50 research outputs found

    Image Watermarking Using Psychovisual Threshold Over the Edge

    Get PDF
    Currently the digital multimedia data can easily be copied. Digital image watermarking is an alternative approach to authentication and copyright protection of digital image content. An alternative embedding watermark based on human eye properties can be used to effectively hide the watermark image. This paper introduces the embedding watermark scheme along the edge based on the concept of psychovisual threshold. This paper will investigate the sensi-tivity of minor changes in DCT coefficients against JPEG quantization tables. Based on the concept of psychovisual threshold, there are still deep holes in JPEG quantization values to embed a watermark. This paper locates and utilizes them to embed a watermark. The proposed scheme has been tested against vari-ous non-malicious attacks. The experiment results show the watermark is robust against JPEG image compression, noise attacks and low pass filtering

    Robust Image Watermarking Based on Psychovisual Threshold

    Get PDF
    Because of the facility of accessing and sharing digital images through the internet, digital images are often copied, edited and reused. Digital image watermarking is an approach to protect and manage digital images as intellectual property. The embedding of a natural watermark based on the properties of the human eye can be utilized to effectively hide a watermark image. This paper proposes a watermark embedding scheme based on the psychovisual threshold and edge entropy. The sensitivity of minor changes in DCT coefficients against JPEG quantization tables was investigated. A watermark embedding scheme was designed that offers good resistance against JPEG image compression. The proposed scheme was tested under different types of attacks. The experimental results indicated that the proposed scheme can achieve high imperceptibility and robustness against attacks. The watermark recovery process is also robust against attacks

    A Blind Multiple Watermarks based on Human Visual Characteristics

    Get PDF
    Digital watermarking is an alternative solution to prevent unauthorized duplication, distribution and breach of ownership right. This paper proposes a watermarking scheme for multiple watermarks embedding. The embedding of multiple watermarks use a block-based scheme based on human visual characteristics. A threshold is used to determine the watermark values by modifying first column of the orthogonal U matrix obtained from Singular Value Decomposition (SVD). The tradeoff between normalize cross-correlation and imperceptibility of watermarked image from quantization steps was used to achieve an optimal threshold value. The results show that our proposed multiple watermarks scheme exhibit robustness against signal processing attacks. The proposed scheme demonstrates that the watermark recovery from chrominance blue was resistant against different types of attacks

    Tchebichef image watermarking along the edge using YCoCg-R color space for copyright protection

    Get PDF
    Easy creation and manipulation of digital images present the potential danger of counterfeiting and forgery. Watermarking technique which embeds a watermark into the images can be used to overcome these problems and to provide copyright protection. Digital image watermarking should meet requirements, e.g. maintain image quality, difficult to remove the watermark, quality of watermark extraction, and applicable. This research proposes Tchebichef watermarking along the edge based on YCoCg-R color space. The embedding region is selected by considering the human visual characteristics (HVC) entropy. The selected blocks with minimum of HVC entropy values are transformed by Tchebichef moments. The locations of C(0,1), C(1,0), C(0,2) and C(2,0) of the matrix moment are randomly embedded for each watermark bit. The proposed watermarking scheme produces a good imperceptibility by average SSIM value around 0.98. The watermark recovery has greater resistant after several types of attack than other schemes. © 2019 Institute of Advanced Engineering and Science. All rights reserved

    Image watermarking based on integer wavelet transform-singular value decomposition with variance pixels

    Get PDF
    With the era of rapid technology in multimedia, the copyright protection is very important to preserve an ownership of multimedia data. This paper proposes an image watermarking scheme based on Integer Wavelet Transform (IWT) and Singular Value Decomposition (SVD). The binary watermark is scrambled by Arnold transform before embedding watermark. Embedding locations are determined by using variance pixels. Selected blocks with the lowest variance pixels are transformed by IWT, thus the LL sub-band of 8�8 IWT is computed by using SVD. The orthogonal U matrix component of U3,1 and U4,1 are modified using certain rules by considering the watermark bits and an optimal threshold. This research reveals an optimal threshold value based on the trade-off between robustness and imperceptibility of watermarked image. In order to measure the watermarking performance, the proposed scheme is tested under various attacks. The experimental results indicate that our scheme achieves higher robustness than other scheme under different types of attack. Copyright © 2019 Institute of Advanced Engineering and Science. All rights reserved

    An Improved Imperceptibility and Robustness of 4x4 DCT-SVD Image Watermarking with a Modified Entropy

    Get PDF
    A digital protection against unauthorized distribution of digital multimedia is highly on demand. Digital watermarking is a defence in multimedia protection for authorized ownership. This paper proposes an improved watermarking based on 4×4 DCT-SVD blocks using modified entropy in image watermarking. A modified entropy is used to select unnoticeable blocks. The proposed watermarking scheme utilizes the lowest entropy values to determine unnoticeable regions of the watermarked image. This paper investigates the relationship between U(2,1) and U(3,1) coefficients of the U matrix 4×4 DCT-SVD in image watermarking. The proposed watermarking scheme produces a great level of robustness and imperceptibility of the watermarked image against different attacks. The proposed scheme shows the improvement in terms of structural similarity index and normalized correlation of the watermarked image

    An efficient psychovisual threshold technique in image compression

    Get PDF
    Nowadays, psychovisual model plays a critical role in an image compression system. The psychovisual threshold gives visual tolerance to the human visual system by reducing the amount of frequency image signals. The sensitivity of the human eye can be fully explored and exploited in the qualitative experiment by describing what has been seen or by image quality judgment. However, the result of the psychovisual threshold through qualitative experiment depends on the test condition of the human visual systems and through repetitive viewing sessions. In a modern image compression, there is a need to provide some flexibility to obtain quality levels of the image output based on user preferences. The concept of psychovisual threshold is designed to determine quality levels of the image output. The psychovisual threshold represents an optimal amount of frequency image signals in image compression. This research proposes the psychovisual threshold through a quantitative experiment that can automatically predict an optimal balance between image quality and compression rate in image compression. The contribution of its frequency image signals to the image reconstruction will be the primitive of psychovisual threshold in image compression. It is very challenging to develop a psychovisual threshold from the contribution of the frequency image signals for each frequency order. In this research, the psychovisual threshold prescribes the quantization values and bit allocation for image compression. The psychovisual threshold is the basic primitive prior to generating quantization tables in image compression. The psychovisual threshold allows a developer to design adaptively customized quantization values according to his or her target image quality. The psychovisual threshold is also elementary and primitive for generating a set of bit allocation for frequency image signals. A set of bit allocation based on psychovisual threshold assigns the amount of bits for frequency image signals. A set of bit allocation refers to the psychovisual threshold instead of the quantization process in image compression. This research investigates the basic understanding of the psychovisual threshold in image compression. The experimental results provide significant improvement in the image compression. The psychovisual threshold which is presented as quantization tables, customized quantization tables and as a set of bit allocation gives a significant improvement on both of the quality of the image reconstruction and the average bit length of Huffman code. This research shows that psychovisual threshold is practically the best measure for optimal frequency image signals on image compression

    Psychovisual Threshold On Large Tchebichef Moment For Image Compression

    Get PDF
    JPEG standard transforms an 8×8 image pixel into a requency domain. The discontinuities of the intensity image between adjacent image blocks cause the visual artifacts due to inter-block correlations in image reconstruction. The blocking artifacts appear by the pixel intensity value discontinuities which occur along block boundaries. This research proposes the psychovisual threshold on large Tchebichef moment to minimize the blocking artifacts. The psychovisual threshold is practically the best measure for the optimal amount of frequency image signals in the image coding. The psychovisual threshold is a basic element prior to generating quantization tables in image compression. The psychovisual threshold on the large Tchebichef moments has given significant improvements in the quality of image output. The experimental results show that the smooth psychovisual threshold on the large discrete Tchebichef moment produces high quality image output and largely free of any visual artifacts

    A robust image watermarking technique based on quantization noise visibility thresholds

    Get PDF
    International audienceA tremendous amount of digital multimedia data is broadcasted daily over the internet. Since digital data can be very quickly and easily duplicated, intellectual property right protection techniques have become important and first appeared about fifty years ago (see [I.J. Cox, M.L. Miller, The First 50 Years of Electronic Watermarking, EURASIP J. Appl. Signal Process. 2 (2002) 126-132. [52]] for an extended review). Digital watermarking was born. Since its inception, many watermarking techniques have appeared, in all possible transformed spaces. However, an important lack in watermarking literature concerns the human visual system models. Several human visual system (HVS) model based watermarking techniques were designed in the late 1990's. Due to the weak robustness results, especially concerning geometrical distortions, the interest in such studies has reduced. In this paper, we intend to take advantage of recent advances in HVS models and watermarking techniques to revisit this issue. We will demonstrate that it is possible to resist too many attacks, including geometrical distortions, in HVS based watermarking algorithms. The perceptual model used here takes into account advanced features of the HVS identified from psychophysics experiments conducted in our laboratory. This model has been successfully applied in quality assessment and image coding schemes M. Carnec, P. Le Callet, D. Barba, An image quality assessment method based on perception of structural information, IEEE Internat. Conf. Image Process. 3 (2003) 185-188, N. Bekkat, A. Saadane, D. Barba, Masking effects in the quality assessment of coded images, in: SPIE Human Vision and Electronic Imaging V, 3959 (2000) 211-219. In this paper the human visual system model is used to create a perceptual mask in order to optimize the watermark strength. The optimal watermark obtained satisfies both invisibility and robustness requirements. Contrary to most watermarking schemes using advanced perceptual masks, in order to best thwart the de-synchronization problem induced by geometrical distortions, we propose here a Fourier domain embedding and detection technique optimizing the amplitude of the watermark. Finally, the robustness of the scheme obtained is assessed against all attacks provided by the Stirmark benchmark. This work proposes a new digital rights management technique using an advanced human visual system model that is able to resist various kind of attacks including many geometrical distortions

    The collaboration of noise reduction and human vision system models for a visible watermarking algorithm

    Get PDF
    ABSTRACT A novel visible watermarking algorithm based on noise reduction and Human Visible System (HVS) model approach is presented in this study. In order to get the best tradeoff between the embedding energy of watermark and the perceptual translucence for visible watermark, the composite coefficients using global and local characteristics of the host image in the discrete wavelet transform (DWT) domain is considered. The application of the perceptual model of contrast-sensitive function (CSF) with the noise reduction of the visibility thresholds for HVS in DWT domain achieves the goal of fine tuning of the perceptual weights according to the basis function amplitudes for the best quality of perceptual translucence. Instead of three types of block classification-textures, edges and smooth areas, the computation of Noise Visibility Function (NVF) characterizes the local image properties to determine the optimal watermark locations and strength at the watermark embedding stage. The experimental results demonstrate that the proposed technique improves the PSNR values and visual quality than the CSF only based algorithms
    corecore