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ABSTRACT

Network mining has been attracting a lot of research attention because of the preva-

lence of networks. As the world is becoming increasingly connected and correlated,

networks arising from inter-dependent application domains are often collected from

different sources, forming the so-called multi-sourced networks. Examples of such

multi-sourced networks include critical infrastructure networks, multi-platform so-

cial networks, cross-domain collaboration networks, and many more. Compared with

single-sourced network, multi-sourced networks bear more complex structures and

therefore could potentially contain more valuable information.

This thesis proposes a multi-layered HITS (Hyperlink-Induced Topic Search) algo-

rithm to perform the ranking task on multi-sourced networks. Specifically, each node

in the network receives an authority score and a hub score for evaluating the value

of the node itself and the value of its outgoing links respectively. Based on a recent

multi-layered network model, which allows more flexible dependency structure across

different sources (i.e., layers), the proposed algorithm leverages both within-layer

smoothness and cross-layer consistency. This essentially allows nodes from different

layers to be ranked accordingly. The multi-layered HITS is formulated as a regular-

ized optimization problem with non-negative constraint and solved by an iterative

update process. Extensive experimental evaluations demonstrate the effectiveness

and explainability of the proposed algorithm.
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Chapter 1

INTRODUCTION

In the era of big data, network is almost everywhere. As the world is becom-

ing increasingly connected and correlated, the networks arising from inter-dependent

application domains are often collected from different sources, forming the so-called

multi-sourced networks. Classic examples of such kind of networks include multi-

platform social networks, cross-domain collaboration networks, critical infrastructure

networks, biological systems, etc. Compared with single-sourced network, multi-

sourced networks bear more complex structures and therefore could potentially con-

tain more valuable information. In recent years, how to perform data mining tasks

on such multi-sourced networks to extract hidden information has become a popu-

lar research topic among the researchers, which has posed many fascinating research

questions. One of the tasks we are going to explore in this thesis is ranking on

multi-sourced networks.

Ranking is one of the most common but important tasks in the domain of data

mining. Until now, there exist many effective and efficient ranking algorithms. The

most basic one is eigenvector centrality [Newman (2008)], which ranks nodes by their

influence in the network. Theoretically, a node is important if it is linked to by other

important nodes. Another famous ranking algorithm is Google PageRank [Brin and

Page (1998)], which is the algorithm behind many search engines. Google PageRank

exploits the global structure of the link graph using a random walk and assigns an

importance score to each node according to the number of links it receives from other

nodes. Based on Google PageRank, Zhou et al. proposed a personalized Google

PageRank algorithm [Zhou et al. (2004b)] based on the random walk with restart
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(RWR). This algorithm allows data to be ranked with respect to the intrinsic man-

ifold structure, which achieves better ranking performance. At the same time that

Google PageRank was proposed, Jon Kleinberg developed the Hyperlink-Induced

Topic Search (HITS) [Kleinberg (1999)], which is a link analysis algorithm that is

used for ranking web pages. Each page will receive two scores: authority and hub.

Authority measures the value of the page itself while hub measures the value of its

links to other pages. These two scores present a mutually reinforcing relationship.

Besides PageRank and HITS, there has been a number of extensions of those two

algorithms proposed, such as [Amento et al. (2000); Bharat and Henzinger (1998);

Chakrabarti et al. (1998); Chakrabarti (2001); Chakrabarti et al. (2001); Haveliwala

(2002); Lempel and Moran (2000); Cai et al. (2004)]. All of these ranking algorithms

work well in single-sourced networks, but few of work has been done to generalize

them to the context of multi-sourced networks.

To tackle this challenge, one of the prior things to do is to build a mathematical

model for the multi-sourced networks. In 2014, Ni et al. (2014) proposed a new data

model called Network of Networks (NoN) for multi-sourced graph mining, where each

node of the main network itself can be further represented as a domain-specific net-

work. This model allows to compare and rank nodes beyond the atom level. In 2015,

Chen et al. (2015) defined a new multi-layered network model called MuLaN, which is

a further generalization of NoN model. Specifically, connections in the main network

from NoN model are extended to inter-layer node-node dependencies in MuLaN. In

this way, MuLaN provides more flexible dependency structure across different layers

(domain-specific networks) than the NoN model.

In this paper, we propose multi-layered HITS, which is a generalization of regular

HITS (Hyperlink-Induced Topic Search) on multi-layered networks. The proposed

method mainly solve two problems: (1) it allows finding the top-ranked nodes in each
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layer according to their global popularity and importance. We name this setting as

Cross-Layer Ranking. (2) it allows finding the most relevant nodes in each layer with

respect to a query node. We name this setting as Cross-Layer Query.

Moreover, to further improve the performance and explainability of the multi-

layered HITS algorithm, we combine the knowledge graphs (e.g., Google knowledge

graph, Baidu knowledge graph, etc) as the knowledge layers into the multi-layered

networks. And the original layers are considered as data layers. The multi-layered

structure is shown in Figure 1.1. With the integration of data layers and knowledge

layers, there is a more detailed description on how different entities are related with

each other, which allows the multi-layered HITS algorithm to provide more accurate

and reasonable ranking results.

Figure 1.1: An Illustrative Multi-layered Networks

Generally speaking, the main contributions of this thesis can be summarized as

the following 2 aspects:

• Algorithms and Analysis. We propose a new algorithm called multi-layered

HITS, which performs the ranking task in multi-layered networks. And we

analyze its convergence.

• Empirical Evaluations. We conduct comprehensive experiments on a real
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dataset to validate the effectiveness and explainability of the proposed algo-

rithm.

The rest of the paper is organized as follows. Chapter 2 gives the problem defini-

tion of Cross-Layer Ranking and Cross-Layer Query. Chapter 3 proposes the multi-

layered HITS algorithm with its analysis. Chapter 4 presents the experimental eval-

uations. Chapter 5 performs a literature survey regarding the related work. Chapter

6 conclude the paper.

4



Chapter 2

PROBLEM DEFINITION

In this chapter, we give the formal definitions of Cross-Layer Ranking problem and

Cross-Layer Query Problem. Table 2.1 lists the main symbols used throughout this

paper. We use bold capital letters to denote matrices (e.g., G, A, etc.), bold lower

cases for vectors (e.g., r) and calligraphic letters for sets (e.g., A).

Symbol Definition

A, B adjacency matrices (bold upper case)

a, b column vectors (bold lower case)

A, B sets (calligraphic)

A(i, j) the element at ith row jth column in matrix A

a(i) the element at ith position in vector a

A′ the transpose of matrix A

G layer-layer dependency matrix

A within-layer connectivity matrices of the network A = {A1, ...,Ag}

D cross-layer dependency matrices D = {Di,j i, j = 1, ..., g}

θ, φ one-to-one mapping function

ui authority ranking vector for Ai

vi hub ranking vector for Ai

g the total number of layers

ni the number of nodes in graph Ai (i = 1, ..., g)

mi the number of edges in graph Ai (i = 1, ..., g)

Table 2.1: Symbols
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At first, we give the definition of the multi-layered network model. In this paper,

we use the MuLaN model proposed by Chen et al. (2015). For the full detail, we

recommend readers to refer the original paper. Below is the definition for MuLaN:

Definition 1. A Multi-layered Network Model (MuLaN)

Given (1) a binary g×g abstract layer-layer dependency network G, where G(i, j) = 1

indicates layer j depends on layer i (or layer i support layer j), G(i, j) = 0 means no

direct dependency from layer i to layer j; (2) a set of within-layer adjacency matrices

A = {A1, ...,Ag} where Ai describes the connectivities/similarities between nodes

within the layer i; (3) a set of inter-layer node-node dependency matrices D, indexed

by pair (i, j), i, j ∈ [1, ..., g], such that for a pair (i, j), if G(i, j) = 1, then Di,j

is an ni × nj dependency matrix; otherwise the corresponding dependency matrix

Di,j is absent; (4) θ is a one-to-one mapping function that maps each node in layer-

layer dependency network G to the corresponding within-layer adjacency matrix Ai

(i = 1, ..., g); (5) φ is another one-to-one mapping function that maps each edge in

G to the corresponding inter-layer node-node dependency matrix Di,j. We define a

multi-layered network as a quintuple Γ =< G,A,D, θ, φ >.

Figure 2.1 shows a typical example of multi-layered networks. The abstract layer-

layer dependency network G in this example is a line graph. There are 4 within-layer

adjacency matrices in A: the chemical network (A1), the drug network (A2), the

disease network (A3) and the protein-protein interaction (PPI) network (A4). Across

these layers, there are 3 non-empty dependencies in D: the chemical-drug dependency

(D1,2), the drug-disease dependency (D2,3) and the disease-protein dependency (D3,4).

Based on the MuLaN model, we define the problems of Cross-Layer Ranking and

Cross-Layer Query as below:

Problem 1: Cross-Layer Ranking

Given: (1) an multi-layered network Γ =< G,A,D, θ, φ >;

6



Figure 2.1: A Simple 4-layered Network for Biological Systems

Find: the authority ranking vectors ui and the hub ranking vectors vi for the nodes

in each layer Ai.

Problem 2: Cross-Layer Query

Given: (1) an multi-layered network Γ =< G,A,D, θ, φ >, (2) a query node, and (3)

an integer K;

Find: the top-K most relevant nodes (ranked by authority score and ranked by hub

score) from each layer Ai with respect to the query node.
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Chapter 3

MULTI-LAYERED HITS ALGORITHM

In this chapter, we propose the multi-layered HITS algorithm to solve the Cross-

Layer Ranking problem and Cross-Layer Query problem. We first formulate it as

a regularized optimization problem, then present an iterative algorithm to solve it,

followed by some theoretical analysis.

3.1 Objective Function

To formulate the ranking task on multi-layered networks, there are two types of

constraints we need to take care of. The first constraint is within-layer smoothness,

which requires similar nodes on the same layer to have similar ranking scores. This

is easy to handle because we can directly apply the regular HITS algorithm within

the layer. Refer to Cai and Chakravarthy (2014), regular HITS algorithm is essen-

tially a non-negative matrix factorization problem, which makes it easy to obtain its

objective function accordingly. The second constraint is cross-layer consistency that

similar nodes across different layers should share similar ranking scores. This is an

over-arching principle to perform mining and learning with multi-layered networks.

Inspired by Sindhwani and Melville (2008), where the authors think the sentiment-

polarity scores between connected word and document should be similar, we assume

the nodes who have cross-layer connections should share similar authority scores and

hub scores. This gives us a metric for the cross-layer consistency.

According to above analysis, we present the following regularized objective func-

tion J(u1, ...,ug; v1, ...,vg). The optimal authority ranking vectors ui and hub ranking
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vectors vi are the solution for minimizing the objective function.

J
ui≥0,vi≥0

=
n∑
i=1

1

2
|| 1
ei

Ai − uiv
′
i||

2

F︸ ︷︷ ︸
within-layer smoothness

+ µ
∑

i,j:G(i,j)=1

∑
x,y:Di,j(x,y)=1

[(ui(x)− uj(y))2 + (vi(x)− vj(y))2]

︸ ︷︷ ︸
cross-layer consistency

(3.1)

where || · ||F denotes the Frobenius norm, ei is the total number of links in layer i,

i.e., ei =
∑

x,y Ai(x, y), µ > 0 is a regularization parameter.

Vectorizing the objective function, we have

J
ui≥0,vi≥0

=
n∑
i=1

1

2
|| 1
ei

Ai − uiv
′
i||

2

F︸ ︷︷ ︸
within-layer smoothness

+ µ
∑

i,j:G(i,j)=1

([
u′i u′j

]
Li,j

ui

uj

+

[
v′i v′j

]
Li,j

vi

vj

)
︸ ︷︷ ︸

cross-layer consistency

(3.2)

where Li,j =

Ti,j 0

0 T′i,j

−
 0 Di,j

D′i,j 0

 =

 Ti,j −Di,j

−D′i,j T′i,j

 where Ti,j is the diag-

onal degree matrix associated with Di,j, i.e., Ti,j(r, r) =
∑

s Di,j(r, s).

3.2 Iterative Algorithms

The optimization problem defined in equation (3.2) is quadratic, so we start by

finding the derivatives of J with respect to ui and v′i. Only consider terms related to

ui, we have

J(ui) =
1

2
|| 1
ei

Ai − uiv
′
i||

2

F

+ µ
∑

j:G(i,j)=1

(u′iTi,jui − u′jD
′
i,jui − u′iDi,juj + u′jT

′
i,juj)

(3.3)
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Also, since we know ||X||2F = Tr(XX′), then

1

2
|| 1
ei

Ai − uiv
′
i||

2

F

=
1

2
Tr[(

1

ei
Ai − uiv

′
i)(

1

ei
A′i − viu

′
i)]

=
1

2
Tr(

1

e2i
AiA

′
i −

1

ei
Aiviu

′
i − uiv

′
i ·

1

ei
A′i + uiv

′
iviu

′
i)

=
1

2
Tr(

1

e2i
AiA

′
i)− Tr(

1

ei
Aiviu

′
i) +

1

2
Tr(uiv

′
iviu

′
i)

=
1

2
Tr(

1

e2i
AiA

′
i)− u′i ·

1

ei
Aivi +

1

2
v′iviu

′
iui

(3.4)

Drop constant terms, we have

J(ui) =
1

2
v′iviu

′
iui − u′i ·

1

ei
Aivi + µ

∑
j:G(i,j)=1

(u′iTi,jui − u′jD
′
i,jui − u′iDi,juj) (3.5)

Compute the derivative of J with respect to ui

∂J

∂ui
= (uiv

′
ivi −

1

ei
Aivi) + 2µ

∑
j:G(i,j)=1

(Ti,jui −Di,juj) (3.6)

Similarly, we can compute the derivative of J with respect to v′i

∂J

∂v′i
= (u′iuiv

′
i − u′i ·

1

ei
Ai) + 2µ

∑
j:G(i,j)=1

(v′iT
′
i,j − v′jD

′
i,j) (3.7)

According to the fix-point solution with the non-negativity constraint on the authority

ranking vector ui and the hub ranking vector vi, we have the following multiplicative

updating rule

ui(x)←ui(x)

√√√√ [ 1
ei

Aivi + 2µ
∑

j:G(i,j)=1 Di,juj](x)

[uiv′ivi + 2µ
∑

j:G(i,j)=1 Ti,jui](x)

v′i(x)←v′i(x)

√√√√ [u′i · 1
ei

Ai + 2µ
∑

j:G(i,j)=1 v′jD
′
i,j](x)

[u′iuiv
′
i + 2µ

∑
j:G(i,j)=1 v′iT

′
i,j](x)

(3.8)

With the multiplicative updating rules, it is easy to summarize the algorithms for

Cross-Layer Ranking and Cross-Layer Query.
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3.2.1 Cross-Layer Ranking

To solve the problem of Cross-Layer Ranking, we can directly apply the itera-

tive algorithm to the multi-layered network model. The algorithm is summarized in

Algorithm 1.

Algorithm 1: Cross-Layer Ranking

Input : (1) an multi-layered network Γ =< G,A,D, θ, φ >;

Output: the authority ranking vectors ui and the hub ranking vectors vi for

nodes in each layer Ai;

1 for i← 1 to g do

2 Initialize ui, vi as ni × 1 non-negative random vectors;

3 end

4 while not converge do

5 ui(x)← ui(x)

√
[ 1
ei
Aivi+2µ

∑
j:G(i,j)=1 Di,juj ](x)

[uiv′
ivi+2µ

∑
j:G(i,j)=1 Ti,jui](x)

;

6 v′i(x)← v′i(x)

√
[u′

i·
1
ei
Ai+2µ

∑
j:G(i,j)=1 v

′
jD

′
i,j ](x)

[u′
iuiv′

i+2µ
∑

j:G(i,j)=1 v
′
iT

′
i,j ](x)

;

7 end

8 return the authority ranking vectors ui and the hub ranking vectors vi;

3.2.2 Cross-Layer Query

To solve the problem of Cross-Layer Query, we need to modify the Cross-Layer

Ranking algorithm with respect to the query node. One solution is to extract a

subgraph with respect to the query node using breadth-first search (BFS) or random

walk with restart (RWR). Then we still use the MuLaN to model the extracted

subgraph. In this way, we can obtain a smaller multi-layered network which centers on

the query node. Applying the iterative algorithm to this new multi-layered networks,

11



the ranking vectors with respect to the query node will be returned. Then the only

thing we need to do is to take the top-K ranked results from the ranking vectors.

This algorithm is summarized in Algorithm 2.

Algorithm 2: Cross-Layer Query

Input : (1) an multi-layered network Γ =< G,A,D, θ, φ >, (2) a query node,

and (3) an integer K;

Output: the top-K most relevant nodes (ranked by authority score and ranked

by hub score) from each layer Ai with respect to the query node.

1 Extract a subgraph from the query node using BFS or RWR;

2 Form the subgraph as a smaller multi-layered network;

3 Use the extracted multi-layered network as the new input;

4 for i← 1 to ĝ do

5 Initialize ui, vi as n̂i × 1 non-negative random vectors;

6 end

7 while not converge do

8 ui(x)← ui(x)

√
[ 1
ei
Aivi+2µ

∑
j:G(i,j)=1 Di,juj ](x)

[uiv′
ivi+2µ

∑
j:G(i,j)=1 Ti,jui](x)

;

9 v′i(x)← v′i(x)

√
[u′

i·
1
ei
Ai+2µ

∑
j:G(i,j)=1 v

′
jD

′
i,j ](x)

[u′
iuiv′

i+2µ
∑

j:G(i,j)=1 v
′
iT

′
i,j ](x)

;

10 end

11 return the top-K ranked nodes from each layer Ai;

3.3 Proof and Analysis

Here, we analyze the proposed multi-layered HITS algorithm in terms of its ef-

fectiveness by proving that the proposed multi-layered HITS algorithm indeed finds

a local optimum solution to Equation 3.2. At first, we give the following theorem,

which says that the fixed point solution of Equation 3.8 satisfies the KKT condition.
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Theorem 3.1. The fixed point solution of Equation 3.8 satisfies the KKT condition.

Proof. The Lagrangian function of Equation 3.5 can be written as

L(ui) =
1

2
v′iviu

′
iui − u′i ·

1

ei
Aivi

+ µ
∑

j:G(i,j)=1

(u′iTi,jui − u′jD
′
i,jui − u′iDi,juj)−αui

(3.9)

where α is the Lagrange multiplier. Setting the derivative of L(ui) to 0, we get

(uiv
′
ivi −

1

ei
Aivi) + 2µ

∑
j:G(i,j)=1

(Ti,jui −Di,juj) = α (3.10)

By the KKT complementary slackness condition, we have

[(uiv
′
ivi + 2µ

∑
j:G(i,j)=1

Ti,jui)− (
1

ei
Aivi + 2µ

∑
j:G(i,j)=1

Di,juj)](x)ui(x) = 0 (3.11)

Similarly,

[(u′iuiv
′
i + 2µ

∑
j:G(i,j)=1

v′iT
′
i,j)− (u′i ·

1

ei
Ai + 2µ

∑
j:G(i,j)=1

v′jD
′
i,j)](x)vi(x) = 0 (3.12)

Therefore, we can see that the fixed point solution of Equation 3.8 satisfies the above

equations.

The convergence of the proposed multi-layered HITS algorithm is given by the

following lemma.

Lemma 3.2. Under the updating rule in Equation 3.8, the objective function in

Equation 3.2 decreases monotonically.

Proof. From Equation 3.5, we have

J(ui) =−u′i ·
1

ei
Aivi︸ ︷︷ ︸

Q1

+
1

2
v′iviu

′
iui︸ ︷︷ ︸

Q2

+µ
∑

j:G(i,j)=1

(u′iTi,jui︸ ︷︷ ︸
Q3

−u′jD
′
i,jui︸ ︷︷ ︸

Q4

−u′iDi,juj︸ ︷︷ ︸
Q5

)
(3.13)
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Following the auxiliary function approach in Lee and Seung (2001), the auxiliary

function H(ui, ũi) of J(ui) must satisfy

H(ui, ũi) ≥ J(ui), H(ui,ui) = J(ui) (3.14)

Define

u
(t+1)
i = argmin

ui

H(ui,u
(t)
i ) (3.15)

by this construction, we have

J(u
(t+1)
i ) ≤ H(u

(t+1)
i ,u

(t)
i ) ≤ H(u

(t)
i ,u

(t)
i ) = J(u

(t)
i ) (3.16)

which proves that J(u
(t)
i ) decreases monotonically.

Next, we prove that (1) we can find such an auxiliary function which satisfies the

constraints and (2) the updating rule in Equation 3.8 leads to the global minimum

solution to the auxiliary function.

First, we show that the following function is one of the auxiliary function of

Equation 3.13:

H(ui, ũi) = (Q′1 +Q′2) + µ
∑

j:G(i,j)=1

(Q′3 +Q′4 +Q′5) (3.17)

where

Q′1 = −
ni∑
x=1

[
1

ei
Aivi](x)ũi(x)(1 + log

ui(x)

ũi(x)
) (3.18)

Q′2 =
1

2
v′ivi

ni∑
x=1

u2
i (x) (3.19)

Q′3 =

ni∑
x=1

[Ti,jũi](x)u2
i (x)

ũi(x)
(3.20)

Q′4 = −
ni∑
x=1

[Di,juj](x)ũi(x)(1 + log
ui(x)

ũi(x)
) (3.21)

Q′5 = −
ni∑
x=1

[Di,juj](x)ũi(x)(1 + log
ui(x)

ũi(x)
) (3.22)
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Using the inequality z ≥ 1 + logz, we have

Q′1 ≥ −
ni∑
x=1

[
1

ei
Aivi](x)ui(x) = Q1 (3.23)

Q′4 ≥ −
ni∑
x=1

[Di,juj](x)ui(x) = Q4 (3.24)

Q′5 ≥ −
ni∑
x=1

[Di,juj](x)ui(x) = Q5 (3.25)

For Q′2, we have

Q′2 = Q2 (3.26)

For Q′3, by using the following inequality in Ding et al. (2006)

n∑
i=1

k∑
p=1

[AS∗B]S2(i, p)

S∗(i, p)
≥ Tr(S′ASB) (3.27)

where A ∈ Rn×n
+ , B ∈ Rk×k

+ , S ∈ Rn×k
+ , S∗ ∈ Rn×n

+ , and A, B are symmetric, we have

Q′3 >= Tr(u′iTi,jui) = u′iTi,jui = Q3 (3.28)

Putting the above inequalities together, we have H(ui, ũi) ≥ J(ui).

Then we find the global minimum solution to H(ui, ũi). The gradient of H(ui, ũi)

is computed as

∂H(ui, ũi)

∂ui(x)
=−

[ 1
ei

Aivi](x)ũi(x)

ui(x)
+ v′iviui(x)

+ 2µ
∑

j:G(i,j)=1

[Ti,jũi](x)ui(x)

ũi(x)
− 2µ

∑
j:G(i,j)=1

[Di,juj](x)ũi(x)

ui(x)

(3.29)

Setting the gradient to zero, we have

u2
i (x) = ũ2

i (x)
[ 1
ei

Aivi + 2µ
∑

j:G(i,j)=1 Di,juj](x)

[ũiv′ivi + 2µ
∑

j:G(i,j)=1 Ti,jũi](x)
(3.30)

Recall that we have set u
(t+1)
i = ui and u

(t)
i = ũi. The above equation proves that the

updating rule for u in 3.8 decreases monotonically. By reversing the roles of u and

v, it is simple to show that the updating rule for v decreases monotonically, too.
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Chapter 4

EVALUATION

In this chapter, we evaluate the proposed multi-layered HITS algorithm on a real

dataset from the following two aspects:

• Effectiveness. How effective are the multi-layered HITS algorithm on ranking

the nodes within different layers?

• Explainability. Is the ranking result of multi-layered HITS algorithm explain-

able?

4.1 Dataset & Preprocessing

We use the real dataset of Amazon product co-purchasing network1 [Yang and

Leskovec (2015)] for our experiments. In this network, each node represents a product

and each edge represents an undirected co-purchasing relationship. Here, if a product

i is frequently purchased with product j, i and j are defined as being co-purchased.

From the Amazon product metadata2 [Leskovec et al. (2007)], we further extract

product group information. Each product belongs to a group, which can be Book,

DVD, Music, or Video. This allows us to divides the products into 4 groups. Utilizing

the MuLaN model, we can build a 4-layered products co-purchasing network.

Besides the group information, Amazon product metadata also contains data

about customer reviews. This could be regarded as a kind of knowledge for im-

proving the ranking performance of the algorithm. Specifically, we add a customer

1Please refer to http://snap.stanford.edu/data/com-Amazon.html
2Please refer to http://snap.stanford.edu/data/amazon-meta.html
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layer to the multi-layered products co-purchasing network, where each edge between

customer layer and product layer represents a review. Since each review has a rating

(1 stands for most negative, 5 stands for most positive) and we do not consider any

edge attributes in our algorithm, we want to consider only one polarity for consis-

tency. Therefore, we only keep the reviews whose ratings are greater than or equal to

4. Also, to avoid introducing too much noisy information, we only consider valuable

reviews which have at least 20 votes and more than 80% helpfulness.

After preprocessing, we build a 5-layered Amazon network model. In this multi-

layered network model, both within-layer connectivities and the cross-layer dependen-

cies are binary and undirected. The structure is shown in Figure 4.1. The statistics

is shown in Table 4.1.

Figure 4.1: Amazon Multi-layered Networks
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Dataset # of Layer # of Nodes # of Links # of CrossLinks

AMAZON 4 + 1 399452 1088423 203510

Table 4.1: Amazon Co-purchasing Network Statistics

4.2 Experimental Design & Prototype

Based on the processed Amazon co-purchasing network, we compare the perfor-

mance of the following methods on both ranking and query task: (1) Regular HITS

algorithm on a single layer (e.g., Book layer); (2) Regular HITS on flattened network;

(3) Multi-layered HITS algorithm (µ = 0.1) on 4-layered co-purchasing networks

(customer layer is NOT included); (4) Multi-layered HITS algorithm (µ = 0.1) on

5-layered co-purchasing networks (customer layer is included).

All of the algorithms above return ranking vectors (authority and hub) for differ-

ent layers. Here, we only take the top-5 ranked products from each layer and invite

10 graduate students to evaluate their relevance and explainability. Specifically, the

top-5 ranked Books are evaluated by the relevance (for ranking, relevance stands

for global importance/popularity; for query, relevance stands for similarity w.r.t the

query product); the top-5 ranked DVDs, Musics, and Videos are evaluated by the

explainability, that is, the helpfulness of the top-5 ranked products in terms of in-

terpreting the top-5 ranked books. Here, the intuition for explainability is that we

assume two relevant ranking results can somehow explain each other.

For the convenience of performing human rating, we also implement a prototype 3

which allows users to run real-time experiments and evaluate the experimental results

(users can submit their ratings online). This prototype is built with a tech stack of

React.js, Flask, and MongoDB. The interface is shown in Figure 4.2. For the query

task, we select 6 query products for user evaluation.

3Please refer to http://thesis.haichaoy.com/
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Figure 4.2: Prototype Interface

4.3 Experimental Results & Analysis

After collecting the ratings from 10 graduate students, we compute the average

ratings for ranking task and query task regarding the relevance and explainability.
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4.3.1 Effectiveness

Generally, a ranking algorithm is considered more effective if it gives more relevant

ranking results. As we mentioned in the previous section, Book layer is taken to

evaluate the effectiveness of the algorithm. The experimental results for ranking and

query tasks are shown in Figure 4.3 and Figure 4.4.

Figure 4.3: Average Rating Regarding Relevance in Ranking Task

Figure 4.4: Average Rating Regarding Relevance in Query Task
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For the ranking task, the regular HITS on single layer network and regular HITS

on flattened network achieve similar relevance ratings because they give similar rank-

ing results. These two methods are considered as the baseline methods. Without

considering the customer (knowledge) layer, the proposed multi-layered HITS algo-

rithm performs slightly worse than the baseline method. The reason is that the most

important/popular products across different layers are not necessarily relevant to each

other. For example, the most popular books are not necessarily relevant to the most

popular DVDs. However, the multi-layered HITS algorithm performs much better if

the customer (knowledge) layer is considered. This is because the reviews we consider

are positive and helpful, which helps the algorithm to find more important/popular

books through the cross-layer dependency.

For the query task, the multi-layered HITS algorithm (without customer) achieves

the best performance. Here, the top-5 ranked products from each layer are more

relevant to each other. Yet, it seems that the positive customer reviews do not have

much contribution in this circumstance. Instead, they may introduce some noisy

information to weaken the performance of the algorithm.

Also, compared with the rating results in query task, the rating results in ranking

task have much higher variance. The is probably caused by three reasons: (1) There

are more experiments and ratings for query task (6 query nodes); (2) Compared

with evaluating similarity, evaluating global importance/similarity is vaguer because

of a lack of strict criterion; (3) Co-purchasing relationship does not reflect global

importance/popularity precisely.

4.3.2 Explainability

To evaluate the explainability, we ask the users to give ratings to the top-5 ranked

products in DVD, Music, and Video layer by the helpfulness in terms of interpreting
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the top-5 ranked books. The experimental results for ranking and query tasks are

shown in Figure 4.5 and Figure 4.6.

Figure 4.5: Average Rating Regarding Explainability in Ranking Task

Figure 4.6: Average Rating Regarding Explainability in Query Task

In the ranking task, the multi-layered HITS (without customer) receives the high-

est explainability ratings in all layers except the DVD layer. The possible reason

might be that there are dense connections between Book layer and DVD layer so that

even if we do not consider cross-layer consistency HITS algorithm still can give a quite
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explainable ranking result for DVD layer. However, for layers who do not have such

dense connections with Book layer (e.g., Music layer and Video layer), multi-layered

HITS performs slightly better because of cross-layer consistency.

In the query task, multi-layered HITS (without customer) receives the highest

explainability rating in all of the 3 layers. This essentially demonstrates that multi-

layered HITS algorithm is more explainable than regular HITS algorithm. However,

the knowledge layer (customer reviews) does not help improve the explainability of

the algorithm.
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Chapter 5

LITERATURE SURVEY

5.1 Network of Networks

Network of Networks (NoN) is a new data model for multi-sourced graph mining,

where each node of the main network itself can be further represented as another

domain-specific network. It has been demonstrated that this NoN model is effective

and efficient in both ranking task and clustering task.

In ranking task, Ni et al. (2014) assumes the ranking scores for the same node

should be consistent across highly similar domain-specific networks. Based on this

assumption, they generalized the random walk with restart (also called manifold rank-

ing, personalized PageRank, which is a popular ranking method on homogeneous net-

work) [Zhou et al. (2004b,a); He et al. (2004)] to the NoN model, and developed a new

ranking algorithm (CrossRank & CrossQuery) for the multi-sourced networks. This

new method has shown its effectiveness and efficiency on the co-authorship networks

[Tang et al. (2008)] and the protein-protein interaction (PPI) networks [Hamosh et al.

(2005); Magger et al. (2012); Lage et al. (2008)].

In clustering task, Ni et al. (2015) assumes the clustering results (which are often

encoded as a cluster-membership vector for each node) for the same domain node

should be consistent across two domain-specific networks if these two domain networks

likely belong to the same cluster (i.e., main network clustering). In this way, the

clustering task is performed in two different levels - one on node/data level, the other

on network level. Based on this assumption, the authors proposed a new clustering

algorithm (NoNClus) for NoN model, which is shown to be effective according to the
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extensive experimental evaluation.

Both NoN ranking method [Ni et al. (2014)] and NoN clustering method [Ni et al.

(2015)] made an assumption, that the same domain node across similar domain-

specific networks should share consistent properties (i.e., ranking scores, clustering

results). This assumption is so-called cross-network consistency, which is an over-

arching principle to perform mining and learning with the NoN model. From the

transfer-learning perspective, this principle enables us to transfer the knowledge across

different domain networks through the main network.

Besides NoN model, there are many other advanced network models for ranking

and clustering tasks, but NoN model has many advantages compared with them. (1)

For ranking tasks, there are various advanced network models, such as multi-relational

network [Ng et al. (2011)], heterogeneous information network [Sun et al. (2009)],

and hypergraph [Zhou et al. (2007)]. Multi-relational network incorporates different

types relations into objects, while heterogeneous information network contains differ-

ent types of objects. A novel method called Multi-Relational Influence Propagation

(MRIP) [Yang et al. (2012)] combined them together. A tensor-based co-ranking

framework [Ng et al. (2011)] is proposed for multi-relational network to determine

the importance of objects and relations simultaneously. In heterogeneous information

network, ranking-based clustering [Sun et al. (2009)] and ranking-based classification

[Ji et al. (2011)] are developed, where ranking and clustering/classification can be

mutually enhanced. In a hypergraph [Zhou et al. (2007)], an edge is a subset of

vertices, but the set of vertices do not form any network topology. Compared with

these network model, the main advantage of NoN model is its generality and flexi-

bility. Also, the NoN model enables to compare the nodes in a broader context and

rank them at a finer granularity. (2) For clustering tasks, the most common network

model is multi-view networks, where views can be networks [Zhou and Burges (2007);
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Kumar et al. (2011); Kumar and Daumé (2011)] or data-feature matrices [Akata

et al. (2011); Liu et al. (2013); Wang et al. (2013b)]. Ensemble clustering [Strehl and

Ghosh (2002); Fern and Brodley (2004); Greene and Cunningham (2009)] is based on

multi-view clustering, where a consensus clustering is obtained by applying the same

clustering algorithm on different views or applying different clustering algorithms on

the same view. Recently, some work extends the traditional multi-view clustering

to allow incomplete views. Also, a multi-domain graph clustering is proposed to

allow flexible network sizes and the number of clusters. The commonality of these

clustering models is that they assume there is a common clustering structure shared

across all views/domains, while this assumption does not hold in many real-life ap-

plications. Compared with these models, the biggest advantage of NoN model is that

it allows multiple underlying clustering structures across different networks, which is

more flexible and robust.

Based on NoN model, there are many exciting research achievements have been

made. A new multiple network clustering method (ComClus) [Ni et al. (2016a)] has

been proposed to simultaneously group networks and detect common clusters, and

enhance clustering accuracy by group-wise consensus. Also, many works such as

[Ni et al. (2016b, 2017); Chen and Xu (2017)] applied NoN model to bioinformatics

domain and outperformed traditional methods. In community detection, the new

methods [Li et al. (2016); Kim et al. (2016)] on heterogeneous social network and

multi-layer graph achieved great performance.

5.2 Multi-layered Networks

Multi-layered network has become a hot research topic in recent years. Kivelä et al.

(2014) provides a comprehensive summary about different types of multi-layered net-

works, including multi-modal networks [Heath and Sioson (2009)], multi-dimensional
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networks [Berlingerio et al. (2011)], multiplex networks [Battiston et al. (2014)], inter-

dependent networks [Buldyrev et al. (2009)], etc. Compared with single-layered net-

works, multi-layered networks are more vulnerable as even a small disturbance on

supporting layer/network might cause a ripple effect to all the dependent layers, lead-

ing to a catastrophic/cascading failure [Buldyrev et al. (2009); Vespignani (2010)].

Therefore, network robustness [Gao et al. (2011)] becomes one of the most studied

problems in inter-dependent networks. Yet, most of the previous research work fo-

cuses on the two-layered networks [Buldyrev et al. (2009); Gao et al. (2012); Parshani

et al. (2010); Shao et al. (2011)]. Few of work has been done in a more broader

context.

In 2015, Chen et al. (2015) proposed a new multi-layered network model called

MuLaN, which admits an arbitrary number of layers. This MuLaN model is a further

generalization of Network of Networks (NoN). Specifically, this model extends the

main node connections in NoN to inter-layer node-node dependency matrices. In this

way, the multi-layered network model has more flexible dependency structure among

different layers (domain networks). In this MuLaN model, the authors defined a new

optimal connectivity control problem (Opera), and developed a near-optimal control

algorithm to solve this problem (find a set of nodes which have the maximum overall

impact on the whole network).

Compared with single-layered network, the unique topological characteristic of

multi-layered networks lies in its cross-layer dependency. In the MuLaN model, the

cross-layer dependency is assumed to be prior knowledge, which, however, is difficult

to obtain in real-life applications. To address this problem of inferring missing cross-

layer dependencies on multi-layered network, Chen et al. proposed a new algorithm

called FASCINATE [Chen et al. (2016)] and proved its effectiveness and efficiency.

Also, Chen et al. (2017) re-explained this problem from a collaborative filtering per-
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spective.

5.3 Knowledge Graph Based Mining

In the past decades, a lot of effort has been made to reduce the labeling work

done by humans for supervised learning or to improve the performance of unsuper-

vised learning with only minimal supervision. For example, semi-supervised learning

[Chapelle et al. (2009)] is proposed to use only a part of labeled data to achieve the

same performance as the fully supervised learning. Transfer learning [Pan and Yang

(2010)] uses the labeled data from source domain to help the learning task in target

domain. The intuition is that the labeled data in source domain is easier to acquire

than in target domain. Yet, the human labeling work is still necessary, especially in

those very specific domains where human experts are needed. The labeling cost is

huge, and how to reduce this cost has become a very important research question.

In the era of big data, with the spring up of general-purpose knowledge bases

(or knowledge graphs), e.g., Cyc project [Lenat and Guha (1989)], Wikipedia, Free-

base [Bollacker et al. (2008)], KnowItAll [Etzioni et al. (2004)], TextRunner [Banko

et al. (2007)], ReVerb [Fader et al. (2011)], Ollie [Schmitz et al. (2012)], WikiTaxon-

omy [Ponzetto and Strube (2007)], Probase [Wu et al. (2012)], DBpedia [Auer et al.

(2007)], YAGO [Suchanek et al. (2007)], NELL [Mitchell et al. (2015)] and Knowl-

edge Vault [Dong et al. (2014)], how to apply knowledge graph to machine learning

and data mining to reduce the labeling cost and improve the learning performance

has attracted many research attentions. Generally, there are two ways for doing

that: (1) incorporate domain knowledge into machine learning; (2) incorporate world

knowledge into machine learning.

The idea of incorporate domain knowledge into machine learning algorithms has

been studied carefully in natural language processing community. A constraint con-
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ditional model (CCM) [Chang et al. (2012)] has been proposed to inject high-level

knowledge as a soft constraint into linear models. Posterior Regularization (PR)

[Ganchev et al. (2010)] works on incorporating indirect supervision via constraints

on posterior distributions of probabilistic models with latent variables. The different

between CCM and PR is that CCMs allows the use of hard constraints, while PR

uses expectation constraints. Samdani et al. (2012) proposed a unified Expectation-

Maximization algorithm to combine CCR and PR together. To gain better perfor-

mance, many other models have been studied to incorporate domain knowledge, such

as Markov Logic Network (MLN) [Richardson and Domingos (2006)], a combination

of Bayesian network model [Dechter and Mateescu (2004)], etc. Also, transfer learn-

ing [Pan and Yang (2010)] is a direction on leveraging domain knowledge for better

machine learning performance.

Instead of using domain knowledge, incorporating world knowledge into machine

learning algorithm is a better and more challenging way to improve performance.

Most of existing work consider world knowledge as a source of features, and use them

in tasks like text classification [Gabrilovich and Markovitch (2005, 2006, 2007, 2009);

Wang et al. (2014a)], clustering [Hotho et al. (2003); Hu et al. (2008, 2009a,b); Fodeh

et al. (2011); Song et al. (2011, 2015)], information retrieval [Egozi et al. (2011);

Hua et al. (2013); Song et al. (2014); Wang et al. (2016b)], mining knowledge from

text for information retrieval [Wang et al. (2013a)], etc. However, the knowledge

in the knowledge bases indeed has annotations of types, categories, etc, and the

above approaches just ignored them. Some work utilizes world knowledge as distant

supervision [Mintz et al. (2009); Wang et al. (2014b); Xu et al. (2014)] for entity and

relation extraction and embedding. This is a direct use of the facts in world knowledge

bases, where the entities in the knowledge bases are matched in the context regardless

of the ambiguity.
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In 2015, [Wang et al. (2015, 2016a)] proposed a new learning framework with

world knowledge as indirect supervision. This work specifies the world knowledge to

domains by resolving the ambiguity of the entities and their types, then represents the

data with world knowledge as a heterogeneous information network [Han et al. (2010)].

Based on this network, a new clustering algorithm is proposed, which significantly

outperform the state-of-the-art clustering algorithms as well as clustering algorithms

enhanced with world knowledge features. Compared with previous approaches, the

main advantage of indirect supervision is that it can extend the knowledge about

entities and relations to more generic text analytics problems.

30



Chapter 6

CONCLUSION

In this thesis, our goal is to apply ranking algorithms to multi-sourced networks.

By generalizing regular HITS to multi-layered networks, we propose a new algo-

rithm called multi-layered HITS to solve the problems of Cross-Layer Ranking and

Cross-Layer Query with the leverage of both within-layer smoothness and cross-layer

consistency. Compared to other network models, the biggest advantage of the multi-

layered network model is that it allows more flexible layer-layer dependency structure

across different layers. This essentially allows the multi-layered HITS algorithm to

potentially mine more valuable information from the networks.

We give detailed theoretical analysis for the proposed algorithm regarding its

effectiveness. Also, we try to integrate the knowledge graph into the multi-layered

network to further improve the ranking and query performance, but unfortunately

the experimental result does not reach our expectation. This will be one of our

future tasks to study. How to include valuable knowledge without introducing too

much noisy information is the key to solve the problem. Furthermore, We conduct

comprehensive experiments to evaluate the proposed algorithm based on a real dataset

(Amazon co-purchasing network) for both ranking and query tasks. Compared with

the baseline method regular HITS algorithm, multi-layered HITS algorithm achieves

relatively higher human evaluation scores regarding both relevance and explainability.

This essentially proves that multi-layered HITS algorithm gives more accurate and

reasonable ranking result by considering the cross-layer dependency structure.
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Kumar, A. and H. Daumé, “A co-training approach for multi-view spectral cluster-
ing”, in “Proceedings of the 28th International Conference on Machine Learning
(ICML-11)”, pp. 393–400 (2011).

Kumar, A., P. Rai and H. Daume, “Co-regularized multi-view spectral clustering”,
in “Advances in neural information processing systems”, pp. 1413–1421 (2011).

Lage, K., N. T. Hansen, E. O. Karlberg, A. C. Eklund, F. S. Roque, P. K. Donahoe,
Z. Szallasi, T. S. Jensen and S. Brunak, “A large-scale analysis of tissue-specific
pathology and gene expression of human disease genes and complexes”, Proceedings
of the National Academy of Sciences 105, 52, 20870–20875 (2008).

Lee, D. D. and H. S. Seung, “Algorithms for non-negative matrix factorization”, in
“Advances in neural information processing systems”, pp. 556–562 (2001).

Lempel, R. and S. Moran, “The stochastic approach for link-structure analysis (salsa)
and the tkc effect1”, Computer Networks 33, 1-6, 387–401 (2000).

Lenat, D. B. and R. V. Guha, Building large knowledge-based systems; representation
and inference in the Cyc project (Addison-Wesley Longman Publishing Co., Inc.,
1989).

Leskovec, J., L. A. Adamic and B. A. Huberman, “The dynamics of viral marketing”,
ACM Transactions on the Web (TWEB) 1, 1, 5 (2007).

Li, Z., Z. Pan, Y. Zhang, G. Li and G. Hu, “Efficient community detection in hetero-
geneous social networks”, Mathematical Problems in Engineering 2016 (2016).

Liu, J., C. Wang, J. Gao and J. Han, “Multi-view clustering via joint nonnegative
matrix factorization”, in “Proceedings of the 2013 SIAM International Conference
on Data Mining”, pp. 252–260 (SIAM, 2013).

Magger, O., Y. Y. Waldman, E. Ruppin and R. Sharan, “Enhancing the prioritization
of disease-causing genes through tissue specific protein interaction networks”, PLoS
computational biology 8, 9, e1002690 (2012).

Mintz, M., S. Bills, R. Snow and D. Jurafsky, “Distant supervision for relation ex-
traction without labeled data”, in “Proceedings of the Joint Conference of the
47th Annual Meeting of the ACL and the 4th International Joint Conference on
Natural Language Processing of the AFNLP: Volume 2-Volume 2”, pp. 1003–1011
(Association for Computational Linguistics, 2009).

Mitchell, T. M., W. W. Cohen, E. R. Hruschka Jr, P. P. Talukdar, J. Betteridge,
A. Carlson, B. D. Mishra, M. Gardner, B. Kisiel, J. Krishnamurthy et al., “Never
ending learning.”, in “AAAI”, pp. 2302–2310 (2015).

Newman, M. E., “The mathematics of networks”, The new palgrave encyclopedia of
economics 2, 2008, 1–12 (2008).

36



Ng, M. K.-P., X. Li and Y. Ye, “Multirank: co-ranking for objects and relations
in multi-relational data”, in “Proceedings of the 17th ACM SIGKDD international
conference on Knowledge discovery and data mining”, pp. 1217–1225 (ACM, 2011).

Ni, J., W. Cheng, W. Fan and X. Zhang, “Self-grouping multi-network clustering”, in
“Data Mining (ICDM), 2016 IEEE 16th International Conference on”, pp. 1119–
1124 (IEEE, 2016a).

Ni, J., H. Fei, W. Fan and X. Zhang, “Cross-network clustering and cluster ranking for
medical diagnosis”, in “Data Engineering (ICDE), 2017 IEEE 33rd International
Conference on”, pp. 163–166 (IEEE, 2017).

Ni, J., M. Koyuturk, H. Tong, J. Haines, R. Xu and X. Zhang, “Disease gene pri-
oritization by integrating tissue-specific molecular networks using a robust multi-
network model”, BMC bioinformatics 17, 1, 453 (2016b).

Ni, J., H. Tong, W. Fan and X. Zhang, “Inside the atoms: ranking on a network of
networks”, in “Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining”, pp. 1356–1365 (ACM, 2014).

Ni, J., H. Tong, W. Fan and X. Zhang, “Flexible and robust multi-network clustering”,
in “Proceedings of the 21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining”, pp. 835–844 (ACM, 2015).

Pan, S. J. and Q. Yang, “A survey on transfer learning”, IEEE Transactions on
knowledge and data engineering 22, 10, 1345–1359 (2010).

Parshani, R., S. V. Buldyrev and S. Havlin, “Interdependent networks: reducing
the coupling strength leads to a change from a first to second order percolation
transition”, Physical review letters 105, 4, 048701 (2010).

Ponzetto, S. P. and M. Strube, “Deriving a large scale taxonomy from wikipedia”, in
“AAAI”, vol. 7, pp. 1440–1445 (2007).

Richardson, M. and P. Domingos, “Markov logic networks”, Machine learning 62, 1,
107–136 (2006).

Samdani, R., M.-W. Chang and D. Roth, “Unified expectation maximization”, in
“Proceedings of the 2012 Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language Technologies”, pp. 688–698
(Association for Computational Linguistics, 2012).

Schmitz, M., R. Bart, S. Soderland, O. Etzioni et al., “Open language learning for
information extraction”, in “Proceedings of the 2012 Joint Conference on Empirical
Methods in Natural Language Processing and Computational Natural Language
Learning”, pp. 523–534 (Association for Computational Linguistics, 2012).

Shao, J., S. V. Buldyrev, S. Havlin and H. E. Stanley, “Cascade of failures in coupled
network systems with multiple support-dependence relations”, Physical Review E
83, 3, 036116 (2011).

37



Sindhwani, V. and P. Melville, “Document-word co-regularization for semi-supervised
sentiment analysis”, in “Data Mining, 2008. ICDM’08. Eighth IEEE International
Conference on”, pp. 1025–1030 (IEEE, 2008).

Song, Y., H. Wang, W. Chen and S. Wang, “Transfer understanding from head queries
to tail queries”, in “Proceedings of the 23rd ACM International Conference on
Conference on Information and Knowledge Management”, pp. 1299–1308 (ACM,
2014).

Song, Y., H. Wang, Z. Wang, H. Li and W. Chen, “Short text conceptualization using
a probabilistic knowledgebase”, in “Proceedings of the Twenty-Second international
joint conference on Artificial Intelligence-Volume Volume Three”, pp. 2330–2336
(AAAI Press, 2011).

Song, Y., S. Wang and H. Wang, “Open domain short text conceptualization: A
generative+ descriptive modeling approach.”, in “IJCAI”, pp. 3820–3826 (2015).

Strehl, A. and J. Ghosh, “Cluster ensembles-a knowledge reuse framework for com-
bining partitionings”, in “Aaai/iaai”, pp. 93–99 (2002).

Suchanek, F. M., G. Kasneci and G. Weikum, “Yago: a core of semantic knowledge”,
in “Proceedings of the 16th international conference on World Wide Web”, pp.
697–706 (ACM, 2007).

Sun, Y., J. Han, P. Zhao, Z. Yin, H. Cheng and T. Wu, “Rankclus: integrating
clustering with ranking for heterogeneous information network analysis”, in “Pro-
ceedings of the 12th International Conference on Extending Database Technology:
Advances in Database Technology”, pp. 565–576 (ACM, 2009).

Tang, J., J. Zhang, L. Yao, J. Li, L. Zhang and Z. Su, “Arnetminer: extraction and
mining of academic social networks”, in “Proceedings of the 14th ACM SIGKDD
international conference on Knowledge discovery and data mining”, pp. 990–998
(ACM, 2008).

Vespignani, A., “Complex networks: The fragility of interdependency”, Nature 464,
7291, 984–985 (2010).

Wang, C., N. Duan, M. Zhou and M. Zhang, “Paraphrasing adaptation for web search
ranking.”, in “ACL (2)”, pp. 41–46 (2013a).

Wang, C., Y. Song, A. El-Kishky, D. Roth, M. Zhang and J. Han, “Incorporating
world knowledge to document clustering via heterogeneous information networks”,
in “Proceedings of the 21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining”, pp. 1215–1224 (ACM, 2015).

Wang, C., Y. Song, D. Roth, M. Zhang and J. Han, “World knowledge as indirect
supervision for document clustering”, ACM Transactions on Knowledge Discovery
from Data (TKDD) 11, 2, 13 (2016a).

38



Wang, C., Y. Sun, Y. Song, J. Han, Y. Song, L. Wang and M. Zhang, “Relsim:
relation similarity search in schema-rich heterogeneous information networks”, in
“Proceedings of the 2016 SIAM International Conference on Data Mining”, pp.
621–629 (SIAM, 2016b).

Wang, F., Z. Wang, Z. Li and J.-R. Wen, “Concept-based short text classification and
ranking”, in “Proceedings of the 23rd ACM International Conference on Conference
on Information and Knowledge Management”, pp. 1069–1078 (ACM, 2014a).

Wang, H., F. Nie and H. Huang, “Multi-view clustering and feature learning via
structured sparsity”, in “International Conference on Machine Learning”, pp. 352–
360 (2013b).

Wang, Z., J. Zhang, J. Feng and Z. Chen, “Knowledge graph and text jointly embed-
ding.”, in “EMNLP”, vol. 14, pp. 1591–1601 (2014b).

Wu, W., H. Li, H. Wang and K. Q. Zhu, “Probase: A probabilistic taxonomy for
text understanding”, in “Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data”, pp. 481–492 (ACM, 2012).

Xu, C., Y. Bai, J. Bian, B. Gao, G. Wang, X. Liu and T.-Y. Liu, “Rc-net: A general
framework for incorporating knowledge into word representations”, in “Proceed-
ings of the 23rd ACM International Conference on Conference on Information and
Knowledge Management”, pp. 1219–1228 (ACM, 2014).

Yang, J. and J. Leskovec, “Defining and evaluating network communities based on
ground-truth”, Knowledge and Information Systems 42, 1, 181–213 (2015).

Yang, Y., N. Chawla, Y. Sun and J. Hani, “Predicting links in multi-relational and
heterogeneous networks”, in “Data Mining (ICDM), 2012 IEEE 12th International
Conference on”, pp. 755–764 (IEEE, 2012).

Zhou, D., O. Bousquet, T. N. Lal, J. Weston and B. Schölkopf, “Learning with local
and global consistency”, in “Advances in neural information processing systems”,
pp. 321–328 (2004a).

Zhou, D. and C. J. Burges, “Spectral clustering and transductive learning with multi-
ple views”, in “Proceedings of the 24th international conference on Machine learn-
ing”, pp. 1159–1166 (ACM, 2007).

Zhou, D., J. Huang and B. Schölkopf, “Learning with hypergraphs: Clustering, classi-
fication, and embedding”, in “Advances in neural information processing systems”,
pp. 1601–1608 (2007).

Zhou, D., J. Weston, A. Gretton, O. Bousquet and B. Schölkopf, “Ranking on data
manifolds”, in “Advances in neural information processing systems”, pp. 169–176
(2004b).

39


	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	PROBLEM DEFINITION
	MULTI-LAYERED HITS ALGORITHM
	Objective Function
	Iterative Algorithms
	Cross-Layer Ranking
	Cross-Layer Query

	Proof and Analysis

	EVALUATION
	Dataset & Preprocessing
	Experimental Design & Prototype
	Experimental Results & Analysis
	Effectiveness
	Explainability


	LITERATURE SURVEY
	Network of Networks
	Multi-layered Networks
	Knowledge Graph Based Mining

	CONCLUSION

	REFERENCES


