675 research outputs found

    A New Double Color Image Watermarking Algorithm Based on the SVD and Arnold Scrambling

    Get PDF
    We propose a new image watermarking scheme based on the real SVD and Arnold scrambling to embed a color watermarking image into a color host image. Before embedding watermark, the color watermark image W with size of MĂ—M is scrambled by Arnold transformation to obtain a meaningless image W~. Then, the color host image A with size of NĂ—N is divided into nonoverlapping N/MĂ—N/M pixel blocks. In each (i,j) pixel block Ai,j, we form a real matrix Ci,j with the red, green, and blue components of Ai,j and perform the SVD of Ci,j. We then replace the three smallest singular values of Ci,j by the red, green, and blue values of W~ij with scaling factor, to form a new watermarked host image A~ij. With the reserve procedure, we can extract the watermark from the watermarked host image. In the process of the algorithm, we only need to perform real number algebra operations, which have very low computational complexity and are more effective than the one using the quaternion SVD of color image

    Noise Level Estimation for Digital Images Using Local Statistics and Its Applications to Noise Removal

    Get PDF
    In this paper, an automatic estimation of additive white Gaussian noise technique is proposed. This technique is built according to the local statistics of Gaussian noise. In the field of digital signal processing, estimation of the noise is considered as pivotal process that many signal processing tasks relies on. The main aim of this paper is to design a patch-based estimation technique in order to estimate the noise level in natural images and use it in blind image removal technique. The estimation processes is utilized selected patches which is most contaminated sub-pixels in the tested images sing principal component analysis (PCA). The performance of the suggested noise level estimation technique is shown its superior to state of the art noise estimation and noise removal algorithms, the proposed algorithm produces the best performance in most cases compared with the investigated techniques in terms of PSNR, IQI and the visual perception

    On Cayley's factorization with an application to the orthonormalization of noisy rotation matrices

    Get PDF
    The final publication is available at link.springer.comA real orthogonal matrix representing a rotation in four dimensions can be decomposed into the commutative product of a left- and a right-isoclinic rotation matrix. This operation, known as Cayley's factorization, directly provides the double quaternion representation of rotations in four dimensions. This factorization can be performed without divisions, thus avoiding the common numerical issues attributed to the computation of quaternions from rotation matrices. In this paper, it is shown how this result is particularly useful, when particularized to three dimensions, to re-orthonormalize a noisy rotation matrix by converting it to quaternion form and then obtaining back the corresponding proper rotation matrix. This re-orthonormalization method is commonly implemented using the Shepperd-Markley method, but the method derived here is shown to outperform it by returning results closer to those obtained using the Singular Value Decomposition which are known to be optimal in terms of the Frobenius norm.Peer ReviewedPostprint (author's final draft

    Quaternion tensor ring decomposition and application for color image inpainting

    Full text link
    In recent years, tensor networks have emerged as powerful tools for solving large-scale optimization problems. One of the most promising tensor networks is the tensor ring (TR) decomposition, which achieves circular dimensional permutation invariance in the model through the utilization of the trace operation and equitable treatment of the latent cores. On the other hand, more recently, quaternions have gained significant attention and have been widely utilized in color image processing tasks due to their effectiveness in encoding color pixels. Therefore, in this paper, we propose the quaternion tensor ring (QTR) decomposition, which inherits the powerful and generalized representation abilities of the TR decomposition while leveraging the advantages of quaternions for color pixel representation. In addition to providing the definition of QTR decomposition and an algorithm for learning the QTR format, this paper also proposes a low-rank quaternion tensor completion (LRQTC) model and its algorithm for color image inpainting based on the QTR decomposition. Finally, extensive experiments on color image inpainting demonstrate that the proposed QTLRC method is highly competitive

    Human Motion Capture Data Tailored Transform Coding

    Full text link
    Human motion capture (mocap) is a widely used technique for digitalizing human movements. With growing usage, compressing mocap data has received increasing attention, since compact data size enables efficient storage and transmission. Our analysis shows that mocap data have some unique characteristics that distinguish themselves from images and videos. Therefore, directly borrowing image or video compression techniques, such as discrete cosine transform, does not work well. In this paper, we propose a novel mocap-tailored transform coding algorithm that takes advantage of these features. Our algorithm segments the input mocap sequences into clips, which are represented in 2D matrices. Then it computes a set of data-dependent orthogonal bases to transform the matrices to frequency domain, in which the transform coefficients have significantly less dependency. Finally, the compression is obtained by entropy coding of the quantized coefficients and the bases. Our method has low computational cost and can be easily extended to compress mocap databases. It also requires neither training nor complicated parameter setting. Experimental results demonstrate that the proposed scheme significantly outperforms state-of-the-art algorithms in terms of compression performance and speed
    • …
    corecore