<Close Window;

),

ButtonBox("Cancel", print("Cancel");selectWindow<�<Close Window;);

);

);

);

);

);

HighlightSelectedConstraint=expr(

//cstrNameNum

dt<�<Select Where(:Role==cstrName);

);

ModifyConstraint=expr(

SignalNum=windowsRef3[dt<�<GetName];

DynWindow=windowsRef1[dt<�<GetName];

SignalName=ListSignals[SignalNum];

cstrTable=ListConstraintTables[SignalNum];

selectWindow=New Window("Select constraint to be modi�ed",

BorderBox(left(3),top(2),

cstrNameList=Column(cstrTable,"Name")<�<Get values;

Show(cstrNameList);

hlistBox(

PanelBox("Select constraint to be modi�ed:",

radioB=RadioBox(cstrNameList);

),

PanelBox("Action",

ButtonBox("Modify",
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cstrNameNum=radioB<�<Get;

cstrName=cstrNameList[cstrNameNum];

print("Delete "||cstrName);//TEST

ModifySelectedConstraint;

selectWindow<�<Close Window;

),

ButtonBox("Cancel", print("Cancel");selectWindow<�<Close Window;);

);

);

);

);

);

ModifySelectedConstraint=expr(

//Get Min/Max Active Name

activityOld=Column(cstrTable, "Activity")[cstrNameNum];

activityIndex=0;

if(activityOld=="Active", activityIndex=1, activityIndex=2);

typeOld=Column(cstrTable, "Type")[cstrNameNum];

typeIndex=0;

if(typeOld=="Min", typeIndex=1, typeIndex=2);

cstrNameOld=cstrName;

cstrPropertyWindow=New Window("Constraint Properties for "|| cstrName,

BorderBox(left(3),top(2),

hlistBox(

vlistBox(

hlistBox(

tb=TextBox("Name: "),//<�<Bullet Point(1);

teb=TextEditBox(cstrName, <�<Script(Print(teb<�<Get Text)));

),

hlistBox(

PanelBox("Type",

ConstraintType=RadioBox({"Min", "Max"},<�<Set(typeIndex));

),

PanelBox("Activity",

ConstraintActivity=RadioBox({"Active", "Inactive"},<�<Set(activityIndex));

),

),

//a=edit number(1);

//Show(a);

),

TextBox(" "),
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vlistBox(

//ButtonBox("Make Constraint Table", cstrName=teb<�<Get Text;MakeConstraintTable),

ButtonBox("OK", //Get new Properties and modify appropriately

print("OK!!!");

cstrNameNew=teb<�<Get Text;

typeNewIndex=ConstraintType<�<Get;

typeNew={"Min","Max"}[typeNewIndex];

activityNewIndex=ConstraintActivity<�<Get;

activityNew={"Active", "Inactive"}[activityNewIndex];

if(cstrNameNew!=cstrNameOld, ModifyConstraintName);

if(typeNew!=typeOld, ModifyConstraintType);

if(activityNew!=activityOld, ModifyConstraintActivity);

cstrPropertyWindow<�<Close Window;

CurrentDataTable(dt);

Redraw;

),

ButtonBox("Cancel", print("Cancelling!!!");cstrPropertyWindow<�<Close Window;),

)

)

);

);

);

ModifyConstraintName=expr(

//New name: cstrNameNew

//Old name: cstrNameOld

//cstrNameNum

Column(cstrTable, "Name")[cstrNameNum]=cstrNameNew;

rowsCstr=dt<�<Get Rows Where(:Role==cstrNameOld);

for(i=1, i<=NRows(rowsCstr), i++,

Column(dt, "Role")[rowsCstr[i]]=cstrNameNew;

);

Column(dt,cstrNameOld)<�<Set Name(cstrNameNew);

);

ModifyConstraintType=expr(

//New Type: typeNew

//Old Type: typeOld

//cstrNameNum

Column(cstrTable, "Type")[cstrNameNum]=typeNew;

rowsCstr=dt<�<Get Rows Where(:Role==cstrNameOld);

if(typeNew=="Min", typ=-2, typ=-1);

for(i=1, i<=NRows(rowsCstr), i++,
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Column(dt, "Case")[rowsCstr[i]]=typ;

);

);

ModifyConstraintActivity=expr(

//New Type: typeNew

//Old Type: typeOld

//cstrNameNum

Column(cstrTable, "Activity")[cstrNameNum]=activityNew;

);

//�����������������������

// SCRIPTS FOR FILTERING

//�����������������������

FilterSignals=expr(//SELECT POINTS THAT VIOLATE CONSTRAINTS

dt=CurrentDataTable();

tableName=dt<�<getName;

ResetAll;

dt=windowsRef2[tableName];

//print(dt<�<GetName);

SignalNum=windowsRef3[dt<�<GetName];

SignalName=ListSignals[SignalNum];

cstrTable=ListConstraintTables[SignalNum];

dt<�<Begin Data Update;

//FILTER ACTIVE MAXIMUM CONSTRAINTS

activeCstr=cstrTable<�<Get Rows Where(:Activity=="Active" & :Type=="Max");

for(i=1, i<=NRows(activeCstr),i++,

cstrName=Column(cstrTable, "Name")[activeCstr[i]];

istart=Column(cstrTable, "istart")[activeCstr[i]];

iend=Column(cstrTable, "iend")[activeCstr[i]];

for(m=istart, m<=iend-1, m++,

for(k=1,k<=NumCases,k++,

if(Column(dt,SignalName)[(k-1)*nSamples+m]>Column(dt,cstrName)[(k-1)*nSamples+m],

Column(dt,"Selected_State")[(k-1)*nSamples+m]=1);

);

);

);

//FILTER ACTIVE MINIMUM CONSTRAINTS

activeCstr=cstrTable<�<Get Rows Where(:Activity=="Active" & :Type=="Min");

for(i=1, i<=NRows(activeCstr),i++,

cstrName=Column(cstrTable, "Name")[activeCstr[i]];

istart=Column(cstrTable, "istart")[activeCstr[i]];

iend=Column(cstrTable, "iend")[activeCstr[i]];
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for(m=istart, m<=iend-1, m++,

for(k=1,k<=NumCases,k++,

if(Column(dt,SignalName)[(k-1)*nSamples+m]<Column(dt,cstrName)[(k-1)*nSamples+m],

Column(dt,"Selected_State")[(k-1)*nSamples+m]=1);

);

);

);

dt<�<End Data Update;

//SELECT POINTS THAT VIOLATE CONSTRAINTS

dt<�<Select Where(:Selected_State==1);

dt<�<Colors(0);

CurrentDataTable(dt);

);

InvertSelection=expr(

sel1=dt<�<Get Rows Where(:Selected_State==1);

sel0=dt<�<Get Rows Where(:Selected_State==0 & :Role=="case");

for(i=1, i<=NRows(sel1),i++,

Column(dt,"Selected_State")[sel1[i]]=0;

);

for(i=1, i<=NRows(sel0),i++,

Column(dt,"Selected_State")[sel0[i]]=1;

);

);

HighlightDesirable=expr(//HIGHLIGHT POINTS THAT DO NOT VIOLATE CONSTRAINTS

// Highlight points that violate constraints

FilterSignals;

///////////////////////// Highlight entire signals

//DETERMINE LIST OF CASES SELECTED IN SIGNAL PLOT

FindSelectedSignals;

if(NItems(ListSignalsSelected)==0, print("No signal selected"),

//show(ListCases);

//SELECT ENTIRE SIGNALS

dt<�<Begin Data Update;

For(i=1, i<=NItems(ListSignalsSelected),i++,

Show(ListSignalsSelected[i]);//TEST

y=dt<�<Get Rows Where(:Case==ListSignalsSelected[i]);

Show(NRows(y));//TEST

For(j=1, j<=NRows(y), j++,

//Show(y[j]);//TEST

//dt:Selected_State[y[j]]=1;

//dt:Selected_State[1]=100;//TEST
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Column(dt, "Selected_State")[y[j]]=1;

//rowState(y[j])=color state(37);

);

);

dt<�<End Data Update;

//dt<�<Select Where(:Selected_State==1);

);

/////////////////////////

InvertSelection;

dt<�<Select Where(:Selected_State==1);

HighlightSignals;

);

HideSelection=expr();

//���������������

// VARIOUS SCRIPTS

//���������������

BringWindowsToFront=expr(

for(SignalNum=1, SignalNum<=NItems(ListSignals), SignalNum++,

dt=ListSignalTables[SignalNum];

windowsRef1[dt<�<GetName]=DynWindow;

DynWindow<�<BringWindowToFront;

);

StaticWindow<�<BringWindowToFront;

);

//����������������

// MORE TEST SCRIPTS

//����������������

TestWindowsRef=expr(

for(SignalNum=1, SignalNum<=NItems(ListSignals), SignalNum++,

tableRef=ListSignalTables[SignalNum];

name=tableRef<�<GetName;

Show(name);

Show((windowsRef1[name]));

tableRef2={};

tableRef2=(windowsRef2[name]);

Show(tableRef2<�<Get Name);

Show(eval((windowsRef3[name])));

);

);
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