12 research outputs found

    Extracting Hierarchies of Search Tasks & Subtasks via a Bayesian Nonparametric Approach

    Get PDF
    A significant amount of search queries originate from some real world information need or tasks. In order to improve the search experience of the end users, it is important to have accurate representations of tasks. As a result, significant amount of research has been devoted to extracting proper representations of tasks in order to enable search systems to help users complete their tasks, as well as providing the end user with better query suggestions, for better recommendations, for satisfaction prediction, and for improved personalization in terms of tasks. Most existing task extraction methodologies focus on representing tasks as flat structures. However, tasks often tend to have multiple subtasks associated with them and a more naturalistic representation of tasks would be in terms of a hierarchy, where each task can be composed of multiple (sub)tasks. To this end, we propose an efficient Bayesian nonparametric model for extracting hierarchies of such tasks \& subtasks. We evaluate our method based on real world query log data both through quantitative and crowdsourced experiments and highlight the importance of considering task/subtask hierarchies.Comment: 10 pages. Accepted at SIGIR 2017 as a full pape

    Recognizing Topic Change in Search Sessions of Digital Libraries based on Thesaurus and Classification System

    Full text link
    Log analysis in Web search showed that user sessions often contain several different topics. This means sessions need to be segmented into parts which handle the same topic in order to give appropriate user support based on the topic, and not on a mixture of topics. Different methods have been proposed to segment a user session to different topics based on timeouts, lexical analysis, query similarity or external knowledge sources. In this paper, we study the problem in a digital library for the social sciences. We present a method based on a thesaurus and a classification system which are typical knowledge organization systems in digital libraries. Five experts evaluated our approach and rated it as good for the segmentation of search sessions into parts that treat the same topic

    Multi-layered HITS on Multi-sourced Networks

    Get PDF
    abstract: Network mining has been attracting a lot of research attention because of the prevalence of networks. As the world is becoming increasingly connected and correlated, networks arising from inter-dependent application domains are often collected from different sources, forming the so-called multi-sourced networks. Examples of such multi-sourced networks include critical infrastructure networks, multi-platform social networks, cross-domain collaboration networks, and many more. Compared with single-sourced network, multi-sourced networks bear more complex structures and therefore could potentially contain more valuable information. This thesis proposes a multi-layered HITS (Hyperlink-Induced Topic Search) algorithm to perform the ranking task on multi-sourced networks. Specifically, each node in the network receives an authority score and a hub score for evaluating the value of the node itself and the value of its outgoing links respectively. Based on a recent multi-layered network model, which allows more flexible dependency structure across different sources (i.e., layers), the proposed algorithm leverages both within-layer smoothness and cross-layer consistency. This essentially allows nodes from different layers to be ranked accordingly. The multi-layered HITS is formulated as a regularized optimization problem with non-negative constraint and solved by an iterative update process. Extensive experimental evaluations demonstrate the effectiveness and explainability of the proposed algorithm.Dissertation/ThesisMasters Thesis Computer Science 201

    Watching inside the Screen: Digital Activity Monitoring for Task Recognition and Proactive Information Retrieval

    Get PDF
    We investigate to what extent it is possible to infer a user’s work tasks by digital activity monitoring and use the task models for proactive information retrieval. Ten participants volunteered for the study, in which their computer screen was monitored and related logs were recorded for 14 days. Corresponding diary entries were collected to provide ground truth to the task detection method. We report two experiments using this data. The unsupervised task detection experiment was conducted to detect tasks using unsupervised topic modeling. The results show an average task detection accuracy of more than 70% by using rich screen monitoring data. The single-trial task detection and retrieval experiment utilized unseen user inputs in order to detect related work tasks and retrieve task-relevant information on-line. We report an average task detection accuracy of 95%, and the corresponding model-based document retrieval with Normalized Discounted Cumulative Gain of 98%. We discuss and provide insights regarding the types of digital tasks occurring in the data, the accuracy of task detection on different task types, and the role of using different data input such as application names, extracted keywords, and bag-of-words representations in the task detection process. We also discuss the implications of our results for ubiquitous user modeling and privacy.Peer reviewe

    Query understanding through knowledge-based conceptualization

    Get PDF
    Abstract The goal of query conceptualization is to map instances in a query to concepts defined in a certain ontology or knowledge base. Queries usually do not observe the syntax of a written language, nor do they contain enough signals for statistical inference. However, the available context, i.e., the verbs related to the instances, the adjectives and attributes of the instances, do provide valuable clues to understand instances. In this paper, we first mine a variety of relations among terms from a large web corpus and map them to related concepts using a probabilistic knowledge base. Then, for a given query, we conceptualize terms in the query using a random walk based iterative algorithm. Finally, we examine our method on real data and compare it to representative previous methods. The experimental results show that our method achieves higher accuracy and efficiency in query conceptualization

    User Modeling for a Personal Assistant

    Full text link
    We present a user modeling system that serves as the foun-dation of a personal assistant. The system ingests web search history for signed-in users, and identifies coherent contexts that correspond to tasks, interests, and habits. Un-like past work which focused on either in-session tasks or tasks over a few days, we look at several months of his-tory in order to identify not just short-term tasks, but also long-term interests and habits. The features we use for iden-tifying coherent contexts yield substantially higher precision and recall than past work. We also present an algorithm for identifying contexts that is 8 to 30 times faster than previous algorithms. The user modeling system has been deployed in production. It runs over hundreds of millions of users, and updates the models with a 10-minute latency. The contexts identified by the system serve as the foundation for gener-ating recommendations in Google Now. 1

    Situation inference and context recognition for intelligent mobile sensing applications

    Get PDF
    The usage of smart devices is an integral element in our daily life. With the richness of data streaming from sensors embedded in these smart devices, the applications of ubiquitous computing are limitless for future intelligent systems. Situation inference is a non-trivial issue in the domain of ubiquitous computing research due to the challenges of mobile sensing in unrestricted environments. There are various advantages to having robust and intelligent situation inference from data streamed by mobile sensors. For instance, we would be able to gain a deeper understanding of human behaviours in certain situations via a mobile sensing paradigm. It can then be used to recommend resources or actions for enhanced cognitive augmentation, such as improved productivity and better human decision making. Sensor data can be streamed continuously from heterogeneous sources with different frequencies in a pervasive sensing environment (e.g., smart home). It is difficult and time-consuming to build a model that is capable of recognising multiple activities. These activities can be performed simultaneously with different granularities. We investigate the separability aspect of multiple activities in time-series data and develop OPTWIN as a technique to determine the optimal time window size to be used in a segmentation process. As a result, this novel technique reduces need for sensitivity analysis, which is an inherently time consuming task. To achieve an effective outcome, OPTWIN leverages multi-objective optimisation by minimising the impurity (the number of overlapped windows of human activity labels on one label space over time series data) while maximising class separability. The next issue is to effectively model and recognise multiple activities based on the user's contexts. Hence, an intelligent system should address the problem of multi-activity and context recognition prior to the situation inference process in mobile sensing applications. The performance of simultaneous recognition of human activities and contexts can be easily affected by the choices of modelling approaches to build an intelligent model. We investigate the associations of these activities and contexts at multiple levels of mobile sensing perspectives to reveal the dependency property in multi-context recognition problem. We design a Mobile Context Recognition System, which incorporates a Context-based Activity Recognition (CBAR) modelling approach to produce effective outcome from both multi-stage and multi-target inference processes to recognise human activities and their contexts simultaneously. Upon our empirical evaluation on real-world datasets, the CBAR modelling approach has significantly improved the overall accuracy of simultaneous inference on transportation mode and human activity of mobile users. The accuracy of activity and context recognition can also be influenced progressively by how reliable user annotations are. Essentially, reliable user annotation is required for activity and context recognition. These annotations are usually acquired during data capture in the world. We research the needs of reducing user burden effectively during mobile sensor data collection, through experience sampling of these annotations in-the-wild. To this end, we design CoAct-nnotate --- a technique that aims to improve the sampling of human activities and contexts by providing accurate annotation prediction and facilitates interactive user feedback acquisition for ubiquitous sensing. CoAct-nnotate incorporates a novel multi-view multi-instance learning mechanism to perform more accurate annotation prediction. It also includes a progressive learning process (i.e., model retraining based on co-training and active learning) to improve its predictive performance over time. Moving beyond context recognition of mobile users, human activities can be related to essential tasks that the users perform in daily life. Conversely, the boundaries between the types of tasks are inherently difficult to establish, as they can be defined differently from the individuals' perspectives. Consequently, we investigate the implication of contextual signals for user tasks in mobile sensing applications. To define the boundary of tasks and hence recognise them, we incorporate such situation inference process (i.e., task recognition) into the proposed Intelligent Task Recognition (ITR) framework to learn users' Cyber-Physical-Social activities from their mobile sensing data. By recognising the engaged tasks accurately at a given time via mobile sensing, an intelligent system can then offer proactive supports to its user to progress and complete their tasks. Finally, for robust and effective learning of mobile sensing data from heterogeneous sources (e.g., Internet-of-Things in a mobile crowdsensing scenario), we investigate the utility of sensor data in provisioning their storage and design QDaS --- an application agnostic framework for quality-driven data summarisation. This allows an effective data summarisation by performing density-based clustering on multivariate time series data from a selected source (i.e., data provider). Thus, the source selection process is determined by the measure of data quality. Nevertheless, this framework allows intelligent systems to retain comparable predictive results by its effective learning on the compact representations of mobile sensing data, while having a higher space saving ratio. This thesis contains novel contributions in terms of the techniques that can be employed for mobile situation inference and context recognition, especially in the domain of ubiquitous computing and intelligent assistive technologies. This research implements and extends the capabilities of machine learning techniques to solve real-world problems on multi-context recognition, mobile data summarisation and situation inference from mobile sensing. We firmly believe that the contributions in this research will help the future study to move forward in building more intelligent systems and applications
    corecore