473 research outputs found

    Attack Evolution: Identifying Attack Evolution Characteristics to Predict Future Attacks

    Get PDF
    Several approaches can be considered to predict the evolution of computer security attacks, such as statistical approaches and ed Teams. This research proposes a third and completely novel approach for predicting the evolution of an attack threat. Our goal is to move from the destructive nature and malicious intent associated with an attack to the root of what an attack creation is: having successfully solved a complex problem. By approaching attacks from the perspective of the creator, we will chart the way in which attacks are developed over time and attempt to extract evolutionary patterns. These patterns will eventually be used for the prediction of future attacks

    Impregnable Defence Architecture using Dynamic Correlation-based Graded Intrusion Detection System for Cloud

    Get PDF
    Data security and privacy are perennial concerns related to cloud migration, whether it is about applications, business or customers. In this paper, novel security architecture for the cloud environment designed with intrusion detection and prevention system (IDPS) components as a graded multi-tier defense framework. It is a defensive formation of collaborative IDPS components with dynamically revolving alert data placed in multiple tiers of virtual local area networks (VLANs). The model has two significant contributions for impregnable protection, one is to reduce alert generation delay by dynamic correlation and the second is to support the supervised learning of malware detection through system call analysis. The defence formation facilitates malware detection with linear support vector machine- stochastic gradient descent (SVM-SGD) statistical algorithm. It requires little computational effort to counter the distributed, co-ordinated attacks efficiently. The framework design, then, takes distributed port scan attack as an example for assessing the efficiency in terms of reduction in alert generation delay, the number of false positives and learning time through comparison with existing techniques is discussed

    Invesitigation of Malware and Forensic Tools on Internet

    Get PDF
    Malware is an application that is harmful to your forensic information. Basically, malware analyses is the process of analysing the behaviours of malicious code and then create signatures to detect and defend against it.Malware, such as Trojan horse, Worms and Spyware severely threatens the forensic security. This research observed that although malware and its variants may vary a lot from content signatures, they share some behaviour features at a higher level which are more precise in revealing the real intent of malware. This paper investigates the various techniques of malware behaviour extraction and analysis. In addition, we discuss the implications of malware analysis tools for malware detection based on various techniques

    Malware detection and analysis via layered annotative execution

    Get PDF
    Malicious software (i.e., malware) has become a severe threat to interconnected computer systems for decades and has caused billions of dollars damages each year. A large volume of new malware samples are discovered daily. Even worse, malware is rapidly evolving to be more sophisticated and evasive to strike against current malware analysis and defense systems. This dissertation takes a root-cause oriented approach to the problem of automatic malware detection and analysis. In this approach, we aim to capture the intrinsic natures of malicious behaviors, rather than the external symptoms of existing attacks. We propose a new architecture for binary code analysis, which is called whole-system out-of-the-box fine-grained dynamic binary analysis, to address the common challenges in malware detection and analysis. to realize this architecture, we build a unified and extensible analysis platform, codenamed TEMU. We propose a core technique for fine-grained dynamic binary analysis, called layered annotative execution, and implement this technique in TEMU. Then on the basis of TEMU, we have proposed and built a series of novel techniques for automatic malware detection and analysis. For postmortem malware analysis, we have developed Renovo, Panorama, HookFinder, and MineSweeper, for detecting and analyzing various aspects of malware. For proactive malware detection, we have built HookScout as a proactive hook detection system. These techniques capture intrinsic characteristics of malware and thus are well suited for dealing with new malware samples and attack mechanisms

    解析回避機能を持つマルウェアの解析手法: テイント伝播によるアプローチ

    Get PDF
    早大学位記番号:新8140早稲田大

    Enabling Technologies of Cyber Crime: Why Lawyers Need to Understand It

    Get PDF
    This Article discusses the enabling technologies of cyber crime and analyzes their role in the resolution of related legal issues. It demonstrates the translation of traditional legal principles to a novel technological environment in a way that preserves their meaning and policy rationale. It concludes that lawyers who fail to understand the translation will likely pursue a suboptimal litigation strategy, face speculative recovery prospects, and may overlook effective and potentially powerful defenses
    corecore