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In an increasingly digitized world, it is hard to imagine a life without 
interacting with digital information objects. The internet and mobile 
devices enable people to access information with ease: be it reading the 
hottest research paper, or replying to emails from a colleague far away, it 
is just a matter of a few key strokes, clicks, or swipes on touchscreens. 
With recent advances in natural language processing and its application in 
smart devices, people can even get what they want hands-free and through 
voice commands. As a result, we are witnessing a wealth of user interac-
tions on all kinds of online platforms. Studying these user interactions 
help us understand users' information needs, their behavior patterns, and 
difficulties or failures when they interact with the system. Eventually, 
these observational insights shed light on possible directions to improve 
the system and the user experience. In this thesis, we have studied user 
interactions in the domain of academic search and recommender systems, 
and in enterprise emails. Our findings help predict user behavior and 
improve retrieval effectiveness.  
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1
Introduction

Digitization has changed the way people interact with information objects. On the one
hand it has eased our efforts to acquire the desired information, whatever form this
information is presented in: there is no more hustle for browsing through bookshelves
and scrolling over pages only to find that one paragraph of text, thanks to modern
search engines [20, 71, 186]; no more digging through record crates to listen to that
one favorite song, which can be easily accessed via music streaming services [72, 199];
and no need to borrow video tapes to watch movies at home, which can be delivered
instantly by video streaming platforms [161, 229]. User interactions with information
objects have become increasingly easy and fast, as users save time from performing the
physical activities that were once required to access them. The interactions have also
become more flexible and less constrained by space, and what was once predicted more
than 20 years ago has now become reality [118]: with any kind of smart device (be it a
cell phone or a tablet) users are able to access digitized contents on the internet not only
whenever, but also wherever they want.

This growing level of convenience gives rise to to an increasing growth of user inter-
actions on these online service platforms [166, 167, 188]. For instance, there are over
3.5 billion searches performed per day on Google [73]. The growing number of user
interactions has in turn been the propelling force for the digitization process of informa-
tion objects, and the development of these online platforms. Take academic publications
as an example, there are over 14 million articles indexed on ScienceDirect [187], a
major academic search engine. The sheer size of the data makes it increasingly difficult
for users to pinpoint what they are looking for. Users can enter textual queries to search
for their information objects. These queries, however, may not always generate the
search results that they want, and sometimes they even return no relevant results [8].
Besides, user intentions and information needs vary from each other, making it hard for
a system to understand the specific information need of a user (e.g., the query “apple”
can mean completely different things by two users). There is an ever growing demand
from users to obtain the desired information objects in a smooth and personalized
experience throughout the interaction process, and correspondingly an ever growing
demand for online platforms to deliver a good performance.

The large volume of logged user interactions has attracted much research interest.
The benefits brought by mining user interactions are obvious: understanding users may
help systems understand their information needs and their behavioral patterns, and to

1



2 Introduction

recognize any difficulty or failure that they encounter while interacting with the systems.
These insights will in turn lead to better implementations and richer functionalities
of the online platforms so as to improve the user experience. For example, in web
search scenarios user query logs are utilized in query suggestion [222] and query auto-
completion [33] techniques to recommend relevant queries for users. Shopping receipts
from online shopping websites can help us understand the consumer shopping patterns,
and can be used to make predictions of the next purchase [115]. Users’ interaction logs
with music streaming services provide hints for their tastes, and can facilitate music
recommendations [185].

While many research efforts have been spent on the aforementioned domains,
relatively little attention has been paid to uncover the domain of academic search, which
involves researching the researchers. Academic search is a specialized domain that
involves the searching of academic information objects such as papers, authors and
journals. While there are existing works that analyze academic search behavior, they
are limited in that the study is often performed on a very small group of users [107]
or on a single discipline [83, 102], and they only provide high-level statistics without
delving into user actions within and across the search sessions. It is also not clear how
to use those findings to improve academic search services. Therefore, the findings are
not really generalizable and meaningful for system improvements.

As academic search is an important part of scientific activities, so is communication.
Out of many communication methods, emails play a very important role [59, 198, 216].
Emails are frequently used when communication is not convenient face-to-face, or
when things need to be clearly presented in written form. They can also be used as
a way to share electronic files. Recently, through email newsletters, users can also
receive academic paper recommendations. Examining user interactions with emails can
improve the understanding of the user behavior on email platforms, and also shed light
on possible system improvements to make email reading more efficient.

In this dissertation, we address the problem of examining the information interaction
behavior in the online setting. We focus on academic search and on enterprise emails.
For academic search, we provide a characterization of query and download behavior and
also demonstrate application scenarios to improve the system; for email interactions, we
study the core action–email reading, which is the only common behavior for different
email interaction scenarios.

1.1 Research outline and questions

The theme of this thesis centers around mining information interaction behavior. Specif-
ically, we investigate two scenarios: (1) user interactions in an academic search environ-
ment (from Chapter 2 to Chapter 5), and (2) the email reading behavior with enterprise
emails (in Chapter 6). Below, we list the research question in each research chapter.

1.1.1 Queries and search failures in academic search
While there has been previous research on academic search queries, it is lacking in two
aspects: (1) the observations are not drawn from a large query log to make the findings
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generalizable, and (2) there is no discussion of user behavior within academic search
sessions. In the thesis we approach the queries and failure phenomenon in academic
search and try to fill the gaps in our understanding of both. We start with a large-scale
observational study based on a transaction log to understand what characteristics they
have, and then provide an algorithmic fix for the query failures. Correspondingly, we
want to answer the following research question:
RQ1 What are the characteristics of queries and failures in academic search, and how

do we remedy failures?
To answer this question, we provide the first characterization of academic search queries
that is based on a large-scale transaction log analysis, bringing more generalizable
findings than previous small-scale studies [83, 102, 107]. Then, we zoom in on the
failure phenomenon–null queries. We characterize null queries and the sessions where
they appear. Finally, a query suggestion method is proposed to deal with null queries,
which builds on query entities, session information and user preferences.

1.1.2 Topic shift and query reformulation patterns in academic
search

Moving on, we extend the study to academic searchers’ behavior over a relatively
long period. In particular, we are interested in their query reformulation strategies and
their topic interests over time. While query reformulations can be seen as explicit user
behavior, topic interests are by contrast more implicit. It is unclear how each evolves
over time, and how they are correlated. Therefore we investigate the following research
question:
RQ2 Do topic shift and query reformulation patterns correlate in academic search?
To answer the question, we define a taxonomy of query reformulations in academic
search that includes revisiting a previous query, adding terms, dropping terms, substitut-
ing part of the query, and issuing a completely new query. Different from findings in
web search, we find that revisiting and issuing new queries tend to happen more often
in academic search. We take a quantitative approach to study topic shift over time by
using an LDA model [22]. In this process we identify two types of user: one type, in
general increasingly focuses on their topics over time and the other diversifies over time.
And finally, we study how query reformulation and topical shift are correlated with
each other. To our surprise, we find that user’s query reformulation patterns have little
correlation with topic shift, i.e., users with distinct reformulation preferences in search
could be equally likely to be diversifying or focusing on their topics. However, adding
terms and issuing new queries may help predict the immediate topic shift.

1.1.3 Characterizing and predicting downloads in academic search

We study a different type of user behavior in this chapter–downloads. The download
behavior in our setting refers to requesting the PDF file of an article. We are motivated
to characterize the within session and cross session download behavior. Then using
some of the insights gained, we try to predict the user download behavior. We bring up
the following research questions:
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RQ3 What are the characteristics of user download behavior in academic search and
how can we predict that?

We introduce a new dataset for downloads in academic search and characterize user
interactions with academic search engines. We study users’ actions across sessions,
revealing correlations among various behavioral signals and explaining the topical as-
pects of user downloads. Finally, we build a specialized model for download prediction
that utilizes user session history and that is based on user segmentation, which leads to
significant improvements over a state-of-the-art baseline.

1.1.4 Reranking paper recommendations using paper content
and user behavior

For the research topics listed so far we have been focusing on user interactions with
an academic search engine. While most of the user information needs can be met
within search sessions, there is a gap to be filled in between search sessions, where a
recommender system comes into play. We examine a production paper recommender
system that tries to predict user information needs by sending recommendation emails.
We address the task of reranking paper recommendations so as to improve the system
performance. To this end we aim to answer this research question:
RQ4 How do we utilize both content and behavior to rerank paper recommendations?
First, we propose several content-based measures that are derived from paper aspects,
such as word space similarity and author similarity from an embedding space. Next
we use joint matrix factorization to learn a mapping from user browsed papers to user
clicks on the recommendations, to alleviate the insufficiency of user clicks in the data.
We use a pairwise learning model to rerank the paper recommendation candidates that
eventually leads to better results in the offline evaluations.

1.1.5 Characterizing reading time on enterprise emails

Finally, we turn to another aspect of information interaction behavior–communication.
We examine the reading behavior on enterprise emails. The act of reading is arguably
the only activity that is in common in most of the interactions that users have with their
emails. We are interested to see how users read their enterprise emails, and how various
factors impact reading time. Naturally we bring up the following research question:
RQ5 How do users read their emails and how their reading time is affected by various

contextual factors?
We start with a quantitative analysis of a large sample of enterprise emails from the
web and mobile clients of a popular email web service. We uncover the distribution of
email reading time and then examine how reading time is affected by various factors,
such as email types, user context, cognitive load, re-reading behavior and platforms. To
complement the results based on log analyses, we also conduct a user study to look for
the causes behind interesting observations from the logs.
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1.2 Main contributions

The thesis is devoted to uncovering the interaction behavior of users with information
objects in an online setting, and also leveraging insights obtained in this way to provide
suggestions to improve both the system performance and user satisfaction. It primarily
focuses on user interactions with academic information services, i.e., an academic
search engine and an academic recommender system in our research. It also covers user
interactions with an email client because the prevalent usage of email communications,
which happens quite frequently also during academic cooperations.

1.2.1 Empirical contributions

1. The first large scale characterization of queries in academic search, that highlights
the differences between academic search and web search such as query length
and query types. (Chapter 2)

2. The first taxonomy of query failures in academic search is defined. (Chapter 2)
3. A taxonomy of query reformulations in academic search is introduced that is

different from web search. Characterizations of the topic shifts and query re-
formulations in academic search over a long term, include types of topic shifts
and different query reformulation strategies. The correlations between query
reformulation types and topic shifts: there is little correlation in the long term;
certain reformulation types are correlated with immediate topic shifts. (Chapter 3)

4. Characterizations of user behavior patterns within and across download sessions
in academic search, including actions and action trajectories, time gaps between
downloads and temporal patterns. (Chapter 4)

5. The correlations across download sessions, e.g., the number of queries is nega-
tively correlated with the time gap until the next download, and the number of
downloads are positively correlated across sessions. (Chapter 4)

6. Behavioral differences of downloads in different topical aspects: users interested
in different subjects have different download behavior, reflected by their queries,
downloads, and topical coherency. (Chapter 4)

7. Revelations of various user-specific and email-specific factors that correlate with
reading time, which can be used to develop better metrics and user models for
understanding and improving email interactions. (Chapter 6)

1.2.2 Methodological contributions

8. A session-based query suggestion approach to remedy query failures that is built
on a query-entity graph. (Chapter 2)

9. A personalized prediction model for downloads by segmenting users into groups
through Dynamic Time Warping, and an LSTM-based model based on user
segmentation for predicting download. (Chapter 4)

10. Various measures for comparing paper similarity built on paper metadata. A
hybrid reranking model that utilizes the metadata of academic papers and user
interactions. (Chapter 5)
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11. A method to approximate user email reading time that can be applied on large
amounts of user interaction data. (Chapter 6)

1.3 Thesis overview

We provide the overview of the thesis in this section. The thesis consists of seven
chapters, including five research chapters. Chapter 1 is the introduction that sets the
scene for the research. Chapter 2–5 are the research works on academic search, starting
with queries then moving on to download behavior. Chapter 6 is about characterizing
reading time on enterprise emails. Chapter 7 contains the conclusion.
• Chapter 2–Investigating Queries and Search Failures in Academic Search.

In this chapter we reveal important observations about academic search queries, and
provide an algorithmic solution to address a type of failure during search sessions:
null queries. We start by providing a general characterization of academic search
queries, by analyzing a large-scale transaction log of a leading academic search engine.
Unlike previous small-scale analyses of academic search queries, we find important
differences with query characteristics known from web search. E.g., in academic
search there is a substantially bigger proportion of entity queries, and a heavier tail in
query length distribution. We then focus on search failures and, in particular, on null
queries that lead to an empty search engine result page, on null sessions that contain
such null queries, and on users who are prone to issue null queries. In academic
search approximately 1 in 10 queries is a null query, and 25% of the sessions contain
a null query. They appear in different types of search session, and prevent users from
achieving their search goal. To address the high rate of null queries in academic
search, we consider the task of providing query suggestions. Specifically, we focus
on a highly frequent query type: non-boolean informational queries. To this end we
need to overcome query sparsity and make effective use of session information.
We find that using entities helps to surface more relevant query suggestions in the
face of query sparsity. We also find that query suggestions should be conditioned on
the type of session in which they are offered to be more effective. After casting the
session classification problem as a multi-label classification problem, we generate
session-conditional query suggestions based on predicted session type. We find that
this session-conditional method leads to significant improvements over a generic
query suggestion method. Personalization yields very little further improvements over
session-conditional query suggestions.

• Chapter 3–Topic Shift and Query Reformulation Patterns in Academic Search.
We focus on two aspects: query reformulation patterns and topic shifts in queries. We
first analyze how each of these aspects evolves over time. We identify important query
reformulation patterns: revisiting and issuing new queries tend to happen more often
over time. We also find that there are two distinct types of user: one type of users
becomes increasingly focused on the topics they search for as time goes by, and the
other becomes increasingly diversifying. After analyzing these two aspects separately,
we investigate whether, and to which degree, there is a correlation between topic shift
and query reformulation. Surprisingly, users’ preferences of query reformulations
correlate little with their topic shift tendency. However, certain reformulations may
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help predict the magnitude of the topic shift that happens in the immediate next
timespan. Our results shed light on academic searchers’ information seeking behavior
and may benefit search personalization.

• Chapter4–Characterizing and Predicting Downloads in Academic Search.
We start with a description of a unique dataset of a particular type of conversion
in academic search, viz. users’ downloads of scientific papers. Then we move to
an observational analysis of users’ download actions. We first characterize user
actions and show their statistics in sessions. Then we focus on behavioral and topical
aspects of downloads, revealing behavioral correlations across download sessions. We
discover unique properties that differ from other conversion settings such as online
shopping. Using insights gained from these observations, we consider the task of
predicting the next download. In particular, we focus on predicting the time until
the next download session, and on predicting the number of downloads. We cast
these as time series prediction problems and model them using LSTMs. We develop a
specialized model built on user segmentations that achieves significant improvements
over the state-of-the art.

• Chapter 5–Reranking Paper Recommendations Using Paper Content and User
Behavior.
We examine an academic paper recommender that sends out paper recommendations
in email newsletters, based on the users’ browsing history on an academic search
engine. Specifically, we address the task of reranking the recommendation candidates
that are generated by a production system.
We propose an approach to reranking the candidates that utilizes both paper content
and user behavior. The approach is designed to suit the characteristics unique to
the academic recommendation setting, for instance, the inclusion of a knowledge
graph derived from paper metadata. We show that the proposed method outperforms
the production baseline significantly, providing a relative 13% increase in Mean
Average Precision and 28% in Precison@1. Moreover, we provide a detailed analysis
on the model components, highlighting where the performance boost comes from.
The obtained insights reveal useful components for the reranking process in the
academic recommendation setting, such as the usage of graph embedding similarity.
Also, the recent papers browsed by users and authors provide strong evidence for
recommendation.

• Chapter 6–Characterizing Reading Time on Enterprise Emails.
In this chapter, we characterize how users read their enterprise emails, and reveal
the various contextual factors that impact reading time. Our approach starts with
a reading time analysis based on the reading events from a major email platform,
followed by a user study to provide explanations for some discoveries. We identify
multiple contextual factors that are correlated with reading time. For instance, users
spend more time reading emails when they have fewer meetings during the day. In
addition, we find that users also reread emails across devices: 76% of reread emails
are first visited on mobile and then on desktop. Our study is the first to characterize
enterprise email reading time on a large scale. The findings enrich the understanding
of email reading behavior and provide insights to improve the email system.

• Chapter 7–Conclusion.
We summarize the main findings in this chapter, point out the limitations, and outline
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future directions.

1.4 Origins

We list the paper origins of the chapters below as well as related research to the chapters.
The main research chapters in the thesis are based on the following papers:
• Chapter 2 is based on the following paper: X. Li, R. Schijvenaars, and M. de Rijke.

Investigating queries and search failures in academic search. Information Processing
& Management, 53(3):666–683, May 2017.
Bob Schijvenaars helped with preparing the data and conducted the user study. The
methods were proposed by Xinyi Li. The experiments were conducted by Xinyi Li.
All authors contributed to the writing.

• Chapter 3 is based on the following paper: X. Li and M. de Rijke. Do topic shift and
query reformulation patterns correlate in academic search? In ECIR, pages 146–159,
April 2017.
The research question was proposed by Xinyi Li. The experiments and analyses were
conducted by Xinyi Li. Both authors contributed to the writing.

• Chapter 4 is based on the following paper: X. Li and M. de Rijke. Characterizing and
predicting downloads in academic search. Information Processing & Management,
under review.
The research question was proposed by Xinyi Li. The method was proposed by
Xinyi Li. The experiments and analyses were conducted by Xinyi Li. Both authors
contributed to the writing.

• Chapter 5 is based on the following paper: X. Li, Y. Chen, B. Pettit, and M. de Rijke.
Reranking paper recommendations using paper content and user behavior. ACM
Transactions on Information Systems, under review.
The research question was proposed by Xinyi Li. Benjamin Pettit helped with
preparing the data. Xinyi Li conducted most of the experiments and analyses. Yifan
Chen contributed to the behavior matching component in the model. All authors
contributed to the writing.

• Chapter 6 is based on the following paper: X. Li, C.-j. Lee, M. Shokouhi, and
S. Dumais. Reranking paper recommendations using paper content and user behavior.
Journal of the Association for Information Science and Technology, under review.
This piece of work was done during an internship in Microsoft Artificial Intelligence
& Research in 2017. The task was proposed by Milad Shokouhi. Xinyi Li did
most of the experiments and analyses. Chia-jung Lee helped to provide the data and
contributed to part of the experiments. All authors contributed to the writing.

This thesis also indirectly benefits from the findings and insights of the following
research:
• X. Li and M. de Rijke. Academic search in response to major scientific events. In The

5th International Workshop on Bibliometric-enhanced Information Retrieval, pages
41–50, 2017.
The research question was proposed by Xinyi Li. The analyses were conducted by
Xinyi Li. Both authors contributed to the writing.

• X. Li, J. Tang, T. Wang, Z. Luo, and M. de Rijke. Automatically assessing Wikipedia
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article quality by exploiting article-editor networks. In ECIR, pages 574–580, April
2015.
The research question was proposed by Xinyi Li. The experiments were conducted
by Xinyi Li. All authors contributed to the writing.
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Academic search
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2
Investigating Queries and Search Failures

in Academic Search

In Chapter 1 we have set the scene for the research chapters. We start with academic
search and examine RQ1, which help us understand academic search queries and
failures.

2.1 Introduction
Academic search systems existed long before the advent of the World Wide Web [144].
Early systems such as MEDLINE were made for librarian use and supported only
preprogrammed queries and a limited number of simultaneous users in a non-interactive
way. Modern academic search engines have taken completely different forms, with
support of ad hoc queries, which users themselves enter in a search box, made for
public use, and with support for many online users in an interactive search environment.
In this chapter we look at academic search in this modern form. In recent years
there have been numerous studies on a range of aspects of academic search [88, 165,
170, 171]. These studies reveal the information-seeking behavior of researchers by
conducting surveys or user studies on a relatively small sample of researchers. They
point out that academic search engines have become the primary portal for researchers
to gain information. Surprisingly, despite the widespread usage of academic search
environments, very little is known about the actual search behavior of users of academic
search engines that is based on a large-scale transaction log analysis. Query log analysis
is known to be a valuable source for improving search systems [193], whether it
concerns query suggestions, learning to rank or personalization. Numerous analyses
have been conducted on commercial web search engines, such as Microsoft Bing,
Yahoo and AOL [16, 18, 218] as well as on verticals such as blog search [151] or
people search [219]. However, little work has been done on academic search engines.
A small-scale analysis of a transaction log of ScienceDirect, a leading academic search
engine for multiple disciplines, reveals basic statistics such as page views, article
downloads, and journal access frequencies [107]; the study was conducted 14 years
ago on a district scale, based on only 0.42 million queries, and it does not differentiate

This chapter was published as [138].
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between individual users due to limitations of the logging system at the time, and hence
it does not inform us about users’ behavior during search sessions. In this chapter, we
analyze a large, global-scale academic search transaction log containing over 39 million
queries in which we are able to track and analyze the behavior of individual users.

Our analysis of user behavior comes in two stages. First, we set the scene by
providing a general descriptive analysis of academic queries and highlighting the
differences between academic search and web search. Then we zoom in on search
failures, and in particular on so-called null queries for which the search engine produces
an empty result page as defined in [82]. We study null queries from three angles: queries,
sessions and users. Compared to web search, where they make up less than 2% of all
queries [8], null queries appear more frequently in academic search. A recent study
shows that the null query rate is 15% in PubMed, a popular biomedical academic search
engine [55]. As we will see below, in ScienceDirect the null query rate is over 10%.
When checking whether planned research is novel, an empty SERP (search engine result
page) may be a desirable outcome, but in general it is an outcome that a search engine
wants to avoid, thus motivating the development of effective strategies for dealing
with null queries and to guide users, either automatically or interactively, to consider
alternative queries.

To address the failure phenomena uncovered by our log analysis, we consider a query
suggestion task. Query suggestion is a feature in modern search that improves the search
experience by providing query recommendations. Previous work on query suggestion
comes in several flavors, from suggestions based on syntactic variations to suggestions
based on semantic relatedness or behavioral similarity. Techniques based on behavioral
similarity perform well for so-called head queries, that occur frequently. The long tail
of queries is more challenging for query suggestions, since most of these queries are
rare. We contribute an approach to query suggestion for null queries in academic search.
We discover that there are different types of null queries and specifically target a highly
frequent type: non-boolean informational queries.

In particular, we make use of our analysis of academic search queries by considering
entities. This helps us overcome the sparsity issue in academic search queries. Moreover,
using automatically predicted types of sessions, we condition our query suggestions
on the type of null session by reranking different types of query suggestion candidates.
Query suggestion candidates are first generated using graph-based models that incorpo-
rate different kinds of relations: links between queries and entities, transitions between
queries and transitions between entities. Then they are reranked based on the predicted
session types. We also build a personalized model by considering users’ preferences of
entities.

In this chapter, specifically, we address the following research questions:
RQ1.1 What are academic search queries and how are they different from web search

queries?
We perform a transaction log analysis on an academic search engine. We examine
the query-level characteristics of academic search, namely query length and query
types. The observational results demonstrate clear differences between academic search
queries and web search queries.
RQ1.2 What are the characteristics of null queries in academic search?
We first look at null queries, then in null sessions and users to understand how null
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queries happen. The insights enable us to devise a method to cope with null queries.
RQ1.3 How do we use query, session and user information to make query suggestions

for null queries?
We first define the task of using query suggestions to address null queries. Then we use
the obtained observational insights (entity-richness, different session types) to improve
the ranking of query suggestions.

Our novel contribution of this chapter is three-fold. First is the analysis of academic
search queries and their differences from web search. Our findings based on a large-
scale transaction log analysis give more insights into query contents and user behavior
in sessions than previous small-scale analyses [83, 102, 107]. Second, we drill down on
search failures in academic search and thoroughly analyze problems around null queries.
Third, we propose a query suggestion method that addresses null queries when they
occur. Our query-conditional method uses entities to overcome the severe sparsity in
academic search queries. Moreover, our session-conditional query suggestion method
results in significant improvements over state-of-the-art query suggestion baselines. We
find that a personalized model that infers user preferences of entities further improves
query suggestion performance.

Our main findings can be summarized as follows.
1. Academic search differs from web search in query properties, namely in length

distribution, query types and noticeable entity richness.
2. Frequent null queries are a unique phenomenon in academic search. They happen

more frequently compared to web search, and they happen in various types of
sessions, such as refining and exploratory sessions.

3. Query-conditional and session-conditional query suggestion methods improve
over methods that do not consider entities in queries and session types, respec-
tively. However, when to apply personalization effectively remains an open
problem.

In Section 2.2 we describe the dataset and query properties that form the basis for the
remainder of the chapter. In Section 2.3 we focus on failures in academic search: null
queries, null sessions and users who frequently issue them. In Section 2.4 we describe
our model of query suggestions to address null queries. In Section 2.5 we discuss
personalization. In Section 2.6 we discuss related work. We present our conclusions in
Section 2.7.

2.2 Dataset

As we will see in the related work section (Section 2.6), previous analyses of academic
search logs are limited in scale. We are particularly interested in studying user behavior
from large-scale log analysis, which is why we conduct a new transaction log analysis.

We study a 5-month query log from the ScienceDirect search engine collected
from September 28, 2014 to March 5, 2015. Due to institution-authorization from
ScienceDirect, users in a certain IP range are able to access the search engine from
shared devices (e.g., library computers), and they share the same session ID and user ID
in the transaction log. Moreover, many institutions have proxies or firewalls whose IP is
recorded instead of that of the terminal device. Therefore, it is difficult to differentiate
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Figure 2.1: Query length distribution of web search queries, academic search queries
and academic search null queries

these IP-users in the log. It is only safe to assume a one-to-one mapping between IDs
and users when users log in, or when they access the search engine from outside the
institution; we refer to such users as non-IP users. They contribute about one third of
the total query traffic.

2.2.1 Queries

In this section we describe the query characteristics as identified from the transaction
log. Table 2.1 contrasts the statistics of academic queries with those of web queries. A
marked difference between academic search and web search is the query length, where
academic queries are on average 1.4 words longer than web queries. Figure 2.1 shows
that the distribution of academic queries follows a power law, which is similar to web
search queries [12] but featured with a “bigger tail.” The query length statistics in our
study differ from the much smaller scale log analysis in [107], e.g., the average length
of our queries is 1.5 words longer than their findings.

The verbosity of academic search queries yields multiple challenges for the search
engine. One of them is sparsity, which makes it difficult to generate query suggestions
for rare queries [25].

Table 2.1: Query length statistics in word count. The AOL query log covers over
650,000 users in a 3-month period. The AOL log statistics come from [10].

Category #N min max mean median
AOL 21M 1 245 2.34 2
Sciencedirect 39M 1 419 3.77 3

Apart from query length, academic queries also differ from web queries in their content
and intent. Below we exemplify three typical query intents known from web search [95]
in the academic search setting:
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Navigational queries A “navigational query” in academic search guides the user to
a certain publication (identified by special operators such as DOI, ISBN or a “title”
operator). E.g., the query “DOI(10.1111/ jcmm.12096)” seeks to locate a specific
publication. These queries are sometimes referred to as known-item queries [168].
Using automatic identification with the special operators, these queries are found to
make up 7.6% of all queries.

Transactional queries These are queries that directly aim to retrieve academic in-
formation resources, e.g., a PDF file. For instance, “oil paper filter design pdf” and
“download journal pressure sensor.” The proportion of this type of query is only 0.5h.

Informational queries Queries that seek, refine or explore research topics act as
“informational queries.” For example, “vitamin C and cosmetic” aims to retrieve infor-
mation resources on the topic “vitamin C and cosmetic.” We find that the majority of
queries belong to this type, making up 92.3% of all the queries. However, we notice
that the boundary between query types is not strict. For instance, an “informational
query” may first lead to information resources, then a user might not be content with
the acquired information and further downloads a resource (e.g., a PDF file), thereby
transforming the query into a “transactional query.” And sometimes, the user might
type in a few key words with the purpose of locating a specific paper. These queries
may appear to be informational queries but act as navigational queries in effect. Thus
it can be difficult to distinguish these navigational queries accurately, as is also shown
by [108].

Besides the three familiar categories just given, which correspond to categories com-
monly used to classify web queries, we also identify the following types of query:

Entity queries Academic search differs from web search in the proportion of queries
that contain named entities. Entities in academic queries are identified using a controlled
vocabulary derived from key concepts in papers, author names etc. They are not exactly
the same as the entities in web search (people, places or things), but they both represent
something that is existent. In web search the percentage of entity queries varies from
43% up to 70% [81, 142]. In academic search, the proportion of queries that contain
entities is 92.37%, far more than in web search queries.1

Boolean operator queries These queries are often issued by advanced searchers who
like to use boolean operators to perform precise match. Specifically, AND, OR and

1In web search it is common to apply entity disambiguation to queries, and link entities to, e.g., Wikipedia,
DBpedia and Freebase [21, 150]. In academic search, queries are mostly disambiguated (e.g., in most cases
technical terms and names are unique), therefore we simplify the entity linking to matching query terms to a
thesaurus. To identify entities, we use a human-calibrated thesaurus derived from over 13 million academic
papers. The thesaurus is built and maintained by domain experts at Elsevier who review the papers manually.
We apply left-most longest matching to extract entities in queries, which provides a lower bound on the number
of queries containing entities. There may still be a small portion of them that need disambiguation [204], but
elaborating on this task is beyond the scope of this chapter.
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NOT operators (in upper case) are applied to address complex search intents. These
queries constitute 8.2% of the total traffic.

Now that we have provided the basic descriptive statistics of our dataset, we can zoom
in on the phenomenon that is at the center of our interest in this chapter: search failure.

2.3 Search failure
In this section we zoom in on search failures, in particular on null queries, whose high
frequency is peculiar for our academic search setting. We analyze null queries and the
sessions that contain them (null sessions). We also analyze users who frequently issue
null queries.

2.3.1 Null queries
Null queries are queries that lead to an empty search engine result page; they present a
severe challenge to the search engine. In academic search, null queries appear four times
more often than in web search. Specifically, in our academic search setting the null
query rate is 10.3%, much higher than the 2% reported for web search [8]. Altingovde
et al. [8] show that null queries in web search contain un-indexed URIs (unique resource
identifier), or they are merely meaningless queries. In academic search the situation
of null queries is different. For instance, Figure 2.1 shows that null queries tend to
be longer than normal queries, which brings in more sparsity in the queries. And at
19.6%, the proportion of boolean operator queries amongst null queries is higher than
amongst all queries (8.2%). The vast majority of null queries (80.1%) are non-boolean
informational queries.

2.3.2 Null sessions
Null sessions constitute 25.0% of all sessions, indicating the frequent appearances of
null queries. Given the high frequency of null queries, we expect that they feature
in diverse search contexts. Put differently, if we define a null session to be a session
in which a null query occurs, then what types of null sessions occur in the logs? We
hypothesize that understanding null sessions should help us to identify a solution to
address null queries. To address the question, we annotate null sessions, using 2
professionals with years of experience in academic search engines and a researcher in
information retrieval; in total, 300 sessions are annotated.

To begin, null session types were identified through an initial pass through the data
by our annotators. This gave rise to a total of 7 null session types; a “stereotypical
example” was provided for every null session type. Subsequently, our annotators
annotated all null sessions with one or more session types; the annotation is non-trivial
as each session may have several types. Below, we provide definitions and examples for
the types of session that occur; the null query is marked in bold italics.
(1) Refining sessions. Failure in refining sessions happens when users are searching
around one goal. After a failure happens, the user reformulates the query by rephrasing
a synonym or correcting spelling mistakes etc, as shown in the following example:
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04Mar2015:15:42:03.203 Query pid acel

04Mar2015:15:42:17.041 Query pid acelerometer

04Mar2015:15:42:38.643 Query pid accelerometer

04Mar2015:15:42:54.911 Click shorturl=/scie. . . pii/S0141029614005793

(2) Generalizing sessions. Some queries contain too many entities and cause the search
engine to return zero results. Users in this setting may drop terms to obtain some results.
We call this a generalizing session as shown in the following example:
03Mar2015:23:36:45.022 Query Leaf blast (Magnaporthe oryzae)

03Mar2015:23:37:35.456 Query Leaf blast

03Mar2015:23:37:43.372 Click shorturl=/scie. . . pii/S1049964411001009

(3) Exploring sessions. Users often formulate queries around a pivot entity. They may
encounter a failure in their exploration but continue to explore. In the example below,
the user encounters a failure when searching around “composite beams,” and keeps
reformulating the query until finally obtaining a click:
01Mar2015:08:55:07.291 Query Determination of rotation capacity. . . and composite beams

01Mar2015:08:55:46.910 Click shorturl=/scie. . . pii/S0143974X9593900O

01Mar2015:09:03:18.931 Query a stady on elastic plastic. . . of composite beams

01Mar2015:09:03:37.627 Query a study on elastic plastic. . . of composite beams

01Mar2015:09:04:19.937 Query behavior of composite beam. . . dynamic testing

01Mar2015:09:05:29.587 Query Inelastic analysis of steel frames with composite beams

01Mar2015:09:06:48.446 Click shorturl=/scie. . . pii/S0141029613004379

(4) Item search session. Users sometimes search with a very specific goal, e.g., looking
for an article or a book with a unique ID (e.g., DOI). They issue a navigational or
transactional query, and the search engine returns no results if the desired item is not
indexed, which may be due to a mal-formed query, e.g. one that occurs with an error in
DOI. Or when they query is correct, the failure may be due to the fact that the item is
not in the database. For such failures, the search engine is unable to satisfy the user’s
intent. However, if the item is not indexed online, this may not be a “failure” as the user
has confirmation that the item is not online. In the following example the user searches
a book using a title identifier and finds no results for the first query.
01Mar2015:12:34:14.148 Query (ttl(Identification of micro-RNA. . . ))

01Mar2015:12:35:01.556 Query (ttl(end-stage heart failure. . . ))

01Mar2015:12:39:39.638 Query (DOI(10.1111/jcmm.12096))

(5) Expanding sessions. It may happen that users add terms when the current query re-
turns no results. This looks like query specialization but it is not. In query specialization
the first query is usually a successful one with results, despite being too general to the
user. Here it is a null query. Adding terms might increase the possibility for the search
engine to have a matching term in the query. In the example below, the user initially
enters a query that causes a failure, and then adds a term to obtain some results.
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05Mar2015:13:51:45.227 Query Ulocladium

05Mar2015:13:52:25.827 Query ulocladium helioanthus

(6) Dropout. Dropout sessions are sessions where users abandon search when failure
happens, as shown in the example below.
04Mar2015:08:52:02.891 Query ROS1 Rearrangements . . . Lung Cancers

(7) Anomaly sessions. Some users enter non-ASCII characters that are not supported
by the search engine, or other meaningless queries that cause a failure; 20% of the
sessions that we annotate belong to this type. It is useless to provide query suggestions
for these sessions so we remove them from further consideration in our query suggestion
work.

Table 2.2 (top) lists the agreement scores for the null session annotation task. We
consider Percentage Agreement [11], Kappa Agreement [67], Observed Disagreement
and Expected Disagreement [119]. The Percentage Agreement divides the number of
agreements by the item count, while the rest assume the same probability distribution
for all raters. Note that this is a multi-label annotation task (one session may have
several labels), therefore it is not easy to achieve high agreement scores among the
annotators. The annotation agreement is fair by Kappa values [125] for all types of
null sessions. We also compute agreement for a subset of the null sessions where the
users have subsequent actions after the null query happens, namely those that are not of
type dropout (type 6) or anomaly (type 7). For this set of null sessions, the annotation
agreement is moderate [125]; see Table 2.2 (bottom).

Certain session labels are prevalent, e.g., refining (39%) and generalizing (26%), as
it is common for users to modify or drop a query term upon a null query. Also, 26% of
the sessions are item-search oriented whose failures are due to non-existent resources.
Exploring (15%) and expanding session labels (13%) are found to be less frequent. And
32% of the sessions ended up as dropout sessions, as the users give up the search goal.

Table 2.2: Annotation agreement; annotators are denoted as 0, 1, and 2.
0+1 0+2 1+2 0+1+2

All sessions in the sample
Percentage Agreement 0.52 0.35 0.32 0.40
Kappa Agreement 0.43 0.23 0.20 0.29
ObservedDisagreement 0.48 0.65 0.68 0.60
ExpectedDisagreement 0.85 0.86 0.85 0.86

Leaving out sessions of type dropout or anomaly
Percentage Agreement 0.57 0.62 0.65 0.61
Kappa Agreement 0.39 0.45 0.53 0.46
ObservedDisagreement 0.43 0.38 0.35 0.39
ExpectedDisagreement 0.71 0.69 0.76 0.72
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2.3.3 Users who fail frequently
Next we consider users who frequently fail, that is, who frequently submit null queries:
“at least 20% of their queries are null queries.” These users account for 20.1% of the
users who have submitted at least one null query. We analyze these users and compare
them with “normal users,” who encounter null queries less frequently.

First, we try to find out if a user’s consistency of interests affects their null query
rate. To determine a user’s consistency of interests, we look at the “self-similarity score”
and “cross-session similarity score” of users.

Our notion of self-similarity is defined as follows. We model users as a bag of
queries, i.e., profiling every user using all the queries they issued. We measure the
similarity score of each user in a pairwise manner by treating each query as a bag of
words and compute the mean similarity score between all the query pairs [84]. The
similarity of queries qi and qj is computed as:

sim(qi, qj) = |qi \ qj |/(|qi|+ |qj |� |qi \ qj |),

where |qi| is the number of terms in query qi, and |qi \ qj | is the number of common
terms between qi and qj .

The self-similarity score reflects how consistent a user’s interests are, i.e., a higher
score means many similar queries are issued by the user, and a lower score means queries
are diverse. We find out that frequently failed users tend to have higher similarity scores
than our normal users; see Table 2.3.

Similarly, we computed similarity scores between query pairs from different ses-
sions, i.e., cross-session similarity score, and have found exactly the same tendency; see
Table 2.4.

Table 2.3: Self-similarity score of users.
min max mean median

Frequently failed users 0 1 0.290 0.218
Normal users 0 1 0.280 0.212

Table 2.4: Cross-session similarity score of users with at least 3 sessions.
min max mean median

Frequently failed users 0 1 0.140 0.079
Normal users 0 1 0.132 0.077

Next, we relate the appearance of null queries to the user’s characteristics in Figure 2.2,
in particular, to the user’s self-similarity score, cross-session similarity score, the number
of queries, and the number of clicks. We find a medium correlation (r = 0.46) between
the frequency of null queries and a user’s self-similarity score, and a weak correlation
(r = 0.27) for cross-session similarity score. This suggests that null queries tend to
happen to users who have more consistent search interests.

There is a very weak correlation (r = �0.10) between the number of queries issued
and the null query frequency, meaning that frequent users do not necessarily become
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Figure 2.2: Pearson correlation matrix between users’ self-similarity score, cross-session
similarity score, the number of queries, clicks and null queries, and null query frequency.
Correlations with cross-session similarity score are calculated for users with at least 3
sessions.

prone to failures. As to clicks, the correlation with the number of null queries is weak
(r = 0.23).

2.3.4 Upshot
Our analysis so far yields some suggestions for how to address null queries. For instance,
the entity-richness of academic search queries (i.e., the high percentage of queries that
contain an entity) might help circumvent the sparsity problem in null queries. And the
different null session types might help to tune query suggestions based on session type.
Users’ entity preferences also provide a hint for personalization.

2.4 Query suggestions for null sessions
In this section we address the task of providing query suggestions for null queries. We
combine this task with findings from the log analysis in previous sections and consider
two variations: a query suggestion method that uses information about entities found in
queries and one that uses information in sessions.

2.4.1 Evaluation and data
In the context of query suggestions, evaluation is aimed at measuring how well the
provided suggestion is able to help users continue the session upon entering a failed
query. Therefore, it is preferable to use an evaluation scheme that considers the actual
user behavior in search sessions, over schemes that do not model user behavior [112].
We adopt a method that is similar to one used in [214], but with some variations to suit
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our setup. We consider sessions that contain a cascade of queries q1, q2, . . . , qn, where
q1 is the first null query. If there is no click after q1 to qn�1, and there is at least one
click after qn, then we treat qn as a successful query suggestion. We evaluate whether
our query suggestion algorithm can predict qn, given the null query q1. In this way, we
are simulating the real use case that a query suggestion helps a user upon entering a null
query.

Since there is only one relevant query in the evaluation (the one that leads to a click
in the log), it is proper to use Success Rate (SR) as a metric [214]. Specifically, given
a query q, a ranked list of query suggestions S(q), and the successful query qn, the
success rate is 1 if qn 2 S(q), and 0 otherwise. We use cutoffs at 1, 3, 5, 10 because
usually only a limited number of query suggestions can be displayed in a search engine’s
user interface. We report the mean SR scores averaged over all test cases.

We select test cases from the last 5 days in the log: sessions are chosen that contain
a null query and a successful query with a click, both of which have appeared earlier
in the log. We do not recommend queries that we have never seen before, instead we
look at existent queries that are in the log. Moreover, we focus on sessions that contain
non-boolean informational queries, for two reasons: (1) Item search queries’ failures are
often due to un-indexed items in the database; (2) Boolean queries (with logic operators
in uppercase) have been discussed earlier [111] (a simple method to address boolean
queries is to relax the logic relations, e.g., changing “AND” to “OR” may surface more
search results). In total we have 310 sessions for evaluation.

We test for statistical significance of observed differences in SR using a two-tailed
paired t-test and denote significant differences using N for significance at ↵ = .01, or M

for ↵ = .05.

2.4.2 Query-conditional suggestions
In Section 2.2.1 we mentioned the frequent occurrence of entities in academic queries.
Entities contain important information on query intent, which can be utilized for query
suggestion. To this end we take inspiration from the query-entity graph (QEG) for
query suggestions in search sessions. We refer to our proposed method as the query-
conditional suggestion method, as it bases its suggestions on the query itself and the
entities in it.

The original QEG method was used for recommending queries for web pages [28],
in which a set of query suggestions are produced given the current web page. There
is a very important difference between the original setup and the modification that we
consider for academic search: the input for recommendation. In the original setup,
the input consists of a web page, but in our case it consists of a query. Importantly,
contrary to the web page recommendation setting where a web page contains many
seed entities, a query in a search session contains far fewer. To fit the characteristics of
search sessions, we tailor the graph structure and the random walk on the QEG, and
introduce the mQEG: the modified query entity graph model.

The modified query entity graph model is a triple Gqe = (V,E,w) that satisfies the
following conditions:

1. V , the set of nodes, consists of all unique queries in the query log plus all entities
identified in the queries;
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2. E = V ⇥ V , the set of directed edges, is the union of EQQ (query to query
edges), EQE (query to entity edges), and EEE (entity to entity edges).

(a) Here, EQQ follows the definition in the QFG (Query Flow Graph) [23].
Each edge Eij in EQQ corresponds to a query transition from qi to qj in
the query log.

(b) Concerning EQE we deviate from the definitions in [28]. EQE consists of
edges connecting queries and the entities extracted from them, which are
bidirectional, unlike [28]. Making edges in EQE bidirectional enables the
random walker to visit query nodes and entity nodes alternatively, which
helps to expand the limited number of entities in a query by using behavioral
information (query transitions).

(c) EEE is defined by connecting entities in qi to those in qj if there is a query
transition from qi to qj in EQQ, the same as in [28].

3. w is the weighting function that assigns a weight to each edge in Eij representing
the likelihood of transitions.

(a) For transitions in EQQ we use the same weighting function as in the
QFG [23]:

w(qi ! qj) = |qi ! qj |/|qi|,

where |qi ! qj | is the number of occurrences of a query transition from qi
to qj , and |qi| the total number of query transitions that start from qi.

(b) For entity to query transitions in EQE the weight is:

w(e ! q) = |q|/
X

|e ! qi|,

where |q| denotes the frequency of query q that contains e and
P

|e ! qi|
the number of occurrences of all queries that contain entity e. Since edges
in EQE are made bidirectional, unlike [28], we define the weight of query
to entity transitions in EQE as:

w(q ! e) = |q ! e|/
X

|q ! ei|,

where |q ! e| is the number of mentions of entity e in query q, and
P

|q !
ei| is the total number of entity mentions in q. We set the probability of
walking away from the query subgraph to the entity subgraph and vice versa
as 0.5 by weight normalization.

(c) For edges in EEE , we define the weight to be proportional to the frequency
of the entity transitions:

w(ei ! ej) = |ei ! ej |/|ei|,

where |ei ! ej | denotes the number of occurrences of an entity transition
from ei to ej , and |ei| the number of occurrences of all entity transitions
starting from ei.

We provide an illustration of the mQEG with the QFG [23] and QEG [28] in Figure 2.3,
for the query “radiation hazard” that needs query suggestions. The difference between
Figure 2.3a and Figure 2.3c shows that the entities in the mQEG have enriched the
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semantic connections among queries compared to QFG [23]. Furthermore, the mQEG
offers stronger connectivity via the bidirectional edges between entities and queries
compared to the QEG [28]. For instance, given the query “radiation hazard,” the mQEG
is able to provide the query suggestion “nuclear radiation hazard” while the QFG [23]
and QEG [28] cannot as the required edges that link these queries are simply missing.

To construct the graph model, we use the entire query log except the last 5 days,
which are used as our test set. In total there are 14,774,893 nodes and 100,679,495
edges in the mQEG. We use the Graphchi framework [123] to implement Personalized
PageRank. We run 10 iterations for each round of personalized PageRank to achieve
an approximation of the power iteration method. The number of walks is set to 100 to
achieve a reasonable trade-off between speed and scale, while preventing the inclusion
of queries that are only remotely relevant into the candidate sets. Given the input query,
we run the algorithm and rank the query suggestion candidates by visiting frequencies
in descending order.

To examine the utility of this query-conditional query suggestion method, we
compare the performance of the mQEG against the query flow graph (QFG) [23], which
is based on a similar graph model but does not consider the queries’ entities. We also
compare the mQEG against QEG [28], although the QEG [28] is designed for a different
task: recommending queries for web pages. We follow the original steps in [28] by
first performing entity set expansion on the entity subgraph in the QEG, which only
consists of entity nodes and their links, to expand the entities in a query. And then
we perform Personalized PageRank on the full QEG by using a uniform distribution
over the expanded entities. We rank the query nodes by their visiting frequencies in
descending order. The results (as a percentage) are presented in Table 2.5.

Table 2.5: Automatic evaluation results for the query-conditional method (mQEG) vs.
QFG and QEG. (Success rate as a percentage.)

Model SR@1 SR@3 SR@5 SR@10
QFG [23] 0 0 0.32 0.65
QEG [28] 2.90 2.90 2.90 3.23
mQEG N3.22 N3.55 N4.19 N6.45

In absolute terms, the SR scores achieved by the mQEG are low because it is
difficult to predict the exact same query with a click. Nevertheless, for SR@10 the
scores achieved by the mQEG are comparable to the state-of-the-art in a different
but related task (recommending orthogonal queries [214]). In Table 2.5, a significant
improvement (↵ = .01) in SR is observed in the query-conditional method (mQEG)
over the QFG and the QEG. The low scores of the QFG demonstrate its weakness when
dealing with rare queries. The performance increase from both models that use entities
(mQEG and QEG) shows that utilizing the queries’ entities helps surface more relevant
query suggestions. Additionally, it helps tackle the query sparsity problem in academic
search (Section 2.2.1), by using entities to relate queries that are not connected in the
QFG. The performance increase of the mQEG over the QEG [28] shows that the mQEG
is more suitable for this task setting. This may be explained from two perspectives:
(1) The bidirectional query-entity edges in the mQEG enhance connectivity and more
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(c) Modified Query Entity Graph.

Figure 2.3: Illustration of a Query Flow Graph [23], a Query Entity Graph [28], and
a Modified Query Entity Graph, all for the query “radiation hazard.” Query nodes are
represented by circles and entity nodes by squares.

effectively deal with the sparsity of queries. (2) The QEG [28] is designed to make
recommendations for web pages that usually have more entities than a query; after
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performing the entity expansion step, the QEG [28] uses a uniform distribution over the
expanded entities to produce query suggestions, which might bring undesirable topic
drift to the original query and entities. Since the mQEG and QEG are both entity-based
models and the former performs better in this task setting, we will only show the results
of the mQEG in the remaining sections. The increase in SR@10 demonstrates the utility
of the models as only a limited number of query suggestions can be shown to users.

While the mQEG achieves a significant improvement over the QFG and QEG, there
is still considerable room for improvement, especially at SR@1 and SR@3. Since
the mQEG only uses query information, we hypothesize that using additional session
information may improve the suggestions. Consider the example in Section 2.3.2, where
a user is interested in the topic “composite beams” and is exploring. In this case, given
that the session is an exploring session, it would be useful to directly provide exploratory
suggestions around the entity “composite beams” upon observing a null query, such
as the spelling-corrected query “a study on elastic plastic. . . of composite beams,” or
“Inelastic analysis of steel frames with composite beams” which is an even better query
suggestion because it leads to a click. We hypothesize that predicting session types and
biasing suggestions based on those predictions helps surface better query suggestions.
We address the issue in the following section, with so-called session-conditional query
suggestions.

2.4.3 Session-conditional query suggestions

The assumption underlying our session-conditional method is that we should give
certain types of suggestion candidates a higher ranking in the suggestion list, depending
on the session type. E.g., for a session that is likely to be exploring, exploratory query
suggestions should appear higher up in the ranking. Therefore, we first need to predict
the null session type; based on the predicted null session type, we then rerank the
suggestion candidates generated by the graph models (QFG, mQEG).

Predicting null session type

We use the annotated sessions described in Section 2.3.2 and assign labels to sessions
by considering the majority votes by the annotators as the training set. Recall that each
session can be assigned multiple labels; hence, this prediction problem is cast as a
multi-label classification problem. As we saw in Section 2.3.2, there is an imbalance
of session types in the training set; therefore, the trained classifier is also likely to be
biased towards prevalent session types. However, given that the annotated sessions
come from random sampling, the distribution of session types is expected to be similar
between the training set and the test set.
Our model for predicting null session types uses three feature sets: query features, query
transition features, and click features; see Table 2.6.

Query features These features describe basic characteristics of a query, such as length
and dwell time.
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Table 2.6: Features for prediction of null session type.
Name Description
Query features
wLength Average query length in number of words
cLength Average query length in number of chars.
numPlainSearch Number of non-boolean informational queries
perPlainSearch Percentage of non-boolean informational queries
numFail Number of null search queries
numQuery Number of queries
dwellTimeQuery Average dwell time for each query

Query transition features
numTrans Number of transitions
avgQuerySim Average query similarity
addTerms Number of adding transitions
delTerms Number of deleting transitions
subTerms Number of substituting transitions
perAdd Percentage of adding transitions
perDel Percentage of deleting transitions
perSub Percentage of substituting transitions

Click features
numClick Number of clicks
dwellTimeClick Average dwell time for each click

Query transition features These features describe how users reformulate queries
during the session. Typical reformulations are adding terms, deleting terms and sub-
stituting terms. These transition patterns are likely to help to distinguish types of null
sessions. E.g., in exploring sessions there are many substituting transitions, in which
the user searches for related entities around a pivot entity. In refining sessions, the user
may attempt adding and substituting terms to refine a search goal.

It is important to inspect query similarity within a session as this tells us how diverse
the queries are, and also reflects the user’s interest changes. Therefore, we inspect the
query similarity in a session using the same pairwise similarity metric as we used in
Section 2.3.3.

Click features Click features are important feedback from users. They show the
satisfaction of a user for a query, as well as the search intents. We look at the number of
clicks and the mean dwell time for each click.

Predicting null session type is a multi-label classification problem where the input
features and the labels may have very high degrees of dependency. To capture the
dependencies, we use a 3-layer deep belief network with Restricted Boltzmann Machines
(RBM) [178]. We apply RBMs to learn a compact representation of the underlying
patterns of the input features as well as the labels. The final hidden layer contains the
output units for each label.
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We use 10-fold cross validation and test this method against other methods such as
classifier chains [177], binary relevance with SVM and random forests [213]. We only
report on the RBM-based method as its performance is better. See Table 2.7.

We choose several metrics to measure the prediction performance:
Hamming score: For each prediction of a session, let T be the true set of labels and S

be the predicted set of labels, the hamming score is defined as:

Hamming score = |T \ S|/|T [ S|,

The Hamming score is then averaged over all predictions.
Exact match: is the percentage of sessions that have all their labels predicted correctly.
Macro-F1 is the harmonic mean between precision and recall, first averaged per label

and then across all labels.
Micro-F1 is the harmonic mean between micro-precision (precision averaged over all

the predictions) and micro-recall (recall averaged over all the predictions).
The Hamming score, i.e., the accuracy over all labels in this multi-label setting,

reaches a value of 0.891, which indicates a good overall prediction result. If we split out
the accuracy per label (in the bottom half of Table 2.7), we see that exploring sessions
have the highest accuracy score of 0.974, while refining sessions have the lowest score
of 0.768. These differences among the session types shows that certain types are easier
to identify automatically.

Table 2.7: Performance of predicting null session type using a Restricted Boltzman
Machine.

Performance over all types of null session
Hamming score 0.891
Exact match score 0.591
F1 micro avg 0.744
F1 macro avg 0.698

Accuracy per null session type
Refining sessions 0.768
Generalizing sessions 0.892
Exploring sessions 0.974
Expanding sessions 0.923

How well does the prediction of null session type work at different stages in sessions,
without knowing later session information? Table 2.8 shows that the performance of
predicting the null session type following the first null query achieves a fair performance.
Prediction after the next query after initial failure performs worse. This may indicate
that the user’s initial response upon a failure may be vague at first, which makes it
difficult to assign a session type. Then, using two queries after the first failure achieves
better performance. Our model for predicting null session type is capable of achieving
good performance even with partial information.
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Table 2.8: Performance of predicting null session type at different stages.
Time of prediction Hamming F1 micro F1 macro

score avg. avg.
After initial null query 0.816 0.578 0.494
. . . 1st subsequent query 0.686 0.427 0.418
. . . 2nd subsequent query 0.885 0.731 0.679
. . . 3rd subsequent query 0.887 0.736 0.684
At session end 0.891 0.744 0.698

Query suggestions

We use our null session type classifier to predict the types of null sessions. Then, the
probability of a null session type will be used for reranking suggestion candidates. Here,
we proceed as follows.

Given the null query, we generate suggestion candidates from one of the graph
models (QFG, mQEG). Then the candidates are classified by an unsupervised multi-
label classifier as refining, generalizing, exploring and expanding suggestions. The
classification is a simple rule-based approach, defined by syntactic variance and term
changes: specifically, generalizing suggestions contain a subset of the terms in the
original query. Expanding suggestions contain new terms that are added to the original
query. For exploring suggestions, there is term substitution in the original query while at
least one entity term remains. For refining queries, we use a character-level edit-distance
metric and classify all queries below a distance threshold ✓ as refining suggestions.

Algorithm 1 details how the ingredients are combined to produce session-conditional
query suggestions. At line 1 we obtain query suggestion candidates produced by a
baseline method (QFG or mQEG). At line 2 the candidates are divided into different
types. In lines 3–7 the candidates are reranked based on the predicted session type
probabilities, to form the final suggestion list.
The only variable for tuning is the distance threshold ✓; we iterated over possible values
and obtained the optimal performance of query suggestion results at ✓ = 0.2.

Before discussing the experimental results, let us consider an example of Algorithm 1
in action. Consider the following session:

04Mar2015:06:49:58.489 Query supply chain risk management

04Mar2015:06:58:13.402 Query risk management

04Mar2015:06:58:48.198 Click shorturl=/scie. . . pii/S026323730900005X

04Mar2015:06:59:27.762 Click shorturl=/scie. . . pii/026323739190056V

04Mar2015:07:00:34.362 Query AHP TOPSIS

04Mar2015:07:00:43.393 Query AHP

04Mar2015:07:00:59.431 Click shorturl=/scie. . . pii/S0263237312001107

First, given the null query “AHP TOPSIS”, the mQEG generates a list of query sugges-
tion candidates at line 1. Then the candidates are classified into refining, generalizing,
exploring and expanding suggestions at line 2. Using the session information from
the input, the session type predictor determines that the current session has a very
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Algorithm 1 Session conditional query suggestions
Input:

Session s; Null query q; ✓
The probability of session type P (i | s) for the i-th type of session, where
i = 1, 2, 3, 4 which correspond to refining, generalizing, exploring and expanding
sessions.

Output:
Fused list of suggestions R;

1: Generate query suggestion candidate list L by one of the graphical models (QFG,
mQEG)

2: Classify suggestions L into sublists Li of different types, with ✓ being the distance
threshold

3: while R is not full do
4: select Li probabilistically according to P (i | s)
5: select the top-most unchosen query q on Li

6: if q /2 R then
7: append q to R

high probability of being a generalizing session, as the user has dropped terms “supply
chain” in the first query reformulation. Therefore, the algorithm pushes the suggestion
candidates that belong to the generalizing type higher up in the ranking among all the
candidates at line 3 to line 7, of which the query “AHP” is benefited, and that is the
successful query that leads to a click.

Next, we report on the query suggestion results for our session conditional methods
in Table 2.9. An increase in SR is observed for both models (QFG and mQEG) after
applying our session conditional approach. On top of the mQEG, the session conditional
extension leads to significant improvements in SR@3 and SR@5 (↵ = .05).

Table 2.9: Baseline query suggestion methods (QFG, mQEG) vs. session conditional
versions of the baseline methods. Prediction of null session type is after the initial null
query.

Model SR@1 SR@3 SR@5 SR@10
QFG 0 0 0.32 0.65
SC-QFG 0.65 0.97 0.97 1.61

mQEG 3.23 3.55 4.19 6.45
SC-mQEG 4.52 M7.10 M7.42 8.39

When we look at the successful recommendations made by the SC-mQEG and mQEG,
we find that the SC-mQEG gives a better ranking than the mQEG for the successful
query suggestions for 48% of the cases, a draw for 28%, and a lower ranking for 24%.

For the cases where the SC-mQEG and mQEG draw, the successful suggestions
rank at the first place for 87.5% of the cases, and rank at the second place for 12.5% of
the cases, making it difficult for the SC-mQEG to make further improvements over the
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mQEG.
For the cases where the SC-mQEG is outperformed by the mQEG, we find that

for 57% of the cases the successful suggestions are exploratory ones, but the session
prediction’s output sees the session as refining or generalizing. For 29% of the cases the
session prediction is expanding, which is correct, but query suggestions that belong to
other types have been pushed up in the reranking process due to the randomness, thus
lowering the rank of the desired query. In the remaining 14% of the cases it should be a
refining suggestion but the session prediction is expanding.

For the cases where the SC-mQEG outperforms the mQEG, the improvements come
from the session type predictions that are most likely to be refining and generalizing,
constituting 29% and 71% of the cases, respectively. Nevertheless, the “less confident”
session predictions for exploring and expanding types may still contribute: in the
test cases for which the SC-mQEG outperforms the mQEG, the exploratory query
suggestions account for 7% of them and expanding suggestions account for 14%,
although the most likely session type prediction for these sessions is neither exploring
or expanding but refining. This shows that it is not always the most likely prediction
that works, instead it can also be a less-likely session type prediction that contributes to
the successful query suggestion.

From the analyses we infer that the session type prediction’s most confident predic-
tion may not always be correct; however, even a sub-optimal prediction may help push
the desired query higher up in reranking. Overall, our findings confirm that in most
cases, predicting session type helps make equal or better query suggestions.

2.5 Discussion: user-conditional query suggestions

We have used both queries (or rather: entities in queries) and sessions to improve query
suggestions for null queries. It seems natural to consider using user-specific information,
i.e., personalization, for query suggestion. However, when we examined the cross-
session similarity for each user that has at least 3 sessions, as shown in Table 2.4. The
average cross-session similarity score is very low, which indicates shifting interests
across sessions, and this, in turn, suggests that the benefit of personalization may
be limited. Below, we report on experiments aimed at determining the benefit of
personalized query suggestions.

We focus on users’ preferences over entities for two reasons: (1) The majority of
queries contain at least an entity; (2) Entities reflect the users’ topic interests. We aim to
see if they help to improve the quality of query suggestions. To this end, we create a
personalized query-entity graph (PmQEG) by integrating user preferences into the edge
weights (transition probabilities) of the graph.

2.5.1 Inferring user preference
We derive each user’s preference for entities by looking at query reformulations. These
reformulations fall into two broad categories: query reformulations that have at least a
common entity in the queries and those that do not, from which we can infer conditional
and unconditional entity preferences, respectively:
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1. For the conditional type, we look at three common cases of query reformulation:
(a) deletion;
(b) addition;
(c) substitution.

We cannot infer a clear user preference based on deletion or addition, as in these
cases users try to generalize or refine a query. But in the case of a substitution,
we are able to infer a conditional preference. Specifically, assume that two
consecutive queries qi and qj contain entities Ei and Ej , respectively, and shared
entities Ec = Ei \ Ej . Then, the user prefers the new entity set Ej \ Ec over
the previous entity Ei \ Ec given the shared entity set Ec. Put more formally:
P (Ej \ Ec | Ec) � P (Ei \ Ec | Ec).

2. For the second type, where there is no common entity in two consecutive queries,
it is possible to infer an unconditional preference. If a user issues consecutive
queries qi and qj , which contain entity set Ei and Ej respectively, we infer that
they have a preference for Ej over Ei (P (Ej) � P (Ei)).

All inferences of entity preference inherently consider a user’s interest shifts over time:
since queries arrive sequentially, this pattern favors new entity preferences over old
ones.

2.5.2 Preference model
For each user u, we derive preference information from the query log. Let s denote the
shared set of entities, which could be ; (in such cases the preference is not conditional),
and p and c are two entity sets between which the user prefers p. Then the training data
D is made of all preference pairs: D = {(u, s, p, c) | (p | s) � (c | s)}. We use MAP
(maximum a posteriori probability) estimation to derive the preferences over entities.
For unobserved preferences of entities, we use Laplace smoothing to assign a non-zero
probability: P = (x+ ↵)/(N + ↵⇥ ✏ij), where ✏ij is the number of entity transitions
given a source entity ei, N is the number of observations for ei and x is the number of
the observed entity preference; x = 0 for unobserved preferences.

When personalization is applied to all users, an increase of SR at different cutoffs
is observed; see Table 2.10. Specifically, the PmQEG has improvements of SR at all
cutoffs, and SC-PmQEG improves the SR@3 and SR@5 scores. The improvements
show that personalization is better able to put high quality query suggestions into higher
rankings, but the differences are not statistically significant.

Table 2.10: Personalized models (PmQEG, SC-PmQEG) vs. Non-personalized models
(mQEG, SC-mQEG).

Model SR@1 SR@3 SR@5 SR@10
mQEG 3.23 3.55 4.19 6.45
PmQEG 3.55 4.84 4.84 6.77

SC-mQEG 4.52 7.10 7.42 8.39
SC-PmQEG 4.52 7.42 7.74 8.39

The consistency of a user’s interests does not necessarily impact the performance of
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personalization. For some cases personalization brings performance gains, because
users issue queries with exactly the same interest in the history (e.g., a user has a
historical preference for “management,” which leads to the query suggestion “customer
relationship management” that is desired). But in other cases personalization may not
produce much utility for users who have consistent interests in a certain topic, but are
constantly exploring around subtopics within it. When a new subtopic comes up, the
historical preferences of previous subtopics might lead query suggestions astray and
hurt personalization.

In this section we have discussed personalization for users’ entity preferences, as
entities are prevalent in academic queries. Looking further, personalization can be
achieved by considering topical interests, user behavior, session information, and also
specific search patterns such as refinding [208]. It is yet to be seen whether general
personalization methods in web search would work in academic search. After all,
personalization should be a discreet decision to make for the search engine in order not
to hurt user experience. We put the problem of an in-depth analysis of personalization
as future work.

2.6 Related work

We consider four areas of related work: academic search, search failure, query sugges-
tions and query auto-completion.

2.6.1 Academic search

Academic search concerns the retrieval and profiling of information objects (papers,
journals, authors, reviewers, . . . ) in the domain of academic research. The first academic
search engine MEDLINE came operational in 1971, which supported up to 25 users si-
multaneously [144]. However, its use was limited to libraries and only pre-programmed
search tasks were supported instead of online queries. It was not until the 1990s when
the World Wide Web became popular, that online academic search engines started
to thrive and became accessible to a larger user base. These online academic search
systems include Citeseer [69] and Aminer [206], which focus on citation indexing
and metadata extraction as well as academic social network extraction, respectively.
Multiple heuristics such as term frequency and citation scores can also be applied to
increase the performance of academic search engines [9]. This chapter studies one
of the world’s most popular academic search engines, ScienceDirect [186], which is
widely used in the physical sciences, engineering and life sciences.

Several transaction log analyses have been conducted on search engines of digital
libraries. However they are either focusing on a single discipline [83, 102], or limited in
scale [107], thus making them not representative of academic search. Moreover, these
analyses focus on revealing basic statistics, and little insight on user behavior in search
sessions is given.



Related work 35

2.6.2 Search failure

Lancaster [124] uncovers failure phenomena in an early academic retrieval system
MEDLARS in the 1960s. Dwyer et al. [60] examine failures of interlibrary loan-request
forms for items in two university libraries from 1989 to 1990. They find 17 types of
error such as “in circulation” and “incorrect citation.” However, the “queries” in those
obsolete systems are hand-crafted and static requests mostly from librarians, which are
completely different from the modern form of queries that we type in the search box.
The “failures” in the past are therefore different from what modern users encounter in
online and interactive academic search engines.

Singh et al. [194] study search trails of various eBay users and the impact of null
queries on purchase rate. They observe a degradation of purchase rate for null search
trails compared to the non-null search trails. They find that the purchase rate for both
power users as well as novices is lowered when null recall situations are encountered
on their trails. They also find the repetition factor to be as low as 1.45 for null queries
versus 19.57 for non-null queries. A low repetition factor makes it difficult to use query
log-based signals to improve the performance of null queries.

2.6.3 Query suggestions

Query suggestion is a feature in modern web search that improves the search experience
by providing recommendations of queries. Most query suggestion techniques exploit a
query log in order to give useful suggestions. Zhang and Nasraoui [231] use a similarity
measure by exploiting consecutive queries during sessions combined with a content-
based method using search frequency and query frequency. Boldi et al. [23] introduce
the query-flow graph by examining different reformulation patterns in search sessions,
and uses random walk on the graph to obtain suggestions. Guo et al. [80] further use
social annotation data to construct a query-URL-tag tripartite graph and use random
walks to recommend queries in a structured way. Bordino et al. [27] project the query-
flow graph to a lower-dimension space to measure the similarity between queries for
diverse query recommendations. Guo et al. [81] use clicks and snippets to identify
search intents and provide query recommendations under different intents. Song et al.
[197] propose a term-transition graph for query suggestions, using information from
queries and documents.

These techniques, however, perform well for queries that come with clicks and
other user feedback information. The long tail of the queries is more challenging for
query suggestion, since such queries are rare and very little user feedback is available
for them. Bonchi et al. [25] use a term-query graph and provide query suggestions at
a term level by computing the center-piece subgraph of the terms in queries. Vahabi
et al. [214] propose orthogonal query recommendation, which suggests queries that
are syntactically different but semantically similar, to address the situation when the
original query is ill-posed.

Among the queries in the long tail, there is a specific kind of query that are difficult
to deal with: the ones that return very few or no results. In a study by Altingovde
et al. [8], these queries are characterized and most of these “failed” queries are found to
contain a URI. Apart from the malformed URI queries, one third of them still contain
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a regular URI that the search engine can not retrieve. In these cases it is difficult to
provide query suggestions as the search engine can not understand user intents.

There is an increasing volume of research on providing suggestions around entities.
The use of entities utilizes auxiliary resources by linking entities in queries to knowledge
bases such as Freebase and Wikipedia. Bordino et al. [28] extend the query-flow
graph by introducing entities in queries, and uses personalized PageRank to give query
suggestions given a visited page. Hassan Awadallah et al. [85] deal with sessions with
complex search tasks. They tag entities in query text and group queries into tasks for
recommendation.

2.6.4 Query auto-completion
Query auto-completion (QAC) is a popular function in search engines to help users
formulate queries given the prefixes that the user is typing [31]. Contrary to the post-
remedy role of query suggestions, QAC has the potential to prevent null queries’s
appearances. Mitra et al. [154] studies how users engage in QAC and finds that they
tend to use it on word boundaries, which is helpful for difficult words. Shokouhi [191]
studies personalized QAC by considering a user’s previous queries. Cai et al. [32]
augment the personalized model by considering time-sensitivity. Recently, Zhang et al.
[230] propose an adaptive model that uses implicit negative feedback during user-QAC
interaction. Mitra and Craswell [153] design a QAC system for rare query prefixes
using a latent semantic model.

Our work differs from previous work on academic search, by studying user behavior at
a fine-grained level through a large-scale transaction log analysis. It also differs from
algorithmic work on query suggestion by taking into account the unique characteristics
of academic search, namely entity queries and, especially, null session types. This work
is complementary to query auto-completion, as a post-remedy measure as opposed to
being a precaution method.

2.7 Conclusions
In this chapter we have investigated search behavior and failures in academic search.
First we have identified the unique features of academic search, some of which provide
observational insights for algorithmic improvements, e.g., richness of entity queries,
verbosity of queries and unique search session types.

Then we have pointed out the problem of null queries, and motivate the use of
query suggestions to address null queries. We generate query suggestion candidates
using graph models that utilize entities in queries. Given the various session types,
we propose a session-conditional approach. We have subsequently trained a multi-
label classifier to predict the type of session in which a null query occurs. We then
base the query suggestions on the predicted types of the null sessions. We find that
the improvement of the session-conditional method is significant. Furthermore, we
investigated personalization and have achieved a slight improvement.

The theoretical implication of this research lies in two main aspects in the query
suggestion method. First the query-conditional approach, which effectively uses entities
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to surface more relevant query suggestions, further proves the importance of utilizing
entities in information retrieval tasks. Moreover, the session-conditional approach shows
that session information will help reranking query suggestions for null queries. This
approach also does not rely much on characteristics of academic search data, which
makes it possible to be generalized to web search and other domains, but of course
it definitely requires further investigation. The practical implication of this research
is the observation of user behavior in a modern academic search engine. The basic
characteristics of search queries, their differences with web search, and the failure
phenomenon all help to draw the big picture of academic search, and will draw more
attention to research in this domain.

As to limitations of our study, we acknowledge that there are many options of
personalization techniques for query suggestions, and the one adopted by the authors
is only one of them that is motivated by the characteristic of academic queries (entity
richness). It is certainly possible to examine whether general personalization methods in
web search will achieve comparable performance in academic search, which we leave as
future work. It should also be noted that the appearances of null queries may be related
to certain search engine design techniques, e.g. whether to use query auto completion,
query expansion and semantic matching. Yet it is meaningful to study how users would
react upon null queries, especially in our setting where it is prevalent, so that we can
deepen our understanding of how to alleviate this problem. In addition, some of those
null queries are actually “positive failures” for searchers doing provenance finding: no
result for a query confirms the non-existence of novel research ideas. Therefore it is
interesting to combine research on null queries with provenance finding so that the
search engine can judge whether a null query makes sense, and only provides query
suggestions when necessary.

As to future work, we recommend improved profiling of searchers on multiple
dimensions, e.g., preferences at the topic level, modeling intent shifts and it would be
meaningful to examine when and whether to personalize.





3
Topic Shift and Query Reformulation Patterns

in Academic Search

In the previous chapter we have examined the academic search queries and failures in
the context of search sessions. Moving on, we examine users’ long term behavior that
extends beyond sessions. Specifically, we investigate users’ query reformulation and
topic shift, and reveal their correlations, by answering RQ2.

3.1 Introduction
Academic search deals with the retrieval of information resources in the domain of
scientific literature. Hemminger et al. [88] point out that academic search engines have
become the primary portal for researchers to gain information; see also [165]. In recent
years, there have been several publications focused on academic search and academic
searchers. However, most are very limited in scale, and rarely reveal insights into the
search behavior of academic searchers based on the analysis of large-scale transaction
logs [83, 102, 107]. In this study we take a look at academic search through a large-scale
log analysis from a major academic search engine.

Academic searchers do have a distinct search pattern that is different from the
typical web searchers. For instance, in web search, the search activity becomes the
least intensive on Fridays and peaks in the weekends [16]. But, as shown in Fig. 3.1,
academic search activity peaks during weekdays, and drops in the weekends.

To study the behavior of academic searchers, we investigate two key aspects: query
reformulations and topic shifts. Both have received much attention in user behavior
studies of web search [24, 96, 133], but to the best of our knowledge, there is no previ-
ous work on revealing the query reformulation behavior and topic shifts of academic
searchers that is based on a large-scale log analysis. In fact, very little is known about
these two aspects of academic search.

Through this study, we provide answers to three specific research questions:
RQ2.1 What is the query reformulation behavior of academic searchers?
RQ2.2 Do academic searchers have shifts in topical interests over time?
RQ2.3 Is there a correlation between query reformulation behavior and topic shift?

This chapter was published as [135].
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Figure 3.1: Average number of queries per weekday in academic search (based on the
dataset described in Section 3.3).

For the first question, we look at query reformulation behavior over time. Query
reformulation happens after the user has examined the search engine result page and
provides a more explicit type of feedback than clicks, which are implicit and noisy [44].
We look at five frequent types of query reformulation: revisiting a previous query,
adding terms, dropping terms, substituting part of the query, and issuing a completely
new query. We study how the type of reformulation behavior changes over time and
find that revisiting and issuing new queries tend to happen more often as search goes on.

For the second question, we take a quantitative approach to study topic shift over
time. We train an LDA model [22] on all long sessions in the query log that we examine.
We segment a user’s queries into different timespans, and treat queries in each timespan
as a bag of words. We infer a topic vector for each timespan of the user. Topic shift
between successive timespans is then calculated using the Euclidean distance between
the topic vectors. In this process we identify two types of user: one type increasingly
focuses on topics over time and the other diversifies over time.

Finally, we conduct a correlation study to see how these two aspects—query refor-
mulation and topical shift—are correlated with each other. We find that user’s query
reformulation patterns have little correlation with the tendency of topic shift, meaning
that users with distinct reformulation preferences in search could be equally likely to be
diversifying or focusing on topics. We also find that certain reformulations (viz. adding
terms and issuing new queries) may help predict the magnitude of the next topic shift.

Contrary to previous work that studies academic searchers through surveys and
user studies, this chapter sheds light on the reformulation behavior and topical shifts of
academic searchers through a large-scale log analysis. The insights gained help us to
understand academic searchers’ information seeking patterns from a much larger user
base, and may be useful for personalization in academic search.

In Section 3.2 we discuss related work. In Section 3.3 we introduce the dataset
characteristics. In Section 3.4 we describe our approach to study query reformulations
and topic shifts. In Section 3.5 we show the result and analysis from the correlation
studies. We present our conclusions in Section 3.6.
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3.2 Related work

3.2.1 Academic search
Academic search involves the indexing and retrieval of information objects (papers,
journals, authors, . . . ) in the domain of academic research. The earliest academic
search engine MEDLINE, which began functioning in 1971, allowed a maximum of 25
simultaneous users [144]. It was restricted to library usage and only pre-programmed
searches were supported instead of online queries.

When the web became popular in the 1990s, online academic search engines started
to flourish and gained popularity. Typical examples are Citeseer [69] and Aminer [206],
which focus on metadata retrieval and academic network extraction respectively. There
are several surveys and user studies on the search behavior of researchers on modern
academic search engines [165, 170, 171], which are based on a relatively small sample
of researchers. The few log analyses conducted on search engines of digital libraries are
either investigating a single discipline [83, 102], or limited in scale [107], as a result of
which they are not representative of academic search. Moreover, they focus on basic
usage statistics and lack insights on user behavior in search sessions. Recently, Li
et al. [138] studied the user behavior and query failure phenomenon in academic search
through a large-scale transaction log analysis.

3.2.2 Query reformulations
Query reformulation is an important aspect of user behavior during search sessions.
In recent years, there has been a range of studies that cover patterns and models of
query reformulation [24, 30, 96, 126, 181, 190], how they work in a collaborative
setting [156], in voice search [98] or in mobile search [192], and their applications [27,
31, 99, 175]. These studies show that query reformulations are the key to understanding
user behavior, which will benefit retrieval tasks such as query auto completion [99] as
well as topic and intent finding in users’ queries [175], and which may help improve
retrieval performance [79]. The findings are mostly in the domain of web search and
the query reformulation behavior studied is that of the general web users.

Multiple category schemes have been used for query reformulation in the liter-
ature [24, 30, 96, 126, 181, 190]. Different category schemes may correspond to
(1) search engines of different designs (e.g., whether searches on multiple verticals
are supported), (2) whether using search assistance is considered as a reformulation
such as query suggestion, or (3) different granularities of query reformulations. Manual
categorization may provide fine-grained results [30, 126, 181] but can not easily scale
up to large query logs. On the other hand, rule-based [96, 190] or learning-based [24]
methods can be applied to a large query log, and are thus more suitable for analyzing
long term query reformulations from a large user base.

3.2.3 Topic shift in queries
There has been a whole line of research that investigates topic mining in web search
query logs [4, 92, 93, 101], where the emphasis is on how to segment and cluster
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queries by topic. However, the multi-tasking nature of web searchers, which means
searching and switching between multiple topics within and across sessions [149],
makes it cumbersome to derive useful insights from users’ topic shifts, especially over
long periods.

This paper differs from previous work in academic search, by studying a large
transaction log from a major academic search engine, with a focus on user behavior in
search sessions. The findings are therefore better able to represent academic searchers,
compared with earlier small-scale user studies and surveys. It also differs from previous
work in query reformulations in web search, by revealing the academic searchers’
preferences instead of those of the general web users. The paper differs from work
on topic shifts in web search by looking at a different domain: academic search.
Compared to the web searchers who have diverse, parallel, and fast-shifting topic
interests, academic searchers are more likely to have consistent interests in a general
topic. For instance, a researcher in information retrieval is more likely to stay in this
general topic than diverting to biology sciences. This makes studying the long term
topic shift pattern meaningful. Moreover, this study tries to link query reformulation
to topic shift, and provides useful insights into their connections through a series of
correlation studies.

3.3 Data

We study a query log from the ScienceDirect search engine,1 containing over 39
million queries. The query log is collected from September 28, 2014 to March 5, 2015.
Table 3.1 shows the length statistics of the query log. Two thirds of the traffic come
from institution-authorized access, meaning that users in a certain IP range can access
the search engine, and they share the same session ID and user ID in the query log.
Besides, many institutions use proxies or firewalls so that their IP is recorded instead
of the terminal device. Therefore it is not possible to differentiate these IP-users. We
are only confident in an ID-user one-to-one mapping when they log in or access the
search engine from outside the institution. And we study these “non-IP” users only,
who contribute about one third of the traffic.

Table 3.1: Query length statistics in word count.
Category #N min max mean median
Sciencedirect 39M 1 419 3.77 3

With a timeout of thirty minutes as a threshold, there are a total of 4,307,889 sessions
for these non-IP users, and 2,833,549 of them contain at least 3 queries which we denote
as “long sessions.” To obtain enough data of users, we confine the scope of users to
those who have a minimum of 30 queries, and whose search behavior lasts over 30 days
at least. This leaves us with 29,093 users and 1,918,334 query records.

1http://sciencedirect.com

http://sciencedirect.com
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3.4 Approach
In this section we describe how we study the behavior and topic change of academic
searchers in a series of correlation studies.

First, we highlight the statistics of the prominent types of query reformulations from
the query log. Then, we apply a time sequence-based method to make observations of
how users progress in search. We break each user’s queries into sequences and then
align them, so that we can compare how users progress during search even if they start
at a different time. Specifically, we put each user’s queries into bins separated by a
certain length of timespan (to be specified below). Then, we align all searchers’ queries
by timespan, with the first timespan of a user denoted as 0, the second as 1, in a natural
number sequence. We can observe query reformulation and topic shift of users as they
move from one timespan to the next. In this case, to gain enough samples from the
dataset and also to ensure statistical significance in our later correlation analyses, we
sample timespans of 3, 7 and 14 days long. We choose timespans of different lengths to
observe whether some changes are more prominent over longer timespans. The length
of timespans chosen also corresponds with the usual information seeking cycles of
academic searchers, as research suggests that information-seeking happens toward a
weekly basis rather than daily basis for faculty and graduate students [39, 165]. Note
that users may issue no query in a certain timespan; in such cases the timespan will be
neglected for that user.

Query reformulation tendency over time. To uncover the reformulation prefer-
ences for the academic searchers as a whole, we examine the query reformulation
preference over time for all academic searchers combined. For each timespan, we
aggregate the frequency of each reformulation from all users and obtain the proportion
of each reformulation type. We hypothesize that certain reformulations might happen
more frequently as time goes on, for instance revisiting, because academic searchers
tend to have a consistent interest in their field of study [97] and may thus need to submit
a previous query repeatedly in search of new information. We try to determine if there
is indeed a linear correlation of the proportion of an action over the course of time
(represented as a natural number sequence of timespans). To this end, we use Pearson’s
correlation.

It is common for users to use a combination of the query reformulations listed in the
previous section (revisiting, adding a term, dropping a term, substituting a term, new
query) in order to reach their search goal. In our analysis, we calculate the proportion
of each query reformulation in each time span for every user.

Topic shift. We study the tendency of a user to shift topic over time with a quanti-
tative approach as we aim to measure the magnitude of change in topic. We train an
LDA model on long sessions that contain at least 3 queries. Each session is treated as a
“document” in training because the queries within a single session mostly likely belong
to the same general topic. The number of topics is set to 150, which is a reasonable
value in the academic domain [78] and also ensures relatively fast convergence in Gibbs
sampling. For each user, we model the queries in each timespan as a bag of words and
use the trained LDA model to infer a topic vector. Then, for a given user the magnitude
of topic shift between adjacent timespans is calculated using the Euclidean distance
between the user’s topic vectors for the two timespans.
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Correlations. After studying how users’ reformulation behavior and topical interest
change over time, respectively, we aim to find whether there is a correlation between a
user’s query reformulation patterns and their topic shift tendency. Specifically, we look
at two aspects of the correlations. First, the macroscopic aspect, i.e., whether a user’s
topic shift tendency is correlated with query reformulation preferences. For instance,
suppose a user favors a specific type of reformulation, say substitution; is this user likely
to be diversifying in topic shifts? Second, there is the microscopic aspect: in successive
timespans, is the proportion of each reformulation type in the first timespan correlated
with the topic change that happens during the next timespan? Based on the correlation
findings, we consider the task of predicting the magnitude of a user’s topic shift during
the next timespan.

3.5 Results and analysis

In this section we present the results of our analysis of users’ query reformulations and
topic shifts. We first analyze these two aspects separately and then perform a series of
correlation studies to examine their connections.

3.5.1 Query reformulation types
To study users’ query reformulation types, we apply a syntactic-based automatic cat-
egorization. Our taxonomy does not require human annotations and does not have
the fine-granularity of those methods in [24, 96, 190]. However it is fully unsu-
pervised and is scalable to a large query log; it contains five reformulation types
that are common to the majority of taxonomies previously used for query reformula-
tions [24, 30, 96, 126, 181, 190]. The main difference is that none of these previous
publications considers “revisiting queries” as a reformulation while we do (Bruza and
Dennis [30] consider “repeated query” but there is no user identifier in their query log).
Revisiting Revisiting is issuing a query that is already in the user’s search history [208].

In academic search, we find that this reformulation type is very prominent, making
up 33.8% of all reformulations, which shows that academic searchers tend to
have some consistent search intents and will seek information on the same topic
repeatedly.

Adding terms This type of reformulation is characterized by adding at least one term
to the previous query, and corresponds to the process of refining search. This is
typically seen in sessions where users start with a general query on a certain topic,
then add terms to examine sub-aspects within the topic [181]. This reformulation
type constitutes 8.5% of all reformulations.

Dropping terms This is the opposite process of the adding reformulation type, con-
stituting 5.6% of all reformulations. By dropping at least one term from the
previous query, the user aims to retrieve information that is more general than the
previous query [181]. This may happen when academic searchers need context
information during learning.

Substituting terms Substitution of terms is the second most prominent reformulation
type that accounts for 28.0% of all reformulations. Substitution means keeping
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(a) Timespan = 3 days.
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(b) Timespan = 7 days.
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(c) Timespan = 14 days.
Figure 3.2: The query reformulation preference over time for all the academic searchers,
measured in correlation of the proportion of the reformulation actions (revisiting, adding
terms, dropping terms, substitution and new query) over time.

certain at least one term in the original query intact, then dropping old terms and
adding new terms. Substitution behavior may happen when a user is refining a
search, e.g., changing a synonym, or when the user is exploring different aspects
about a certain topic [181].

New query This reformulation concerns the situation where the user issues a query
that has no overlap of words with the previous query and that does not appear
in the user’s search history. Submitting a new query that is different often
means a change of search intent [24]. It happens when other reformulations
will not address the new intent of the users. New queries make up 24.1% of all
reformulations.

Compared to web search, where substituting terms accounts for the most popular type
(ranging from 22.73% to 37.5% in different datasets [24, 96]), the most prominent type
in academic search is revisiting and substituting terms only comes next.

3.5.2 Query reformulation tendency for all academic searchers
combined

Fig. 3.2 plots all searchers’ query reformulation tendency.
By definition of the correlation strength [64], there is a “very strong” positive

correlation of the proportion of revisiting behavior over time, in the analyses of all
timespans. This confirms our earlier hypothesis in Section 3.4, that there is an increasing
trend of revisiting queries by academic searchers, which shows their consistent interests
in certain topics. Interestingly, between timespans of 3 days, the tendency to submit
new queries is weak, but at longer timespans (7 or 14 days), we can observe a moderate
positive correlation. This suggests that submitting new queries tends to happen not
immediately (within a 3 day gap), but within a longer gap. The negative correlation for
the other three reformulations (add, drop, and substitute) shows that users perform these
reformulations less frequently in the later period of search.

3.5.3 Topic change tendency
Using the approach described in Section 3.4, we study the magnitude of the users’ topic
shift over time. The tendency is represented by the correlation strength: the larger the
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correlation, the bigger the topic shift over time for a user. Fig. 3.3 shows the distribution
of the correlation of the users, for 3 different timespans.
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(a) Timespan = 3 days
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(b) Timespan = 7 days.
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(c) Timespan = 14 days.
Figure 3.3: The correlation of user topic shift over time.

The correlation strength of topic shift over time indicates the evolution of user interests
over time, namely whether they tend to become more focused or more diversified. In
general, we find that nearly half the users tend to have increasing topic shifts over
time (diversifying), and the other half have decreasing shifts (focusing). For different
timespans, we see from the shape of the distribution, that there are more users showing
a stronger tendency of topic shift (either positive or negative) as the timespan increases.
This indicates that bigger topic shifts tend to happen when the time gap between searches
is longer.

3.5.4 Correlation between reformulation behavior and topic shift
There are users who become more focused over time and those who do not. Corre-
spondingly, we group users by their tendency to shift topics, and study if this tendency
has a correlation with query reformulation patterns. Specifically, users are divided into
6 groups by the Pearson correlation strength r of the topic shift tendency over time:
moderately diversifying (0.4  r < 0.6), strongly diversifying (0.6  r < 0.8), very
strongly diversifying (0.8  r  1.0) and moderately focused (�0.6  r < �0.4),
strongly focused (�0.8  r < �0.6), very strongly focused (�1.0  r < �0.8). Then
we look at the correlation with the user’s different reformulation type’s proportions, as
shown in Fig. 3.4.

Fig. 3.4 shows that we cannot differentiate diversifying or focused users, purely
based on their query reformulation patterns. That is, the user’s preference of choosing
certain query reformulations is not correlated with their topic shift tendency. This is
an interesting finding as it shows that even users with distinct query reformulation
preferences, could be equally likely to be focusing or diversifying in search.

Taking a step back, although we cannot determine whether a user is focusing or
diversifying based on preference of reformulations, can we predict the magnitude of
topic shift to happen in the next timespan given only the user’s current reformulation
behavior? To answer this question we first examine the individual correlation between
the proportion of each reformulation type at a given timespan, with the topic change
that happens at the next timespan. See Table 3.2.

Individually, for the majority of users there is only a weak correlation between
a query reformulation type and the next topic shift. For users who show a strong
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Figure 3.4: The correlation of the topic shift tendency (MD: moderately diversifying,
SD: strongly diversifying, VD: very strongly diversifying, MF: moderately focused, SF:
strongly focused, VF: very strongly focused), with the proportion of the reformulation
actions (revisiting, adding terms, dropping terms, substitution and new query) for each
user.

correlation (�1.00  r < �0.60 or 0.60  r  1.00), submitting new queries
contributes the least to a decrease in topic shift magnitude and also the most to an
increase in topic shift magnitude, respectively, compared with other reformulation
types. For longer timespans, there are more users who exhibit a strong correlation.
Especially when the timespan is 14 days, 21.0% of the users show a strong or very
strong correlation between adding terms and topic change, and the number is even
higher at 23.7% for submitting new queries. Interestingly, substituting reformulations
tend to correlate the least with topic change. This suggests that users tend to stay in the
same general topic, or a subtopic within the general topic, while modifying only part of
the original queries.

3.5.5 Predicting the magnitude of the next topic shift
Next, we try to utilize the observational insights that we have just gained for a prediction
task: can query reformulation signals help to predict the magnitude of a user’s topic
shift?

More precisely, we use features from users’ reformulations to predict the magnitude
of topic shift at the next timespan. The features are the proportions and number of
occurrences of query reformulations in a timespan. We cast this task as a regression
task. Our training set is comprised of pairs of query reformulations and the topic shift to
happen at the next timespan for all users. The test set consists of the second-last query
reformulations and the next (final) topic shift for each user.
We use linear regression and three evaluation measures: correlation coefficient, mean
absolute error (MAE) and root mean squared error (RMSE). The prediction results are
listed in Table 3.4. Prediction is more accurate on shorter timespans, with the 3 day
predictions reaching a medium correlation (r = 0.4530), while 14 day predictions being
at only r = 0.3225. The performance difference indicates that topic shift magnitude in
a shorter timespan is easier to predict than longer timespans.
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Table 3.2: Correlation of reformulation behavior with topic shift at the next time-
span. Each column shows the distribution of users (in percentage) who have different
correlation strengths between a reformulation type and topic shift, in an interval of 0.2.

Correlation Revisit Add Drop Sub New
Timespan = 3 days

[�1.00,�0.80] 1.6% 1.4% 2.4% 3.7% 0.9%
[�0.80,�0.60] 3.7% 2.9% 4.3% 8.1% 2.3%
[�0.60,�0.40] 6.9% 6.4% 7.7% 12.9% 4.5%
[�0.40,�0.20] 12.7% 11.5% 11.7% 16.9% 7.7%
[�0.20, 0.00] 16.5% 15.5% 16.1% 17.2% 11.4%
[ 0.00,+0.20] 17.2% 17.5% 17.6% 14.2% 15.7%
[+0.20,+0.40] 15.8% 16.1% 15.1% 11.8% 19.3%
[+0.40,+0.60] 13.1% 14.5% 12.9% 7.6% 18.9%
[+0.60,+0.80] 8.4% 9.5% 8.0% 4.9% 13.5%
[+0.80,+1.00] 4.1% 4.6% 4.2% 2.9% 6.0%

Timespan = 7 days

[�1.00,�0.80] 3.1% 2.4% 3.7% 5.9% 1.7%
[�0.80,�0.60] 5.3% 4.5% 6.1% 10.1% 3.4%
[�0.60,�0.40] 8.7% 7.4% 8.4% 13.1% 5.7%
[�0.40,�0.20] 11.7% 11.7% 11.2% 14.3% 8.4%
[�0.20, 0.00] 13.4% 13.9% 13.4% 14.4% 10.9%
[ 0.00,+0.20] 14.7% 14.4% 14.4% 12.7% 13.8%
[+0.20,+0.40] 13.7% 13.8% 14.2% 10.6% 16.4%
[+0.40,+0.60] 13.1% 14.2% 12.8% 8.6% 17.4%
[+0.60,+0.80] 9.9% 10.9% 9.3% 6.4% 13.7%
[+0.80,+1.00] 6.3% 6.9% 6.4% 4.0% 8.6%

Timespan = 14 days

[�1.00,�0.80] 4.8% 3.9% 5.5% 8.0% 3.0%
[�0.80,�0.60] 7.0% 6.4% 7.1% 11.6% 5.1%
[�0.60,�0.40] 8.6% 8.2% 8.9% 12.6% 7.3%
[�0.40,�0.20] 11.1% 10.7% 11.1% 12.2% 9.0%
[�0.20, 0.00] 11.6% 12.3% 10.9% 11.9% 10.6%
[ 0.00,+0.20] 12.7% 12.3% 11.4% 11.0% 12.1%
[+0.20,+0.40] 12.7% 12.5% 12.8% 10.6% 14.5%
[+0.40,+0.60] 12.0% 12.8% 12.6% 8.5% 14.7%
[+0.60,+0.80] 10.9% 12.2% 11.1% 7.5% 13.5%
[+0.80,+1.00] 8.6% 8.8% 8.6% 6.0% 10.2%

3.6 Conclusion

In this study we have examined users’ query reformulation behavior and their tendency
of topic shift in academic search through a large-scale log analysis. We have found
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Table 3.3: Query reformulation features for prediction of the magnitude of topic shift at
the next timespan.

Name Description
Reformulation proportions
Revisiting Percentage Percentage of revisiting reformulations
Adding Percentage Percentage of adding term reformulations
Dropping Percentage Percentage of dropping term reformulations
Substitution Percentage Percentage of substituion reformulations
New Query Percentage Percentage of new query reformulations

Reformulation occurrence numbers
Revisiting Number Number of revisiting reformulations
Adding Number Number of adding reformulations
Dropping Number Number of dropping term reformulations
Substitution Number Number of substituion reformulations
New Query Number Number of new query reformulations

Table 3.4: Linear regression results (correlation coefficient, mean absolute error, root
mean squared error) for predicting the magnitude of a topic shift in the next timespan
given query reformulation features in the current timespan.

3 days 7 days 14 days
Correlation Coefficient 0.4530 0.3906 0.3225
MAE 0.0697 0.0755 0.0805
RMSE 0.0931 0.0999 0.1057

that over time, academic searchers as a whole tend to conduct revisiting, as well as
submitting completely new queries. This pattern corresponds to the academic searcher’s
information needs: either seeking previous search results or new results on the same
search intents, or simply pursuing new search intents. We have identified two types of
topic shift patterns in users, namely the focusing type and the diversifying type.

Through a series of correlation studies, we have found that a user’s preference for
certain query reformulations does not correlate to their topic shift tendency. Never-
theless, users’s current reformulation patterns (adding terms, submitting new queries)
may help to predict the magnitude of topic change in the immediate next timespan. We
further used features from query reformulations for predicting the magnitude of the next
topic shift. The findings of the query reformulation behavior, topic shift type, and their
connections help to improve our understanding of the behavior of academic searchers
from a large user base. They may provide hints for personalized search, such as whether
to provide exploratory or focusing type of search results, and recommendations of
queries or papers for users.

In future work we intend to look at query reformulation patterns in the context of
different search tasks, e.g., a navigational task for a single document, or a learning task
for a certain research topic. And we will examine the utility of using query reformulation
features to improve retrieval performance and provide better recommendations in
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academic search.



4
Characterizing and Predicting Downloads in

Academic Search

In the previous chapters we have mainly studied user behavior based on their queries.
We have revealed the query failure phenomenon, proposed query suggestion methods to
remedy that, and examined the query reformulation and topic shift. In this chapter we
investigate a different but also popular behavior–downloads, a conversion behavior on
academic search, and answer RQ3.

4.1 Introduction
Conversions are critical to websites as they are directly related to revenue, and can
indicate the performance of the platform. Research into conversions has received
considerable attention in areas such as online shopping and hotel booking [see, e.g.,
68, 115, 128], where a conversion is a purchase or booking action. These studies reveal
the purchase and booking behavior characteristics of users and provide insights on
predicting conversions in those domains.

Academic search concerns the retrieval of information objects in the domain of
academic research (papers, journals, authors, etc). Research on conversions has received
little attention in the domain of academic search. Conversion in this setting refers to the
download action of a paper, which happens when the user finds relevant information
and wants to save it for later use. Similar to purchases, downloads of papers generate
revenue for the academic search platform, often through a subscription service or pay-
per-download. Therefore, it is valuable to study the download behavior of users and
understand users’ behavioral patterns. E.g., what actions do users perform that lead to a
download? Is there a temporal pattern in downloads? Are there behavioral differences
among users with different topical interests?

To start, we conduct an observational study to characterize user download behavior
in academic search. To the best of our knowledge, this is the first characterization of its
kind in the area of academic search. While some of the findings may coincide with the
personal experiences of readers of this chapter, many findings provide insights that can
only be found from a large user base.

This chapter was published as [136].
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Using the insights obtained in this manner, we try to generate predictions of users’
download behavior. We are motivated by the information overload problem in online
recommendations. Numerous studies have shown that information overload has a
negative impact on user reactions [7, 75, 131]. It has been observed in large-scale
experiments that showing an excessive number of paper recommendations may not
bring benefits to the click through rate, but instead bring harm [15]. In our setting of
predicting download behavior, one task is to predict how many downloads the user is
going to have next.1 An application scenario for this prediction task is when the system
sends out recommendations in the form of news letters, such as the recommender system
on Mendeley.2 If the system is able to predict the magnitude of the user information
need, it can better tailor the length of the list of recommendations, hence avoiding
information overload and leading to a better user experience. Moreover, time is an
important source of information for understanding user satisfaction [29]: finding the
right timing for a recommendation may also improve the performance of recommender
systems [50]. Correspondingly, we address the task of predicting the time gap until the
next download, aiming to make the system more preemptive and send recommendations
when users are in need.

In this chapter, we provide answers to the following research questions:
RQ3.1 What are the user actions that lead to a download in academic search?
RQ3.2 What are behavioral patterns and topical aspects of user download behavior

across sessions?
RQ3.3 How do we predict user download behavior?
Our main contributions are:

1. We introduce a new dataset for downloads in academic search and characterize
user interactions with academic search engines.

2. We study the users’ actions across sessions, revealing correlations among various
behavioral signals and explaining the topical aspects of user downloads.

3. We build a specialized model for download prediction that utilizes user ses-
sion history and that is based on user segmentation, which leads to significant
improvements over a state-of-the-art baseline.

4.2 Related work
Related work comes in several kinds: academic search, academic paper recommenda-
tion, and online shopping prediction.

4.2.1 Academic search
Academic search concerns the task of indexing and retrieval of entities (papers, journals,
. . . ) in the domain of academic research. Academic search services are commonly
provided by academic search engines, such as Google Scholar, Microsoft Academic

1Note that we do not consider the “zero download” scenario in our setting, which would be formulated as
a different problem: churn prediction. Our focus is on users who regularly use the academic search service.

2Mendeley (https://www.mendeley.com/) provides personalized paper recommendations through
news letters, based on users’ interactions with the system.

https://www.mendeley.com/
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Search [195], AMiner [206], and CiteSeerX [132]. Several studies have indicated that
academic search engines are an essential portal for obtaining research information [88,
164, 165]. Mitra and Awekar [152] study the search results of several academic search
engines and find that they have low overlap. Other research concerning user behavior
in academic search occurs mostly via surveys [170, 171] or small-scale log analyses
on high-level statistics (page views, access frequencies etc.) [107]. They are either
restricted to a small group of participants, or to users from a single discipline, which
renders the findings less generalizable. Recently, Xiong et al. [225] have proposed
to use entity embeddings to improve relevance ranking of papers in academic search,
which leads to better performance on a test set of 100 queries from their transaction log.

There are very few studies on academic search that are based on a large-scale
transaction log. In recent work, Li et al. [138] and Li and de Rijke [135] study the
phenomena of null queries and topic shifts in academic search, respectively, based on
large-scale log analyses. Khabsa et al. [108] study the distribution of academic search
queries on Microsoft Academic Search and build a classifier for different query types.
To the best of our knowledge, no large-scale study has been conducted on download
behavior in academic search.

4.2.2 Academic paper recommendation
Paper recommender systems provide users with relevant paper suggestions, preferably
personalized to their own interests. Gori and Pucci [74] use random walks on citation
graphs to make paper recommendations. Li et al. [141] propose to recommend papers
using matrix factorization combined with topic modeling. They find that topic represen-
tations for users can help distinguish users with different interests, and surface better
suggestions. Nishioka and Scherp [163] use social media streams to profile users, and
recommend papers based on the profiles. Sun et al. [203] study research networking
sites and leverage social network connections for paper recommendations. Beierle et al.
[15] demonstrate how recommendation overload affects click through rate. Through
3.4 million delivered recommendations, they find lower click-through rates for higher
numbers of recommendations; users can feel “overloaded” rather quickly.

4.2.3 Online shopping prediction
We introduce related work on online shoppers on e-commerce sites because online
purchases share important commonalities with academic downloads: (1) they both
represent a conversion after user interactions with the system; (2) both scenarios come
with a “budget.” Money is the budget factor in online shopping, while in academic
search it could be money (subscription service or pay-per-download) and time (assuming
that users are aware of the finite amount of time they have to read the chapters). Lee et al.
[128] examine the purchase behavior and trajectory of users, and use behavioral features
for purchase predictions of items. Kooti et al. [115] extract user purchase histories from
emails to analyze their purchase behavior. They find that previous purchase history
information helps to predict time and price of the next purchase. Kooti et al. [116] study
online shopping behavior in app stores. They discover that 1% of the users account for
59% of the total spending in app purchases, and that they behave very differently from



54 Characterizing and Predicting Downloads in Academic Search

a random user in shopping. For these 1% users, Kooti et al. [116] propose a supervised
model to generate shopping predictions. Yeo et al. [227] study purchase prediction for
retargeting, by using purchase features extracted from users’ browsing history.

In summary, this chapter differs from previous work in academic search because it
studies download behavior as opposed to other user behavior. Compared to other high-
level log analyses, this chapter provides insights into user actions within sessions and
across sessions. It is also based on a large transaction log of a popular academic search
engine rather than small-scale user studies or surveys, hence bringing findings that
are more generalizable. This work is directly related to paper recommender systems.
Whatever the implementations of a paper recommender system may be, they all need to
consider information overload and recommendation timing. Therefore, they can benefit
both from our characterization of download behavior, and predictions of the download
number and time gap.

4.3 User download patterns
In this section we present observations of user download actions in academic search.
The definition of a download here is the act of requesting a PDF file for a paper.3 We
study search sessions that include at least one download action. The search sessions are
characterized by entering a query as the first interaction, and they end with a cutoff time
of 30 minutes inactivity that is commonly used in web session analyses [38, 200].

We first introduce the dataset and the various actions that users perform within a
session. We analyze the action statistics as well as the action trajectories that lead to a
download action. Then we uncover download patterns across sessions.

4.3.1 Dataset and user action definitions

Dataset

To study users’ download behavior, we use a transaction log provided by ScienceDirect,4
which offers academic search services and primarily covers the domains of health
science, life science, physical science and social science. Collected between September
28, 2014 and March 5, 2015, the log contains more than 39 million queries via institution-
authorized access as well as personal access. The former access type refers to users in a
certain IP range (e.g., from a research institution), who are referred to as IP-users. The
latter refers to users who log in or access the search engine from outside the institution,
i.e., so-called non-IP users. Two thirds of the query traffic comes from IP-users.

For the purpose of studying and predicting user downloads, we filter the logs based
on two rules: (1) users are uniquely identifiable, so that we can distinguish them
from each other, and (2) users are active in terms of issuing queries and requesting
downloads, in order to guarantee enough observations for our study. IP-users from the
same institution may end up having the same user ID or session ID. Therefore, we look

3The dataset used in our study also includes download actions of less importance, such as downloading
references, that we include in our study without focusing on.

4http://www.sciencedirect.com/

http://www.sciencedirect.com/
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at non-IP users only to ensure that each user ID maps to a unique user. The majority of
these non-IP users have access via subscription, and the rest through pay-per-download.
We then select active users that have a minimum of 30 queries in a timespan of 30
days, and a total of at least 20 download sessions in the period covered by the log. To
prevent the inclusion of bots/crawlers, we also remove overly frequent users that have
more than 1,000 queries recorded in the log or with more than 100 clicks/downloads
on average per day, which account for fewer than 0.1% of the users. We end up with
1,089 users and 30,988 sessions that include at least one download action, referred to
as download sessions. There are a total of 206,830 download actions, i.e., an average
of 190 downloads per user. The above data selection process provides us with enough
observations per user to study their download behavior.

User actions

After a user issues a query, a list of papers is shown on the search engine result page
(SERP). Then the user can take several subsequent actions: (1) click on a paper title
for detailed information, which opens up a new window, (2) directly click to download
a paper by requesting a PDF file, or (3) click for other information such as a paper
abstract. We summarize the actions of interest in Table 4.1.

Table 4.1: Possible user actions.
Action Explanation

1. Query user issues a query
2. Download PDF user requests a PDF version of a paper
3. Change query

source
user changes the source of a previous query, i.e., se-
lecting different sources or subjects for the query.

4. HTML click user clicks on a paper on the SERP (search engine
result page) for detailed information, which opens a
new window

5. Abrf click similar to “HTML click” except that the clicked result
does not contain full text

6. Abstract click user click to see the abstract of a paper on the SERP
7. Reference

download
user downloads the reference of a result

“Abrf click” (5) is an action similar to “HTML click” (4) that leads to a paper page
without full text but with a scanned image of the chapter content. “HTML click” (4)
and “Abrf click” (5) are triggered when users click on a paper’s title on the SERP. Users
will notice the difference after the click but not beforehand. “Change query source” (3)
should not be confused with query reformulation which refers to typing a new query.

While academic search engines have different user interfaces, most of them provide
similar high-level functionalities as the ones we list in Table 4.1: the user actions
available on ScienceDirect resemble competing services. Therefore, despite some small
differences between functionalities of popular academic search engines, we believe that
the insights learned through this study have generalizable implications for academic
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search engines as a whole.

4.3.2 Download behavior within a session

What actions do users like to perform in a session? We find that the most frequent user

Table 4.2: Statistics of user actions in a session.
Mean Median

1. Query 2.82 2
2. Download PDF 6.45 3
3. Change query source 0.46 0
4. HTML click 1.49 0
5. Abrf click 0.30 0
6. Abstract click 0.52 0
7. Reference download 0.08 0

Query dwell time (s) 567 323
Click dwell time (s) 734 397
Session duration (s) 1,336 754

action is “download,” followed by “query,” shown in Table 4.2. It should be noted that
users tend to have multiple downloads within a single session, with the median number
being 3 per session. This can be explained by the richness of informational queries in
academic search [138], which users issue to search for relevant information around a
certain topic. Interestingly, clicks have lower occurrences than queries, and are often
absent in sessions. This suggests that clicking results to view detailed information may
not be necessary for users to make a download decision, while partial information (title,
authors) already provides enough cues of relevance. For sessions that contain a click,
users tend to spend relatively much time inspecting detailed information (e.g., glancing
over the full text), with the median click dwell time being over 6 minutes.

Table 4.3 lists the frequent action trajectories toward a download in a session. The
most frequent trajectory is a single query (1) leading to a download (2), making up
30.3% of all trajectories. Ranking second is a query (1) and a query reformulation
(1) leading to a download (2). The trajectories involving clicks are far less frequent.
These observations indicate that queries are acting as a more common signal toward
downloads than clicks.

Below, we give an example of a download session sampled from the log to illustrate
the process:

28Nov2014:16:22:13 Query (1) dynamic friendship network
28Nov2014:16:23:40 Query (1) dynamic friendship network model
28Nov2014:16:24:34 Abrf click (5) shorturl=/scie. . . pii/0378873394002467
28Nov2014:16:25:47 Download PDF (2) shorturl=/scie. . . pii/0378873394002467/pdf

In this session, the user starts with the query “dynamic friendship network” and proceeds
with the query reformulation “dynamic friendship network model.” Then, the user clicks
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Table 4.3: Top 10 most frequent action trajectories toward the first download in a session.
Actions are numbered as in Table 4.1: 1. Query; 2. Download PDF; 3. Change query
source; 4. HTML click; 5. Abrf click; 6. Abstract click; 7. Reference download.

Trajectory Frequency
1 ! 2 30.3%
1 ! 1 ! 2 8.7%
1 ! 4 ! 2 4.4%
1 ! 1 ! 1 ! 2 3.7%
1 ! 3 ! 2 2.1%
1 ! 1 ! 1 ! 1 ! 2 1.8%
1 ! 1 ! 4 ! 2 1.3%
1 ! 5 ! 2 1.3%
1 ! 1 ! 1 ! 1 ! 1 ! 2 0.9%
1 ! 4 ! 4 ! 2 0.9%

on a result by performing an “Abrf click,” and after examining the result for a while
chooses to download the PDF file.

4.3.3 Download behavior across sessions
Next, we go beyond individual patterns and look for temporal patterns and correlations
across sessions.

Temporal patterns

Looking at download numbers on different days in a week, we observe a steady trend
during weekdays, while the number declines in the weekends; see Figure 4.1. This trend
is similar to the e-commerce setting where more purchases happen during weekdays
than weekends [115].

Figure 4.1: Download distribution over the week.

However, we find that academic searchers take longer to perform the next conversion
action than online shoppers. This is evident from the time gap between download
sessions. Figure 4.2 shows the distribution of the averaged time gap5 for each user. It

5We average the time gap for each user to avoid the bias toward active users that have many sessions.
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has a median of 172,915 seconds and a mean of 192,532 seconds (2.00 and 2.23 days
respectively), while in online purchases the median time gap is 1 day [115].

Figure 4.2: Distribution of time gap between consecutive download sessions averaged
per user.

Correlations between sessions

We are interested to find out connections among sessions, that is, how one session
impacts another. We aim to answer questions such as: if a user has performed many
actions (e.g., downloads) in the current session, will the activity intensity sustain in the
next session? And will the next download happen in a shorter time gap or a longer one?

We examine two types of correlation: (1) the correlation between the current session
and time until the next download session; and (2) the correlation between the current
session and the number of downloads in the next download session. We consider several
factors in the current session, including user action statistics (Table 4.2) and query
statistics (average word/character length of queries). Table 4.4 gives a description of the
factors. The correlations are shown in Figure 4.3. In Figure 4.3, factors in the current

Figure 4.3: Correlations between statistics of the current download session (horizontal)
and of the next download session (vertical).

session are all negatively correlated with the time until the next download [125]. Out
of all the factors, the number of queries is the most negatively correlated (p < 0.0001,
two-tailed t-test). This suggests that the more queries the user submitted in the current
session, the sooner her next download session might occur.
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Table 4.4: Description of factors in Figure 4.3.
Name Description
numQuery Number of queries
numClick Number of all clicks
numDownload Number of PDF downloads
numChangeSrc Number of change query source actions
numAbstClick Number of abstract clicks
numAbrfClick Number of Abrf clicks
numHtmlClick Number of Html clicks
numAbstDownload Number of abstract downloads
dwellTimeQ Averaged dwell time on queries
dwellTimeC Averaged dwell time on clicks
wLength Average query length in number of words
cLength Average query length in number of chars
wholeTime Session duration
timeTillNext Time gap until the next download session
nextDownloadNum Number of PDF downloads in the next download ses-

sion

Conversely, the number of downloads in the next session are positively correlated
with most of the current session factors. The prominent factor is the current session’s
number of downloads, which has a medium positive correlation with that of the next
session (p < 0.0001, two-tailed t-test). This indicates a certain degree of consistency
between the number of downloads across sessions.

The above correlations are calculated from sessions of all users. Therefore they
represent the overall trend from all observations. Next, we examine correlations at the
individual level. For the two correlations that we calculate, i.e., time and the number of
downloads, we examine the most negative factor “number of queries” for time until next
download and the most positive factor “number of downloads” for the next number of
downloads, respectively. We examine each user’s sessions and obtain the two correlation
coefficients. We show the distributions of the correlation values in Figure 4.4. Both
correlation values are nearly normally distributed but the means differ. More than half
of the users show a negative correlation between time and query in Figure 4.4a, which
is in line with the overall trend in Figure 4.3. However, the distribution in Figure 4.4b
indicates that nearly half of the users tend to be consistent in the number of downloads
between consecutive sessions, and half do not. Bias explains why the overall correlation
is positive in Figure 4.3 while the individual correlation distribution disagrees: users
with positive correlations have more sessions in the log, thus affecting the overall
correlation.

4.3.4 How topics impact downloads

In this section we discover the topical characteristics of the user behavior. Compared to
clicks on a result page, we believe that downloads are less noisy, and are stronger signals
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(a) Correlations between time until
next download and the number of
queries in the current session.

(b) Correlations between the number
of downloads in the next session and
that in the current session.

Figure 4.4: Distribution of correlation coefficients for individual users.

Table 4.5: Statistics of sessions grouped by users with different topical interests. PS:
physical sciences, HS: health sciences, LS: life sciences, SS: social sciences.

Mean Median
PS HS LS SS PS HS LS SS

Query 2.82 2.68 2.95 2.94 2 2 2 2
Click 2.08 2.27 2.06 3.09 0 0 0 1
Download 8.04 5.65 6.31 4.86 3 3 3 2
Duration (s) 1,330 1,282 1,384 1,408 745 718 806 819
Time between download 176,655 180,134 166,943 178,190 60,009 64,984 53,764 56,102
sessions (s)

to reflect users’ topic interests. Therefore, we represent the topics using downloads. To
identify the topics of user downloads, we resort to the Scopus classification of subject
areas.6 Specifically, we look at the journal where a paper is published and use the
subject area of the journal to represent the topic. The subject information of journals is
manually annotated and publicly available through API access.7 The subjects fall into 4
broad topics (health sciences, life sciences, physical sciences and social sciences) and
a total of 333 specific categories. We use the subject information to represent topics
because it is manually annotated and easily interpretable, and is more accurate than
topics inferred by topic models such as LDA [22].

Are certain topics more popular than others? Figure 4.5 shows the distribution of
the topic of each download record, and the distribution of each user’s most popular topic
(determined by most frequent download type). While both distributions are heavily
imbalanced, physical sciences is the most popular subject and social sciences is the
least. This finding is in line with the focus of ScienceDirect on natural science journals.
Below, we look at users with different topical interests and examine their behavior and
topical differences.

6https://www.elsevier.com/solutions/scopus/content
7https://dev.elsevier.com/sc_apis.html

https://www.elsevier.com/solutions/scopus/content
https://dev.elsevier.com/sc_apis.html
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Figure 4.5: Topic distribution of each download and each user’s favorite topic re-
spectively. PS: physical sciences, HS: health sciences, LS: life sciences, SS: social
sciences.

Behavioral differences

We hypothesize that distinct topical interests may come with different download patterns
and examine the behavioral differences among users with different topical interests. To
examine behavior, signals such as clicks, downloads, session duration and time until the
next download session are investigated, as shown in Table 4.5.

Users interested in the social sciences stand out from the others: they do not perform
as many downloads compared to people interested in other subjects; however, they
have more clicks and spend more time in sessions. As to the time between download
sessions, the health sciences have the longest time gap, while the life sciences have the
shortest. And there is a 21% difference between the median values, which is 3 hours. In
summary, download behavior indeed varies among user groups interested in different
subjects.

Topical profiles of users

First, we examine the interdisciplinary nature of users: how many unique topics out of
the 4 general topics do users cover through their downloads? We show the distribution
in Figure 4.6.

Figure 4.6: Distribution of the number of topics per user.

Most users cover more than one topic in their downloads. This is not surprising, as
recent findings [172] suggest that “science is indeed becoming more interdisciplinary.”
Therefore, users may have information needs for multiple topics when conducting
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increasingly interdisciplinary research. Besides, some of the users might be research
policy designers who need to study several topics.

Furthermore, we try to find out the differences between users that are interested
in each of the 4 topics. We first look at the topical diversity of users, i.e., how many
unique subtopics users cover through their downloads. Each subtopic corresponds to a
specific subject area. Note that users may cover the subtopics of multiple domains. We
find that users in the life sciences domain explore the largest number of subtopics with
a mean of 24 and a median of 22, while users in the health sciences and in the social
sciences explore the fewest, with mean and median values being roughly on par with
each other, shown in Table 4.6. This shows that users’s topical diversity differs across
their disciplines.

Table 4.6: Statistics of unique subtopics covered per user.
Category Min Max Mean Median
Physical sciences users 2 208 24 19
Health sciences users 2 76 21 17
Life sciences users 2 101 24 22
Social sciences users 1 83 20 18

Next, we consider topical coherency in downloads. Consider two users who cover
the same number of subtopics: one may have downloaded only a few papers but
switches topic whenever possible, while the other may have downloaded many but
does not switch subtopics as often. Since they cover the same number of subtopics, we
would consider the second user to be topically more coherent due to a smaller number
of topical switches. We design a topic coherency metric that measures the likelihood of
staying in the same subtopic(s) in downloads as shown below. The higher the score, the
more likely the user stays in the subtopic(s).

Topical Coherency = 1�#unique subtopics/#downloads

Here, #unique subtopics refers to the unique number of subtopics under one of the 4
general topics. Topic coherency is computed per individual user.

Table 4.7 indicates that users in the physical sciences have the highest topical
coherency with a mean score of 0.832 and a median score of 0.846. This might
seem surprising because these users exhibit a high level of diversity of downloads (in
Table 4.6). However, they also commit the largest number of downloads (in Table 4.5),
and they do not switch topics as often as others, and hence they obtain the highest
coherency score. On the other hand, users in the life sciences have the lowest topical
coherency scores while also being the most diverse in download subtopics (Table 4.6).

4.3.5 Upshot
We have introduced user actions during a download session and investigated their
frequencies, trajectories, cross-session correlations, and topical impacts on paper down-
loads. We have found that certain signals are indicative of downloads, and users with
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Table 4.7: Topical coherency per user.
Category Mean Median
Physical sciences users 0.832 0.846
Health sciences users 0.826 0.833
Life sciences users 0.807 0.815
Social sciences users 0.817 0.833

different topical interests tend to behave differently. Next, we use those observations,
especially behavioral and topical features, for predicting paper downloads.

4.4 Download prediction models
In this section, we describe our models for paper download prediction. As a baseline, we
adopt a state-of-the-art model for predicting online shoppers’ behavior [115], since this
task bears resemblance to our download prediction task (as explained in Section 4.2).

Then we propose an LSTM-based model to effectively leverage users’ historical
interactions, as well as a specialized model based on user segmentation.

We consider two prediction tasks: given a user’s previous download sessions,
(1) predict the time until the next download session, and (2) predict the number of
downloads in the next download session. More formally, for each user u, the training
sessions ordered by occurrence are denoted as ud = {s1, s2, . . . , sn�2}, where n is the
total number of sessions the user has. In testing, for each user u and given a session
sn�1 as input, our models need to predict the number of downloads in sn and the time
gap between the end of sn�1 and the start of sn.

4.4.1 Baseline model
The baseline model [115] considers shopping prediction as a multi-class classification
task. It uses a Bayesian network classifier and a set of features derived from the online
shopping setting. The features used in [115] include demographics of online shoppers,
purchase price history, purchase time history etc. Although it is not possible to directly
apply those features in the academic search setting, in some cases it is possible to
identify natural counterparts. Specifically, purchase time features can be mapped to
download time features, and purchase price features can be mapped to features of the
number of downloads. Other features such as queries and other actions (download
references etc.) are exclusive to our setting. The baseline Bayesian network model
does not allow arbitrary number of inputs,8 while our LSTM-based models do and are
able to take input from the full session history. To make the comparison fairer, we also
include aggregated features from the full session history for our baseline. In the end,
the following features are used for the baseline Bayesian network predictive model:
1. Current session action features: the number of occurrences of queries, clicks, down-

loads, change query source, abstract click, HTML click, Abrf click, abstract down-

8Users may have different numbers of sessions.
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loads.
2. Current session time features: dwell time on queries, dwell time on clicks, session

duration.
3. Query features: average word and character length of queries.
4. Historical session features: time gap from the last download session, average/medi-

an/standard deviation of time gap between consecutive download sessions; number
of downloads in the last download session, average/median/standard deviation of
the number of downloads in historical download sessions.

Formally, each session si is represented as a feature vector and a label: si = hfi, lii,
where si is the i-th session of the user, fi is the feature vector for the session, and label
li corresponds to the label for prediction, i.e., the time gap until the next session si+1 or
the number of downloads in si+1. In testing, the model is given fn�1 to predict ln�1.

4.4.2 LSTM model
The second model we consider is an LSTM (long short-term memory), a recurrent neural
network model proposed by Hochreiter and Schmidhuber [89]. Through its memory
cells and gate architecture (input, forget and output gates), an LSTM is able to alleviate
the vanishing and exploding gradients problem that exists in simple recurrent neural
networks. LSTMs are known to perform well for tasks that deal with long sequences.
Motivated by the correlations of behavioral statistics across sessions (explained in
Section 4.3), we use an LSTM to model the chapter download prediction problem in
order to utilize the full session history for prediction. Specifically, sessions of users are
modeled as sequences, each consisting of a feature vector and a label (either time or
number of downloads). The LSTM model takes the sessions of each user as input and
learns to predict the label.

Formally, the training and testing cases are defined similar to the baseline model’s
setting, except for test sessions. In testing, the model is given {s1, s2, . . . , sn�2, fn�1},
where fn�1 is the feature vector for session sn�1, as input in order to predict label ln�1.
In training, we optimize for multi-class cross entropy. We choose Stochastic Gradient
Descent with Nesterov momentum as the learning algorithm, and use mini-batches. We
initialize the network parameters via Xavier initialization [70], and hyper-parameters
such as learning rate are tuned via grid search.

4.4.3 Specialized model based on user segmentation
In mobile shopping prediction, user segmentation has been considered [116] as some
users may behave differently than others, and specialized models are built for them.
In Figure 4.4 we noticed that individual users may have different download patterns,
reflected by the varying correlations of download behavior across sessions. E.g., after
a session with many downloads, some users tend to have fewer downloads in the next
session, but some may not. In our setting, the LSTM model should in theory learn to
distinguish between these different patterns of users. However, it may not work as well
on time series data of unequal lengths. E.g., it is known that in terms of classification
tasks for unequal-length time series, DTW (dynamic time warping) [19] outperforms
LSTMs on some occasions [66, 130] due to its ability to consider warping in time series.
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To improve our prediction performance, we segment users and build specialized models
for them. Specifically, we segment our users into clusters by behavioral similarity
measured via DTW, and then train specialized LSTM models on the user clusters. In
this way we are giving special treatments to users that are similar, who share behavioral
patterns.

We use DTW because it is able to effectively handle time series of different lengths,
which allows for stretching or compressing sequences while comparing similarity.
Specifically, DTW is set to find the minimum warping distance between two series P of
length n and Q of length m:

P = p1, p2, . . . , pn

Q = q1, q2, . . . , qm.

An n-by-m matrix is constructed where each element (i, j) corresponds to the squared
distance between pi and qj . The goal is to find a path W through the matrix that
minimizes the accumulated distances

DTW(P,Q) = min

(
KX

i=1

wk

)
,

where wk is the k-th element on the warping path W . Then, the warping path can be
solved recursively:

�(i, j) = d(pi, qj) + min{�(i� 1, j � 1), �(i� 1, j), �(i, j � 1)},

where d(pi, qj) is the distance between pi and qj , and �(i, j) is the cumulative distance.
To measure distances between users, we model each user’s download behavior as

a time series: the number of downloads and time between download sessions. Notice
that in our setting users may have different numbers of sessions. We use 1-nearest
neighbor DTW to obtain the distance between any pair of users, which ensures good
warping accuracy. Then we apply average linkage hierarchical clustering on users based
on the distances. The LSTMs are subsequently trained on clusters that represent users
with similar download behavior. Each cluster contains a minimum of 10% of the total
number of users.

4.5 Experiments and results
In this section we present the experiments and results of download prediction on two
tasks: (1) predicting the time until the next paper download session and (2) predicting
the number of paper downloads in the next download session.

4.5.1 Experimental setup
Similar to [115], we cast the download prediction task as a multi-class classification task
instead of a regression problem, because it is difficult to predict the exact time. For time
prediction we divide the time gaps into 5 classes. The time gaps and their distribution in
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the dataset are described as follows: very short (within 2 hours, 20.6%), short (2 hours
to 1 day, 30.4%), median (1 day to 3 days, 18.4%), long (3 days to 7 days, 14.2%) and
very long (over 7 days, 16.4%). For predicting the number of downloads, we segment
the number of downloads into three classes: 1 download (30.0% of all sessions), 2–4
downloads (36.8%), and � 5 downloads (33.2%).

We use the 1,089 users and 30,988 sessions described in Section 4.3.1. We segment it
into training and testing data following the description in the prediction model section.9
We test the statistical significance of observed differences in predictions using a paired
Wilcoxon signed-rank test. We denote significant differences between the baseline and
other methods using ⇤ for ↵ = .05 and ⇤⇤ for significance at ↵ = .01. We denote
differences between the LSTM with user segmentation and all other methods using +

for ↵ = .05 and ++ for significance at ↵ = .01.

4.5.2 Experimental results

Baseline

For predicting the time until the next download session, the baseline model yields a
prediction accuracy of 0.347; see Table 4.8, first row. This score is comparable to that
achieved by the baseline model in the online shopping time prediction task (5 class
classification, 0.311 accuracy, [115]).

Table 4.8: Predicting the time until the next paper download with the baseline and
LSTMs.

Model Accuracy
Baseline 0.347
LSTM current session 0.354⇤⇤
LSTM current session + 1 previous session 0.354⇤⇤
LSTM current session + 2 previous sessions 0.354⇤⇤
LSTM full session 0.357⇤⇤

LSTM full session + user segmentation 0.371⇤⇤++

For predicting the number of paper downloads in the next session, the baseline achieves
an accuracy of 0.441; see Table 4.9, first row.

Time series based models

Next, we present the results of the LSTM models. To determine how historical session
information impacts prediction, we control the number of session inputs during testing.
We hypothesize that in testing, feeding the network with the full session history will
lead to better predictions than feeding only partial session information.

The results of predicting the time until the next download are shown in Table 4.8,
rows 2–5. All LSTM models perform significantly better than the baseline, even when

9Due to the dependency in the time series, we split the data by time so that the models learn from historical
information and predict the future download.
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Table 4.9: Predicting the number of paper downloads in the next download session with
the baseline and LSTMs.

Model Accuracy
Baseline 0.441
LSTM current session 0.453
LSTM current session + 1 previous session 0.462⇤
LSTM current session + 2 previous sessions 0.463⇤
LSTM full session 0.464⇤⇤

LSTM full session + user segmentation 0.481⇤⇤++

only using information from the current session as test input. But the performance
gap between using different numbers of historical session inputs in testing is small.
One explanation is that the LSTM model is already capable of “memorizing” the
dependencies across sessions in training. Therefore, it can obtain a good prediction
performance even without using the full session history in testing. Compared to the
baseline, the LSTM model with full session history gains improvements in predicting
very short and short time gaps (time gaps defined in Section 4.5.1), with an increase in
accuracy of 18.2% and 20% for the 2 classes respectively, while performing worse in
other classes.

The results of predicting the number of downloads (Table 4.9, rows 2–5) show
a similar pattern as those for the time prediction tasks. All LSTM models perform
better than the baseline, with an increase coming from predicting single download
sessions (+23.8%) and 2–4 downloads sessions (+2.6%). However, here historical
session information leads to significant improvements over the LSTM models without
them. Using full session history significantly improves the performance over models
using only part of the session history.

Specialized model based on user segmentation

Both for predicting the time until the next download session (Table 4.8, row 6) and
predicting the number of downloads in the next download sessions (Table 4.9, row 6),
the LSTM model with user segmentation performs significantly better than the baseline
and other LSTM models. This should not come as a surprise as we notice the differences
of user behavior separated by clusters, for instance, the median of user download time
gaps varies significantly across clusters, ranging from 53,353 to 67,147 seconds. It
would be better for the prediction models to train on users that are similar in behavior,
rather than on a mixture of different users. This explains the performance increase by
applying user segmentation.

Additional topical feature

In Section 4.3.4 we have seen that there are behavioral differences among users with
different topical interests. We hypothesize that using the topical interests of users
would help download prediction. Next, we examine whether topical features improve
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performance on our download prediction tasks. We augment the models considered so
far with an additional categorical feature indicating which of the 4 general topics the
user is most interested in. The results for predicting the time until the next download
session are shown in Table 4.10.

Table 4.10: Predicting time until the next download with an additional topical feature.
We denote significant differences after using the topic features with ⇤⇤ for significance
at ↵ = .01.

Model Accuracy
LSTM full session 0.357
LSTM full session + topic feature 0.360⇤⇤

LSTM full session + user segmentation 0.371
LSTM full session + user segmentation + topic feature 0.376⇤⇤

The addition of a topical feature leads to significant improvements, both with and
without user segmentation. A similar conclusion can be drawn when predicting the
number of downloads in the next download session, as shown in Table 4.11.

Table 4.11: Predicting the number of downloads in the next download session with
additional topical feature. We denote significant differences after using the topic features
with ⇤⇤ for significance at ↵ = .01.

Model Accuracy
LSTM full session 0.464
LSTM full session + topic feature 0.466⇤⇤

LSTM full session + user segmentation 0.481
LSTM full session + user segmentation + topic feature 0.485⇤⇤

As we discussed in Section 4.3.4, the topical feature in an academic search setting
can be a useful indicator of behavioral patterns. Here, the performance boosts show its
utility for the two download prediction tasks that we consider. In both tasks, three addi-
tions gave us cumulative boosts in performance: (1) switching to LSTMs; (2) employing
user segmentation; (3) adding a topical feature, where the most significant improvement
comes from the LSTM model with user segmentation.

4.6 Conclusion
We have studied the download behavior of users of an academic search engine, a
type of conversion behavior that has not yet been well examined in the literature. We
first conducted a thorough observational study. We introduced a new dataset for user
download behavior, defined user actions during a session, and showed action trajectories
toward a download. Then we examined cross session download behavior, which was
our main focus. We identified temporal patterns in users’ download behavior. We also
discovered multiple correlations of user behavior across sessions. Certain behavioral
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factors such as the number of downloads are correlated across sessions. The time gap
until the next download session is negatively correlated with the number of queries.

We also examined topical aspects of downloads and their impacts on download be-
havior. We used annotated topical information of journals to classify the topics of users’
downloads. We have found a bias in the distribution of topics of downloads, where
the natural sciences (physical, life and health sciences) outnumber the social sciences.
Furthermore, we identified behavioral variances in terms of download diversity and
coherence between users who are interested in different topics. Not only do users down-
load papers across subtopics, but they also download across disciplines, which confirms
recent findings that academic research is becoming increasingly interdisciplinary.

Building on the insights gained from our observations, we moved on to two down-
load prediction tasks: predicting the time until the next paper download session and
predicting the number of downloads in the next download session. These two tasks
help alleviate the information overload problem in academic recommender systems, as
well as making the predictions pre-emptive in terms of their timing. We proposed a
model based on LSTMs to utilize users’ full session history for prediction, which gave
rise to significant improvements over a state-of-the-art baseline method developed for a
similar problem. Motivated by the observed differences in individual behavioral pattern,
and the ability of dynamic time warping (DTW) to measure the similarity between
time series, we built specialized models based on user segmentation with DTW. The
specialized models showed significant improvements, indicating that user segmentation
with DTW is beneficial. Last but not least, we established the usefulness of topic
features in download prediction.

As to future work, we would like to pursue three main themes. First, our predictions
of the number of paper downloads and time gap can help paper recommender systems
handle information overload and recommendation timing; we plan to include such
predictions as signals in an online academic paper recommender system. Second, so far
we have considered only a “general” topical interests rather than fine grained subtopics
in predicting downloads. This is due to sparsity of paper downloads per subtopic in our
dataset, e.g., we have no download records for some subtopics. The subtopics, or certain
types of journals may have their unique cycle of publishing papers. They can potentially
impact user download patterns. We hope to collect data that will allow us to fully
explore the impact of subtopics on download behavior. Third, while we have closely
studied users’ interaction behavior, we have not captured it with click models [44]:
downloads can be seen as a special type of click; can we model different actions on
an academic search interface to understand the different types of bias or to understand
what makes the rich result presentation per item that is customary in academic search
(consisting of title, authors, abstract snippet and possibly more) effective?
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Personalised Ranking of Paper

Recommendations Using Paper Content
and User Behavior

In the previous chapters, we have been focusing on user behavior on the academic
search engine, including queries, topic shift and downloads. In this chapter, we extend
our focus beyond the search engine. We examine a different scenario, that is to make
academic paper recommendations through email newsletters. Paper recommenders can
make it easier for users to access information without the need of an explicit query that
is required on the search engine. However, making good recommendations is not a
trivial task, especially for new users who have not interacted with the recommender
system. We come up with a model that utilizes content and behavior for reranking paper
recommendations generated by a production system, and answer RQ4.

5.1 Introduction
Along with the digitization of academic resources and the increasing popularity of
academic information platforms, access to academic papers online has become ubiq-
uitous for many people. Various online academic service providers have given users
access to papers through their search engines, such as Effective Communication, Better
Science [62], Aminer [206] and ScienceDirect [186], where users can enter queries to
seek relevant papers in their database. In this scenario, users need to have an idea of
what they are looking for, and the information needs can be formalized as queries. The
system takes a query as input, and returns a ranking of relevant papers for the users to
examine and interact with.

While such academic search engines can often fulfill user requests by catering to
specific information needs represented as queries, there are cases when users’ informa-
tion needs are not explicitly specified. For instance, users may want to learn about new
developments in their domain by looking at emerging papers that are relevant. In this
case the user may not have an idea of what queries to enter on the search engine. This

This chapter was published as [139].
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is a situation where paper recommender systems can step in and recommend relevant
papers without the need of any user query.

A paper recommender system has a role that is complementary to the search en-
gine. The possible recommendation scenarios fall into three categories based on the
recommendation timing:

1. displaying paper recommendations before users start a new search session, based
on their paper library or previously accessed papers [see, e.g., Google Scholar,
62];

2. during a search session, displaying related recommendations beside the content
that the user is currently browsing [see, e.g., ScienceDirect, 186]; and

3. after a search session, sending emails of paper recommendations in the form of a
newsletter ScienceDirect [see, e.g., ScienceDirect, 186].

The first and third scenario fill the gap between user search sessions, while the second
scenario is related to within-session recommendations.

In this study we focus on the third scenario. We look at the ScienceDirect paper
recommender which sends a weekly email of paper recommendations to users. First, we
provide a recommendation example from the system in Figure 5.1 to show how it works.1
The recommender of ScienceDirect generates a ranked list of 5 paper recommendations
based on the user’s browsed papers. The email newsletter displays the title, venue
(journal), authors, and publication date of each recommended paper. On clicking a
recommendation, the user is linked to the paper on ScienceDirect. The system then
logs which recommendation(s) the user clicks. As a short summary, this system aims
to recommend interesting papers to users based on their browsing history. A good
recommendation list will place more relevant papers higher in the list.

Since the ScienceDirect paper recommender was released, an increasing number of
users have signed up. It is especially challenging to make recommendations for these
new users due to the lack of historical interactions with the recommender system. In
this chapter, we address the challenge and try to come up with better recommendations
for these new users. Specifically, we study the task of reranking the paper candidates
generated by the current production system. Ranking is a very common module of
the workflow in production recommender systems, which usually include at least a
candidate-generation phase and a ranking module [46, 52, 182]. The output of the
system is generated by a multi-step process. We address this reranking task so that our
model can easily be integrated into paper recommender systems (e.g., the ScienceDirect
recommender). A direct application is to use our model to rerank the recommended
papers generated by the ScienceDirect recommender system.

Over 14 million papers are indexed on ScienceDirect [187]. Picking the few papers
that may appeal to the user is not a trivial task. Collaborative filtering techniques are
often used in recommender systems to generate a candidate pool of papers based on
user-paper interactions. Even though there was initially no data on user interaction
with the recommender system, there was still a wealth of data on user interactions with
papers on ScienceDirect. Apart from this behavior aspect, paper metadata may assist the
recommendation task by providing similarity measures that are based on paper contents,

1https://www.elsevier.com/connect/suffering-from-information-overload-personalized-
recommendations-can-help
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e.g., to recommend semantically similar papers, or papers that are authored by the same
or similar authors.

In this chapter, we propose a hybrid model that combines content and behavior to
rerank the paper recommendation candidates generated by the ScienceDirect recom-
mender. First, we propose several content-based measures that are derived from various
paper aspects, such as word space similarity, and author similarity from an embedding
space. Next, we use joint matrix factorization to learn a mapping from a user’s browsed
articles on the search engine to a user’s clicks on the recommendations, to alleviate
the sparsity of the recommendation click data. We use a pairwise learning model to
rerank the paper recommendation candidates that eventually leads to better results in
the offline evaluations based on real email click data.

The chapter is structured as follows. We describe the models in Section 5.2, the
experimental setup in Section 5.3, and the results and analysis in Section 5.4. We
present related work in Section 5.5 and conclude in Section 5.6.

Figure 5.1: An excerpt from a sample recommendation email sent to a ScienceDirect
user based on his recent activity. The email contains 5 papers linked to ScienceDirect.

5.2 Models

In this section we introduce the models for the paper recommendation task. First, we
introduce the production baseline, because it provides the candidates for our proposed
reranking model. Then, we introduce the content and behavior components that measure
paper similarities based on content and behavior respectively. Based on these, we de-
scribe our hybrid reranking model (Hybrid Reranking Model (HRM)) that incorporates
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the behavior and content components and reranks the candidates. Here “hybrid” refers
to using both content and behavior.

5.2.1 Production baseline
The production system takes the paper browsing history of a user as input, and produces
a ranked list of 5 paper recommendations. While we are not able to elaborate on the
exact details of the production system, we can describe the core part of the algorithm:
the 5 candidates are generated and ranked by an algorithm that uses an item-item
neighborhood-based collaborative filtering method [145, 183], based on usage similarity
from ScienceDirect browsing logs. We denote this paper-paper similarity as browsing
similarity for later references.

In this study, we apply the reranking model to the top five candidates from the
production system, and compare the model’s ranking to the production baseline. The
top five candidates were chosen because for these recommendations, there is email click
feedback that enables offline evaluation; if successful, the model could be applied to a
longer list of candidates.

5.2.2 Proposed model
Our proposed model takes the 5 candidates from the production baseline as input and
produces a reranked list. It leverages both user behavior and paper content for reranking.
The user behavior component considers both browsing history on the search engine
and clicks on the recommendations to alleviate the sparsity issue of the latter part; the
content component obtains the similarity of papers derived from paper metadata. Then,
a pairwise learning model uses these components for reranking the candidates.

First, we introduce how we consider the paper metadata to measure different types
of similarity. Below, we provide formal representations of various paper aspects, of
users, and then the similarity functions for them.

Paper representations

Each paper p is represented as a collection of different aspects, and can be categorized
as follows:

• metadata from papers: author A, venue V , freshness F , word space W , entity
space E;

• metadata from user interactions: impact I and popularity P .
These aspects are available for all papers and users in our scenario and are considered
to be potentially useful for the recommender system.

Formally, we can think of every paper p as a tuple p = hA(p), V (p), F (p),W (p),
E(p), I(p), P (p)i, where each aspect is defined as follows:

Authors:
A(p) = [a1, a2, . . . , an],

where ai is an author of the paper p.
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Venue:
V (p) = vi,

meaning that paper p is published in venue (journal) vi.

Freshness score: We also model how “fresh” a paper p is, defined as:

F (p) =
1

etcurrent�tpublish (p)
,

where tcurrent is the current time, and tpublish(p) is the time of the paper p being
published online. F (p) 2 (0, 1]. The more recently a paper has been published, the
higher the freshness score is.

Impact score: We use citations as a measure of impact for papers, which is defined
as:

I(p) =
log(c(p) + 1)

log (cmax + 1)
,

where c(p) is the citation count of the paper p, and cmax is the maximum number of
citations in the dataset.

Popularity score: The popularity of a paper p reflects how often users interact with
the paper. We use the number of downloads to represent popularity:

P (p) =
log(d(p) + 1)

log (dmax + 1)
,

where d(p) is the number of downloads of the paper p, and dmax is the maximum
number of downloads of a paper in the dataset.

Word space: To represent papers in a word space we use tf-idf vectors, with values
for words and bigrams in the article title, abstract and keywords. We remove English
stop words, very common words and very rare words before calculating the tf-idf values.
In the end, each paper is represented as a sparse vector of size of 221, with hashing to
determine token indices in the vector.

Entity space: While word space measures such as tf-idf similarities can be used to
directly compare the contents of papers, an entity space is able to provide us with
additional information that incorporates both structure and semantics through graph
embeddings [26, 143].

We first build a knowledge graph by using important aspects of a paper including
keyword, author and venue. The graph contains 4 node types, paper, author, keyword
and venue nodes, and 3 relations (predicates) between a paper and an aspect as listed
below:

• hasAuthor: the paper has this author;
• hasKeyword: the paper contains this keyword; and
• publishedInVenue: the paper is published in this venue (journal).
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Next, to model the entity space we use the state-of-the-art TransE model [26] to derive
embeddings based on knowledge graphs. As input the model takes the triplets in the
graph; these have the form (h, r, t), with a head entity h, a relation (predicate) r, and a
tail entity t. The objective of the model is to learn embeddings so that h+ r lies in the
proximate neighborhood of t if such a triplet (h, r, t) exists in the training set, and h+ r
will be far away from t if the triplet is not valid. The model learns the embeddings by
minimizing a pairwise hinge loss:

X

(h,r,t)2T

X

(h0,r0,t0)/2T

[1+ | h+ r � t | � | h0
+ r0 � t0 |]+,

where T denotes the training set of triples. After training, the cosine distance of the
node embeddings reflects their proximity in the knowledge graph.

Due to the relatively high computational costs of working with knowledge graphs [26],
we derive the embeddings on a subgraph instead of on the complete graph. We choose a
reasonable size for the subgraph so that it is computationally feasible and also alleviates
the sparsity problem in the node connections. The subgraph is comprised of the union
of the browsed papers and recommended papers from 65,994 users, a superset that is
about 15 times the size of the users that we will study in our experiments. In total we
have 609,716 paper nodes, 1,650,470 author nodes, 3,961 venue nodes and 808,845
keyword nodes, plus 6,103,728 relation edges.

The graph is then used as the input for the TransE model to derive embeddings of
the nodes in the graph. In the end, we obtain embeddings for papers, authors and venues.
These embeddings will be used later in the content similarity measures.

User representations

The user representations are straightforward: each user u is represented as a collection
of papers in their browsing history:

u = [Precent , Phistory ]

Precent = [p1, p2, . . . pk]

Phistory = [pk+1, pk+2, . . . pn].

We segment a user’s browsed papers into two sets, the recent ones, Precent , and the
historic ones, Phistory . We write pi to refer to the i-th paper in each of the segmentations,
in the order of occurrence in the user’s timeline starting from the most recent one.
In academic search, users’ topic interests may shift over time [135]. We make this
segmentation so that it may help us compare the user’s recent interests against their
historical interests, and see whether and to which extent there is a deviation.

In case of a large deviation, Precent should provide more support to generate paper
recommendations.

Specifically, the clicked papers in the most recent session are put into Precent if it
contains at least clicks on 2 different papers, and the rest into Phistory . Otherwise, we
select the most recent ✓ papers from u into Precent and put the rest into Phistory . Papers
in Precent and Phistory are deduplicated.
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Content similarities

Based on the user and paper representations, in this section we describe the similarity
functions to measure different types of content similarity. Specifically, the content
component measures the similarity between recommendation candidates and users’
browsed papers using information from the paper metadata. The output will consist of
similarity scores to feed into the reranking model.

Field-level similarities and attention features. First, we introduce similarity mea-
sures for individual fields, which are used to compare paper similarities in each field.
When comparing two papers pi and pj , the similarity of each field is defined as follows.

For the word space and entity space, we use the cosine similarity of the vectors that
represent each paper. The cosine similarity between two vectors v and v0 is defined as:

cos(v, v0) =
v · v0

| v | · | v0 | ,

where the similarity value cos(v, v0) ranges between �1 and 1.
Then, the similarities for word and entity space are:

SimW (pi, pj) = cos(Wpi ,Wpj )

SimE(pi, pj) = cos(Epi , Epj ),

where Wpi is the tf-idf vector and Epi is the paper entity vector for paper pi obtained
from the output of the TransE model [26].

Similarly, a venue entity vector Evpi
for paper pi and an author entity vector Eam

for author am of pi are obtained from the output of the TransE model [26]. We apply
a “soft match” approach when comparing venue and author similarities. Compared
to an “exact match” approach where the similarity ends up being either 1 (same) or
0 (different), the “soft match” approach outputs a continuous similarity score. For
instance, “Accident Analysis & Prevention” and “Safety Science” being two different
journals (with no overlapping terms in the journal title), they would have a similarity
score of 0 in the “exact match” approach. However, in the embedding space they would
have a similarity score of 0.48, representing a more precise estimate of the inherent
similarity.

Then, venue and author based similarity measures, SimV (·, ·) and SimA(·, ·) are
defined as follows:

SimV (pi, pj) = cos(Evpi
, Evpj

)

SimA(pi, pj) =

8
>>><

>>>:

P
am2Api

maxan2Apj
cos(Eam , Ean)

|Api |
, if |Api |  |Apj |

P
an2Apj

maxam2Api
cos(Ean , Eam)

|Apj |
, otherwise,

where vpi is the venue of paper pi, Evpi
is the corresponding paper entity vector; Api

is the set of authors of paper pi, and Eam is the entity vector for author am. Note that
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in the author similarity function, we examine each author from the smaller author set
and find the most similar one in the other set and then calculate the average of the
similarities. This ensures that SimA(pi, pj) is symmetrical.

For freshness, impact and popularity, these three measures are single value features.
We use L1 distance with an adjusted weighting to obtain their similarities:

SimF (pi, pj) = (1� | F (pi)� F (pj) |1)⇥max(F (pi), F (pj))

SimI(pi, pj) = (1� | I(pi)� I(pj) |1)⇥max(I(pi), I(pj))

SimP (pi, pj) = (1� | P (pi)� P (pj) |1)⇥max(P (pi), P (pj)).

We define the weighting in order to capture the similarities only when two papers both
have a high value in this field. In cases where both have a low value, the similarity
value will be “down-weighted”, representing a weaker level of evidence for similarity.
For instance, given 2 paper pairs with low impact values (0.1, 0.2) and high impact
values (0.8, 0.9), the similarity score would be 0.09 and 0.81 respectively. Although the
absolute difference of impact is the same for both pairs (0.1), the pair with relatively
high values has a much larger similarity score.

Field level attention. Now that we can obtain the similarity scores SimX for 7
choices of X (W , E, V , A, F , I , P ), we would like to further know which specific
fields the user may be focusing on while browsing the papers. This is to tailor the
recommendations for those fields, be it the semantic similarity, venues or authors. These
“attention features” are implicit. However, we can derive the attention features through
past user interactions. In particular, we assume that they can be inferred from Precent

(users’ recently browsed papers). We hypothesize that for a set of papers, if the average
pairwise similarities of certain aspects are higher than other fields, it is probably because
users are paying attention to these aspects. For instance, high word space similarity
indicates that users are sticking to a specific topic. Likewise, if the venue and freshness
similarity scores are high, this could be that the user is mostly checking papers that are
both recent and are from a specific journal. We use the averaged pairwise similarities
calculated by each field as the field-level attention feature.

The attention feature for field i is the sum of its pairwise similarities divided by the
number of paper pairs in Precent :

↵fieldi =

P
pi,pj2Precent,i 6=j Simfieldi (pi, pj)

C2
|Precent |

,

where C2
|Precent | refers to the number of paper pairs.

Recent and history attention. The users’ recent and historic paper interactions may
both provide evidence to surface good recommendations. We make the distinction
between recent and historic papers because users’ interests may evolve over time. When
the users’ recent interests are significantly different from their historical interests, the
recommender should be aware of this deviation. Therefore, we define attention features
for this situation, where ↵recent and ↵history represent the two attention scores on the
users’ recent and historic papers.
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Table 5.1: Notations used in this section.
Notation Description
m number of users
n number of papers
k number of latent dimensions
cui click of user u to paper pi
S paper-paper browsing similarity matrix
sij browsing similarity between paper pi and pj
Bu set of papers browsed by user u
C+
u set of papers clicked by user u

C�
u set of papers shown but not clicked by user u

qi latent factor for paper pi
bi bias of paper pi

↵recent and ↵history are calculated using the browsed papers (Precent and Phistory ).
The more the user’s recent interests deviate from the historic interests, the higher
the value of ↵recent, hence providing a bias feature to consider the more recent user
activities. It is calculated as follows:

↵recent = Distance(Precent , Phistory)

↵history = 1� ↵recent .

The distance Distance(Precent , Phistory) is calculated by averaging over the distance
of each paper in Precent to its closest match in Phistory . The idea of finding each paper’s
closest match instead of averaging over all papers in Phistory is because the history
may be diversified: a recent paper may be very similar to one paper in the history but
different to the rest. In case there is at least one similar paper in Phistory , we consider
that the current paper being examined does not deviate far from the history. Formally,
the distance is defined as follows:

Distance(Precent , Phistory) =

P
pi2Precent

minpj2Phistory (1� cos(Wpi ,Wpj ))

|Precent |
,

where 1� cos(Wpi ,Wpj ) is the cosine distance between two papers’ tf-idf vectors.
So far, we have explained how we exploit the content aspects for recommendation

that are based on the paper metadata. Next we introduce the behavior aspect where
user-paper interactions are concerned.

Behavior

The paper metadata has provided evidence for recommendations from the content per-
spective. User interactions, i.e., users’ browsing behavior on the search engine and
clicks on recommendation emails also provide signals for generating good recommen-
dations. In our scenario, the users have past browsing behavior but no clicks prior to
their first interaction with the recommender system.
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Nevertheless, the paper-paper browsing similarities are available to us (as used
by the production system, described in Section 5.2.1). They provide a measure of
behavior-based similarity based on readership of all users on ScienceDirect.2 Naturally,
we can incorporate this external similarity information into our model.

We devise a behavioral model, that utilizes both browsing and click behavior in the
interaction log. The motivations of our model are given below:

• For new users, there are no prior email clicks for predicting their interactions
with the recommender. To address the issue, we complement the absence of click
ratings by using the browsing history. It is noted that browsing papers on the
search engine and clicking a paper in the email are two different user interactions
with papers. Thus a mapping function is required to transform browsed papers
to email clicks. Although for each user, it is not possible to learn the mapping
as there is no click at the time of recommendation, it is possible to utilize the
browsed papers and email clicks of other users (and this data quantity will grow
over time). Essentially, we try to infer the clicks of the new users from other
users’ mappings, using supervised learning.

• As paper recommendations are shown in a relatively compact email, we assume
that users have noticed all the papers. Therefore, a user’s clicks on the 5 shown
papers in the email entail implicit pairwise preferences. For instance, given 5
papers p1, p2, p3, p4 and p5, if the user clicks paper p2 and p3 in the list of 5
papers, then it is reasonable to assume that the user prefers paper p2 and p3 over
paper p1, p4 and p5.

• The paper-paper similarity based on a user’s browsing history is available. It is
more accurate than the similarity from user clicks in emails, because it is based
on the complete set of ScienceDirect users, which is several orders of magnitudes
larger. Moreover, it captures transitive similarities from a global perspective.
Therefore, it is necessary for our model to preserve this similarity.

We first present the notation we use in Table 5.1; it is used in the following model
descriptions. We propose to learn a mapping function from user browsed papers to user
clicks on the email, denoted as:

C ⇠ BM, (5.1)

where B,C 2 Rm⇥n are the matrices for browses and clicks respectively and M 2
Rn⇥n is a mapping matrix. In practice, n is generally very large so that it could pose a
great burden to learn M . Thus we propose to factorize M into the multiplication of a
low-dimensional paper factor Q, shown below:

M ⇠ QQT , (5.2)

where T is the transpose operator of a matrix.
Based on the assumptions given in Eq. (5.1) and (5.2), we can predict the click of

user u on paper pi by the equation below:

c̃ui = bi + qT
i

X

t2Bu

qt, (5.3)

2The involved users are larger than the users we study in our experiments by several orders of magnitude.
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where bi is a scalar for the bias of paper pi. Here we ignore user bias in Eq. (5.3) since
it is unknown for new users. To learn Q and b, for each user, we draw a pair of papers
(pi, pj), where pi 2 C+

u and pj 2 C�
u , and optimize a pairwise loss function given by

BPR [179]:
L(u, i, j) = � log � (c̃ui � c̃uj) , (5.4)

where �(·) stands for the sigmoid function. To preserve paper-paper similarities from
browsing history, we follow the assumption that the distance between qi and q2 is small
when sij is large. Without loss of generality, we adopt the Euclidean distance hereafter,
e.g., | qi � qj |22. We can then define the following similarity regularization terms:

1

2

nX

i,j

| qi � qj |22 sij =
nX

i=1

qT
i qidii �

nX

i,j

qT
i qjsij

= Tr
�
QTDQ

�
� Tr

�
QTSQ

�
= Tr

�
QTLQ

�
,

(5.5)

where Tr (·) is the trace operator of a matrix, D is a diagonal matrix whose entries are
the row sums of the browsing similarity matrix S (S is symmetric), i.e., dii =

Pn
j=1 sij ,

and L = D � S is the Laplacian matrix of the graph [45]. Putting Eq. (5.4) and (5.5)
together, the model is given as follows:

min
Q,b

mX

u=1

X

i2C+
u ,

j2C�
u

� log � (c̃ui � c̃uj) + ↵Tr
�
QTLQ

�
+

�

2
| Q |2F .

(5.6)

The first term in the objective function captures the pairwise preferences of every user
over the papers shown in the emails. The second term preserves the paper-paper simi-
larities in the browsing history through graph regularization. The graph regularization
is widely used to preserve similarities, e.g., social regularization [147] and locality
regularization [184]. The third term regularizes Q to avoid overfitting. ↵ and � are
hyper-parameters.

Reranking model

In this section we introduce Hybrid Reranking Model (HRM). The model scores
the paper recommendation candidates generated by the production system, using the
aforementioned content and behavior components. Then, the candidates are reranked
by the score.

We use a 2-layer feedforward neural network as the scoring function, where the
input layer takes features from each candidate paper (the features will be explained
shortly afterwards), and the output layer contains one node that gives the score.

An overview of the model is shown in Figure 5.2.
We explain what the input feature representations are in Figure 5.2 from left to right:

the attention features on different fields and on recent/history papers are derived from
a user’s browsed papers; the Srecent and Shistory contain the average similarity scores
of each paper aspect by comparing the candidate paper against the recent papers and
historic papers, respectively. These functions are described in Section 5.2.2.
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Figure 5.2: Architecture of the Hybrid Reranking Model (HRM) that shows how a
candidate paper recommendation for a user is scored.

The paper-paper browsing similarity features used by the production system are
based on ScienceDirect browsing data: we use the mean and maximum similarity scores
of each paper recommendation candidate compared against papers in the browsing
history; the behavior features are the predicted click scores obtained from the behavior
model described in Section 5.2.2. Together these features determine the inputs for
Hybrid Reranking Model (HRM).

Training is done by optimizing a pairwise hinge loss from the preferences of clicked
papers over the non-clicked papers for each user u, shown below:

L(C+
u , C�

u ) =

X

pi2C+
u

X

pj2C�
u

⇥
1 + f(xpi)� f(xpj )

⇤
+
,

where f(·) denotes the scoring function (neural network), C+
u are the clicked papers in

the email for user u and C�
u are the non-clicked ones, xpi and xpj denote the feature

representations for clicked paper pi and non-clicked pj respectively.

We apply rectified linear unit (ReLU) activations on the hidden layer for effi-
cient learning. We apply linear activations on the output layer, because it ensures
an unbounded value for the pairwise loss function and also performs the best in our
experiments. We use the Adam optimizer [113] and mini batches during training.
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5.3 Experiment

In this section we describe the experiments, including research questions, data prepara-
tion, experimental setup and the main results.

5.3.1 Research questions
We aim to find out how to utilize both content and behavior to rerank paper recommen-
dations. We are interested in whether HRM which utilizes content and behavior can beat
the production baseline, and how useful the different input features are. Specifically, we
answer the following research questions.
RQ4.1 Does HRM which utilizes content and behavior, provide improvements in

reranking over the production baseline?
RQ4.2 What is the utility of the content features and behavior features in reranking,

respectively?
RQ4.3 Within the content features, for paper similarities based on various paper aspects,

what paper aspects can result in good reranking performance and what can not?

5.3.2 Dataset

We use a dataset provided by ScienceDirect,3 a popular academic search engine that
offers access to millions of academic papers. Users can gain access either by a subscrip-
tion service, or by individual purchases of papers. The dataset contains anonymized
user activity logs from signed in users. We look at newly signed up users and their inter-
actions on the first paper recommendation email. The paper recommendations emails
were sent between December 12, 2017 and January 21, 2018. For each user, browsed
papers on ScienceDirect prior to receiving the email were also obtained. A browsing
action is characterized by any form of a click on a paper, such as a click on the search
engine result page, or a click on related papers shown on the detailed paper content page.
For email recommendation data, each email contains 5 recommendation candidates
where users’ responses to each one of them are logged (clicked or not clicked). To
obtain paper metadata, we use the paper metadata from Scopus,4 which can be obtained
by querying paper IDs from papers in the ScienceDirect database.

Since we need to study how content contributes to better reranking, we need users
that have at least a few papers in their browsing history in order to utilize the content
information. The content data of the browsed papers should be clean and complete.
Also, we need users who have at least one click on the recommendation email so that we
can perform offline evaluations for reranking and calculate the metrics. Correspondingly,
we apply the following filtering steps prior to obtaining the data:

1. we filter out cold users with fewer than 5 browsed papers prior to the recommen-
dation;

2. we remove users whose browsed papers have incomplete or corrupt fields of data;
and

3https://www.sciencedirect.com/
4https://www.scopus.com
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3. we remove the recommendation emails without any clicks.
In total we have obtained 4,392 recommendation sessions for our experiments. Each
session contains one recommendation email with a field that indicates whether each
paper has a click, and also the user’s browsing history prior to the recommendation’s
timestamp.

Also readily available are the item-item collaborative filtering scores based on
readership of papers from ScienceDirect users. The scores of paper pairs are symmetrical
so that sij = sji.

5.3.3 Experimental setup
The experiments on our dataset are conducted through 5-fold cross validations. For
each run, 4 folds are used for training and 1 fold is used for testing. There are one or
more clicks on the paper candidates for each email. We code relevance as a binary label,
which is 1 for clicked papers and 0 for the rest. We compute the mean average precision
(MAP) and Precision@k (k = 1, 2, 3, denoted as Prec@k for short) as the evaluation
metrics.

Significance tests are applied when comparing the results of different models.
Specifically, we apply the two-tailed student t test to MAP and Wilcoxon signed rank
test to Prec@k, according to certain underlying assumptions of the significance test.

We select the optimal hyper-parameters for HRM by iterating over possible parame-
ter combinations. For the content component of HRM, we have ✓ = 3; for the behavior
component of HRM, we have ↵ = � = 0.01 and k = 100; for the scoring function
of HRM, the hidden layer contains 32 nodes (more nodes may lead to overfitting and
worse performances in the experiments), and the learning rate is set as 0.001.

What are appropriate baselines to consider? The first and obvious baseline is the
production system that we seek to improve over; this baseline mainly uses item-item
similarity based user browsing data on ScienceDirect. In addition, two families of ap-
proaches appear to be natural candidates: learning to rerank methods and collaborative
filtering methods.

As to learning to rerank models, to the best of our knowledge, approaches to
learning to rerank a production system published in the literature focus on learning
from interaction data (see Section 5.5.5) We, however, focus on similarity-based models.
Thus, we consider an (offline) pointwise learning to rerank model based on logistic
regression with Adagrad optimization [57], which has recently achieved state-of-the art
performance [196]. We also consider an (offline) linear pairwise learning model that is
trained using pairwise hinge loss. These two models use the same input as HRM.

As to collaborative filtering methods as possible baselines against which to compare
the approaches in this chapter, we would like to consider approaches such as the state-of-
the-art neural collaborative filtering [87], PMF [155] and NMF [127]. Testing alternative
collaborative filtering approaches would have required access to the full paper browsing
data that are used by the production collaborative filtering approach. However, the
scope of this paper is only to take the production collaborative filtering system as a
baseline and experiment with reranking its output. Therefore, we ignore them in our
experiments.5

5We have also considered applying CF baselines on the 4,392 users that we study. However, the user-paper



Results and Analyses 85

Note that when answering the second and third research questions (examining
feature utility), certain components’ feature size is very small. For instance, the behavior
component consists of a feature size of two: one from our proposed behavioral model
(Section 5.2.2), one from the browsing similarity (Section 5.2.1). Such a small feature
vector is not suitable as input for the neural structure in HRM. Therefore, we use the
pairwise linear model in this case.

5.4 Results and Analyses

In this section we present the experimental results, including the results of different
models, and break-down analyses on different components of the model.

5.4.1 Overall comparison

To address our first research question, we compare HRM against the production baseline,
as well as two other baselines, see Table 5.2.

Table 5.2: Results of reranking paper candidates across models. Win/Tie/Loss are the
number of users for which a model performs better than, the same as, or worse than the
production baseline.

Model MAP Prec@1 Prec@2 Prec@3 W/T/L

Production baseline 0.588 0.392 0.350 0.323 -/-/-
Linear pointwise learning to rerank 0.534 0.330 0.296 0.280 1595/753/2044
Linear pairwise learning to rerank 0.620 0.432 0.378 0.343 1822/1254/1316
HRM 0.663 0.502 0.453 0.421 2005/1171/1216

Compared with all three baselines, significant improvements are made in the hybrid
reranking model HRM that combines content and behavior (p < 0.01). Compared with
the production baseline, HRM performs better or the same for 72.3% of the users. There
is a relative 13% increase in MAP and a relative 28% increase in Prec@1 for HRM,
meaning that users are more likely to click the top candidates in the reranked list. This
answers the first research question.

Besides, when given the same input features, HRM also performs better than both
the linear pointwise and pairwise learning model. Interestingly, the pointwise learning
to rerank method is beaten by the production baseline on all metrics. This shows
that learning absolute user preferences of papers based on clicks is not optimal in our
scenario. Models based on pairwise learning (HRM and the linear pairwise model) have
produced better results by learning relative user preferences.

interactions are so sparse that CF baselines would not generate a rating for over 90% of the papers: the
rating density is less than 0.02% even if we consider both browses and clicks as ratings on papers, which is
significantly less than common recommendation datasets (Movielens 100K: 6.30%, Movielens 1M: 4.47%,
FilmTrust: 1.14%).
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5.4.2 Utility of content and behavior features in reranking
To answer the second research question, we analyze the utility of the input features
of individual components in HRM, shown in Figure 5.2. Specifically, we look at the
reranking performance using the following input features separately.

• Proposed behavior feature (Section 5.2.2).
• All behavior features: browsing similarity features (Section 5.2.1) and proposed

behavior feature (Section 5.2.2).
• All content features: Srecent, Shistory , attention features (Section 5.2.2).
• All content features without attention features: Srecent, Shistory (Section 5.2.2).
• Only recent content similarity: Srecent (Section 5.2.2).
• Only historic content similarity: Shistory (Section 5.2.2).

The behavior features have small sizes (a single feature from our behavioral model
and the production system respectively). Therefore we opt for the linear pairwise
model, because the small input feature vector is not suitable for the neural structure in
HRM. For other features that have larger sizes we use the neural structure of HRM for
reranking; see Table 5.3 for the results.

Table 5.3: The performance of reranking paper candidates using different input features
of HRM shown in Figure 5.2.

Model MAP Prec@1 Prec@2 Prec@3
proposed behavior feature 0.540 0.332 0.302 0.288
all behavior 0.602 0.411 0.358 0.327

all content 0.601 0.402 0.365 0.338
all content without attention 0.598 0.398 0.359 0.337
only recent content 0.590 0.384 0.354 0.333
only historic content 0.582 0.374 0.343 0.327

Using behavior and content separately for reranking, the results (MAP score of 0.602
and 0.601, respectively) already outperform the production baseline (0.588) that mainly
uses item-item CF. The proposed behavior feature provides a boost for the behavior
component in addition to using the browsing similarity features from the production
system (p < 0.01). On the other hand, the content component has a performance quite
close to the behavior component. The attention features lead to a slight improvement
over the model without them. We also find that using the recently browsed papers is
better for reranking paper candidates than to using historically browsed papers, and
even better is to use both recently and historically browsed papers. This answers the
second research question.

5.4.3 Utility of paper aspects in reranking
To answer the third research question, we continue to delve into the content similarity
in HRM, which contains similarity measures for different aspects of papers. We are
interested to see the reranking performance of features based on a single paper aspect.
For each paper aspect, we take the recent/historic similarity and the recent/historic
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attention scores as the input features for reranking. Similar to Section 5.4.2, we use
the pairwise linear model due to the small input feature size. The results are shown in
Table 5.4.

Table 5.4: Reranking paper candidates by restricting the pairwise linear learning rerank
model to using only one paper aspect.

Field MAP Prec@1 Prec@2 Prec@3
freshness 0.426 0.153 0.248 0.242
popularity 0.453 0.154 0.276 0.284
venue 0.468 0.203 0.272 0.276
impact 0.489 0.257 0.283 0.267
word 0.526 0.312 0.291 0.284
author 0.549 0.327 0.320 0.311
paper entity 0.550 0.330 0.319 0.311

The reranking performance of the paper candidates differs among the paper aspects.
In general, the similarity measures based on semantics or entities perform better than
those that do not. The two entity space measures: the author and paper entity similarities
perform better than other measures, also beating the word-space similarity. Comparing
three entity based measures, the author similarity performs similarly to the paper
entity similarity, this is due to the high correlation between them (Pearson correlation
coefficient being 0.88); the author similarity performs much better than the venue
similarity (0.549 vs 0.468 for MAP scores). This may suggest that users pay attention to
the authorship of the paper more than the venue. Using freshness, popularity, or impact
similarity alone does not generate good performance, understandably, as these measures
do not consider semantic relevance or entity relationships. Combining all paper aspects
produces the best performance. The third research question is hence answered by the
above comparisons of paper aspects’ utility in reranking.

5.5 Related work

In this section we discuss the related work to our study. The related work spans several
topics: academic search, paper recommendation, citation recommendation, and top-n
recommendation. We introduce them below and explain how they are related to our
work.

5.5.1 Academic search
Our work is relevant to academic search because we are examining the recommendation
service attached to an academic search engine. Academic search engines [62, 132,
186, 206] have given users convenient access to academic resources such as papers,
journals, and authors. Mitra and Awekar [152] found that different academic search
engines have their own coverage of literature and ranking strategy, and the overlap
among search results is low. Compared to general web search, there is far less research
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on user behavior in academic search, possibly due to a lack of public datasets. Research
on academic search has examined user behavior through surveys [164, 170, 171] and
aggregated usage statistics such as query frequencies [107]. Khabsa et al. [108] studied
user queries on Microsoft Academic Search and proposed a query classifier.

Recently, more studies have been conducted on user behavior within and across
search sessions, based on a large-scale user transaction log. Li et al. [138] have studied
the null query phenomenon in academic search and proposed a query suggestion
method as a remedy. Li and de Rijke [135] have revealed the correlations of query
reformulation and topic shift in academic search. Li and de Rijke [134] have also
studied the user queries in academic search following major scientific events. There has
also been research aimed to improve the search experience. Tang et al. [207] combined
topic modeling with random walks to improve academic search retrieval performance.
Khazaei and Hoeber [109] proposed a visual search interface via citation links to help
users better navigate through search results. Xiong et al. [225] proposed improving
paper rankings in academic search using entity embeddings.

Our work in this chapter differs from previous work in academic search in that we
do not directly deal with search. We utilize the browsing history on the academic search
engine to make improvements to a paper recommender.

5.5.2 Academic paper recommendation
Our recommendation task falls in the broad category of academic paper recommen-
dations. Generally, based on the system inputs, paper recommendation tasks can be
classified into the following scenarios: the system generates a list of paper recommen-
dations given a single paper as input [14, 100, 160]; the system generates a list of paper
recommendations given a set of papers as input (without ordering) [121, 189, 212]; the
system generates recommendations given a time-ordered set of papers as input [91, 224].
The first and second scenarios include cases where a user is browsing a paper, or a
list of relevant papers is available (e.g., through a set of papers selected by the user).
The system assumes the input to be representative of a user’s interests, then provides
related papers as recommendations. These are the most common scenarios that are
being studied. The third scenario is rarely studied because: 1) it is relatively difficult to
acquire user data that spans a long period, for instance, users’ paper browsing history;
2) it is more difficult to model user interests based on a sequence of inputs, compared to
static inputs in the first two scenarios.

The common methods involved in making recommendations can be classified
as: content-based filtering (CBF), collaborative filtering (CF) and hybrid models that
combine the two. CBF involves using various parts of the paper contents, such as titles,
abstracts, and keywords, to suggest related papers based on their similarity with input
paper(s) [65, 100, 202]. While it is able to expose related papers that are similar by
content, CBF models do not take into account user-paper interactions. CF models, on
the other hand, utilize the user-paper interactions to generate recommendations, and can
result in strong performance [41, 91, 169]. However, a common drawback of CF models
is the cold start problem, which is severe in our academic recommendations when using
real user-paper interaction data. Finally, there are hybrid models that combine CBF and
CF models for paper recommendations [63, 212, 217]. The hybridization process is
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usually rule-based instead of learned: either the system first runs CBF models and then
uses its output as input to run CF models to generate recommendations (cascade hybrid);
or it simply mixes results that are separately generated from CBF and CF models (mixed
hybrid).

Our work in this chapter differs from previous work on academic paper recom-
mendation in that we study a rarely examined, but real scenario: generating paper
recommendations given an ordered sequence as input. Specifically, we make recom-
mendations for new users that sign up for the recommendations based on their browse
history on the search engine. Compared to [224], which uses a simulated and artificial
recommendation setting, our scenario concerns real user interactions with the recom-
mender system. We have proposed a hybrid model that combines content similarities,
that draws distinction between multiple aspects of paper contents, and behavior-based
similarities. We have applied pointwise and pairwise learning approach to train the
model, unlike the rule based approaches to generate paper recommendation that do not
apply learning techniques [63, 212].

5.5.3 Citation recommendation
Citation recommendation is sometimes mixed with paper recommendation. Hence,
we draw the distinction between our paper recommendation task and citation recom-
mendation. We consider citation recommendation to be the task of recommending
papers to an author who is writing a manuscript. A citation recommender may take
a manuscript as input, identifies places where citations are needed, and recommends
relevant citations [86, 201]. It may also take a piece of “context” as input, which is
represented as a few sentences, and generates relevant citation suggestions [61, 94].

It is obvious that the citation recommendation task is mainly focused on similarity.
Even when collaborative filtering is applied, it is using the citation relation matrix as
a paper similarity measure [146], instead of using the user-paper rating matrix. The
evaluation setup is also confined to predicting the cited papers of an input paper or
paragraph.

Our work in this chapter differs from previous work on citation recommendations in
terms of the methods we propose, the recommendation goal, and the evaluation setup.

5.5.4 Top-N recommendation
In the context of more general recommendation problems, our scenario is related to
top-N recommendation [53]. Top-N recommender systems provide users with a ranked
list of items based on predicted scores of individual items, where the relative ranking
matters more than the absolute item scores. This is similar to our problem as we aim to
produce a ranking of papers according to the predicted scores. However, the candidate
set from which we make recommendations is different: we pick the papers from a
recommendation email, while a typical top-N recommender selects from all items that
have not been rated by users.

Top-N recommenders have been intensively studied [180]. In general, there are
approaches that use latent space models [47] and approaches that rely on neighborhood-
based models (whether user-based or item-based) [53]. While latent factor models can
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also generate top-N recommendations, they are originally designed for the rating pre-
diction task. Therefore they are sub-optimal for top-N recommendation. Neighborhood-
based methods identify similar users or items, and are shown to be more suitable for
the top-N recommendation problem [6, 53, 104, 162]. Item-based methods have been
shown to outperform user-based methods for the top-N recommendation task [43].
Similarity models have been recently proposed to improve item-based neighborhood
models. They learn a coefficient matrix that is analogous to the item-item similar-
ities [42, 104, 105, 162] directly from the data. A novel similarity model, Sparse
Linear Method (SLIM), has been proposed by [162]. Several authors have proposed
improvements to SLIM. Low-rankness has been investigated to capture transitive
relations [42, 104, 105]. Kabbur et al. [104] proposed the Factored Item Similarity
Model (FISM), which factorizes the coefficient matrix into two low-dimensional factor
matrices. Cheng et al. [42] proposed the Low-rank Sparse Linear Method (LorSLIM),
which introduces a rank regularization to SLIM. Kang and Cheng [105] made im-
provements over LorSLIM by providing a better proxy to approximate the rank of the
coefficient matrix. Instead of estimating a single model for all users, Christakopoulou
and Karypis [43] clustered users and estimated several local models. Zhao and Guo
[232] minimized a combined heterogeneous loss function, which is a combination of
pair-wise ranking loss and point-wise recovery loss. Wu et al. [223] generalized FISM
from linear to non-linear by incorporating a denoising auto-encoder.

Our work in this chapter differs from previous work on top-N recommendation in
important ways. First, directly applying top-N recommendation models to our task
will lead to two problems: new users have no clicks on the recommendation emails, a
situation that cannot be handled by existing top-N recommenders. Also, we have two
types of interaction between users and items: user browses and user clicks. Existing
top-N recommenders focus only on homogeneous interactions.

5.5.5 Reranking the output of a production system
Like us, Lefortier et al. [129], Moon et al. [157], Zoghi et al. [233] use a commercial
search engine as their main baseline that they learn to improve. Moon et al. [157] and
[129]’s methods directly use click-through rates, with a focus on documents that appear
in the first position; both also focus on recency ranking and queries with shifting intent.
Zoghi et al. [233] learn from a pairwise signal – out of order clicks in the top 5 produced
by the production ranker.

Our work in this chapter differs from previous work on reranking the output of a
production search engine or recommender system in that we do not restrict ourselves
to recency ranking. Moreover, we do not work in an online setting and we do include
content-based signals, not just behavior-based ones.

5.6 Discussions and conclusion

In this chapter, we have examined an interesting recommendation scenario for an
academic search engine, namely, to rerank paper recommendations in email newsletters
for newly signed up users. We have addressed this challenge by proposing a hybrid
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recommendation approach that includes a content component and a behavior component.
The content component measures similarities of various paper aspects between users’
browsed articles and recommendation candidates, and also considers the user’s attention
on paper aspects and on recent/historic browsing. The behavior component learns a
mapping from browsed articles to user clicks in the recommendations. The model
combines content and behavior through a pairwise learning approach that is based on
user interaction data.

We have found that our hybrid reranking model HRM significantly improves over
the production baseline. We have dug into the components of our model to see what
works and what does not. In the content component, the graph embeddings work the
best, especially the author similarity based on soft matching; users’ recently browsed
articles can lead to better recommendations compared to historic browsing; on the
other hand, popularity and impact similarities are not sufficient to bring up good
recommendations alone. In the behavior component, our learned scores combined
with browsing similarity scores have led to better performance than the production
baseline. The best performance is achieved when combining content and behavior
through learning.

Our hybrid reranking model HRM can be seen as a module that can be plugged into
a recommender system. Besides, we also have generalizable insights for other paper
recommenders. For instance, we have revealed how each paper aspect contributes to the
reranking performance.

A limitation of our study is that we have not performed online evaluations, such as
A/B testing, to validate the model’s effect on user engagement. Another limitation is
due to the production dataset: our reranking is limited to the candidate articles generated
by the production system. Therefore if the inputs are not of high quality, it will impact
our final recommendation performance. In practice, HRM could be used to rerank a
longer list of candidate recommendations, so that it effectively chooses the top 5 to
be sent in an email. It would be interesting to also explore different methods of paper
candidate generation, and examine how they impact the recommendation performance.
Besides, if we can obtain user profile information (such as domain interests), can we
apply topic modeling to provide more personalized recommendations for users? We
leave these interesting questions as future work.
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6
Characterizing Reading Time

on Enterprise Emails

In the previous chapters we have studied key aspects of user interactions in academic
search, including behavior analysis (query and download), download predictions and
paper recommendations. While conducting academic searches is important in scientific
research, also necessary is the communication that often involves reading emails [59,
198, 216]. Besides, users can read academic paper recommendations in emails. In this
chapter, we study user interactions on enterprise emails and answer RQ5. We focus
on one central aspect: how users read and spend time on enterprise emails. While the
strict privacy policy does not allow us to dig into email contents to filter the academic
communications and recommendations, we can obtain generic findings from a large set
of users and many email reading events.

6.1 Introduction
Emails are one of the most important channels for communication [173]. Over the past
two decades, the nature of web emails has significantly evolved and influenced user
behavior accordingly [148]. Email usage has become much more diverse including
task management, meeting coordination and personal archiving and retrieval. The
high demand for intelligent email systems fostered related research in many areas such
as email search [3, 35], information organizing with folders or tags [76, 117], and
predicting user actions of replying or deleting [49, 54, 114, 226]. Although prior work
has provided in-depth analyses and solutions for specific applications, the fundamental
understanding of how users interact with email clients remains somewhat unclear. For
example, questions such as how and when people read emails, how long they spend
doing so, and what factors influence reading are not well understood.

The goal of this study is to characterize and present a comprehensive view on how
users read their emails and how their reading time is affected by various contextual
cues.

The reading activity is embedded in most user-email interactions across diverse
applications ranging from retrieving information to automatic email prioritization. We

This chapter was published as [140].
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argue that understanding email reading time lays the ground work for understanding user
satisfaction, as it paves the way to estimating how a user’s focus is spent. Capturing user
reading time also helps reasoning about how email clients can be improved. Properly
characterizing reading time, however, is a very challenging task. In today’s environment,
email clients are built with rich functionalities and using multi-devices by a single user
is common. Even with access to large-scale logs, it requires careful examinations on
data selection and interpretations to deliver meaningful analysis.

In this chapter, we provide a quantitative analysis of enterprise emails from the web
and mobile clients of a popular email web service. We start by introducing a method to
approximate reading time, that can be applied on millions of emails (Section 6.3). Then,
we uncover how reading time is affected by various contextual factors in Section 6.4. We
delve into temporal factors, user contextual factors and a very common reading behavior
– rereading. To complement the results based on the log analysis, we also conduct a user
study to look for the causes behind some interesting observations (Section 6.5).

Our findings indicate that reading behavior differs significantly on desktop versus
on mobile devices. While the majority of emails are read within 10 seconds on both
clients, the distribution of reading time on desktop exhibits a heavier tail than on mobile.
Further, we find that desktop and mobile users have different temporal patterns: on
desktop the reading time increases through the morning whereas on mobile it increases
from the evening till midnight. Email types are also correlated with reading time: e.g. on
restaurant and hotel related emails, users spend longer time during weekends compared
to weekdays. The average time spent on reading emails is dependent on user status as
well. For example, users spend less time reading when their calendar status is “out of
office.” They also read fewer emails within shorter time when they have more meetings
or are busier in a day. We find different reading patterns in cross-device reading events:
for instance, when users switch from mobile to desktop, email reading time tends to
increase; when they switch vice versa, however, reading time tends to decrease. Last
but not the least, our user study sheds light on on why certain behaviors occur.

To the best of our knowledge, this study is the first of its kind to uncover how
users spend time reading emails through a large-scale analysis. The findings enrich
the understanding of email reading behavior, and benefit research and applications
in this field. For instance, correct interpretation of reading time would be essential
for determining the importance of an email for email prioritization features1, or its
relevance in information seeking scenarios. Since reading time differs by contexts, the
same amount of time spent on a human-authored email and a machine-generated email
may mean different degrees of relevance.

6.2 Related work
A rich spectrum of studies have been conducted on users’ interactions with email clients.
In this section, we provide an overview of the most related work to our study.

Email overload and prioritization. Information overload was identified in the early
years as one of the critical issues for email users [48, 221] and still is prominent in current
email systems [77]. Beyond spam filtering techniques [51], Yoo et al. [228] focused on

1Examples include, Outlook Focused Inbox, or Gmail Priority Inbox.
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modeling personal email prioritization to make more critical information surface to the
users. Wainer et al. [215] examined how top-level cues such as message importance,
subject line specificity, workload and personal utility influence users’ attention to emails.
Aberdeen et al. [1] introduced a scalable learning system to classify each email as
important or not important for Gmail Priority Inbox, where the classification threshold
is personalized per user.

Email search. In addition to the above proactive scenarios, users interact with and
rely on search to retrieve relevant information or to organize emails. Kruschwitz et al.
[120] demonstrate that email search is an essential part of the information seeking
behavior in enterprises. Ai et al. [3] have examined the search behavior on email
systems. They characterized multiple search strategies and intents, and identified
important behavioral differences from web search such as re-finding. Horovitz et al. [90]
proposed an auto-completion feature for email search, were suggestions are extracted
from personal mailbox content in addition to query logs from similar users. Narang et al.
[159] investigated general email activities and search activities. They found that search
strategies are correlated with mail box properties as well as organizing strategies. Kim
et al. [110] studied email search success by popping up an in-situ survey when a search
session is finished to collect feedback. The results showed that generative Markov
models can predict the session-level success of email search better than discriminative
models. Along the line of searching personal information, Dumais et al. [58] examined
in detail users’ reusing behavior and established systems that assist users to find items
such as emails and documents that users have seen before. Cecchinato et al. [40]
investigated different finding strategies on desktop versus mobile devices, and work
versus personal accounts via a diary study. Additional efforts [35–37, 122, 176] have
also been laid on improving ordering accuracy for better search experiences.

Email interactions. Users tend to perform a variety of actions in email clients.
Di Castro et al. [54] conducted large-scale log analysis for predicting users’ actions
of reading, replying, forwarding and deleting after receiving an email. Yang et al.
[226] focused on predicting the reply action and studied the impact of factors such as
email metadata, historical interaction features and temporal features. Dabbish et al. [49]
studied the decision rules people choose to reply to email messages, or to save or delete
them through a survey.

Folders and tags. Email systems not only provide a communication channel but
users often manage their personal information by taking actions such as archiving,
tagging or foldering. Earlier studies tackled the task of auto-foldering for individuals
where the goal is to classify each email into a user defined folder [17, 56, 205]. More
recently, Grbovic et al. [76] proposed to address the sparsity problem arising from the
earlier personalized approaches by inferring common topics across a large number of
users as target folders. Koren et al. [117] associated an appropriate semantic tag with a
given email by leveraging user folders. Wendt et al. [220] proposed a hierarchical label
propagation model to automatically classify machine generated emails.

Email intelligence. Current email clients aim to help users save time and increase
productivity. Kannan et al. [106] investigated an end-to-end method for automatically
generating short email responses as an effort to save users’ keystrokes. Ailon et al. [5]
proposed a method to automatically threading emails for better understanding using
causality relationship. Email summarization [34, 158] has been studied as a promising



98 Characterizing Reading Time on Enterprise Emails

Figure 6.1: The web interface (left) and the mobile app interface (right) for our email
clients. The reading time on desktop is computed with respect to the time each message
appears in the reading pane (red box). The reading time is computed from the moment
an email is clicked on until the the user hits back (available on mobile only), clicks on
the next listed email (available desktop only), switches to compose mode by clicking on
reply/forward, or closes the app (or browser).

way to solve the problem of accessing an increasing number of emails possibly on small
mobile devices.

While prior work studied extensively from different perspectives how users interact
with email systems, their focuses were centered around specific scenarios such as search.
The goal of this chapter is to present a horizontal, generic view on users’ interactions
with emails in terms of reading, which is the primary action users take regardless of
which application they are currently using. Not only do we study in detail the relations
between reading time and a variety of properties, but we contrast the reading behavior
on desktop and mobile devices over a large number of real users.

In their highly cited work on Theory of Reading, Just and Carpenter [103] argue
that reading time depends on text, topic and the user familiarity with both. Almost four
decades later, we reassess some aspects of their theory on user interactions with modern
emails.

6.3 Measuring reading time
Measuring reading time accurately is challenging. Eye-tracking tools can be used to
track the users’ gaze, but deploying them over large numbers of users is non-trivial
due to privacy concerns, costs and technical limitations around calibration. We rely on
user interaction logs of a large commercial email provider to study the reading time
indirectly by measuring the time between opening and closing an email. Relying on
interaction logs allows us to test our hypotheses over large sets of users at reasonable
costs and with minimal intrusion. However, our data-driven approach is limited to what
is already captured in the logs, and is not free of issues. For instance, people might be
multi-tasking – they might have the email opened but are focusing on a different task
in a different window. Furthermore, a logged open action on an email followed by a
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logged close action does not always imply that the email is read (e.g., the user might be
triaging emails quickly, deleting emails as soon as they are displayed on screen).

In our analysis, we use the best possible signals in the logs to get a close approxima-
tion of the reading time. We define reading time as the duration between the two paired
signals – the start of email reading pane which loads the content of an email into the
reading zone and the end of email reading pane which records the closing of that pane,
as it forms a consecutive reading event. To minimize potential impacts caused by the
above issues, we ignore samples with reading time shorter than one second. Reading
events on threads (20.5%) are removed since they are more conversational in nature and
complex to track.2 We also only study users who read at least one email per weekday
so as to focus on normal traffic and avoid random noises.

Data Our experimental data is sampled from enterprise emails over a two-week period
from May 6th to May 20th 2017. We enforce the above filtering rules when collecting
the data. Beyond this, we sample the data randomly to minimize potential biases
towards specific demographics or enterprises. For simplicity, we refer to this dataset
as desktop client dataset. In total, this sample contains 1,065,192 users, 69,625,386
unique emails3 and 141,013,412 reading events (i.e., an average of 132 reading events
per person) from tens of thousands of enterprises. From this set, we further select users
who also use the iOS app over the same period and collect their corresponding usage
from the mobile logs, which is referred to as the mobile dataset. This gives us 83,002
users with 5,911,107 unique emails and 10,267,188 reading events (an average of 124
reading events per user). By collecting email usage patterns from both desktop and
mobile clients, we are able to study in-depth cross-device reading behavior. In addition
to the two-week window of data, we also collect another two-week period data prior to
this period from the same set of users. This “history” data is used to capture rereading
behavior if any.

Desktop (web) client An anonymized version of the user interface of the web email
client is shown in Figure 6.1 (left). The interface supports users to manage their emails
effectively on web browsers. We find that nearly all the usage data logged from this
portal comes from desktop/laptop users, which is why we refer to it as desktop client
throughout the chapter. On mobile phones, people tend to use a mobile email client
(app), as described later. To read an email on our desktop client, users have to first select
it from the email list by clicking on it.

Once an email is selected from the list, its corresponding content will show up
instantly on the reading pane on the right side of the email list. As mentioned, we
use the time gap between when a message appears in the reading pane and when it is
replaced with another message to approximate reading time.

As a sanity check, we validate this method by first performing various actions on the
client by ourselves and video-record everything, and then checking the corresponding
logs recorded by the system. We find that for majority occasions our email reading time

2The dwell time on each email of a thread is dependent on the size of the screen, scrolled position of the
pane and other factors.

3One email that is sent to multiple recipients is counted as one.
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Figure 6.2: Reading time distributions in desktop and mobile platform. Time is binned
by every 10 seconds.

can be reflected by the time gap between reading pane’s opening and closing. However,
when we quickly navigate through emails in the email list by pressing arrow keys or
clicking, a very short reading time (such as hundreds of milliseconds, but no more than
one second) is recorded by the system. Given the very short time, we assume that it
is unlikely for other users to read the email as well. Therefore we set a one second
threshold on the reading time in order to filter out these unlikely reading events.

Mobile client (app) The right screen-shot in Figure 6.1 depicts the user interface on
the iOS mobile application which is the source of the mobile logs. Users can click into
an email by tapping on an email snippet in the list display. A reading pane with the
email content will show up that fills the display area of the application. The reading
time is the interval between tapping an email and hitting the exit/back button or quitting
the app.

Due to data sensitivity, normalized reading time is used in some analyses instead
of absolute time. Time is turned to logarithmic form and then min-max normalized to
avoid showing absolute time.

6.4 Reading time and contextual factors

In this section we first provide a brief overview of reading time, then delve into various
contextual factors that impact reading time.

6.4.1 Reading time overview

The overall distributions of reading time on desktop and mobile are presented in Fig-
ure 6.2. In both datasets, more than half of the reading events happen in less than 10
seconds (55.6% on desktop vs. 54.2% on mobile). On mobile, about 25% of emails are
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read in 10-20 seconds. In comparison on desktop, only about 11% of emails fall into
that range.

Interestingly, the reading time distribution on desktop has a much longer tail com-
pared to mobile. On desktop 12.0% of reading events last longer than 180 seconds (3
minutes) which we suspect can cover many cases where the users leave an email opened
on the screen while paying attention to something else – potentially not even being at
their desk. The longer tail can also be explained by the fact that spending longer time
on reading could be relatively easier on larger desktop screens.

Using proprietary email classifiers, we can put email into various categories. Not
surprisingly, we find that human emails have longer reading time than robot emails,
with promotional and spam emails having the shortest reading time.4

6.4.2 Temporal factors

In this section we study how reading time is affected by various temporal factors. To
begin with, we investigate how the average time users spend reading emails varies
depending on the time of day and the day of the week. Figure 6.3 illustrates the average
email reading time in different hours of the day.5 It can be seen that average time spent
reading emails on desktops increases through morning time and peaks around noon, and
then decreases through the afternoon and the evening. However, the reading time on
mobile is drastically different and increases from around 7PM up until 2AM next day,
while it decreases through most of the afternoon.

Moving on, we find that for both desktop and mobile, reading time on weekdays
is higher than that on weekends. On both datasets, the weekday pattern is fairly stable
with minor changes; for desktop on weekdays, reading time is the lowest on Monday
and highest on Friday. On mobile, the reading time slightly peaks on Wednesday and is
the lowest on Monday. We omit the visual presentation of details for brevity.

We also compare the type of emails that are typically received and read by users
between weekends and weekdays, in order to find out if there is any difference among
email types. The green bars in Figure 6.4 represent the magnitude of change in per-
centages among emails received in each category, and are computed by dividing the
number of weekend emails by those received during weekdays. For instance a roughly
100% increase in the number of hotel-delivered emails suggests that people are almost
twice as likely to receive such emails over the weekends. We also compare, how often
emails from different categories are read on weekends versus weekdays. The blue bars
in Figure 6.4 – computed in a similar fashion but based on read statistics – confirm that

4Our classifiers follow a semantic taxonomy where emails are first grouped into those sent by human
(human), those sent by machines (robot) and spam. Human and robot classifiers are exclusive and exhaustive,
while the spam classifier is independently built to output confidence scores indicating how likely an email
is deemed as spam. Next, for emails that are classified as robot, ngram-based classifiers are established
for identifying different intents from the emails. These include classifiers that identify travel information
(hotel, car rental, flight), classifiers that identity reservations for food (restaurant) or concerts/festivals (event),
classifiers that identify your purchases (receipt) with tracking information (parcel), and finally any coupon
codes if available (promotion). For human emails, a rule-based classifier that identifies intents asking for
meetings (meeting) is also included for our analysis. In total, 96.1% of the emails have been classified by the
system, which provides us a representative sample for comparing the distribution of email types.

5We calibrate the calculation according to users’ local time zones.
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Figure 6.3: Average email reading time across different hours on desktop (top) and
mobile (bottom).

the types of emails read by the users over the weekend are mostly consistent with what
they receive. However, they also highlight a few exceptions where reading rates deviate
from what would be expected based on delivery statistics. For instance, hotel-related
emails are almost 3.5 times more likely to be read during weekends, despite the fact
the number of hotel-related emails delivered only grows by a factor of 2. By contrast,
spam and promotional emails are substantially less likely to be read on weekends versus
weekdays.

As a brief summary, through the analyses on temporal factors, we find that the
temporal pattern of reading time is not only correlated with the hour and day of the
week, but also devices and certain email categories.

Figure 6.4: The percentage of changes per email type on weekends vs. weekdays. The
bars are computed by dividing the frequency of emails received/read in each category
over the weekend by the weekday traffic (times 100).
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6.4.3 User contextual factors
In this section, we investigate how user contextual factors could potentially affect the
reading time. Specifically, we examine calendar status, fatigue and user device.

Calendar status While we do not have direct access to the user status of our users,
we can use their calendar status – which can be mined from the calendar app associated
with their email client – as proxy to hypothesize about their user status. The status
classes include tentative, busy, free, elsewhere (working elsewhere), and OOF (out
of office). Note that an empty status means nothing is on the calendar in that period,
while “free” is a status that a user explicitly puts on the calendar and hence it suggests
“availability”. The average reading time provided in Figure 6.5 shows that the reading
patterns can be affected by the calendar pressure of the user in both platforms. On
desktop, reading time is the longest when there is nothing on the calendar and the user
is free. On mobile, the peak occurs at working elsewhere,6, which is the second lowest
on desktop. Users tend to spend more time on an email on average, when they have
nothing specific on their calendar. They spend the shortest time when they are out of
office, perhaps reading emails fast enough mainly to cherry pick the key points.

Figure 6.5: Reading time by different calendar status on desktop (top) and mobile
(bottom).

In Figure 6.6, we consider the number of daily meetings, and the number of busy
hours in the day as proxies for cognitive load of our desktop users. This is inspired by
previous work by Barley et al. [13] that reported time spent at meetings as a source
of stress at work. It turns out that more frequent meetings, and a larger number of
busy hours in the day, are indeed correlated with observing fewer email reading events
overall. That is, busy users read fewer emails, and go through those faster than average.
We observed similar trends for our mobile users and hence exclude more details for
brevity.

6We do not have a strong explanation for long reading times on mobile when the user status is elsewhere.
The high variance (indicated by large error bars) suggests that this is not a frequent/consistent event. We can
only conjecture that the spike might have been caused by users that had to read the emails they normally read
on desktop at work, on their mobile devices.
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Figure 6.6: Reading time of desktop users by the number of meetings (top) and busy
hours (bottom) in a day.

Reading fatigue Psychological research has shown that fatigue after mental work
(e.g., proof reading) leads to a performance drop, such as reading speed and reaction
time [2]. But how does fatigue impact reading time in the email setting?

We use the accumulated time spent on reading emails in the past two hours of user
activities as a proxy for measuring fatigue. The longer the accumulated time, the more
we expect the user to be affected by fatigue. For each email reading event, we sum
the accumulated reading time of the user in the past two hours prior to that event, and
group these sums with a bin size of 10 minutes. The results can be found in Figure 6.7.
As accumulated reading time increases up until 60 minutes, the average reading time
constantly grows. After that point the reading time does not change much. Although
we cannot draw strong conclusions based on these observations in the absence of more
information about the users, these trends may suggest that fatigue prolongs reading time,
and the effect is only up to a certain extent. Overall, our findings are consistent with the
reported effect of fatigue in email settings by Ahsberg et al. [2].
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Figure 6.7: Average reading time conditional on the time spent on reading emails during
the past 2 hours of user activity (proxy for fatigue).

Table 6.1: Reading time on different devices, ordered by device screen size.
Screen
size
(inch)

Average reading time
(normalized)

Sample device Percentage

4.0 1 iPhone SE 14.3%
4.7 0.89 iPhone 7 57.2%
5.5 0.89 iPhone 7 Plus 23.9%
7.9 0.90 iPad mini 4 0.9%
9.7 0.82 iPad Pro 3.3%

User device We confine the scope of this part of study to mobile users because the
device type information – specifically, screen size details – is only available to us in our
mobile logs. Mobile devices have different screen sizes, which we hypothesize could
impact the reading experience. In Table 6.1, we group devices by their screen size and
present their average reading time per email. Users on the smallest screen devices spend
the longest reading time. This may be explained by the limited contents displayed on
a small screen, which demands more efforts (scrolling, zooming) to read. The 9.7in
iPads which have the largest screen size have the lowest reading time across all devices.
Overall, the reading time is negatively correlated with screen size.

6.4.4 Reading and rereading

In this section we investigate the reading time of emails that have been read at least
once before. We find that 33% of unique email reading actions are actually rereads, a
significant portion that may seem surprising at first glance. However, as an interesting
reference point, Teevan et al. [209] reported that about 38.8% of all web search queries
are re-finding, which further underlines the scope of re-finding activities beyond email.
It is worth noting that unlike Section 6.3, here if one email has say three recipients,
it is considered as three unique emails for the purpose of computing reread statistics.
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Figure 6.8 shows the distribution of reread counts for reread emails. We observe that in
58.4% of the cases emails are reread once (read twice in total), while the majority of
reread emails (95.7%) are reread no more than 5 times.

Figure 6.8: The distribution of email reread actions.

Given the high frequency of rereading behavior observed in the logs, we are encour-
aged to extend our investigation further to compare reread actions for different email
types, study the impact of previous reread counts on reading time, and analyze rereading
cross-device.

Reread action across email types The results in Figure 6.9 reveal that certain cate-
gories of emails (e.g. hotel, car rental and flights) are more likely to be reread. This may
be explained by the way users deal with travel related emails, e.g. they may read it upon
first delivery, but when they check in at the hotel or catch the flight they need to read it
again for information. Human emails have a much higher rereading percentage (37.4%)
versus robot emails (26.7%). While spam and promotion have the lowest rereading
percentage (19.1% and 15.0%), they represent a noticeable portion in the emails that are
read. One possible explanation is that during email triaging some users read spam or
promotion, and they may flag or move some important emails to their inbox. Revisiting
those later will be seen as rereading.

Figure 6.9: The percentage of emails that are reread across different classes of emails.
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Reread count vs. reading time Earlier in Figure 6.8 we described that 41.6% of
reread emails are reread more than once. How does reading time change, as users read
certain emails over and over again? In Figure 6.10, we look at how reading time changes
by the reread count. We group the reread emails by the maximum number of times
they have been reread from three to five. We observe that as emails are reread more
often, users spend less time on reading when they have to go through them again, which
probably can be explained by their increasing familiarity with the content. Another
interesting finding is that emails that are reread 5 times are read more quickly than those
reread 4 times, and those reread 4 times are read more quickly than those reread 3 times.

Figure 6.10: Average reading time of reread emails for different number of previous
reads.

Cross-device rereading With the increasing popularity of smart mobile devices, users
can now easily switch to their mobile device to handle emails when they are away from
their desktop. In this section we focus on emails that are reread across devices. We
only include emails that are received during our sampling period and opened on more
than one device. In total we have 587,953 emails and 67,440 users. Specifically, we are
interested in cases where users read a new email on mobile first then switch to desktop
to read it again, and vice versa.

One prominent characteristic of cross-device reading events is that 75.6% of the
emails are first read on mobile before being read on desktop. On the contrary, only
24.4% of emails are first read on desktop, followed by mobile. One reason for this
imbalance could be due to the convenient access to mobile devices, that enable users
to get to their emails more easily and regularly. Another reason, could be that access
to more information and easier typing on desktop encourages people to continue and
finish the tasks they initially started on mobile, on desktop.

We also notice that when users switch from desktop to mobile, 29.5% of the times
the subsequent reading events happen within 30 minutes, while from mobile to desktop
the percentage is much lower at 16.7%.

Finally, we explore how reading time changes after a user switches from one client
to another. To this end, we measure how the reading time of an email first opened on
mobile changes when the user opens it again on desktop and vice versa. Figure 6.11
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demonstrates the histogram of changes7 in reading time for mobile to desktop switches
on top, and for desktop to mobile switches at the bottom. On both histograms, there is a
large peak around 0, that suggests users spend roughly similar time when reading the
same email across different platforms. The right peak on the top histogram represents a
large set of emails that are opened for the first time on mobile, and re-opened later on
desktop with significantly longer reading time. This set is likely to include emails that
the user has glanced through on mobile, but left to fully address on desktop where it is
easier to type and access information. The left peak on the bottom histogram includes
another interesting set of emails. These are emails that are opened on desktop for the
first time and are reread on a mobile device, but with much shorter reading time on
average. Perhaps these are emails that the users revisited for quick fact checks and
referencing on mobile, when they had no access to their desktop client.

(a) Change in reading time from mobile to desktop.

(b) Change in reading time from desktop to mobile.

Figure 6.11: Change in reading time when the user rereads the same email across
platforms.

7That is, reading time measured on the second client, minus the reading time recorded on the first client
for the same email (in seconds).
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6.5 User study
User studies can provide more information about “why” we see certain behaviors in the
logs. Through a brief user study, we obtain qualitative explanations for some interesting
observations, namely, what lead to long reading time on an email, why users conduct
rereading, how and why users read emails across devices.

6.5.1 Methodology
Our user study consists of two phases: 1) screen recording; and 2) interview. We first
record a one hour video on the user’s computer screen, without interrupting the user’s
normal activities during work hours. The screen recording is one of the least intrusive
ways to help us observe natural behavior on their working computer.

Then we conduct the interview a few hours later. We avoid interviewing immediately
after recording so that the user will not hurry their work during the recording time.
A one-on-one interview is conducted by playing back the recorded video and asking
questions. The video helps the user to remember what he/she was doing during the
recording. The interviewer also looks at the screen if permission is granted by the
participant. Otherwise the interviewer sits back from a distance to avoid reading the
contents on the screen. Specifically, the interview starts with general questions such
as user’s habits of reading emails, then moves into detailed questions on the user’s
interaction with emails during the recording. In total, 15 participants from an IT
enterprise took part in this user study, including 9 men and 6 women. The demographics
also include people at different ages (from 20s to 60s), and at different job positions (3
interns, 4 junior employees, 5 senior employees, and 3 senior managers). Afterwards,
participants are awarded a 25 dollar coupon for online shopping.

6.5.2 Findings
Long reading time. In our sample, no one closes the email client during their work
hours. All participants either keep it opened or minimized in the background. This can
lead to excessive long reading time being recorded for the last opened email in a session,
which partially explains the heavy tail for desktop reading time (the reading time longer
than 3 minutes) in Figure 6.2. Another reason that may explain the inflated reading time
is participants’ multi-tasking. Multitasking is frequent for the majority of participants
and happens when it is needed to refer to the email contents to complete another task.
However, neither of these 2 situations applies to mobile because users would usually
close the mobile app after they use it, and they do not multi-task while reading emails
on mobiles. This helps explain the much smaller tail of mobile reading time than that of
desktop.

Rereading. Rereading is common for all participants. It takes place either after an
email search, or simply by browsing through emails that are read. We find two cases
that frequently lead to rereading. The first is email triaging, especially for the senior
employees and managers who may receive too many emails to finish reading at once. In
this case, participants would flag emails or move them to certain folders after a quick
skim, then read the emails again some time later. Another case is for difficult or long
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emails, that participants need to take several reading attempts to digest the content.
This also includes the scenario when they first read the email on mobile, and continue
processing it on desktop.

Cross-device reading. 40% of the participants report the use of the mobile client for
their work email. They report using the mobile client only when they are away from the
working environment, for instance morning at home, during transit or away for coffee
breaks. For heavier reading tasks, participants would switch from the mobile client to
the desktop. This could explain the reading time increase from mobile to desktop. In
summary, the mobile client only serves as a complementary platform to the desktop
client.

6.6 Discussion and conclusions

This chapter characterized in depth how people read their enterprise emails on desktop
and mobile devices. We acknowledge that a limitation of this study is that direct
applications are not provided, as the chapter focuses on observational insights. However,
the rich findings can open up directions for possible applications in email system design,
as well as fostering research in email systems.

Adaptable reading pane. Email types and lengths affect reading time substantially.
For instance, we found that people tend to spend more time reading human-authored
emails, while ignoring spam or promotions. This may suggest, from users’ perspectives,
loading an entire promotion email to the reading pane is unnecessary, and the saved
space could be utilized to support other “smart” options such as one-click unsubscribe.

Contextual inbox. People tend to be more active reading on desktops during
morning and noon hours, whereas on mobile devices reading time increases from
evenings to midnights. As expected, our temporal analysis suggests that attention is
more focused on work-related communications on weekdays, and on travel activities
during the weekends. These findings can help us build a contextual inbox. For instance,
reducing pop-up notifications for receipt confirmation emails can potentially help users
stay focused in a meeting. Likewise, for important/urgent emails that are delivered
at night, auto-replies to senders and reminders to recipients’ mobile phones may help
reduce tension and response latency.

Email assistant. We find that people with busier calendar schedules may read fewer
emails and process those faster than average. Similar to the fatigue effect identified
in psychological research conducted by [2], we find that the longer accumulated time
users spend reading in the past two hours, the slower they may become in terms of
processing new emails. In such cases, email clients can track down things that need
to be completed, highlight items that are skipped due to a lack of concentration time,
or even auto-complete them (e.g., schedule a follow-up meeting per discussed), which
may alleviate users’ burdens from busy days.

Cross-platform rereading support. Users also reread emails across platforms,
where 76% of cross-platform rereadings happen first on mobile then on desktop, and
24% vice versa. For the former case, users tend to continue heavy tasks on desktop. The
system can assist users’ rereading activity by remembering the last-read position and
help them continue processing the email. For the latter, since users spend significantly



Discussion and conclusions 111

less time when rereading on mobile (e.g. fact checking), summarization and highlighting
email contents would save user efforts and improve their efficiency.

Our log analysis has painted a rich picture of reading time on emails in general.
A user study in an IT enterprise also served as a sanity check for the observations.
Further, it would be interesting to investigate how the nature of the business affects
the email reading behavior (e.g., a production-based company will possibly be very
different to a government organization). Although this was not covered in the log
analysis due to privacy protection on user identity (we do not have access to email
addresses), conducting pop-up surveys as in [110] can provide large-scale supportive
evidence that helps complement our log analysis and user study. We also discussed
several ways how these findings could be used. The action “reading” is shared across
different email-related scenarios. If we understand reading time for a user query and
the corresponding search success, can we infer and adjust our understanding of, for
example, user reading time on an auto-generated reminder or meeting invitation? We
leave these interesting questions to our future work.





7
Conclusions

In this thesis we have examined user interaction behavior with different types of infor-
mation objects, specifically with academic papers and enterprise emails. In Chapter 2
we have provided a characterization of academic search queries, analyzed the query
failure phenomenon, and proposed a query suggestion approach to remedy the failures.
In Chapter 3 we have studied query reformulation behavior and topic shifts in academic
search, identified their trends over a long period of time, and revealed their correlations.
In Chapter 4 we have studied download behavior in academic search, and addressed the
task of predicting the next download. In Chapter 5 we have tackled the task of reranking
paper recommendations from a production recommender system, using both content
and behavioral information. And finally, in Chapter 6 we have studied user reading
behavior on enterprise emails, with a focus on how users spend time on reading.

In this chapter, we list the main findings in our research, discuss their implications
and limitations, and point out future directions. Section 7.1 summarizes the answers
to our research questions. Section 7.2 describes limitations of our work and suggests
directions for future work.

7.1 Main findings

7.1.1 Academic search and null queries
Our research started with a study on academic search. We proposed our research
question aimed at understanding how users conduct academic search:
RQ1 What are the characteristics of queries and failures in academic search, and how

do we remedy failures?
Answering this question has given rise to a characterization of academic search queries.
We have studied a transaction log from ScienceDirect that contains the search log of
many users during a long period of time. As a result we have obtained results that are
representative for academic search. At a first glance, academic search queries are found
to be more verbose than general web search queries, and their query length distribution
features a heavier tail. The relatively long queries can be challenging for a search
engine to address the information needs embedded in them due to the query complexity.
Besides, long queries lead to the query sparsity problem, i.e., queries do not repeat often
in the transaction log. This makes it difficult for a search engine to learn from previous
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user interactions with the same queries.
We have also identified counterparts of certain query types in general web search,

including navigational queries, transactional queries and informational queries. We
notice that the boundaries do not appear to be very strict in academic search, for example,
between navigational and informational queries: users may enter a few keywords in
a query with the sole purpose of downloading a specific paper (navigational), or the
same query may be used for searching information around a topic (informational). The
implication is that to make an accurate classification of query types in academic search,
it is necessary to consider not only the query itself, but also the search contexts such as
query reformulations and clicks. We have also found that the richness of entity queries
in the log, which may contain key concepts in papers, author names etc., can help to
address retrieval tasks.

After obtaining a characterization of academic search queries, we have zoomed in
on search failures, namely on so-called null queries. We have found a surprisingly high
occurrence rate of null queries in our academic search scenario compared to general
web search. We have studied the null query phenomenon from three angles: queries,
sessions and users. We have found that null queries are even longer than normal queries
in academic search, and there are more boolean operator queries in them. This indicates
that query complexity correlates with the occurrences of null queries. We have examined
the contexts where null queries happen, namely null sessions. We have discovered that
null queries can occur in seven types of null sessions such as refining, generalizing and
exploring sessions, where users conduct searches in different contexts or with different
goals. We have also examined users who frequently fail and those who do not. We have
found a medium correlation between a user’s self-similarity score and the null query
frequency, which suggests that users who have more consistent search interests tend to
issue more null queries.

After having conducted our observational study on queries and failures in academic
search, we have proposed an algorithmic fix for the null query problem. We have
used the obtained insights to create a query suggestion method that makes query
recommendations when null queries occur. We have proposed to use entity information
in our modified query entity graph (mQEG). The mQEG is constructed using entities in
queries and query transitions in sessions to surface relevant query suggestion candidates.
On top of this, we have proposed a session-conditional approach that adjusts the ranking
of query suggestion candidates generated by mQEG to be based on the predicted
null session type. We have proposed to use a set of query features, query transition
features and click features for the prediction, and cast the query suggestion problem
as a multi-label classification problem. We have then used the output of different
probabilities of the session labels in our algorithm to produce a reranked list, which
achieves significant improvements over the baseline query suggestion method without
using session information. We have also discussed a personalized query suggestion
approach that is based on user preferences of entities in queries. There is a slight
improvement in performance but it is not statistically significant.

The implications from the experiments aimed at answering RQ3 are that entity and
session information can help bring up quality query suggestions for null queries. In
contrast, personalization based on entity interests may not always help, e.g., when users
shift interests away from their historical interests.
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7.1.2 Query reformulation and topic shift

The above findings are mostly focused on user behavior in search sessions. Moving on,
we have also studied long term user interaction behavior in academic search, namely
their query reformulation and topic shift. Query reformulations concern ways of
composing queries, a type of explicit behavior that can be measured, while topic shifts
are on the implicit side of user behavior. We have answered the following research
question:

RQ2 Do topic shift and query reformulation patterns correlate in academic search?

We have provided the first query reformulation taxonomy in academic search, that is
built on query logs collected from many users over a long period of time. Our taxonomy
includes adding terms, dropping terms, substituting terms, revisiting and new queries.
We have found the most frequent reformulation type to be revisiting, i.e., entering a
query that is already in the user’s search history. This reformulation type accounts for
nearly one third of all reformulation types. Comparing different query reformulation
tendencies over the course of time, we have also found that revisiting queries tend to
happen more often than others. The prevalent revisiting occurrences indicate a certain
degree of recurrent information need of academic searchers, e.g., constantly looking for
new papers on the same topic or simply revisiting old papers.

We already know that in general web search, revisiting is an important aspect of
user behavior [209]. Through our study in the domain of academic search, we have
found a major portion of the query traffic to be revisiting queries. The implication for
modern academic search engines is that assistance on these revisiting queries should
be provided, which can either be realized by helping users refind old information or by
helping them to discover new information around recurring topic interests, depending
on the user intent.

Besides query reformulation, we have examined users’ topical interest over time,
and how this is correlated with query reformulation. Our findings reveal topic shift
trends in general: we have found that nearly half the users tend to have increasing topic
shifts over time, meaning that their interests are diversifying to a certain extent; the other
half have decreasing topic shifts, i.e., their interests are gradually focusing. It is hard to
find out why without conducting interviews with users, which is costly. However, it is
reasonable to speculate that users may be at different stages of their research and this
phenomenon affects their information needs: new academic searchers may be exploring
different topics and have very diversified interests; while senior searchers may be more
focused on their domain. We have also found that bigger topic shifts tend to happen
over longer gaps between searches than shorter gaps.

Finally, we have tried to correlate topic shift trends with query reformulation prefer-
ences of users. To our surprise, we have found very little correlation over a long period,
meaning that regardless of their query reformulation strategies, users could be equally
likely to be focusing or diversifying during their searches. Looking at a shorter period,
we have found that certain query reformulations may be correlated with immediate topic
shifts, such as submitting new queries. The implication is that features derived from
query reformulations can help predict the magnitude of immediate topic shifts.
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7.1.3 Download prediction

Besides queries, we have studied download behavior in academic search. We consider a
download to be the retrieval of a PDF paper file. We started with a characterization of
download behavior, and then conducted predictions on download behavior. We have
answered the following research question:
RQ3 What are the characteristics of user download behavior in academic search and

how can we predict that?
We have identified the characteristics of user actions in a download session, and the
action trajectories that lead to a download. We have found that the most frequent
trajectory is a query leading to a download, and that clicks are much less frequent in
download sessions. Looking beyond sessions, we have found that certain behavioral
factors are correlated across sessions. For instance, a positive correlation between
download numbers of successive sessions shows a consistency of download intensity.
On the other hand, the time gap until the next download session is negatively correlated
with the number of queries in the current session: the more queries in the current session,
the sooner the next download session might occur. We have also proposed an approach
to use downloads to represent user’s topical interests. We have found a bias in the topics
of the downloads. Moreover, we classify users into different groups based on their
topical interests, and have found differences among users with different topical interests,
such as behavioral variances in terms of download diversity and coherence. Another
interesting finding is that many users download papers across disciplines, which is a
reflection of recent findings on the increasingly interdisciplinary nature of scientific
research.

Furthermore, we have utilized some of the observations of user downloads for two
prediction tasks. We have addressed two prediction tasks: predicting the time gap until
the next paper download session and predicting the number of downloads in the next
download session. These tasks help to make a paper recommender system pre-emptive
in terms of their timing of sending recommendations, and alleviate the information
overload problem for users, respectively. We have proposed a model based on Long
Short-Term Memory (LSTM) that utilizes user action history, and that is based on user
segmentations by Dynamic Time Warping (DTW), which has produced reasonably
good prediction performances. Additionally, we find the topic feature beneficial for
predictions. Our prediction tasks of the time gap and the number of downloads are
general, so that they are applicable to any paper recommender system.

7.1.4 Reranking paper recommendations

We have examined another recommendation scenario, where users on an academic
search engine sign up for an email newsletter service. The emails contain paper
recommendations based on user browsing on the academic search engine. We have
dealt with the task of making better paper recommendations for new users by reranking
paper candidates generated from the production recommender system. In doing so, we
have answered the following research question:
RQ4 How do we utilize both content and behavior to rerank paper recommendations?

The primary challenge in our setting is the absence of user interactions with the rec-
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ommender system, when users sign up for the email newsletters. Therefore, we have
addressed this challenge by proposing a hybrid model that utilizes both paper content
and user behavior. For the paper content component, we have modeled various aspects
from the paper metadata, and have proposed similarity measures for these aspects. We
have found certain aspects to be useful for making better recommendations, such as
entity embeddings of papers, and hence the embedding similarities between papers
browsed and recommendation candidates. For the behavioral component, we have
utilized user browsing on the search engine, which are less sparse, and user clicks, by
learning a mapping function from browsing to clicks on recommendations.

Our hybrid reranking model combines both behavior and content and is trained
using a pairwise learning approach based on real user interaction data. The outputs
are reranked paper recommendations that are significantly better than the production
system in terms of getting user clicks. We have found that both content and behavior
contribute to better recommendations. We have also detailed individual contributions
from different paper aspects and components of the model. Our reranking model can be
applied to production recommender systems as a separate module.

7.1.5 Email reading time

Finally, we have examined another type of user interactions – email reading. Emails are
an essential part of modern communications, for instance, in academic cooperations
emails are universally used to discuss research [59, 198, 216]. Along with the popularity
of recommender systems, emails are also used as the carrier of recommendations to
users. The core of email interaction behavior, namely email reading, has not been well
studied in the literature. Therefore, we have answered the following research question:
RQ5 How do users read their emails and how their reading time is affected by various

contextual factors?
We have proposed a methodology to approximate reading time based on user interactions
with email clients. Then we have studied the email reading time based on a very large
enterprise email dataset. We have uncovered many contextual factors that are correlated
with reading time, including temporal factors, user contextual factors, and re-reading
behavior. We have obtained interesting findings in each category, for example: reading
time distribution on desktop devices has a much heavier tail than that on mobile, which
can be explained by possible multitasking in the desktop environment; users have
different temporal patterns of reading emails depending on the devices; users spend
more time on certain emails during weekends compared to weekdays, such as restaurant
and hotel related emails; users spend less time reading emails when they are busy; the
majority of cross-device reading events happen when switching from mobile to desktop,
where reading time tends to increase after switching devices.

A user study has also revealed the reasons behind certain findings. Overall, we have
characterized email reading time, and found its connections with various factors. The
findings have enriched our understanding of email reading time, and may help us to
come up with ways to optimize email reading, for instance through adaptive reading
panes, contextual inboxes and better cross-device reading assistance.
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7.2 Future work

In this thesis, we have examined user interaction behavior with academic papers and
emails. Specifically, we have answered our research questions while inspecting users’
queries, downloads, interactions with a recommender system, and email reading behav-
ior. While diverse, our study is not free of limitations. In this section, we identify some
of those limitations and propose ways to address them in future work.

7.2.1 Interpreting user intent

It is crucial for a search engine or a recommender system to properly interpret user
intent, in order to give users what they want. From the system’s perspective, user intent
can be inferred from user inputs such as textual queries, or actions such as clicks and
downloads. However, these signals may be noisy and sometimes hard to interpret. For
instance, users may have placed a wrong click on an item, or issue queries that can
be ambiguous [210]. In academic search, the interface layout in our setting is more
complex than that of a general web search engine, where users can perform different
types of actions. This could make it more difficult to interpret and denoise user signals.
Another tricky case is when users perform no actions. In Chapter 3, we have examined
how to help users who encounter null queries by using query suggestions. There are
certain cases when users may actually not need that help, and abandon the current
search because the null result is exactly what they want. In Chapter 4, we assume that
user topic interests are reflected in their queries. Still, without explicit feedback from
users, we cannot be 100% certain that this case is true. In Chapter 5 and In Chapter 6,
we make predictions and recommendations based on users’ downloads and browses,
which may not reveal all of the user interests. Although our methods are designed to be
applied to large volumes of data, automatically and without human intervention, they
may not be precise enough to always capture user intent.

To better interpret user intent, we propose a number of future directions. In the
context of complex search interfaces such as those in academic search, it is possible to
use carefully designed click models [44] to interpret user behavior. User signals such
as mouse hover, dwell time, clicks on results and other parts of the search result page
(title, authors and abstract etc.) may encode user intent. In academic search, different
types of clicks may encode different levels of relevance. For example, download is
a special click action that is a stronger relevance signal than a mere click on a paper
abstract. However, current click models do not sufficiently consider the differences and
therefore should be improved in this aspect. Search contexts should also be considered,
for instance, previous queries and clicks, in order to better understand the state of the
user.

Another interesting direction is to introduce conversational search [174] into the
system, which could be handy when the user has an ambiguous intent and the system
may not interpret it with high confidence. The system can “talk” to the user by asking
questions about ambiguous queries and let the user choose the correct intents. When a
null query occurs, the system may also ask the user whether assistance is necessary.



Future work 119

7.2.2 Exploitation versus exploration

In Chapter 3 and Chapter 6 we have examined how to recommend personalized queries
and papers to users, based on their historical interactions with the systems. Our models
rely heavily on exploitation, that is, we try to make recommendations based on the
“known user interests,” represented in their historical behavior. In the domain of aca-
demic recommendation, however, sometimes users may wish to break out of the “filter
bubble” and see something completely new. Recommending something new to the user
that is not based on their interests is highly risky, as it may undermine user satisfaction
of the system. Still, if used properly, this strategy brings benefits to users. For instance,
recommending new algorithms in the domain of machine translation to a researcher
specialized in information retrieval may inspire inventions of new models. We have not
explicitly modeled this strategy in our work.

We argue that in academic recommendation tasks, exploitation should be comple-
mented with exploration, which involves recommending contents that are not entirely
based on user interests. We refer to this type of recommendation as “exploratory rec-
ommendations.” The task of making exploratory recommendations involves deciding a
good timing, and selecting useful contents for the user. First and foremost, exploratory
recommendations should come in at the right moment to maximize their utility to users,
instead of disturbing users. Therefore, the system needs to understand the user status.
Query reformulations can be used to infer the user status (Chapter 3 and Chapter 4) – the
system can speculate, based on query reformulations, that a user is looking for a specific
paper; in that case recommending a paper about a very different topic may not be ideal;
what would be better, is when the user is actively exploring around some subtopics in
search, to recommend something different. Automatically inferring user status may
be less intrusive to users, but it may not always be accurate; therefore, it could be
complemented by explicitly asking users whether they would like to see exploratory
recommendations.

7.2.3 Explainability of recommendations

In Chapter 3 and Chapter 6, we have discussed making recommendations of queries and
academic papers. What we have not discussed, on the user side, is how to interpret the
trustworthiness of recommendations, especially for the personalized recommendations.
A survey in the domain of news recommendation has shown that the majority of users
want to see explanations for personalized recommendations [211].

It is yet to be seen whether this holds for other domains, such as academic recom-
mendations. Nevertheless, the system could offer such an option to let users choose,
whether to see the explanations behind personalized recommendations. This brings
the following benefits: (1) Explanations may help users’ decision making process: for
instance, when a paper recommendation is made primarily based on author similarity,
the system also makes the user aware of the fact that author similarity is used (e.g.,
displaying a short label “based on author similarity”). If the user is actually looking for
papers written by similar authors, then this explanation may grab the user’s attention
and make it easier to decide whether to click on it. (2) The explanations serve as re-
minders to let users understand what part of their personal information is utilized. Being
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transparent to users about the recommendation process may improve trustworthiness of
the system and that of the recommendations. As future work, it is interesting to examine
methods for generating explanations of academic recommendations. Meanwhile, A/B
tests can reveal how the explanations affect the recommendation performance, and the
user satisfaction of the explanations.

7.2.4 Applications based on predicting email reading time
In the age of information overload, e.g., facing an excessive number of emails, it is
meaningful to make email reading easier. While we have obtained a characterization
of user reading time on enterprise emails, we have not applied the findings to build
new email applications. We propose to make several applications based on automatic
prediction of email reading time as future work, which can help users be more efficient
in reading emails. As we have pointed out in Chapter 6, based on predictions of email
reading time, the system can use an adaptable reading pane to display emails; the system
can also make the inbox contextual based on user status, assist users through busy
schedules, and provide cross-platform support when users reread emails.
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Samenvatting

In een steeds meer gedigitaliseerde wereld is het moeilijk om ons een leven voor te
stellen zonder interactie met digitale informatieobjecten. Het internet en mobiele appa-
raten stellen mensen in staat om eenvoudig toegang te krijgen tot informatie: of het nu
gaat om het lezen van het populairste onderzoeksartikel of het beantwoorden van e-mails
van een collega ver weg, het is slechts een kwestie van een paar toetsaanslagen, klikken
of vegen op touch screens. Met de recente vooruitgang in natuurlijke taalverwerking
en de toepassing ervan in slimme apparaten zoals Alexa en Google Home, kunnen
mensen krijgen wat ze willen, handsfree en via spraakopdrachten. Als gevolg hiervan
zijn we getuige van een schat aan gebruikersinteracties op allerlei online platforms.
Door deze gebruikersinteracties te bestuderen, kunnen we de informatiebehoeften van
gebruikers, hun gedragspatronen en problemen of fouten begrijpen wanneer ze met een
informatiesysteem omgaan. Uiteindelijk werpen deze observationele inzichten licht
op mogelijke richtingen om het systeem en de gebruikerservaring te verbeteren. In dit
proefschrift hebben we gebruikersinteracties bestudeerd in het domein van academische
zoek- en aanbevelingssystemen en in zakelijke e-mails.

In het eerste deel van het proefschrift concentreren we ons op het blootleggen
van hoe academische zoekers omgaan met informatieobjecten. We beginnen met het
karakteriseren van academische zoekopdrachten en ontdekken dat deze verschillen
van algemene zoekopdrachten op het web. Academische zoekopdrachten zijn over
het algemeen complexer en bevatten meer entiteiten. In onze context vinden we ook
gevallen waarin gebruikers aanlopen tegen falen van een zoekmachine, waardoor geen
zoekresultaat terug gegeven wordt. Gebruikmakend van de kenmerken van academische
zoekopdrachten en sessie-informatie wanneer gebruikers zoekopdrachten uitvoeren,
vinden we dat het mogelijk is om goede aanbevelingen voor zoekvragen te suggereren
om gebruikers in nood te helpen. Verder gaan we na hoe gebruikersgedrag over een
langere periode verloopt. We bekijken met name de herformulering van de vraag en de
verschuiving van onderwerpen. We identificeren meerdere herformuleringsstrategieën
voor zoekopdrachten en vinden dat het opnieuw bezoeken van vragen heel gangbaar
is. We zoeken naar correlaties tussen herformulering van vragen en verschuiving van
onderwerpen, ervan uitgaande dat bepaalde herformuleringen kunnen aangeven hoe
gebruikers van onderwerp veranderen. Tot onze verbazing vinden we op de lange
termijn weinig correlatie. Verschuiving van onderwerp op korte termijn is gecorreleerd
aan bepaalde herformuleringstypes, zoals het indienen van nieuwe vragen. Na het
onderzoeken van het zoekgedrag van gebruikers bestuderen we ook hoe gebruikers
artikelen downloaden. We karakteriseren hun downloadgedrag zowel binnen sessies
als tussen sessies, en observeren ook verschillende patronen tussen disciplines. Met
behulp van de observationele inzichten stellen we de taak voor om downloads van ge-
bruikers te voorspellen, gebruikmakend van LSTM-gebaseerde modellen in combinatie
met gebruikerssegmentatie. Een ander interessant scenario dat we bestuderen, betreft
gebruikersinteracties met aanbevelingen voor papier. We bestuderen een aanbevel-
ingssysteem dat artikelen aanbeveelt via nieuwsbrieven en bestuderen in het bijzonder
de taak om de aanbevelingen opnieuw te rangschikken, met behulp van een hybride
ranking model dat inhoud en gedrag in overweging neemt.

In het tweede deel van het proefschrift concentreren we ons op hoe gebruikers hun
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zakelijke e-mails lezen en hoeveel tijd ze hieraan besteden. E-mails zijn belangrijk in
academisch onderzoek en communicatie. Zoals bestudeerd in het eerste deel van het
proefschrift, kunnen gebruikers aanbevelingen van artikelen lezen over e-mails. Onze
studie is de eerste om de leestijd van de gebruiker op grote schaal te karakteriseren.
We vinden dat de leestijd gecorreleerd is met veel contextuele factoren. De resultaten
verbeteren ons begrip van gebruikersgedrag op e-mailplatforms en werpen ook licht op
systeemverbeteringen om het lezen van e-mail efficiënter te maken.



Summary

In an increasingly digitized world, it is hard to imagine a life without interacting with
digital information objects. The internet and mobile devices enable people to access
information with ease: be it reading the hottest research paper, or replying to emails
from a colleague far away, it is just a matter of a few key strokes, clicks, or swipes on
touchscreens. With recent advances in natural language processing and its application
in smart devices such as Alexa and Google Home, people can even get what they want
hands-free and through voice commands. As a result, we are witnessing a wealth of user
interactions on all kinds of online platforms. Studying these user interactions help us
understand users’ information needs, their behavior patterns and difficulties or failures
when they interact with the system. Eventually, these observational insights shed light
on possible directions to improve the system and the user experience. In this thesis,
we have studied user interactions in the domain of academic search and recommender
systems, and in enterprise emails.

In the first part of the thesis, we focus on uncovering how academic searchers interact
with information objects. We start by characterizing academic search queries, and find
that they are different from general web search queries. Academic search queries tend
to be more complex, and contain more entities. In our setting, we also find cases when
users encounter query failures that lead to no search result. Utilizing the characteristics
of academic search queries, and session information when users conduct searches, we
find that it is possible to suggest good query recommendations to help users in need.
Moving on, we examine user behavior observed over a longer period. In particular, we
look at query reformulation and topic shift. We identify multiple query reformulation
strategies, and find that revisiting queries is especially common. We look for correlations
between query reformulation and topic shift, assuming that certain reformulations may
indicate how users change their topic. To our surprise, we find little correlation in the
long term. Topic shift in the short term is correlated with certain reformulation types,
such as submitting new queries. After examining users’ query behavior, we also study
how users download papers. We characterize their download behavior both within
sessions and across sessions, and also observe different patterns among disciplines.
Using the observational insights, we propose the task of predicting user downloads,
using LSTM-based models in combination with user segmentations. Another interesting
scenario that we study concerns user interactions with paper recommendations. We
study a recommender that sends out paper recommendations through newsletters and
propose the task of reranking the recommendations, using a hybrid reranking model
that considers both content and behavior.

In the second part of the thesis, we focus on how users read their enterprise emails
and how much time they spend doing so. Emails are important in academic research
and communication. Users can also read paper recommendations on emails. Our study
is the first to characterize user reading time at a large scale. We find that reading time
is correlated with many contextual factors. The results improve our understanding of
user behavior on email platforms, and also shed light on system improvements to make
email reading more efficient.
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