647 research outputs found

    Discrete denoising of heterogenous two-dimensional data

    Full text link
    We consider discrete denoising of two-dimensional data with characteristics that may be varying abruptly between regions. Using a quadtree decomposition technique and space-filling curves, we extend the recently developed S-DUDE (Shifting Discrete Universal DEnoiser), which was tailored to one-dimensional data, to the two-dimensional case. Our scheme competes with a genie that has access, in addition to the noisy data, also to the underlying noiseless data, and can employ mm different two-dimensional sliding window denoisers along mm distinct regions obtained by a quadtree decomposition with mm leaves, in a way that minimizes the overall loss. We show that, regardless of what the underlying noiseless data may be, the two-dimensional S-DUDE performs essentially as well as this genie, provided that the number of distinct regions satisfies m=o(n)m=o(n), where nn is the total size of the data. The resulting algorithm complexity is still linear in both nn and mm, as in the one-dimensional case. Our experimental results show that the two-dimensional S-DUDE can be effective when the characteristics of the underlying clean image vary across different regions in the data.Comment: 16 pages, submitted to IEEE Transactions on Information Theor

    Improving Embedded Image Coding Using Zero Block - Quad Tree

    Get PDF
    The traditional multi-bitstream approach to the heterogeneity issue is very constrained and inefficient under multi bit rate applications. The multi bitstream coding techniques allow partial decoding at a various resolution and quality levels. Several scalable coding algorithms have been proposed in the international standards over the past decade, but these former methods can only accommodate relatively limited decoding properties. To achieve efficient coding during image coding the multi resolution compression technique is been used. To exploit the multi resolution effect of image, wavelet transformations are devolved. Wavelet transformation decompose the image coefficients into their fundamental resolution, but the transformed coefficients are observed to be non-integer values resulting in variable bit stream. This transformation result in constraint bit rate application with slower operation. To overcome stated limitation, hierarchical tree based coding were implemented which exploit the relation between the wavelet scale levels and generate the code stream for transmission

    Squarepants in a Tree: Sum of Subtree Clustering and Hyperbolic Pants Decomposition

    Full text link
    We provide efficient constant factor approximation algorithms for the problems of finding a hierarchical clustering of a point set in any metric space, minimizing the sum of minimimum spanning tree lengths within each cluster, and in the hyperbolic or Euclidean planes, minimizing the sum of cluster perimeters. Our algorithms for the hyperbolic and Euclidean planes can also be used to provide a pants decomposition, that is, a set of disjoint simple closed curves partitioning the plane minus the input points into subsets with exactly three boundary components, with approximately minimum total length. In the Euclidean case, these curves are squares; in the hyperbolic case, they combine our Euclidean square pants decomposition with our tree clustering method for general metric spaces.Comment: 22 pages, 14 figures. This version replaces the proof of what is now Lemma 5.2, as the previous proof was erroneou

    Shape representation and coding of visual objets in multimedia applications — An overview

    Get PDF
    Emerging multimedia applications have created the need for new functionalities in digital communications. Whereas existing compression standards only deal with the audio-visual scene at a frame level, it is now necessary to handle individual objects separately, thus allowing scalable transmission as well as interactive scene recomposition by the receiver. The future MPEG-4 standard aims at providing compression tools addressing these functionalities. Unlike existing frame-based standards, the corresponding coding schemes need to encode shape information explicitly. This paper reviews existing solutions to the problem of shape representation and coding. Region and contour coding techniques are presented and their performance is discussed, considering coding efficiency and rate-distortion control capability, as well as flexibility to application requirements such as progressive transmission, low-delay coding, and error robustnes

    Quadtree Structured Approximation Algorithms

    Get PDF
    The success of many image restoration algorithms is often due to their ability to sparsely describe the original signal. Many sparse promoting transforms exist, including wavelets, the so called ‘lets’ family of transforms and more recent non-local learned transforms. The first part of this thesis reviews sparse approximation theory, particularly in relation to 2-D piecewise polynomial signals. We also show the connection between this theory and current state of the art algorithms that cover the following image restoration and enhancement applications: denoising, deconvolution, interpolation and multi-view super resolution. In [63], Shukla et al. proposed a compression algorithm, based on a sparse quadtree decomposition model, which could optimally represent piecewise polynomial images. In the second part of this thesis we adapt this model to image restoration by changing the rate-distortion penalty to a description-length penalty. Moreover, one of the major drawbacks of this type of approximation is the computational complexity required to find a suitable subspace for each node of the quadtree. We address this issue by searching for a suitable subspace much more efficiently using the mathematics of updating matrix factorisations. Novel algorithms are developed to tackle the four problems previously mentioned. Simulation results indicate that we beat state of the art results when the original signal is in the model (e.g. depth images) and are competitive for natural images when the degradation is high.Open Acces

    Fractal Image Compression on MIMD Architectures II: Classification Based Speed-up Methods

    Get PDF
    Since fractal image compression is computationally very expensive, speed-up techniques are required in addition to parallel processing in order to compress large images in reasonable time. In this paper we discuss parallel fractal image compression algorithms suited for MIMD architectures which employ block classification as speed-up method
    • 

    corecore