1,006 research outputs found

    A formal verification framework and associated tools for enterprise modeling : application to UEML

    Get PDF
    The aim of this paper is to propose and apply a verification and validation approach to Enterprise Modeling that enables the user to improve the relevance and correctness, the suitability and coherence of a model by using properties specification and formal proof of properties

    Develop an autonomous product-based reconfigurable manufacturing system

    Get PDF
    With the ever-emerging market including mass customization and product variety, reconfigurable manufacturing systems (RMS) have been presented as the solution. A manufacturing system that combines the benefits of the two classic manufacturing systems to increase responsiveness and reduce production time and costs. To cope with the lack of physical systems, an RMS system have been built at UiT Narvik. Today, both reconfiguration and deciding layout must be executed manually by a human. A task that is both incredibly time consuming and far from optimal. A method of automating the layout generation and thus the manufacturing system is presented in this thesis. To the authorā€™s knowledge such experiment has not been performed previously. Layouts is generated with a NSGA-II algorithm in Python by minimizing objectives from a developed mathematical model. The results have been tested with a MiR-100 mobile robot placing five modules in two different layouts. The results have been compared with a digital visualization for validation. In addition to the visualization, videos of the physical system's automated layout generation are presented. The results concludes that the method both generates feasible layouts as well as enhancing the automation of the system

    Self-Evaluation Applied Mathematics 2003-2008 University of Twente

    Get PDF
    This report contains the self-study for the research assessment of the Department of Applied Mathematics (AM) of the Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS) at the University of Twente (UT). The report provides the information for the Research Assessment Committee for Applied Mathematics, dealing with mathematical sciences at the three universities of technology in the Netherlands. It describes the state of affairs pertaining to the period 1 January 2003 to 31 December 2008

    Notes on notions around operational research

    Get PDF

    Enhanced integrated modelling approach to reconfiguring manufacturing enterprises

    Get PDF
    Dynamism and uncertainty are real challenges for present day manufacturing enterprises (MEs). Reasons include: an increasing demand for customisation, reduced time to market, shortened product life cycles and globalisation. MEs can reduce competitive pressure by becoming reconfigurable and change-capable. However, modern manufacturing philosophies, including agile and lean, must complement the application of reconfigurable manufacturing paradigms. Choosing and applying the best philosophies and techniques is very difficult as most MEs deploy complex and unique configurations of processes and resource systems, and seek economies of scope and scale in respect of changing and distinctive product flows. It follows that systematic methods of achieving model driven reconfiguration and interoperation of component based manufacturing systems are required to design, engineer and change future MEs. This thesis, titled Enhanced Integrated Modelling Approach to Reconfiguring Manufacturing Enterprises , introduces the development and prototyping a model-driven environment for the design, engineering, optimisation and control of the reconfiguration of MEs with an embedded capability to handle various types of change. The thesis describes a novel systematic approach, namely enhanced integrated modelling approach (EIMA), in which coherent sets of integrated models are created that facilitates the engineering of MEs especially their production planning and control (PPC) systems. The developed environment supports the engineering of common types of strategic, tactical and operational processes found in many MEs. The EIMA is centred on the ISO standardised CIMOSA process modelling approach. Early study led to the development of simulation models during which various CIMOSA shortcomings were observed, especially in its support for aspects of ME dynamism. A need was raised to structure and create semantically enriched models hence forming an enhanced integrated modelling environment. The thesis also presents three industrial case examples: (1) Ford Motor Company; (2) Bradgate Furniture Manufacturing Company; and (3) ACM Bearings Company. In order to understand the system prior to realisation of any PPC strategy, multiple process segments of any target organisation need to be modelled. Coherent multi-perspective case study models are presented that have facilitated process reengineering and associated resource system configuration. Such models have a capability to enable PPC decision making processes in support of the reconfiguration of MEs. During these case studies, capabilities of a number of software tools were exploited such as ArenaĀ®, Simul8Ā®, Plant SimulationĀ®, MS VisioĀ®, and MS ExcelĀ®. Case study results demonstrated effectiveness of the concepts related to the EIMA. The research has resulted in new contributions to knowledge in terms of new understandings, concepts and methods in following ways: (1) a structured model driven integrated approach to the design, optimisation and control of future reconfiguration of MEs. The EIMA is an enriched and generic process modelling approach with capability to represent both static and dynamic aspects of an ME; and (2) example application cases showing benefits in terms of reduction in lead time, cost and resource load and in terms of improved responsiveness of processes and resource systems with a special focus on PPC; (3) identification and industrial application of a new key performance indicator (KPI) known as P3C the measuring and monitoring of which can aid in enhancing reconfigurability and responsiveness of MEs; and (4) an enriched modelling concept framework (E-MUNE) to capture requirements of static and dynamic aspects of MEs where the conceptual framework has the capability to be extended and modified according to the requirements. The thesis outlines key areas outlining a need for future research into integrated modelling approaches, interoperation and updating mechanisms of partial models in support of the reconfiguration of MEs

    Advances in Production Management Systems: Issues, Trends, and Vision Towards 2030

    Get PDF
    Since its inception in 1978, the IFIP Working Group (WG) 5.7 on Advances in Production Management Systems (APMS) has played an active role in the fields of production and production management. The Working Group has focused on the conception, development, strategies, frameworks, architectures, processes, methods, and tools needed for the advancement of both fields. The associated standards created by the IFIP WG5.7 have always been impacted by the latest developments of scientific rigour, academic research, and industrial practices. The most recent of those developments involves the Fourth Industrial Revolution, which is having remarkable (r)evolutionary and disruptive changes in both the fields and the standards. These changes are triggered by the fusion of advanced operational and informational technologies, innovative operating and business models, as well as social and environmental pressures for more sustainable production systems. This chapter reviews past, current, and future issues and trends to establish a coherent vision and research agenda for the IFIP WG5.7 and its international community. The chapter covers a wide range of production aspects and resources required to design, engineer, and manage the next generation of sustainable and smart production systems.acceptedVersio

    Towards the Resilient Operator 5.0: The Future of Work in Smart Resilient Manufacturing Systems

    Get PDF
    Most recently, the COVID-19 pandemic has shown industries all around the world that their current manufacturing systems are not as resilient as expected and therefore many are failing. The workforce is the most agile and flexible manufacturing resource and simultaneously the most fragile one due to its humanity. By making human operators more resilient against a range of factors affecting their work and workplaces, enterprises can make their manufacturing systems more resilient. This paper introduces "The Resilient Operator 5.0" concept, based on human operator resilience and human-machine systems\u27 resilience, providing a vision for the future of work in smart resilient manufacturing systems in the emerging Industry 5.0 hallmark. It suggests how to achieve appropriate smart manufacturing systems\u27 resilience from a human-centric perspective through the means of the Operator 4.0 typology and its related technical solutions
    • ā€¦
    corecore