24,860 research outputs found

    Optical recognition of modern and Roman coins

    Get PDF
    The recently granted EU project COINS aims to contribute substantially to the fight against illegal trade and theft of coins that appears to be a major part of the illegal antiques market. A central component of the permanent identification and traceability of coins is the underlying image recognition technology. However, currently available algorithms focus basically on the recognition of modern coins. To date, no optical recognition system for ancient coins has been successfully researched. It is a challenging task to work with medieval coins since they are – unlike modern coins – not mass manufactured. In this project, the recognition of coins will be based on new algorithms of pattern recognition and image processing, in a field – classification and identification of medieval coins – as yet unexplored. Since the project recently started, preliminary results and work already performed in this field are presented and discussed

    Ancient Coin Classification Using Graph Transduction Games

    Full text link
    Recognizing the type of an ancient coin requires theoretical expertise and years of experience in the field of numismatics. Our goal in this work is automatizing this time consuming and demanding task by a visual classification framework. Specifically, we propose to model ancient coin image classification using Graph Transduction Games (GTG). GTG casts the classification problem as a non-cooperative game where the players (the coin images) decide their strategies (class labels) according to the choices made by the others, which results with a global consensus at the final labeling. Experiments are conducted on the only publicly available dataset which is composed of 180 images of 60 types of Roman coins. We demonstrate that our approach outperforms the literature work on the same dataset with the classification accuracy of 73.6% and 87.3% when there are one and two images per class in the training set, respectively

    Reconhecimento automático de moedas medievais usando visão por computador

    Get PDF
    Dissertação de mestrado em Engenharia InformáticaThe use of computer vision for identification and recognition of coins is well studied and of renowned interest. However the focus of research has consistently been on modern coins and the used algorithms present quite disappointing results when applied to ancient coins. This discrepancy is explained by the nature of ancient coins that are manually minted, having plenty variances, failures, ripples and centuries of degradation which further deform the characteristic patterns, making their identification a hard task even for humans. Another noteworthy factor in almost all similar studies is the controlled environments and uniform illumination of all images of the datasets. Though it makes sense to focus on the more problematic variables, this is an impossible premise to find outside the researchers’ laboratory, therefore a problematic that must be approached. This dissertation focuses on medieval and ancient coin recognition in uncontrolled “real world” images, thus trying to pave way to the use of vast repositories of coin images all over the internet that could be used to make our algorithms more robust. The first part of the dissertation proposes a fast and automatic method to segment ancient coins over complex backgrounds using a Histogram Backprojection approach combined with edge detection methods. Results are compared against an automation of GrabCut algorithm. The proposed method achieves a Good or Acceptable rate on 76% of the images, taking an average of 0.29s per image, against 49% in 19.58s for GrabCut. Although this work is oriented to ancient coin segmentation, the method can also be used in other contexts presenting thin objects with uniform colors. In the second part, several state of the art machine learning algorithms are compared in the search for the most promising approach to classify these challenging coins. The best results are achieved using dense SIFT descriptors organized into Bags of Visual Words, and using Support Vector Machine or Naïve Bayes as machine learning strategies.O uso de visão por computador para identificação e reconhecimento de moedas é bastante estudado e de reconhecido interesse. No entanto o foco da investigação tem sido sistematicamente sobre as moedas modernas e os algoritmos usados apresentam resultados bastante desapontantes quando aplicados a moedas antigas. Esta discrepância é justificada pela natureza das moedas antigas que, sendo cunhadas à mão, apresentam bastantes variações, falhas e séculos de degradação que deformam os padrões característicos, tornando a sua identificação dificil mesmo para o ser humano. Adicionalmente, a quase totalidade dos estudos usa ambientes controlados e iluminação uniformizada entre todas as imagens dos datasets. Embora faça sentido focar-se nas variáveis mais problemáticas, esta é uma premissa impossível de encontrar fora do laboratório do investigador e portanto uma problemática que tem que ser estudada. Esta dissertação foca-se no reconhecimento de moedas medievais e clássicas em imagens não controladas, tentando assim abrir caminho ao uso de vastos repositórios de imagens de moedas disponíveis na internet, que poderiam ser usados para tornar os nossos algoritmos mais robustos. Na primeira parte é proposto um método rápido e automático para segmentar moedas antigas sobre fundos complexos, numa abordagem que envolve Histogram Backprojection combinado com deteção de arestas. Os resultados são comparados com uma automação do algoritmo GrabCut. O método proposto obtém uma classificação de Bom ou Aceitável em 76% das imagens, demorando uma média de 0.29s por imagem, contra 49% em 19,58s do GrabCut. Não obstante o foco em segmentação de moedas antigas, este método pode ser usado noutros contextos que incluam objetos planos de cor uniforme. Na segunda parte, o estado da arte de Machine Learning é testado e comparado em busca da abordagem mais promissora para classificar estas moedas. Os melhores resultados são alcançados usando descritores dense SIFT, organizados em Bags of Visual Words e usando Support Vector Machine ou Naive Bayes como estratégias de machine learning

    Towards computer vision based ancient coin recognition in the wild — automatic reliable image preprocessing and normalization

    Get PDF
    As an attractive area of application in the sphere of cultural heritage, in recent years automatic analysis of ancient coins has been attracting an increasing amount of research attention from the computer vision community. Recent work has demonstrated that the existing state of the art performs extremely poorly when applied on images acquired in realistic conditions. One of the reasons behind this lies in the (often implicit) assumptions made by many of the proposed algorithms — a lack of background clutter, and a uniform scale, orientation, and translation of coins across different images. These assumptions are not satisfied by default and before any further progress in the realm of more complex analysis is made, a robust method capable of preprocessing and normalizing images of coins acquired ‘in the wild’ is needed. In this paper we introduce an algorithm capable of localizing and accurately segmenting out a coin from a cluttered image acquired by an amateur collector. Specifically, we propose a two stage approach which first uses a simple shape hypothesis to localize the coin roughly and then arrives at the final, accurate result by refining this initial estimate using a statistical model learnt from large amounts of data. Our results on data collected ‘in the wild’ demonstrate excellent accuracy even when the proposed algorithm is applied on highly challenging images.Postprin

    Ancient Roman coin retrieval : a systematic examination of the effects of coin grade

    Get PDF
    Ancient coins are historical artefacts of great significance which attract the interest of scholars, and a large and growing number of amateur collectors. Computer vision based analysis and retrieval of ancient coins holds much promise in this realm, and has been the subject of an increasing amount of research. The present work is in great part motivated by the lack of systematic evaluation of the existing methods in the context of coin grade which is one of the key challenges both to humans and automatic methods. We describe a series of methods – some being adopted from previous work and others as extensions thereof – and perform the first thorough analysis to date.Postprin

    A Phoenician Way to be Roman

    Get PDF
    This paper offers a synthesis on my dissertation, titled The Phoenician communities of the Iberian Peninsula and their integration in the Roman world: an identity perspective. The period under discussion extends from the end of the Second Punic War in 206 BCE to the Flavian era in the last quarter of the century CE. About all, this work focuses on the cultural and ethnic dimensions of the process of integration.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Ancient Roman coin recognition in the wild using deep learning based recognition of artistically depicted face profiles

    Get PDF
    As a particularly interesting application in the realm of cultural heritage on the one hand, and a technically challenging problem, computer vision based analysis of Roman Imperial coins has been attracting an increasing amount of research. In this paper we make several important contributions. Firstly, we address a key limitation of existing work which is largely characterized by the application of generic object recognition techniques and the lack of use of domain knowledge. In contrast, our work approaches coin recognition in much the same way as a human expert would: by identifying the emperor universally shown on the obverse.To this end we develop a deep convolutional network, carefully crafted for what is effectively a specific instance of profile face recognition. No less importantly, we also address a major methodological flaw of previous research which is, as we explain in detail, insufficiently systematic and rigorous,and mired with confounding factors. Lastly, we introduce three carefully collected and annotated data sets, and using these demonstrate the effectiveness of the proposed approach which is shown to exceed the performance of the state of the art by approximately an order of magnitude.Postprin
    corecore