2,424 research outputs found

    Constrained Overcomplete Analysis Operator Learning for Cosparse Signal Modelling

    Get PDF
    We consider the problem of learning a low-dimensional signal model from a collection of training samples. The mainstream approach would be to learn an overcomplete dictionary to provide good approximations of the training samples using sparse synthesis coefficients. This famous sparse model has a less well known counterpart, in analysis form, called the cosparse analysis model. In this new model, signals are characterised by their parsimony in a transformed domain using an overcomplete (linear) analysis operator. We propose to learn an analysis operator from a training corpus using a constrained optimisation framework based on L1 optimisation. The reason for introducing a constraint in the optimisation framework is to exclude trivial solutions. Although there is no final answer here for which constraint is the most relevant constraint, we investigate some conventional constraints in the model adaptation field and use the uniformly normalised tight frame (UNTF) for this purpose. We then derive a practical learning algorithm, based on projected subgradients and Douglas-Rachford splitting technique, and demonstrate its ability to robustly recover a ground truth analysis operator, when provided with a clean training set, of sufficient size. We also find an analysis operator for images, using some noisy cosparse signals, which is indeed a more realistic experiment. As the derived optimisation problem is not a convex program, we often find a local minimum using such variational methods. Some local optimality conditions are derived for two different settings, providing preliminary theoretical support for the well-posedness of the learning problem under appropriate conditions.Comment: 29 pages, 13 figures, accepted to be published in TS

    Image interpolation using Shearlet based iterative refinement

    Get PDF
    This paper proposes an image interpolation algorithm exploiting sparse representation for natural images. It involves three main steps: (a) obtaining an initial estimate of the high resolution image using linear methods like FIR filtering, (b) promoting sparsity in a selected dictionary through iterative thresholding, and (c) extracting high frequency information from the approximation to refine the initial estimate. For the sparse modeling, a shearlet dictionary is chosen to yield a multiscale directional representation. The proposed algorithm is compared to several state-of-the-art methods to assess its objective as well as subjective performance. Compared to the cubic spline interpolation method, an average PSNR gain of around 0.8 dB is observed over a dataset of 200 images

    Quantitative Robust Uncertainty Principles and Optimally Sparse Decompositions

    Get PDF
    We develop a robust uncertainty principle for finite signals in C^N which states that for almost all subsets T,W of {0,...,N-1} such that |T|+|W| ~ (log N)^(-1/2) N, there is no sigal f supported on T whose discrete Fourier transform is supported on W. In fact, we can make the above uncertainty principle quantitative in the sense that if f is supported on T, then only a small percentage of the energy (less than half, say) of its Fourier transform is concentrated on W. As an application of this robust uncertainty principle (QRUP), we consider the problem of decomposing a signal into a sparse superposition of spikes and complex sinusoids. We show that if a generic signal f has a decomposition using spike and frequency locations in T and W respectively, and obeying |T| + |W| <= C (\log N)^{-1/2} N, then this is the unique sparsest possible decomposition (all other decompositions have more non-zero terms). In addition, if |T| + |W| <= C (\log N)^{-1} N, then this sparsest decomposition can be found by solving a convex optimization problem.Comment: 25 pages, 9 figure

    Low Complexity Regularization of Linear Inverse Problems

    Full text link
    Inverse problems and regularization theory is a central theme in contemporary signal processing, where the goal is to reconstruct an unknown signal from partial indirect, and possibly noisy, measurements of it. A now standard method for recovering the unknown signal is to solve a convex optimization problem that enforces some prior knowledge about its structure. This has proved efficient in many problems routinely encountered in imaging sciences, statistics and machine learning. This chapter delivers a review of recent advances in the field where the regularization prior promotes solutions conforming to some notion of simplicity/low-complexity. These priors encompass as popular examples sparsity and group sparsity (to capture the compressibility of natural signals and images), total variation and analysis sparsity (to promote piecewise regularity), and low-rank (as natural extension of sparsity to matrix-valued data). Our aim is to provide a unified treatment of all these regularizations under a single umbrella, namely the theory of partial smoothness. This framework is very general and accommodates all low-complexity regularizers just mentioned, as well as many others. Partial smoothness turns out to be the canonical way to encode low-dimensional models that can be linear spaces or more general smooth manifolds. This review is intended to serve as a one stop shop toward the understanding of the theoretical properties of the so-regularized solutions. It covers a large spectrum including: (i) recovery guarantees and stability to noise, both in terms of â„“2\ell^2-stability and model (manifold) identification; (ii) sensitivity analysis to perturbations of the parameters involved (in particular the observations), with applications to unbiased risk estimation ; (iii) convergence properties of the forward-backward proximal splitting scheme, that is particularly well suited to solve the corresponding large-scale regularized optimization problem
    • …
    corecore