3 research outputs found

    A new block cipher for image encryption based on multi chaotic systems

    Get PDF
    In this paper, a new algorithm for image encryption is proposed based on three chaotic systems which are Chen system,logistic map and two-dimensional (2D) Arnold cat map. First, a permutation scheme is applied to the image, and then shuffled image is partitioned into blocks of pixels. For each block, Chen system is employed for confusion and then logistic map is employed for generating subsititution-box (S-box) to substitute image blocks. The S-box is dynamic, where it is shuffled for each image block using permutation operation. Then, 2D Arnold cat map is used for providing diffusion, after that XORing the result using Chen system to obtain the encrypted image.The high security of proposed algorithm is experimented using histograms, unified average changing intensity (UACI), number of pixels change rate (NPCR), entropy, correlation and keyspace analyses.

    Image Encryption Based on Pixel-Level Diffusion with Dynamic Filtering and DNA-Level Permutation with 3D Latin Cubes

    No full text
    Image encryption is one of the essential tasks in image security. In this paper, we propose a novel approach that integrates a hyperchaotic system, pixel-level Dynamic Filtering, DNA computing, and operations on 3D Latin Cubes, namely DFDLC, for image encryption. Specifically, the approach consists of five stages: (1) a newly proposed 5D hyperchaotic system with two positive Lyapunov exponents is applied to generate a pseudorandom sequence; (2) for each pixel in an image, a filtering operation with different templates called dynamic filtering is conducted to diffuse the image; (3) DNA encoding is applied to the diffused image and then the DNA-level image is transformed into several 3D DNA-level cubes; (4) Latin cube is operated on each DNA-level cube; and (5) all the DNA cubes are integrated and decoded to a 2D cipher image. Extensive experiments are conducted on public testing images, and the results show that the proposed DFDLC can achieve state-of-the-art results in terms of several evaluation criteria

    Entropy in Image Analysis II

    Get PDF
    Image analysis is a fundamental task for any application where extracting information from images is required. The analysis requires highly sophisticated numerical and analytical methods, particularly for those applications in medicine, security, and other fields where the results of the processing consist of data of vital importance. This fact is evident from all the articles composing the Special Issue "Entropy in Image Analysis II", in which the authors used widely tested methods to verify their results. In the process of reading the present volume, the reader will appreciate the richness of their methods and applications, in particular for medical imaging and image security, and a remarkable cross-fertilization among the proposed research areas
    corecore