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Abstract 

Cybercriminals today are able to orchestrate and realize massive or more targeted at-

tacks using malware as the mean to invade and infect the victim’s machines thus ac-

complishing their malicious intents. Detecting and analyzing such attacks might not al-

ways be feasible and could become a daunting and frustrating process. Targeted attacks 

are amongst the hardest to detect or analyze and pose a major security threat for organi-

zations and large corporations as such malware attacks are extremely sophisticated and 

may go unnoticed for a large period of time magnifying the resulting damaging effects. 

Modern malicious instances are characterized by composite behavior and functionality. 

As malware evolves and becomes more sophisticated malicious intruders have the abil-

ity to adjust their behavior depending on the infected system and its surrounding envi-

ronment. Malevolent performance may be exhibited only upon the acknowledgment of 

specific system factors and the combination of several adjacent parameters and condi-

tions. Certain behavioral aspects might be triggered upon the acknowledgment of spe-

cific environmental parameters while performance variances could differently affect 

each infected machine.  

To overcome such shortcomings, we introduce a novel forensics methodology for as-

sessing and reporting on the modus operandi of a malware in a specific organizational 

context. The proposed malware forensics framework facilitates multiple executions of 

the same malware in differently configured systems, in an automated manner, providing 

fast and inclusive results on how each malware behaves under a specific organizational 

context. The introduced analysis approach has the ability to correlate, analyze and inter-

pret malware analysis results in an automated manner, significantly reducing time and 

effort needed to investigate and extract forensic intelligence information from a collec-

tion of analysis reports. 

Student Name: Provataki Athina 
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1 Chapter 1 - Introduction 

1.1 Overview 

This section will contain an introduction regarding malware and malware forensics as 

well as the importance of malware analysis.  

 

 

1.2 A Statement of the Problem 

Every organization’s goal is to build appropriate defenses in order to protect their com-

pany and prevent, as much as possible, any lurking intruder. Undeniably though, if 

criminals decide to attack they will sooner or later find a channel to achieve it. Cyber-

criminals today are able to orchestrate and realize massive or more targeted attacks us-

ing malware as the mean to invade and infect the victim’s machines thus accomplishing 

their malicious intents. Detecting and analyzing such attacks might not always be feasi-

ble and could become a daunting and frustrating process. 

As malware evolves and becomes more sophisticated malicious intruders have the abil-

ity to adjust their behavior depending on the infected system and its surrounding envi-

ronment. Malevolent performance may be exhibited only upon the acknowledgment of 

specific system factors and the combination of several adjacent parameters and condi-
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tions. For example a specific malware might unveil its behavior only when installed on 

a Windows 7 platform or when a specific piece of software is installed on the victim’s 

PC (like PDF Reader) and remain completely dormant in any other situation. Similarly 

it may reveal a portion of its behavior while parts of its functionality will remain hidden 

until certain conditions are met that will trigger additional activity. Efforts have been 

made in order to unveil trigger-based behavior [13, 28] but it has also been proven that 

it is feasible to impede such analyzers [34]. Additionally, the existence of the so called 

Logic Bombs or Time Bombs further encumbers the analysis process and despite the 

effort made in this area [27] this subject still remains a problem in malware analysis. 

Signature based identification that Antivirus vendors follow phases some significant 

drawbacks regarding the vastness of malicious samples submitted for analysis as well as 

specific restrictions on analysis time and platform variances [23]. A common methodol-

ogy is to allow the executable to run for a short period of time and on test environments 

based on commonly used operating systems and applications, thus possibly not extract-

ing its full functionality. To overcome such shortcomings modern approaches look for 

more automated ways of generating signatures [93]. 

Targeted attacks that are most often and regularly employed by cybercriminals form one 

of the major security threats that companies and organizations have to face and counter-

act [22, 23]. Such sophisticated and well instrumented attacks might remain undetected 

for a prolonged period of time within the victims’ organizational boundaries, amplifying 

the resulting damaging effects. 

Recent approaches yield towards finding more automated procedures to facilitate the 

analysis process. Several automated analysis tools have been developed, like Anubis 

[86], GFI Sandbox
1
 and Cuckoo [54], with the ability to perform automated analysis in 

a controlled environment. Some of these platforms are web-based and perform the anal-

ysis online while others can be locally installed and integrated into forming more holis-

tic and comprehensive analysis frameworks. However, commercial solutions, like GFI 

Sandbox, are often a luxurious choice since a single product license costs at least $15K.  

Whatever the case, with the appearance of such tools, malware constructors have also 

come up with ways to identify if such a tool is being used and remain inactive or hide 

their malicious intent [32]. Moreover utilizing on-line analysis tools also comes with 

                                                 

1
 http://www.gfi.com/malware-analysis-tool#overview 
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restrictions regarding privacy and legal issues on the information that might be dis-

closed to such a third party [19].  

Automated dynamic analysis tools alone suffer from restrictions and cannot fully ad-

dress the complexity and severity of a complete forensic analysis methodology [13]. 

Dynamic analysis involves executing malware samples in a controlled and isolated en-

vironment to monitor and record the observed functionality [23]. However, a single ex-

ecution of a given malware can only reveal a portion of the sample’s behavior, relevant 

to the specific environmental conditions of the analysis run. Therefore different execu-

tions of the same malware could produce diverse analysis results.   

Most of the available automated analysis tools work in a similar manner, performing the 

analysis and then producing a detailed human readable report containing the results for 

further processing. Even so new procedures need to be instrumented in order to provide 

the means for more automatic ways of processing a large number of such reports. Latest 

methodologies approach this issue by first submitting a number of malicious files for 

analysis, collecting and storing the reports in a database and later on performing differ-

ential analysis on those reports with the purpose of identifying either differences or sim-

ilarities in the malwares’ behavior [91, 26], focusing mostly on providing new classifi-

cation and clustering mechanisms rather than revealing their full functionality. 

To overcome such drawbacks and shortcomings, this dissertation introduces a novel 

malware analysis approach that automatically correlates and processes the analysis re-

sults amongst multiple executions of the same malware sample. The proposed malware 

forensics framework provides the means for assessing malware conduct and reporting 

on how a specific malicious sample behaved under a certain organizational context. 

1.3 Academic Research Question - Aims and Objec-
tives 

Our research focuses on investigating the feasibility of developing an approach for as-

sessing and reporting on the modus operandi of a malware in a specific organizational 

context. 

The aim of this master thesis is to study and develop a methodology for analyzing mal-

ware conduct in a certain organizational context. More specifically, our goal is to devel-

op and describe a malware forensics framework that will allow forensics analysts to un-
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derstand and recognize how a specific malware behaves in a certain environment apart 

from its apparent and recorded behavior.  

Our objectives, include describing the challenges in malware forensics, understanding 

the practices used in malware analysis, constructing a test bed for empirically evaluating 

malware and developing an analysis methodology for assessing malware conduct by 

identifying behavioral differences and similarities amongst multiple executions of the 

same sample in variant environments.  

1.4 Research Methodology 

An appropriate Literature review will initially take place, in order to gain a better under-

standing of recent malware analysis approaches and techniques as well as to identify the 

current challenges that hinder malware forensics methodologies. By studying how mal-

ware has evolved over the years we will be able to realize the sophistication and com-

plexity of modern malicious instances that enable the deployment of advanced, highly 

profitable and destructive cyber-attacks. 

Exploring a malware’s complete structure and functionality is still a matter of ongoing 

research, as malware authors are constantly aware of modern malware analysis ad-

vancements and continually develop new techniques to defeat detection mechanisms 

and obstruct the analysis process. 

Moser et al. [13] report that one possible solution to exploring and analyzing trigger 

based malware behavior would be to execute the malicious sample multiple times in 

various environments, in order to uncover and expose any diverse and variable mali-

cious behavior. Therefore by examining multiple execution paths results in a more ho-

listic view on the behavioral aspects of a specific malware.   

In order to achieve the desired goals of this dissertation, a controlled environment, 

where malware samples will be tested among different systems, will be developed and 

configured. The Test Bed, which will be used for collecting primary data for analysis, 

will include Linux as Host and various guest systems operating in Virtual Machines. 

Offensivecomputing.net will be utilized as our malware pool, in order to acquire multi-

ple instances for testing and experimenting. Using Cuckoo as our main malware analy-

sis tool, each virus will be executed and tested in various systems. Malware behavior 

will be recorded and analyzed using both static and dynamic analysis techniques. 



  -11- 

For each malware the analysis results among the different environments will then be 

collected and analyzed. This analysis will be performed using two different methodolo-

gies. The first one includes the empirical and manual observation of the malware con-

duct by identifying dropped files, created processes and API calls, as well as network 

activities. The second approach refers to a more automated analysis procedure. An ap-

propriate methodology will be introduced that will automatically correlate and process 

the multiple analysis results, to extract significant behavioral artifacts and characteris-

tics. This will be accomplished by identifying possible differences and similarities be-

tween the variant analysis results. Based on these comparison results we will be able 

assess malware conduct and generate comprehensive malware profiles corresponding to 

the overall exhibited functionality of each given sample. 

Upon the completion of this research, a malware forensics framework will be developed 

and described. 

1.5 Significance of Research 

The proposed malware forensics framework facilitates multiple executions of the same 

malware in differently configured systems, in an automated manner, providing fast and 

inclusive results on how each malware behaves under a specific organizational context.  

Our methodology utilizes open source tools and automates the analysis process of gen-

erated reports by tools like Cuckoo. This means that a malware analyst can submit a 

sample for analysis multiple times and run “Profiler”, the core component of our 

framework, to quickly get an insight on the sample’s behavior, starting at an abstracted 

level and diving deeper into more specific behavioral characteristics. 

The introduced analysis approach has the ability to correlate, analyze and interpret 

malware analysis results in an automated manner, significantly reducing time and effort 

needed to investigate and extract forensic intelligence information from a collection of 

analysis reports. Furthermore the produced results are stored in both human and ma-

chine readable formats so as to enable further processing and investigative activities. 

Even though our goal is not to detect deceptive activity, differences in a sample’s be-

havior might indicate malicious intent [25]. To this end, our framework may be also uti-

lized as a malware identification tool that can raise analysts’ attention towards perform-

ing a more thorough investigation on a malicious specimen, upon the detection of pos-

sible behavioral differences. 
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The overall architecture and flexibility of the introduced forensics methodology in com-

bination with the significant intelligence information that it can produce, has a major 

impact in the whole computer enabled society, since malware attacks may target any 

possible individual user as well as organizations and even entire nations.   

1.6 Dissertation Structure 

The contents of each chapter will be outlined and described in order to provide the read-

er with a holistic view of this dissertation. 

 

2 Chapter 2 - Literature Review 

This chapter includes an important literature review related to our topic of research as 

well as a discussion around malware evolution. A survey regarding significant academic 

and research work relevant to malware and malware forensics as well as malware analy-

sis tools, techniques and methodologies is imperative in order to gain insight on recent 

advances and challenges associated with malware forensic analysis. Some significant 

definitions and dimensions regarding malware, malware analysis, malware forensics, 

methodologies and tools are presented and described. 

2.1 Overview of Related Academic and Research 
Work 

Modern malware analysis approaches seek to address the problems of malware detec-

tion and analysis introducing novel techniques and more comprehensive analysis 

frameworks. On the other hand, malware creators monitor analysis related research ad-

vancements and constantly manifest new mechanisms to hinder and evade analysis pro-

cesses. The vastness of malicious samples that are introduced each day as well as the 

increasing complexity and intricacy of malware code further thwart antivirus research-

ers and analysis procedures. This has led analysts and malware authors into a continu-

ous “arms race” on the exhibition of power and skills [23].  
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Malware analysis methodologies and related efforts can be generally classified into four 

main areas of research: 

 Developing stealth and transparent analysis frameworks. 

 Detecting analysis evasion mechanisms. 

 Improving the efficiency of dynamic analysis techniques. 

 Creating clustering and classification methodologies. 

Modern malware creations encompass sophisticated mechanisms and anti-analysis 

characteristics that can significantly thwart analysis procedures and delude analysis re-

sults [32]. Analysis-aware malware has the ability to modify its behavior during execu-

tion or to remain completely dormant, hiding its malicious functionality upon the ac-

knowledgment of an analysis environment. To address the problem of evasive malware, 

recent approaches focus on developing stealth and transparent analysis frameworks that 

prohibit malicious creations from detecting the analysis environment. 

Frameworks like Cobra [81] and Ether [82] have been specifically designed so as to 

combat analysis detection mechanisms. Cobra performs dynamic malware analysis us-

ing stealth localized executions, by splitting the malicious code into segments and sepa-

rately inspecting their instructions before execution. Every suspicious detection-enabled 

slice is replaced with a safe implant so as to protect the analysis process. Ether, on the 

other hand, uses hardware virtualization extensions to eliminate any guest analysis 

modules, susceptible to identification, and to remain undetectable by malware. Howev-

er, both approaches suffer from increased performance overhead especially when fine-

grained analysis is required [25]. Moreover, as stated by the authors themselves, Ether 

is not destined to perform real-time analysis and Cobra’s performance is affected by the 

required interactive analysis.  

Modern analysis methodologies lean towards identifying differences in the malware be-

havior focusing mostly on creating new and more effective detection and analysis 

methodologies or discovering previously unnoticed evasion mechanisms and anti-

analysis techniques [24, 25, 39]. 

Johnson et al. [24] introduced a differential slicing methodology, which given a target 

difference between two executions of the same program, in either the same or different 

environments, tries to identify the specific environmental parameters and input differ-

ences that led to the noticed behavioral change. Their approach seeks to automate and 

facilitate the process of analyzing observed differences between two runs of the same 
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program and understanding their root cause, thus allowing analysts to identify possible 

vulnerabilities or programs that exhibit different behavior among different systems.  In 

contrast to our method, which processes the dynamic analysis results as they are pro-

duced by Cuckoo analyzer, the differential slicing algorithm works directly on binary 

programs and uses TEMU (a component of the BitBlaze framework [30]) as an execu-

tion monitor, in order to record execution traces for each program run, which are further 

processed aiming at producing a final causal difference graph. Furthermore, our ap-

proach examines multiple executions of the same malware with the purpose of identify-

ing as many as possible behavioral differences under a specific environmental context, 

whereas Johnson et al work on a given known difference and focus on discovering its 

cause. 

Balzarotti et al [25] proposed an approach aiming at discovering malware samples that 

employ various anti-analysis techniques to detect whether the underlying execution en-

vironment is an emulated test system. To achieve this, the malware sample is executed 

in an emulated environment as well as in a virtualized reference host and the sample’s 

behavior between the two runs is then compared. The comparison is performed by re-

cording the malware’s interactions with the host during the normal run and then replay-

ing the execution in the emulated environment using the same input parameters. Based 

on the perception that upon the same input arguments a program’s behavior should be 

identical, any observed behavioral difference is conceived as an indication of a detec-

tion mechanism that led the malware to execute a different path. However, this ap-

proach suffers from various limitations as not all possible system calls can be recorded 

and replayed. Moreover, malware interactions that use multiple processes and random 

input numbers cannot be recorded and replayed. As opposed to our implementation 

which uses Cuckoo analyzer [54] and virtualized guest systems, the proposed analysis 

environment uses emulation technology and is based on Anubis [86]. Furthermore, the 

fact that the reference host is virtualized while the analysis platform is emulated, allows 

malware to manipulate and change its behavior simply by being run in such differently 

configured systems. The basic distinction between our approaches, apart from the im-

plementation differences, is that, in contrast to our goal, the main purpose of their meth-

odology is to detect analysis aware malware. 

Chen et al. [39] introduced a novel methodology to deter malicious programs from in-

fecting production systems. Based on an extensive research, a comprehensive taxonomy 
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of possible evasion mechanisms actively employed by malware authors was created. 

Their approach was based on large scale malware executions among virtualized envi-

ronments, uninstrumented machines and debugger implementations, to identify possible 

behavioral deviations, obtained by execution traces’ comparisons. By creating finger-

prints of the observed characteristics, they were able to imitate them on real machines 

so as to appear as instrumented, thus preventing malware infections. Even though the 

recommended methodology attempts to identify possible behavioral differences, in con-

trast to our framework, Chen’s approach focuses on preventing possible system infec-

tions rather than identifying and understanding the behavioral plurality of malware 

samples. 

Another major category of malware analysis approaches, relates to identifying and in-

vestigating all possible behavioral characteristics of a given malware instance, thus 

leading to more efficient and comprehensive analysis frameworks. Static analysis bene-

fits from the possibility of unveiling and uncovering the complete malware’s structure. 

However its prospects are often limited by extremely sophisticated obfuscation and 

packing mechanisms [33, 66, 74]. Dynamic analysis remains protected against such 

techniques since the malware’s behavior is recorded during execution.  Nonetheless on-

ly a single execution path can be analyzed, thus possibly not capturing any trigger-based 

malware behavior [13].     

Bayer et al. in 2006 presented TTAnalyse [12], a tool for dynamic malware analysis. 

TTAnalyse uses Qemu, a PC emulator, to execute unknown binaries, restricted to Win-

dows executable PE files, in a Windows XP SP2 emulated environment and generates a 

report containing analytical information regarding the sample’s behavior and functional-

ity. Through the process of monitoring calls to native Kernel and Windows API func-

tions, as well as performing function call injection, it can identify Windows Registry 

and file system alternations, trace interactions with various system processes and log all 

respective network activity. 

Even though TTAnalyse provides an automated malicious code analysis environment 

with fairly precise and accurate results, it still suffers from the monotony of the underly-

ing emulation environment and the restrictive nature of the malware types that it can 

decompose. Furthermore, dynamic analysis alone cannot provide a holistic view on the 

behavioral plurality and diversity that modern malware may exhibit.  The cause is that 

only one single execution path can be explored each time the analysis is performed [13]. 
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This means that malicious actions that are activated under certain conditions, for exam-

ple on a specific date like the Michelangelo virus, upon the existence of a specific file or 

with internet connection availability, cannot be observed and recorded. To address this 

later problem Moser et al. in 2007 extend their previous work and introduce a system 

with multiple execution paths exploration capabilities [13]. To achieve this, the pro-

posed system traces critical input values that the harmful code reads and identifies key 

points during malware execution were control flow decisions depend upon those values. 

Whenever such a key point is spotted, a snapshot of the program’s execution present 

state is taken before it is allowed to continue running. As the analysis proceeds, by re-

turning to the captured snapshot for every identified conditional branch, requisite input 

values are manipulated allowing different execution paths to be activated. Even though 

this approach provides a more comprehensive assessment on malware’s behavior, it also 

faces some drawbacks regarding the analysis time which can be hindered by dead code 

insertion as well as the fact that complexity might grow exponentially in reference to 

the number of possible conditional branches that might exist. Compared to our ap-

proach, the malware’s behavior is captured through multiple executions on differently 

configured systems, rather than manipulating specific input values. This means that our 

system remains unaffected by increased complexity and obfuscation techniques.    

Similarly to Moser’s approach Brumley et al. implemented MineSweeper [28], a system 

which employs mixed and symbolic binary execution in order to identify and investi-

gate trigger based code paths in an automatic and iterative manner. A possible issue 

with MineSweeper, as the authors’ state, could be that their system might not be able to 

explore all possible and diverse branches. BitScope [29] also uses symbolic execution 

with the purpose of completely uncovering all possible aspects of the malware’s behav-

ior. A more general and holistic approach towards automated dynamic binary analysis 

can be found in the BitBlaze framework [30] which integrates both MineSweeper and 

BitScope, and along with a variety of components implements both static and dynamic 

analysis and might also be used as an automated analysis tool. Even though the afore-

mentioned methodologies can provide more inclusive analysis results, recent work has 

shown that trigger-based behavior analysis approaches can also be impeded by the ma-

licious authors [34]. 

Since antivirus vendors and security analysts are daily overwhelmed by massive 

amounts of new malware samples, efficient analysis and signature generation method-
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ologies often become frustrating and daunting processes with possible ambiguous and 

incomplete results [23]. Recent approaches implement clustering and classification 

mechanisms in order to minimize analysis effort and time by reducing the number of 

samples that require extensive and thorough research. 

Rieck et al [91] introduced a framework that enables automatic malware analysis using 

machine learning techniques. Their methodology allows the detection of malware be-

havioral similarities. Malicious samples that exhibit similar behavior are grouped into 

clusters which are then used to classify malware with unknown functionality. The mal-

ware samples are executed in a sandbox environment. The generated sequential reports 

are then correlated with behavioral patterns and machine learning methodologies are 

applied to identify new or known classes. Similarly Bayer et al. [26] implemented a be-

havior-based malware clustering methodology by extending the Anubis [86] dynamic 

analysis system. Their approach seeks to identify subsets of malware with similar be-

havioral profiles which are then used as primary data for their clustering algorithm. As 

the authors state, their system might be affected by possible evasive mechanisms and 

miss capturing specific trigger-based behaviors. 

Perhaps closest to our approach is the methodology proposed by Martignoni et al. [80]. 

Similarly to our technique, they aim at improving behavior-based analysis procedures 

by producing more comprehensive results though through a cloud-based implementa-

tion. The proposed system architecture allows multiple malware executions of the same 

sample in differently configured systems. To achieve this, the malware samples are dis-

tributed to various end-users’ machines with variable configurations and perform an in-

the-cloud analysis sharing the computational power and recourses of the underlying 

analysis lab. The analysis results are then merged to produce the resulting malware pro-

file. Even though the analysis concept and goals share many similar characteristics with 

our framework, the implementation technique and resulting outcomes are quite differ-

ent. As the authors’ state they “have not yet addressed the problem of correlating the 

results of multiple analyses”. This means that the multiple analysis outcomes are not 

further processed and associated so as to produce a comprehensive behavioral malware 

profile. Thus, differences or similarities in malware behavior cannot be determined. De-

spite the fact that each malware is executed multiple times, the analysis is preferably 

terminated upon the acknowledgement of malicious behavior. To this end, the proposed 

system can be utilized as a promising malware detector since it can identify malware 
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that might intentionally delay the exhibition of malicious activity or might enclose trig-

ger-based execution conditions. Moreover, the introduced methodology faces signifi-

cant limitations concerning security and privacy issues on the information disclosed to 

external users as well as the lack of stealth analysis environments against possible mal-

ware evasive mechanisms.  

2.2 Historical Review 

Malicious software and more particularly viruses and worms have the ability to invade 

and attack computer systems by attaching themselves into the infected host through the 

process of self-reproduction and multiplication [6]. Iliopoulos et.al [44] in 2008 com-

pared malware evolution to the Darwinian evolution model resembling also the muta-

tion and replication capabilities of viruses and worms to biological viruses. This self-

replication mechanism though, that now defines and characterizes modern viruses, was 

born in academia and was investigated and researched by scientists more than six dec-

ades ago [11], long before the idea of a virus even existed
2
. 

John Von Neumann was the first to illustrate the idea of self-replicating machines while 

giving a series of lectures at the University of Illinois, in the late 1940s, about the “The-

ory and Organization of Complicated Automata”. In his lectures, Von Neumann com-

pared the human brain and the human nervous system to computers with respect to vol-

ume, size and complexity elaborating also on the capabilities, hierarchy and evolution 

of complicated artificial automata as well as exploring and describing the possibility of 

designing a self-replicating computer program. His work, which constitutes the first ev-

er academic approach to the theory of computer viruses, was published some years later, 

in 1966, as the “Theory of Self-Reproducing Automata” [1] and was implemented in 

practice almost three decades later [10], in 1995, by Umberto Pesavento who demon-

strated a functioning simulation of Von Neumann’s machine [4]. 

Following the work of Von Neumann, who investigated the logical conditions of the 

self-replicating problem and concluded in 1951 that it was possible to create a machine 

with self-reproduction properties, Lionel Penrose, with the help of Roger Penrose, ap-

proached the mechanical aspect and complexity of the self-reproduction theory. In his 

1959 report called “Self-Reproducing Machines” Penrose builds on the idea of design-

                                                 

2
 http://www.securelist.com/en/threats/detect?chapter=105 
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ing and constructing simple units with the ability to self-multiply, transmute and on-

slaught computer systems [2]. Inspired by Penrose, Frederic G. Stahl in 1961 created an 

Artificial Universe in which creatures had the ability to crawl, eat and replicate them-

selves [3]. Despite the limited capabilities and memory sizes of computers during that 

period, as well as the lack of presence of any OS, Stahl, using machine language on an 

IBM type 650 system, managed to successfully demonstrate reproductive and mutation 

mechanisms in computer programs. 

In August of 1961, three engineers from Bell Telephone Laboratories (V. A. Vyssotsky 

et al.) experimented further with the self-replication capabilities of computer code and 

created a programming game which they called “Darwin: A Game of Survival and 

(Hopefully) Evolution” [5]. In this game the players had to construct programs, or so 

called species, on an IBM 7090 mainframe which were loaded into the arena, a desig-

nated memory area. Each one of the species could perform specific functions such as to 

multiply and make copies of themselves in unoccupied memory locations, or to track 

down and destroy other species by exploring their vulnerabilities, terminating the re-

spective program and taking over the arena. Darwin’s Umpire defined the rules of the 

game and the goal was to devise the most fertile replicator that would kill all other spe-

cies. A screenshot of the game
3
 can be seen in Figure 2.2.1. Darwin later on evolved 

into “Core War”, one of the earliest popular computer games [37].  

 

 

Figure 2.2.1: Darwin – The game 

For the years that followed, numerous theoretical approaches were born as researchers 

and academics continued to study and experiment with the phenomenon of self-

replication and mutation [8, 9], driven primarily by their interest in the emerging fields 

of Artificial Intelligence and Robotics. 

                                                 

3
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It is of no doubt that the work of the aforementioned experts and scholars empowered 

huge technological advancements, shaped and transformed future scientific trends and 

inspired many forthcoming researchers to build upon, progress and expand their herit-

age. No one however could have foreseen during that period that their efforts would be-

come a stepping stone and fuel up what has later on proven to be a new form of an epi-

demic outbreak to the modern computer society. 

2.3 Malware Evolution 

A historical walkthrough around malware evolution is imperative in order to understand 

their advancement and progress as well as their elevation of capabilities, that has result-

ed into the existence of extremely sophisticated malware that have the ability to adjust 

their behavior depending on the infected environment, to perform evasive techniques to 

avoid detection and furthermore to infect not only computers but also other hardware 

and electronic devices. Throughout almost 40 years of history, malware evolved and 

transformed into an advanced cybercrime and cyber-terrorism weapon. Based on a thor-

ough survey on related research and academic work [11, 15, 37, 52, 58], the following 

sections provide a description of how malware has evolved over the years.     

2.3.1 The 70’s – Experiments and Games 

Historians and scientists are still debating on the actual birth date of the first virus. 

Nonetheless the first approaches to viruses and worms were pitched off mainly for ex-

perimental and research reasons [11]. 

Bob Thomas at BBN technologies in 1971, while experimenting, created a program 

with self-replicating capabilities called “Creeper”. Creeper, which is now identified as 

the first computer worm, infected nodes of the ARPANET
4
, the precursor of today’s 

internet, and spread throughout the network by creating copies of itself. Even though 

Creeper managed to crawl and populate enormously it had no malicious intent and 

simply displayed the message “I’m the Creeper: catch me if you can”. As a counter-

measure the “Reaper” was devised in order to track down and destroy Creeper copies 

inside the network. Due to its capabilities, some not only consider Reaper to be the first 

                                                 

4
 Advanced Research Projects Agency Network (ARPANET) was the US military computer network 



  -21- 

computer virus to be found in the wild but also credit it as the first Antivirus prod-

uct[58]. 

Some years later, in 1974, the so called “Rabbit” virus appeared, stalling computer’s 

performance by rapidly creating multiple instances of itself on a single system. It is not 

yet clear whether it was part of another experiment or intentionally designed to crash 

systems.  

During the same period, John Walker created a game called “Animal”, designed to run 

on Univac 1100 systems, which would prompt the players with appropriate questions in 

an effort to predict which animal they were thinking of. In 1975, in the attempt to auto-

matically distribute copies of the game, he developed the “Prevade” routine, which 

could independently explore all accessible directories. Animal was bundled with 

Prevade and upon execution created a copy of the running game to any directory found 

containing an outdated version or when the game was not present at all. Prevade is con-

sidered to be the first self-replicating piece of software in the wild, implemented as part 

of another host program [15]. Some researchers even refer to Prevade as the origin of 

Trojans [58]. 

Inspired by Creeper in 1979, two Xerox PARC researchers, John Shoch and Jon Hupp, 

were the first to invent the term “worm” while exploring the idea of distributed compu-

ting [59]. They created an experimental program with the ability to search for idle pro-

cessors inside their company’s network. Their program could replicate and attach itself 

to the inactive computers utilizing their CPU time. Even though appropriate precautions 

were developed in order to control and contain any unpredictable growth, their worm 

somehow escaped safeguards crashing a significant number of machines. Their pro-

gram, also known as the “Xerox worm”, had no malicious or harmful intent, but rather 

was created to assist and promote research advancements in the field of distributed 

computing. However it also revealed serious issues related to controlling and restraining 

worm expansion. 

2.3.2 The 80’s – From innocent pranks to “accidental” outbreaks 

As the popularity of personal computers started to raise so did the interest of virus crea-

tors who began targeting microcomputers
5
. While the first era mostly dealt with exper-
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imentation in favor to scientific advancements and beneficial purposes, the new trend 

seemed to enclose no malicious intentions but rather focus on innocent pranks, annoy-

ing infections and exhibition of capabilities.  

Malware authors continued to experiment, exploring previously unknown replication 

and attack mechanisms, leading to the first actual destructive outbreaks, which were 

caused primarily by unintentional programming bugs and accidents.   

The first Apple-II virus, which spread through infected floppy disks, was written in 

1982 by Rich Skrenta. Elk Cloner’s infection mechanism entailed copying itself to the 

boot sector of floppy disks and was activated every time the computer booted from an 

infected disk, subsequently spreading to any other disk being used. Its payload included 

a symbolic message
6
 which was released every 50

th
 boot. 

In 1984, Fred Cohen introduced the term “virus” for the first time, in his research work 

“Computer Viruses - Theory and Experiments” where he presented a functioning 

demonstration of a computer program with self-replicating abilities [49]. 

In 1986, the first PC virus that infected DOS-based systems appeared. Brain, presuma-

bly written by two Pakistani brothers, attached itself to the boot sector of floppy disks 

and had no harmful payload rather than labeling the disks as “© Brain” and displaying a 

simple advertising message. Brain managed to infect thousands of computers and pre-

sents the first instance of a stealth virus that effectively tried to hide its presence by dis-

playing information irrelevant to the virus every time someone tried to access the boot 

sector’s data. 

For the years that followed viruses and worms continued to appear in the wild but their 

payloads remained quite innocuous and did not really cause any intentional damage to 

victims’ computers. It seems though that during the late 80’s the intentions of malware 

creators took a significant turn towards the development of more sophisticated malware 

samples that enclosed deceptive mechanisms and potentially disruptive payloads.    

The first instances of actual destructive viruses were detected in 1987. The Vienna virus 

infected .COM executable files and is identified as the first one to curry a destructive 

payload. Once in every eight infections, the first bytes of the target file were replaced 
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 ELK CLONER:  THE PROGRAM WITH A PERSONALITY IT WILL GET ON ALL YOUR DISKS 

IT WILL INFILTRATE YOUR CHIPS YES IT'S CLONER! IT WILL STICK TO YOU LIKE GLUE IT 
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with specific instructions that led to system reboot each time the program was executed, 

permanently damaging the file. Several Vienna variants emerged, mostly due to the fact 

that its assembly instructions were published in the book “Computer Viruses: A High 

Tech Disease”, written by Ralph Burger, while demonstrating how a computer can be 

infected by a virus [7]. The author also included a description of the Lehigh virus, 

which is regarded as the first .COM file infector virus with the ability to overwrite data 

residing on the disk. During that same year, the first virus with simple polymorphic fea-

tures emerged. Cascade carried an encrypted payload to encumber disassembly and de-

tection mechanisms. Figure 2.2.2 presents Cascade’s harmless payload of letters sliding 

down on the screen (adopted from [58]). Leigh and Cascade are considered to be an im-

portant milestone into the development of antivirus software. 

 

 

Figure 2.2.2: Cascade’s waterfall visual effect 

 

The Christma Exec worm, that also made its appearance in 1987, marks the beginning 

of email spreading malware as well as the first instance of social engineering exploita-

tion in order to lure IBM mainframe users into opening incoming infected emails. The 

worm, using Rexx scripting language, deceptively displayed a Christmas tree on the 

victims’ screen while in the background automatically emailed a copy of itself to the 

unaware users’ contact list obtained from their address books. The recipients were 

tricked into opening the infected message as it appeared to be sent by a familiar person. 

Around late 1987 and early 1988, the first historically recorded targeted virus attack 

was detected. Initially, the Scores Mac virus seemed to have no payload at all, but fur-

ther analysis of the disassembled viral code revealed that the virus looked for specific 

system resources that were later on identified to be part of the “EDS” company’s inter-
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nal network [52]. Even though no actual damage was done, Scores carried complicated 

payload and trigger mechanisms. The first part of the payload was released upon infec-

tion and created two hidden folders and some notepad files, altering also their type and 

icons. The second one was triggered exactly four days after the attack. It searched spe-

cifically for “ERIC” and “VULT” running applications, and ended their execution after 

25 minutes. The final viral part was activated seven days after the initial infection which 

caused a number of errors to the “VULT” related applications leading them eventually 

to crash. 

Another destructive file infecting virus was discovered in the wild towards the end of 

1987. Unlike the previous ones, the Jerusalem virus was the first MS-DOS based mal-

ware to attack .COM as well as .EXE programs. Its damaging payload though, did not 

manage to cause extensive losses because the virus was quickly detected due to an error 

which caused it to re-infect already infected files multiple times, significantly increasing 

their size.  

Perhaps one of the most major security incidents and the first historically massively de-

structive malware outbreak took place in 1988 when the “Internet worm”, also named as 

“Morris worm” after its creator Robert T. Morris, managed to bring down thousands of 

Unix-based computers in just a few hours [53]. Unlike the Christma Exec worm, the 

Morris worm did not employ any deceptive mechanisms and did not require human in-

teraction in order to spread. Moreover, it was one of the initial worm instances that em-

ployed a mixture of attack mechanisms to enhance its deployment. It could self-

replicate, infecting one system after the other, by exploiting some already known un-

patched networking and software vulnerabilities, such as in the Unix “sendmail” and 

“finger” daemon programs. In addition, by using a self-carrying dictionary of common-

ly used words in combination with any other dictionary possibly detected on the vic-

tim’s system, it attempted to break weak passwords and climb privilege levels. 

Although the Morris worm caused approximately 100 million US dollars of financial 

damages, later enquiries inferred that the worm’s destructive behavior and outbreak 

were not intentionally provoked but rather a result of unpredicted parameters and pro-

gramming faults. Such bugs also caused the worm to multiply uncontrollably, signifi-

cantly reducing the performance of the infected machines, which ultimately led to its 

detection. 
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Towards the end of the decade, new mechanisms were developed, that transformed the 

previously exhibited virus functionality. 

In 1989, a new arbitrary payload damage model was introduced by the Dark Avenger 

virus. Upon execution, the virus was loaded in memory and remained there subsequent-

ly infecting any other file being accessed by the user. Consequently, backup processes 

also became unreliable as data could get polluted and corrupted during copying at-

tempts. Frodo on the other hand, which was discovered in Israel, was the first parasitic 

virus to enclose complete stealth behavioral characteristics. The virus tried to conceal 

the changes that its 4K code caused to the size of the infected files. Any information 

requests the users made regarding those files would display their initial size and not the 

increased one.  

Possibly one of the first attempts that employed malware specifically for financial gain 

purposes was detected in late 1989 when a number of floppy disks, presumably enclos-

ing AIDS relevant information, were distributed to the conference members at an inter-

national medical meeting. The packages came with a License Agreement that warned 

the users about the limited time period regarding the software’s free use but it mostly 

got bypassed. The disks did indeed display some related material but the “AIDS” Tro-

jan, as it was named, worked in the background and after a number of system reboots 

encrypted the hard disk’s data and then presented a pop up message extorting the vic-

tims into paying the amount of $378.00 in return for the encryption key [52, 58]. The 

AIDS Trojan is also the first one of its kind that propagated using mailing lists and it is 

estimated that about 10,000 samples were dispatched worldwide to various medical in-

stitutions and other organizations. 

2.3.3 The 90’s – Polymorphism and Toolkits 

By the beginning of 1990 users had become more aware of the risks involved and anti-

virus companies had already started to fight back by releasing new anti-virus tools able 

to detect more virus samples. The basic malware patterns and mechanisms had already 

been laid down and new malicious generations emerged mostly by building upon and 

extending these previously exhibited techniques.  

During the next years, malware creators, following the current trends and developments, 

started to target also Windows-based systems and the first instances of macro viruses 

were developed. Simple encryption routines evolved into extremely complex polymor-
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phism mechanisms raising new challenges in the anti-virus sector. The design of auto-

mated mutation engines along with the appearance of the first virus construction toolkits 

facilitated the massive creation of new malware instances. Furthermore, the expansion 

of the Internet as well as the adoption of e-mail as a preferred mean of communication 

provided new favored infection vectors for cyber attackers.  

Earlier self-encryption techniques, aimed mainly at escaping byte pattern (signature) 

detection mechanisms that anti-virus products used for uniquely identifying viral pieces 

of code. Even so, the prepended decryption mechanism, responsible for returning the 

virus to its original form, stayed unmodified consequently allowing the malware’s de-

tection. In 1990 more complicated instances of polymorphic viruses began to appear in 

the wild. Attackers started to use complex encryption techniques such as transposing the 

virus’s code and randomizing the decryption routine among different infections [11]. 

Amongst the first of such kind to appear was the Whale virus, discovered in June of 

1990. This 9,000 bytes long virus employed innovative obfuscation techniques to avoid 

detection and to hinder disassembly and analysis procedures. It could recode itself be-

tween infections, constantly changing its appearance, making typical string scanning 

detection ineffective.  

During the same period malware creators began establishing communities to better 

promote their goals. From such groups the first virus exchange bulletin board system 

(BBS) was launched, encouraging virus authors to upload new malicious programs in 

exchange for access to the system’s virus source code database [58].  

In 1991 the Michelangelo boot sector virus was detected. Its payload was triggered on 

every March 6
th

 and could replace the first 256 hard disk’s tracks with random data, de-

stroying the system’s boot information. Later that year Tequila, the first multipartite, 

fully polymorphic stealth virus entered the “battle field”. Using advanced forms of pol-

ymorphism, such as variable encryption, it completely changed its viral code between 

infections, and could escape detection even from the best available antivirus software of 

that time [52]. By December 1991, around one thousand virus instances had already 

been identified. 

The creation of polymorphic viruses required extensive programming skills. However, 

in 1992, the notorious Dark Avenger programmer developed a self-mutating engine 

(MtE) able to insert polymorphic characteristics to any virus [60]. With such a tool, 

malware coding and their polymorphic transformation became an easy task. Even 
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though it facilitated polymorphic virus generation, any malware instance created with 

the MtE carried a unique signature, making it detectable. Soon after, new variations of 

mutation engines were released such as the Trident Polymorphic Engine (TPE), the 

Nuke Encryption Device (NED) and the Dark Angel’s multiple encryption engine 

(DAME) [52].  

In the summer of 1992 the virus creation landscape drastically changed. The first mal-

ware making toolkits emerged, enabling the massive generation of viruses through an 

easy menu driven interface [60]. The “Virus Creation Laboratory” (VCL) and the 

“Phalcon/Skism Mass-Produced Code Generator” (PS-MCP) that followed shortly after, 

developed by Nowhere Man and the famous Dark Avenger programmers respectively, 

provided amateur code writers with an already pre-constructed pool of viral codes to 

select from and simply apply their desired payload. Although such toolkits facilitated 

the creation of many different malware instances, their basic construction modules re-

mained identical. Detecting one such virus subsequently meant that all others could also 

be identified [52]. Figure 2.2.3 illustrates a screenshot of the Virus Making Laboratory 

[58] that attackers could use to deploy new viruses without using any code program-

ming at all. 

 

 

Figure 2.2.3: The Virus Making Laboratory 

Creating malware soon became a profitable underground business when constructors 

started selling their virus creations. For example the European Virus Clinic offered their 
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malware samples for approximately $25 while another virus programmer was selling his 

creations for about $100 [58]. 

In 1995 the first macro virus, named “Concept”, appeared in the wild. Concept targeted 

Microsoft Word documents and quickly managed to spread worldwide. Macro viruses 

in general are easily created and platform independent. However, in contrast to more 

advanced modern creations, the initial instances of macro viruses could easily be 

blocked, simply by disabling the text processor’s macros [11, 52]. 

In 1997 the first virus targeting Linux-based systems was detected. Bliss infected linux 

executable files and exhibited worm spreading behavior locating potential victims 

through the /etc/hosts.equiv trusted hosts list [58].  

The appearance of the Melissa macro virus in 1999 designated the birth of a whole new 

generation of fast e-mail spreading malware. Melissa spread around through an infected 

word document as an e-mail attachment. Every time a user opened the e-mail, Melissa 

automatically retrieved the first 50 contacts from the user’s Microsoft Outlook address 

book and mailed itself to the recipients. This new mixed type of malware with worm-

like propagation mechanisms, managed to infect thousands of computers globally in just 

a few hours crashing also a significant number of mail servers due to the increased vol-

ume of generated e-mails. 

2.3.4 The 2000 Decade – Social Engineering and Cybercrime 

During this new decade, malware creators’ exhibition of power and coding skills con-

tinued to surprise the computer security world. This new modern wave of malicious in-

vaders is characterized by an advanced level of sophistication and complexity accompa-

nied by more damaging payloads and destructive results. Malwares’ propagation speed 

rapidly increased and new forms of blended threats emerged combining multiple infec-

tion vectors concurrently [11]. Cyber criminals widened their attack range by targeting 

previously unthreatened platforms and network technologies, like Linux and Peer to 

Peer networks, as well as modern electronic devices such as mobile phones. Antivirus 

vendors not only faced the first attacks targeting antivirus software but were also chal-

lenged by new dynamic malware updating techniques.  

The first attempts towards creating a network of compromised and controllable comput-

ers were realized and led to the evolution of Bots and Botnet technology [61] that facili-

tated the changing interests of cyber criminals. From noticeable data destructive and 



  -29- 

machine corruptive payloads attackers moved on to invisible and well hidden compo-

nents aiming at covertly monitoring on line activities and stealing personal information 

and data that could then be utilized for internet fraud or other illegal financial gain pur-

poses.  Malware designers soon started selling or leasing their malware creations in the 

form of toolkits to any lurking cyber attacker [63]. The newly established underground 

malware market became a profitable business, opening the gates to novel criminal busi-

ness models [64] and building an important foundation for the evolution and transfor-

mation of modern cybercrime [65]. 

Following Melissa’s traces pretty soon new advanced fast e-mail spreading hybrid mal-

ware forms were developed. The BubbleBoy scripting virus and the KAK scripting 

worm that emerged in early 2000, revealed a new undiscovered security threat. The 

malware’s viral code was not included as an attachment but rather executed automati-

cally as soon as the victim opened the received e-mail message. Their creators took ad-

vantage of an Internet Explorer’s vulnerability, which allowed them to insert an HTML 

document containing the malicious Visual Basic script inside the main message body of 

the e-mail [11, 52]. Similarly to Melissa, they then propagated throughout the network 

by sending themselves to e-mails harvested from the victims address books. 

Worm designers continued to come up with innovative mechanisms to increase their 

victims range and enhance their destructive outcomes. The Love Letter worm for exam-

ple tried to manipulate e-mail recipients into opening the attached “Love Letter” mes-

sage, by prompting them to kindly read it. The attachment was actually a VB script and 

the file’s name contained two extensions “.TXT.vbs” in the hope that it would pass un-

noticed [52]. To further extend its attack vector the worm also created an IRC connec-

tion subsequently infecting anyone who participated in the IRC channel [11]. Love Let-

ter’s destructive and information stealing attitude caused up to 10 billion US dollars 

economic loses and is considered as one of the most damaging viruses in malware histo-

ry [58].  

The trend towards employing social engineering techniques to trick unaware users soon 

became a common practice among forthcoming massive e-mailing attacks while the en-

gagement of IRC technology set the ground for the development of future Botnets [61]. 

On the other hand, the appearance of the Hybris worm opened the gates to another gen-

eration of sophisticated malware that can dynamically modify their viral structure and 

payloads by automatically downloading updated code versions.  
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The beginning of the new millennium also brought to surface probably the largest Deni-

al of Service (DoS) attack up to that time. A young attacker known as the Mafiaboy, 

carried out a Distributed DoS (DDoS) attack targeting high profile websites like Ama-

zon, Yahoo and CNN. To achieve his goals he took under his control several computers 

over the network and organized a large-scale Ping-of-Death attack
7
. Yahoo’s services 

remained unavailable for approximately 8 hours costing the company millions of dollars 

in financial damages. However the attacker was detained for only a few months and got 

away with a $650 fine [58]. Even though modern networks are protected against Ping-

of-Death attacks, other types of DoS attacks are feasible and continue to pose a great 

security threat.   

Attackers soon started to target new communications devices such as the Timofonica 

virus which is acknowledged as the first one to infect mobile phones [58]. Even though 

its payload was harmless, it revealed a new movement towards compromising different 

gadgets other than traditional computer systems. 

The global expansion of the Internet and the continuous development of advanced web 

services and web-based applications also brought along new security weaknesses that 

attackers soon began to exploit. Malware authors started to explore new infection vec-

tors and propagation mechanisms in addition to the well established by now e-mail pro-

liferation method, and payloads become even more destructive and complex. 

In 2001 the Lion worm attacked Linux platforms by exploiting a buffer overflow vul-

nerability of the BIND DNS server. Once installed, it gathered passwords and other per-

sonal information and e-mailed them to its controller. Lion’s complicated payload also 

installed backdoors, binary toolkits and a DDoS agent. 

The SadMind worm targeted both Sun Solaris systems and Microsoft’s Internet Infor-

mation Services (IIS) web servers. It took advantage of a buffer overflow weakness to 

attack Sun systems. It then installed additional programs in order to infect Microsoft’s 

web servers and coordinate website Defacement attacks. 

The Code Red worm which also appeared in 2001, exploited the freshly discovered In-

dex Server ISAPI buffer overflow vulnerability in Microsoft’s IIS web servers. Immedi-

ately after infection, the worm created multiple duplicate threads responsible for attack-
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ing additional IIS servers through a generated list of IP addresses. A programming bug 

caused the worm to create the same IP lists on every victim host significantly slowing 

its expansion. The Code Red v2 came to the rescue almost immediately to repair the 

previous bug. By correctly creating a random IP address list it managed to infect 

359,000 systems in just a few hours [11]. The worm’s payload carried out DoS and 

website defacement attacks against specific targets. The Code Red II variant that fol-

lowed shortly after additionally created a Trojan and a backdoor and spread through an 

IP target list randomly generated from inside the host’s subnet.   

One of the fastest growing widespread blended attacks was realized also in 2001 by the 

Nimda worm which combined multiple infection vectors concurrently in order to prolif-

erate, significantly increasing its complexity and propagation speed. The worm exploit-

ed a number of previously known vulnerabilities and infection vectors and spread by: 

 Repeatedly e-mailing itself as an “.EXE” attachment to addresses retrieved 

from the system’s cache and mailbox. 

 Randomly infecting Microsoft IIS web servers using a buffer overflow vulnera-

bility that allowed code execution on the server. 

 Creating exact copies of the worm on network shares of a compromised server. 

 Inserting Javascript into web pages stored on the computer. 

 Utilizing backdoors created by the SadMind and Code Red II worms. 

The Nimda worm took extra measures to avoid detection and its payload included modi-

fying Registry and System files as well as creating shares and accounts with administra-

tive privileges to enable remote access. 

The first instances of malware targeting anti-virus products were also identified. The 

Bugbear and Klez worms were amongst the first to track down and kill any running 

processes generated by antivirus software as well as destroy any related files stored on 

the hard disk. The Bugbear additionally installed a Keylogger Trojan horse for captur-

ing and recording any keyboard typing actions. 

Probably two of the worst disastrous security attacks and massive worm outbreaks ever 

to have been realized took place in 2003. The SQL Slammer and Blaster worms 

achieved an incredibly fast infection rate spreading to hundreds of thousands of systems 

globally within just a few minutes. SQL Slammer carried no payload at all and rather 

focused on rapidly replicating across the Internet. It performed a buffer overflow attack 

on Microsoft’s SQL servers and propagated between hosts through a single UDP pack-
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et. Blaster on the other hand targeted Windows XP and 2000 platforms by exploiting 

their DCOM RPC
8
 system’s vulnerability. Copies of the worm were dispatched to the 

victims’ machines through remote calls on port 4444. The worm’s payload installed a 

DoS agent and attempted to perform a TCP SYN flood attack against Microsoft’s Win-

dows update website [11]. 

Another important milestone in malware’s advancement was set by the Sobig worm and 

its variants. The worm propagated through e-mails and is considered as the first coordi-

nated effort towards creating a large network of infected computers that can be manipu-

lated and directed remotely by a master controller. It is believed that the attackers tried 

to build a Botnet of zombie machines in order to perform massive Distributed Denial of 

Service (DDoS) attacks [58]. 

During the next years malware and more particularly worms continued to appear and 

spread throughout the globe evolving their infection mechanisms and widening their 

attack vectors. The Bagle worm for example, detected in 2004, was able to attack all 

Microsoft Windows versions while the Cabir worm was specifically designed to infect 

Symbian-based mobile phones replicating through Bluetooth wireless transmissions. 

In early 2007 a new emerging threat was detected. The fast spreading Storm worm em-

ployed social engineering techniques to attract victims and propagated through e-mail 

attachments of various subjects, with the initial one pretending to deliver news regard-

ing a weather catastrophe. The worm came with a dangerous payload which upon exe-

cution downloaded and installed other Trojans, Backdoors and rootkits in order to re-

cruit computers into a huge Storm botnet. As it was reported, one of the infected sys-

tems was noticed to send out approximately 1,800 e-mails within only five minutes 

[58]. In contrast to other common botnets, the infected zombie machines were not cen-

trally controlled but rather built on top of a Peer-to-Peer network technology. It is esti-

mated that a few months after its release the Storm botnet controlled up to 10 million 

compromised machines. The resilience and complexity of the Storm makes it hard to 

detect and contain as it is repeatedly modifying its packing routine and uses fast flux 

technology to constantly change the IPs of the C&C servers
9
.  
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Botnets soon became a flourishing underground business for cybercriminals [64, 65]. 

Botnet creators started selling or leasing their bots allowing attackers to manipulate 

their zombie networks as they pleased [63].  

The Zeus Trojan, which was first spotted in 2007, was specifically designed to create a 

botnet of compromised computers that could then be recruited for information stealing 

and financial fraud activities. It spreads through phishing and drive-by attacks and col-

lects information using various techniques such as for example form grabbing and key-

stroke monitoring. It was estimated that by 2009 the Zeus botnet had already infected 

3.6 million computers in the United States and was responsible for 44% of the known 

banking cyber-attacks [62]. Pretty soon Zeus circulated in the underground market as a 

crime-ware toolkit available for purchase with its price ranging from a few hundred dol-

lars up to $15,000 depending on the malware’s version and added features/modules
10

. 

The toolkit comes with an easy installation procedure and customization mechanisms so 

that attackers can select the type of information they want to steal or gain access to such 

as banking account credentials, credit card details, e-mail accounts and any other type of 

personal data. Zeus uses complicated multi-level obfuscation mechanisms to avoid de-

tection and hinder any analysis procedure. Researchers have only recently attempted to 

reverse engineer the Zeus toolkit in an effort to get an insight on its advanced technolo-

gy and structure [62]. In 2012 new variations of ZitMo (Zeus’s version for mobile 

phones) were discovered specifically designed to attack Android and BlackBerry devic-

es
11

.  

By 2009 the cybercrime landscape had completely evolved and malware authors were 

able to perform highly sophisticated attacks utilizing botnet technology and complicated 

malicious constructions. This led to the formation of a flourishing underground econo-

my and to the emergence of highly profitable crimeware business models [71]. 

2.4 Latest Malware Attacks 

Following the evolution of cybercrime, novel emerging threats formed a new trend to-

wards advanced cyber-terrorism attacks. These latest types of attacks have revealed ex-

                                                 

10
 http://www.secureworks.com/research/threats/zeus/?threat=zeus 

11
 http://www.scmagazine.com/blackberry-android-users-targeted-by-new-zeus-trojan/article/253940/ 
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tremely dangerous and frightening attempts with the potential to threaten not only ex-

plicit organizations and industries, but even entire nations. 

In June 2010, Stuxnet, a new threatening cyber-attack was detected [70, 92]. The Stux-

net worm was the first one to specifically target SCADA
12

 industrial systems and em-

ploy PLC rootkit technology that allowed PLC
13

 code modifications. Even though it 

was initially found to target Iranian facilities, the worm managed to quickly spread to 

various other countries. The worm was designed to propagate through various zero-day 

vulnerabilities, such as previously unknown exploits on the print spooler service and 

Microsoft Windows Server services, as well as through removable media. Stuxnet fea-

tures included stolen component certificates, complicated injection and hooking mecha-

nisms, dynamic updates and specific antivirus evasion utilities. Its ability to reprogram 

PLCs and control such critical industrial infrastructure, position Stuxnet as one of the 

most dangerous cyber weapons ever to have been created. 

In 2011 a new sophisticated worm attack was identified. Dugu
14

 was specifically de-

signed to steal passwords, collect computer screenshots and any other information lo-

cated on the infected machine. Dugu spreads through a previously unknown vulnerabil-

ity in Microsoft word documents and unlike Stuxnet, its main purpose is to conduct in-

dustrial espionage. 

Flame, another emerging cyber threat, was discovered most recently, in 2012, by 

Kaspersky Labs
15

. Security experts announced that Flame was already in the wild for 

two years but managed to remain undetected due to its extremely complicated and so-

phisticated structure as well as the targeted nature of its attacks. Flame’s primary objec-

tive is to perform cyber espionage collecting any type of available information with 

abilities among others to intercept network connections and capture audio recordings. 

Similarly to Stuxnet, Flame can replicate through removable disks and the same spooler 

vulnerability. Latest researches have concluded that Stuxnet, Dugu and Flame are inter-

                                                 

12
 Supervisory Control and Data Acquisition 

13
 Programmable Logic Controller 

14
 http://www.kaspersky.com/about/press/duqu 

15
http://www.kaspersky.com/about/news/virus/2012/Kaspersky_Lab_and_ITU_Research_Reveals_New_

Advanced_Cyber_Threat 
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related
16

. Analysis processes revealed that Dugu and Stuxnet were created using the 

same platform while specific Flame modules were identified inside Stuxnet’s code. 

More recently, a series of “High Roller” banking attacks were revealed
17

. The attackers 

combined and customized three popular malware toolkits, targeting high balance bank 

accounts. SpyEye, Zeus and Ice 9 were employed to perform one of the most sophisti-

cated, extremely automated and targeted banking fraud attacks. As it was difficult to 

breach through banks’ security systems, cybercriminals infected the clients’ computers. 

During the execution of on-line transactions, users were prompted with waiting messag-

es allowing on-line robbers to steal the funds from the users’ accounts by conducting 

automatic transfers. According to McAfee’s report, the total amount of stolen funds is 

estimated around 2 billion US dollars. 

The ease by which such attacks can be realized as well as the wide availability of pre-

constructed malware toolkits (for example the Zeus toolkit can be purchased in the un-

derground market for about €1.000) and the extremely huge profits that can generated, 

has significantly contributed to the massive expansion and evolution of cybercrime ac-

tivities and attacks [71]. 

While initial malware instances were quite innocuous and highly visible, their evolution 

gradually moved towards extremely dangerous, highly profitable and well concealed 

malware attacks. Figure 2.2.1 graphically presents the evolution of malware throughout 

the decades in terms of maliciousness, profitability and visibility characteristics [71].  

 

                                                 

16
http://www.kaspersky.com/about/news/virus/2012/Resource_207_Kaspersky_Lab_Research_Proves_th

at_Stuxnet_and_Flame_Developers_are_Connected 

17
 http://www.mcafee.com/us/resources/reports/rp-operation-high-roller.pdf 
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Figure 2.2.1: Malware evolution 

2.5 Malware Types 

Malware is a broad term and generally refers to any piece of software that intentionally 

performs malign activities. Moser et al. define malicious code (malware) as “software 

that fulfills the deliberately harmful intent of an attacker” [13]. Malicious software, de-

pending on its purpose and functionality, is further classified into several behavioral 

categories. Terms like “Viruses”, “Worms” or “Trojans” are used to describe malware 

samples with resembling behavior. This section provides a brief description of some of 

the most common malware types that can be found in the wild, in order to gain a better 

understanding of their characteristics and how each malware family functions and oper-

ates.  

Even though we usually classify and refer to malicious code as a “virus” or a “worm” 

etc., it should be noted that a specific malware sample may not exclusively belong to 

only one class [23]. This is because many times the observed functionality of a certain 

malware might resemble the behavioral characteristics of multiple malware types con-

currently. More details and information regarding malware types and malicious soft-

ware in general can be found in [15, 22, 37, 52]. 

Viruses. The term “virus” was introduced for the first time in 1984 by Dr. Frederick 

Cohen who described a virus as “a program that can ‘infect’ other programs by modify-

ing them to include a, possibly evolved, copy of itself” [49]. Even though the term virus 

is closely associated with harmful intentions and damaging results, according to Co-

hen’s definition the main characteristic of a virus is its ability to self-replicate by infect-



  -37- 

ing other programs. Therefore, if strictly interpreted, someone may conclude that any 

type of software with replicating abilities, even with no malicious payload, can be re-

ferred to as a virus [52]. Skoudis and Zeltser define a virus as “a self-replicating piece 

of code that attaches itself to other programs and usually requires human interaction to 

propagate” [15]. Consequently, a virus needs to infect and modify other files in order to 

replicate and spread. 

In general, a computer virus cannot be executed autonomously. It inserts its set of in-

structions into the command chain of another program (host) so that when the host file 

is activated, usually by a user’s intervention, the viral piece of code is also executed. 

Typical virus hosts may include [51]: 

- Executable files usually disseminated through emails as attachments.  

- Disk partitions’ Boot sectors.  

- Script files such as batch or shell scripts. 

- Any macro containing document, such as Microsoft Office documents etc.   

Depending on the target host, viruses can further be distinguished into “File Infecting 

Viruses”, “Boot Sector Viruses”, “Scripting Viruses” or “Macro Viruses” [52]. The 

basic structure of a computer virus usually contains at most three main subroutines or 

mechanisms [11, 52]:  

 Infection: This part of the viral code defines the propagation methods of the vi-

rus.  

 Payload: Specifies the actions to be performed on the polluted host.  

 Trigger: Defines when exactly to release the payload. 

The infection mechanism, unlike the other two, is always activated and defines how the 

virus will proliferate among possible candidate hosts as for example files of a specific 

type and content or whether to prepend or append itself inside the host file. Upon execu-

tion, the host also behaves as a virus and, based on the infection routine, copies the viral 

code into other programs thus enabling the virus’s replication mechanism. 

Moreover, the virus does not always simply create exact duplicates of itself. To further 

encumber detection, it may modify itself, for example by rearranging the sequence of 

some instructions, thus mutating as it spreads from host to host while preserving the 

same functionality (Metamorphic viruses). More advanced viruses might also encrypt 

themselves using different keys along infections while preserving the decryption algo-

rithm (Polymorphic viruses). Viruses additionally insert a signature inside the infected 
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hosts in order to avoid reinfection of the same files, which could cause their size to 

grow enormously.  

The payload component, if present, defines the usually harmful intentions of the virus 

and the exact instructions to be executed on the infected host. Such actions may include 

deleting or corrupting files on the user’s system or stealing information and performing 

more advanced and sophisticated attacks. The trigger mechanism on the other hand, 

specifies the conditions upon which the payload will be delivered such as for example at 

a specific time or date.  

For example, one of the most damaging and destructive viruses ever to have appeared in 

the wild is the CIH virus also known as the “Chernobyl” virus which was first detected 

in 1998 in Taiwan
18

. According to Symantec’s Security Response
19

, the CIH virus in-

fected around one million computers in Korea alone, causing more than 250 million US 

dollars economic damage. The virus was designed to attack 32-bit Windows executable 

files and was triggered to be activated for the first time on the 26
th

 of April, 1999. Cher-

nobyl carried two different injurious payloads. The first payload was responsible for 

corrupting the victim’s hard disk by replacing all of its contents with random data caus-

ing the system to crash, while the second one tried to permanently damage the computer 

by attacking the Flash BIOS and altering the stored data.        

Viruses usually spread through removable storage media, shared folders, emails and un-

reliable internet downloads [15]. Moreover, if the infected file resides somewhere on a 

server, the virus, with appropriate human interaction, will most likely propagate 

throughout the network, thus infecting more computers [23].  

Figure 2.3.1 presents Cohen’s example of a simple virus and its three-partite structure in 

pseudo code [49].  

program virus:= 

{1234567; 

 

subroutine infect-executable:= 

 {loop:file = get-random-executable-file; 

 if first-line-of-file = 1234567 then goto loop; 

 prepend virus to file; 

 } 

 

subroutine do-damage:= 

                                                 

18
 http://www.techopedia.com/2/26178/security/the-most-devastating-computer-viruses 

19
 http://www.symantec.com/security_response/writeup.jsp?docid=2000-122010-2655-99 
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 {whatever damage is to be done} 

 

subroutine trigger-pulled:= 

 {return true if some condition holds} 

 

main-program:= 

 {infect-executable; 

 if trigger-pulled then do-damage; 

 goto next;} 

 

next:} 

Figure 2.3.1: A simple virus example by Dr. Cohen. 

Worms. Spafford in 1989 defined a computer worm as “a program that can run inde-

pendently and can propagate a fully working version of itself to other machines” [53]. 

Worms, in general, are fully functional stand-alone programs that can be executed au-

tonomously and replicate by creating copies of themselves as they move from one sys-

tem to another. Their basic infection strategy resides mostly on exploiting system and 

network vulnerabilities with minimum or no user interaction. Due to the scale and mag-

nitude of the attacks that they can accomplish as well as their proliferation speed, they 

are quite popular among cybercriminals aiming at performing massive system infec-

tions. 

Viruses and worms are similar in the sense that they both have self-replicating capabili-

ties. The main difference between them is that a worm does not need to attach itself to 

another file in order to propagate [52]. According to Dr. Cohen, the basic distinction 

between the two is the absence of an infection mechanism in worms [49]. This of course 

does not mean that a worm doesn’t have the ability to modify or infect other files but 

rather that it does not require the presence of another program or file in order to prolif-

erate. Skoudis, Zeltser and Szor state that what explicitly distinguishes a worm is its 

network-based infection mechanisms [15, 37]. Skoudis specifically denotes that “if it 

doesn't spread across the network, it just isn't a worm”, while Szor further classifies 

worms as a subclass of viruses.     

The basic structure of a worm is anatomically similar to that of a virus, in the sense that 

it also includes specific infection, trigger and payload mechanisms. Skoudis and Zeltser 

delineate the structural components of a worm in analogy to a missile, referencing to 

worms as weapons of war [15]. 

Table 2.3.2 presents and correlates the main component elements of a worm along with 

a small description of their functionality and mechanisms, as they are discussed in [15, 

37, 57, 67, 68]. 
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Table 2.3.2. Worm Component Elements 

Worm 

Component 
Functionality Techniques / Actions / Mechanisms 

Warhead Consists of exploits that explore 

possible system vulnerabilities 

in order to gain access on a tar-

get machine.    

Buffer Overflow, File Sharing, E-mail 

readers / servers, System and Net-

work Misconfigurations / Flaws 

Propagation 

Engine 

Specifies the propagation meth-

ods necessary for the worm 

crawl and copy itself on the tar-

get, once the door is open. 

Peer to Peer and File Sharing net-

works, File Transfer mechanisms 

(FTP, TFTP, HTTP, SMB), Instant 

Messaging, IRC channels, Web Ser-

vices, owned SMTP engines, pre-

installed malware.  

Target  

Selection 

Algorithm 

Defines how the worm searches 

for additional targets to attack. 

 

IP Scanning/Generating, E-mail har-

vesting (address books, inbox, IE 

cash, personal directories, Google 

searches), Network shares / Neigh-

bors, DNS queries, Hosts Lists, Ser-

vice Discovery, OS Fingerprinting, 

Pre-configured Hit Lists, File System 

Traversal 

Scanning 

Engine 

Scans the identified targets to 

determine whether they can be 

also exploited by the warhead 

and if so, replicates and repeats 

the process on the new victim.   

Sends packets to the addresses select-

ed by the target algorithm to deter-

mine potential penetration opportuni-

ties  

Payload Any additional action to be exe-

cuted on the compromised sys-

tem. 

Recruit Bots, Install Trojans, DDoS 

agents, spam servers, viruses, rootkits, 

spyware, backdoors, key loggers etc. 

 

A worm’s payload component might not always be present. In such cases the worm’s 

ultimate goal is to quickly proliferate to as many machines as possible and the conse-
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quent damages are mostly due to the massive consumption of system and network re-

sources [15]. The existence and nature of a payload mechanism on the other hand, 

might also indicate the attacker’s motives and incentives [67]. Modern malware pay-

loads, like for example the Storm worm’s payload, demonstrate a multipartite nature 

and may include diverse mechanisms to be executed on the target machines.   

Figure 2.3.2 displays the anatomy of the Bugbear.B worm, as it is presented by Skoudis 

and Zeltser [15]. The Bugbear.B worm was detected in 2003 and is identified as a new 

form of Combo malware which embraces multiple malware characteristics concurrent-

ly. Bugbear.B uses a combination of common worm propagation mechanisms to spread 

and its payload includes a mixture of attack techniques that blend together virus and 

backdoor features as well as polymorphic and antivirus disabling mechanisms.  

 

  

Figure 2.3.2: Anatomy of the Bugbear.B worm. 

 

Such blended threats [37] have the ability to combine multiple infection strategies con-

currently and are increasingly being utilized by modern malware, like the Conflicker 

worm, to augment their infection routines. 

Worms can be generally classified into two major categories [52]: 

 Host computer worms. Worms that run integrally on the victim’s computer and 

use the network to simply replicate on other machines. Rabbits are host worms 

that terminate their execution on the previous machine after jumping on the next 

victim. 

 Network worms. Worms that are divided into multiple segments which are then 

interspersed throughout the network. Each segment is executed on different 

computers and their overall communication takes place through the network. 
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Octopuses are network worms that contain one basic segment responsible for the 

management and coordination of all the other worm parts.   

Based on their launching mechanisms, Harley, Slade, and Gattiker [52] additionally cat-

egorize worms to:  

 Self-launching worms that can self-replicate without any human intervention. 

 User-launched worms that employ social engineering techniques to trick users 

into executing their code. 

 Hybrid-launch worms that combine both aforementioned techniques.  

Even though recent attacks like the one performed by the ultimate cyber weapon Stux-

net have introduced a new hybrid, mixed type of worms that can additionally propagate 

through other means such as removable usb devices, most worm instances are network-

based and can replicate by exploiting network and system vulnerabilities. Based on their 

propagation and payload mechanisms, worms can be further classified into [68]: 

 Email Worms 

 Instant Messaging Worms 

 IRC Worms 

 Internet Worms 

 File-sharing Network Worms 

 Peer to Peer Network Worms 

 PDF Worms 

Trojan Horses. Skoudis and Zeltser [15] define a Trojan horse as “a program that ap-

pears to have some useful or benign purpose, but really masks some hidden malicious 

functionality”. Trojan horses in general are programs that disguise their actual nature 

and present themselves as innocent software programs pretending to perform something 

other than their true functionality. To further confuse the victims, some Trojans might 

actually execute what they are claiming to deliver in conjunction with the undesirable 

results. Harley, Slade, and Gattiker [52] describe Trojans as “programs that claim to do 

something useful or desirable, and may do so, but also perform actions that the victim 

wouldn’t expect or want” and denote that what distinguishes them from viruses and 

worms is the lack of self-replicating properties and the absence of proprietary infection 

mechanisms.  
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Trojan makers try to deceive the victims and conceal their malicious programs behind 

common names of system processes such as “init” in Unix systems or “iexplore” in 

Windows. Several techniques might be engaged to hide executable suffixes and wrapper 

tools are used that merge the illicit code with other legitimate programs so as to be exe-

cuted alongside them [15].  

According to Kaspersky Labs’ classification
20

 as well as related research work [15, 52, 

56], several different types of Trojan programs exist and can be categorized according 

to their functionality: 

 Backdoors. Trojan Backdoors are programs that provide attackers privileged ac-

cess on a compromised computer [52]. Backdoors in general are utilized by 

cyber criminals to gain remote access on the infected machine with the purpose 

of controlling its behavior, remotely executing commands, installing additional 

malware, exchanging files and data or even to monitor and control the victim’s 

GUI. This can be done by illegitimately using legitimate administrative tools 

like Netcat, Back Orifice and Virtual Network Computing (VNC) [15].     

 Droppers. Trojan droppers (also known as infectors [52]) contain various addi-

tional malware components, such as worms, backdoors etc., and are designed to 

secretly install and execute them on the victim’s computer. These might include 

new malicious code instances or updated versions of previously installed ones. 

 Downloaders. Upon the successful connection to a remote server they secretly 

download, install and execute malware on the victim’s computer. They are 

smaller than droppers and are often used to dynamically download updated 

malware code versions. 

 PSW Trojans. Password Stealing Ware programs are specifically designed to 

steal personal information and passwords which are then communicated to the 

controller.  

 Spies. Trojan spies monitor and record user actions which are then dispatched to 

the attacker. 

                                                 

20
 Kaspersky Labs, http://www.securelist.com/en/threats/detect/trojan-programs?behavior=19 
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 Proxies. Work as proxy servers providing internet access and at the same time 

hiding the attacker’s identity. They are most often used for massively distrib-

uting spam e-mails.  

 Notifiers. Report to the controller relevant information regarding the installation 

of malware and the infection status of the victim’s machine.    

 Arcbombs. Archive bombs are compressed files constructed to crash the system 

upon any un-packing attempt. When decompressed they flood the disk with ran-

dom data significantly affecting the system’s performance. They are most often 

used to disrupt anti-virus software and crash mail and file servers. 

 Clickers. Trojan Clickers are programmed to redirect the victim’s computer to 

various, usually predefined, internet resources such as specific web pages. This 

is usually done with the purpose of increasing a website’s traffic for promoting 

on-line ad campaigns, to perform a Denial of Service (DoS) attacks against a 

specific target or to lead the unaware users to an already compromised website 

for further infection.  

 DDoS Agents. These programs are installed on the targets to organize DoS at-

tacks against a specific victim machine. Usually the attackers infect multiple 

computers concurrently which are then coordinated to massively attack another 

machine.  

Bots. The invention of the IRC
21

 technology in 1988 led to the development of the first 

IRC bot in 1989 [61]. Bots (short for robots) were initially developed as virtual robot 

users to perform several human related actions and to assist their owners with the man-

agement of their IRC connections. Bots were capable of acting on behalf of their own-

ers, while they were busy with other activities, and could occupy the IRC channel pre-

venting others from taking it over. Bots evolved into effective tools that helped users 

manage IRC channels and provided various additional services such as enabling shell 

user accounts on the IRC host allowing remote commands execution. Pretty soon cyber-

criminals started to utilize IRC bots and related technology to promote their malicious 

activities and launch massive attacks [65]. 

                                                 

21
 Internet Relay Chat (IRC) 
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A botnet is a collection of computers (bot clients) whose actions are secretly controlled 

and coordinated by a botherder with the purpose of achieving a common goal [61]. The 

botherder directs the bot clients’ actions through remote IRC communication from a 

command and control (C&C) server. The infected computers that are under the bot-

herder’s control are also known as zombies and allow the attacker to manipulate their 

activities without even logging into their systems. Since the illegal actions are per-

formed by the infected bot clients, the attackers remain invisible and undetectable be-

hind the IRC channel and might further complicate investigators by using obfuscation 

and multiple hop techniques to direct their commands. Modern botnets append an extra 

layer of complexity as they usually comprise of a collection of bot servers, managed by 

the botherder, that each controls a different group of zombie machines. If one commu-

nication path is destroyed the rest remain unaffected [61]. 

According to Schiller et al [61] a botclient’s lifecycle begins by its exploitation. This 

can be achieved by various means such as deceiving the user into executing the infec-

tious code through phishing and spam mailing attacks, taking advantage of system vul-

nerabilities and backdoors opened by other malware invasions or brute force attacks on 

user passwords. Upon infection the freshly recruited bot initiates communication with 

its C&C server to notify the botherder and receive any possible updates necessary. It 

then receives and executes appropriate software to disable any antivirus programs and 

conceals its presence using rootkits and other tools. At this point the bot starts receiving 

commands from its controller, downloads and executes various payloads and sends re-

ports back to the botherder, a process which is repeated until its final abandonment and 

termination. 

Bots can be utilized by the botherder to perform multiple actions [61, 64, 71] such as: 

 Act as recruiting agents to enlist other botclients.  

 Perform coordinated DDoS attacks. 

 Collect any type of personal, financial, or system information including identi-

ties, credit card or social security numbers and banking credentials. 

 Execute massive spamming or phishing attacks. 

 Storing and distributing illegal digital material. 

 Organize ransoming attacks like for example encrypting the victims data and 

then extorting them in return for the decryption key or performing DoS attacks 

and demand ransom to terminate them. 
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 Secretly install adware or deceive on-line advertising vendors and affiliate net-

works with iconic website visits and ad hits. 

Botnets can be utilized to perform massive or more targeted attacks. The botherder has 

the ability to customize the range of the targeted hosts through a desired predefined list 

of IP addresses. More over botclients’ behavior can be adapted accordingly based on 

each infected host’s system variables and installed applications. Modern botnets engage 

new communications mechanisms such as peer to peer technologies or Fastflux and dy-

namic DNS services that further enhance their presence and hinder their detection. 

Fastflux DNS technology for example, which was used by the recent Storm Worm, con-

stantly and repetitively changes the IP address of the C&C server while preserving the 

same Domain name. The use of such technologies encumbers bot servers’ detection and 

containment, if not making it impossible [61]. 

Botnet technology is widely used by cybercriminals, as a major profit making oppor-

tunity, forming new underground crimeware business models [64]. According to Schil-

ler et al [61] a spamming campaign alone can generate up to $750,000 profit per month. 

With the global range and scale of attacks that botnets can accomplish, the underground 

economic market is flourishing. According to a report by Kaspersky Labs related to the 

economics of botnets [63], botnets are prevalent in the underground market due to their 

low maintenance costs as well as the limited knowledge skills required for their man-

agement. Figure 2.3.3 is imprinted from Kaspersky’s report [63] and illustrates how 

botnets can generate money for their creators.  
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Figure 2.3.3: The money making business of Botnets 

 

Latest research studies reveal that cybercriminals use botnets as their main platform for 

organizing global cyber-attacks [69]. Schiller et al [61] denote that “Today’s bots are 

easy to customize, modular, adaptive, targetable, and stealthy” and identify botnet 

technology as one of the major driving forces behind organized cybercrime with global 

impacts that can threaten not only large organizations but even entire nations. 

Rootkits. Rootkits are programs specifically crafted to hide and conceal malicious activ-

ity by substituting running processes, network traffic or system and registry files [52]. 

They are used to avoid detection mechanisms and to prolong their presence on the in-

fected machine.    

Spyware. Spyware is a general term used to describe any type of software that gathers 

information from users’ machines without their knowledge or consent [65]. The infor-

mation collected might include personal or financial data, passwords, browsing habits 

and history, banking and credit card credentials etc. Advanced spyware might also inter-

fere and modify system settings or consume various resources affecting the computer’s 

performance. 

Adware. Adware programs are secretly installed on the users’ machines with the pur-

pose of automatically downloading and launching various types of advertisements [65]. 

They most often create a web browsing profile of the victim which is then used to direct 

targeted pop-up advertisements based on the user’s interests.   

Key-loggers. Keystroke loggers are programs that monitor and record every typing ac-

tion on a user’s keyboard [65]. Keystrokes are logged and saved on the victim’s disk, 

which are then later communicated to the attacker. Keyloggers are commonly used by 

cybercriminals that want to retrieve confidential information to be used for illegal pur-

poses and financial gain.  

Table 2.3 presents a generic taxonomy of the aforementioned malware types based on 

their propagation mechanisms and host requirement.  
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Table 2.3: Malware taxonomy 

 Host Requirement 

Propagation method Host Required Independent 

Self-Replicating Viruses Worms 

Non-Replicating Trojan Horses, Rootkits Keyloggers, Spyware, Adware 

   

2.6 Types of Attacks 

Cybercriminals engage malware in order to serve their malevolent goals and have the 

ability to manifest various types of massive or targeted cyber-attacks such as prohibiting 

access to information systems and services, performing espionage, stealing confidential 

or identity information, conducting on-line banking fraud and even extorting potential 

victims for financial profit [71]. The following paragraphs provide a description of 

some of the most common types of cyber-attacks. 

DoS attacks. The main goal of a Denial of Service (DoS) attack is to make services and 

applications inaccessible to end users [65]. DoS attacks do not involve bypassing securi-

ty mechanisms but rather focus on tying up network and system resources leading to 

diminished network connectivity and unavailable services and applications [52]. This is 

usually achieved either by consuming network bandwidth or by issuing an excessive 

number of connection requests. Examples of DoS attacks include flooding the network 

with large volumes of data or massively dispatching e-mails degrading network connec-

tivity and consuming the system’s disk space. Another form of DoS attack involves 

clogging the system’s processing power for example by performing login attempts forc-

ing the computer to authenticate the requests. A variant type of attack could relate to 

forbidding user access on a system by repetitively entering invalid passwords until the 

user is locked out [65]. 

Two of the most common types of DoS employed technologies are TCP SYN Flood and 

UDP Flood attacks [61]. TCP SYN flood attacks exploit the TCP handshake process 

that most network applications rely on. The attacker sends a large number of SYN re-

quests to a server, without responding to the SYN-ACK acknowledgement messages of 

the receiver. This is achieved either by simply not replying to the messages or by spoof-

ing (forging) the sender’s IP address. The server on the other hand binds resources and 
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time while waiting for the response. A large amount of SYN messages could set the re-

ceiver unresponsive to other legitimate TCP requests. UDP flooding on the other hand, 

entails directing a massive amount of trivial UDP packets to randomly selected ports, 

blocking out regular network traffic by consuming the system’s processing power and 

bandwidth. 

To further enhance their attack power and destructive outcomes attackers employ bot 

networks and launch Distributed Denial of Service (DDoS) attacks [52, 65]. Thousands 

of infected zombie machines are controlled and coordinated by the botherder and 

through various simple commands can be accordingly instructed so as to serve the at-

tacker’s goals. The bot master can direct multiple geographically scattered bots to con-

currently conduct DoS attacks against a specific target. Through such massively syn-

chronized DDoS attacks, cybercriminals are able to significantly affect and damage not 

only powerful companies and organizations but also threaten entire countries and na-

tions [65].  

Arbor Networks, a major DDoS research and response group, monitors global DDoS 

attacks on a 24 hour basis and provides insights and intelligence analysis on worldwide 

DDoS threats. Figure 2.3.4 presents the amount and type of global DDoS attacks as they 

were recorded by Arbor's Threat Level Analysis System (ATLAS) during a very recent 

and specific 24 hour period
22

, with TCP SYN and UDP flooding techniques counting to 

more than 60% of the overall number of realized DDoS attacks.  

 

                                                 

22
 http://atlas.arbor.net/summary/dos, Accessed at 16-10-2012. DDoS summary refers to attacks realized 

between 15-10-2012 and 16-10-2012. 
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Figure 2.3.4: Global Distributed Denial of Service (DDoS) attacks Summary. 

 

The reasons behind a DoS attack vary and may involve extorting victims for profit, 

overpowering and unlawfully gaining competitive advantage against rivals by disinte-

grating competitor services subsequently causing substantial financial losses or even 

organizing daunting terrorizing cyber-attacks [63, 64, 65]. For example in early 2009 a 

coordinated DDoS attack was realized against godaddy.com, a large ISP company, lead-

ing to thousands of disrupted hosted client websites that remained of-line for about 24 

hours [63]. The motivations are yet to be clarified but speculations involve either a rival 

company’s attack or a blackmailing attempt.  

Cybercriminals go even further, indiscriminately advertising pay-per-hour or pay-per-

day DDOS services
23

. The ease, by which DDoS attacks can be realized, as well as the 

massiveness of attack sources and the magnitude of the resulting outcomes, marks 

DDoS as one of the most intimidating forms of cybercrime [65].  

Information and Identity Theft. Identity (ID) theft relates to illegally acquiring, com-

municating or abusing personal information with the purpose of committing fraudulent 

activities or other related crimes [71]. Attackers usually employ social engineering 
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 http://ddos.arbornetworks.com/2012/07/ddos-attacks-targeting-traditional-telecom-systems/ 
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techniques, such as distributing phishing e-mails, to deceptively persuade victims into 

disclosing private information to a presumably reliable source. Cybercriminals engage 

botnets to send out spam e-mails that might contain links to deceitful websites that ap-

pear as legitimate companies to deviously retrieve information. Other types of spam e-

mails may embed malicious code or lead to already compromised sites so that malware 

will be automatically installed on the victims’ machines enabling the collection of con-

fidential and private information.  

Figure 2.3.5 illustrates how an attacker can perform an on-line identity theft attack, uti-

lizing malware, botnets and social engineering techniques to eventually extract the de-

sired information from the victims and their systems [71].      

 

Figure 2.3.5: Example of an organized Identity Theft attack using malware. 

 

Espionage. Malware can also be engaged by criminals to illegally penetrate on various 

systems and perform political, industrial or even nation-wide espionage attacks [71]. 

Malicious cyber-spies use malware to gather confidential data by breaching the private 

or public sector’s security infrastructure. Espionage attempts are also often found 
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among rival organizations that seek to attain information regarding competitors’ opera-

tions. 

On-line Banking Fraud. Information collected from unaware victims as well as specific 

malware creations are most often related to illegal withdrawals or fraudulent convey-

ance of funds from bank accounts [71]. The very recent “High-Roller” attacks
24

 demon-

strated how malware can be utilized by on-line robbers to perform targeted, extremely 

automated and sophisticated banking cyber-thefts. The attackers combined and specifi-

cally customized the SpyEye, Zeus and Ice 9 malware toolkits targeting only high bal-

ance bank accounts. They infected the bank clients’ computers and illegally transferred 

the funds while the users were prompted with waiting messages during their on-line 

transactions.  

Targeted attacks. Targeted attacks involve specially crafted malware instances designed 

to specifically target a particular organization or company [22]. Matrosov et al. [70] fur-

ther describe an additional class of targeted attacks that does not focus at a specific 

company but target certain types of software and IT related infrastructure such as for 

example a malware attacking banking software or SCADA systems like the recent 

Stuxnet worm.  

Targeted attacks are amongst the hardest to detect or analyze and pose a major security 

threat for organizations and large corporations as such malware attacks are extremely 

sophisticated and may go unnoticed for a large period of time magnifying the resulting 

damaging effects [22, 23]. 

Infection Vectors. 

A malware’s ability to penetrate and invade target systems is reinforced and facilitated 

by various infection vectors that are exploited by malicious authors in order to augment 

their chances of infiltrating and polluting unaware users’ machines. Some of the most 

common propagation mechanisms, as they are discussed by Egele et al. [23], as well as 

exploitation attempts on new IPv6-based networks [46] are described in the following 

paragraphs. 

Exploiting Network Services Vulnerabilities is a famous propagation method most often 

used by worms. An employable pathway is often found in services that are provided 
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 http://www.enisa.europa.eu/media/press-releases/eu-cyber-security-agency-enisa-201chigh-roller201d-

online-bank-robberies-reveal-security-gaps 
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over the network, running on a server, to a large number of clients sharing the same re-

sources. If a vulnerability of such a service is discovered then the malicious code could 

be executed on the server, subsequently allowing the malware to automatically spread 

over the connected systems.  

Drive-by Downloads typically concern unintentionally downloading malicious software 

from the internet. Malicious attackers search for Web browser and plug-ins vulnerabili-

ties with the intent of installing and executing the maleficent code on the victim’s ma-

chine. In order for such an attack to be realized, the user must first visit a malicious or 

tampered web site. Assailants try to manipulate users by deploying spam emails enclos-

ing links to malicious sites, displaying misleading pop-up windows, tricking search en-

gines’ ranking mechanisms or tainting already existing vulnerable pages, not necessarily 

part of popular or high traffic sites.  

For example, a drive-by download attack, which exploited an ActiveX’s vulnerability 

with the purpose of installing a Trojan on the users’ machines, took place recently at a 

pizza online ordering website where the attackers used SQL injection as a method for 

inserting an iFrame into the website’s code, referencing to a malicious site
25

. A variant, 

yet similar drive-by cash attack, in which the malicious file is not downloaded and in-

stalled on the victim’s computer but executed through the browser’s cash, exploited a 

security hole in Adobe’s Flash 0-day player and infected Amnesty’s International Hu-

man Rights web site by inserting spyware camouflaged as a javascript file
26

.  

IFrames, a browser feature used to insert the content of a webpage inside a part of an-

other page, is one of the most popular methods for infecting legitimate websites
27

. Cy-

bercriminals exploit this vulnerability and inject invisible iFrames, usually containing 

encrypted or packed executable code which is placed in a remote site, into existing 

webpages. Typically the inserted code is a downloader that contains a simple redirect 

command pointing to another IP address. When a user lands on an iFramed page the 

downloader is executed and the browser is instructed to visit the malicious IP which in 

turn, for obfuscation reasons, may contain another downloader referencing to another 

                                                 

25
 http://www.h-online.com/security/features/CSI-Internet-Alarm-at-the-pizza-service-1019940.html 

26
 http://blog.armorize.com/2011/04/newest-adobe-flash-0-day-used-in-new.html 

27
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address. This process is often repeated many times until the malware is finally dropped 

into the user’s machine.  

Another popular method of deceiving users into visiting malicious websites is by taking 

advantage of high ranking search engine keywords most often involving famous celebri-

ties. Attackers monitor the latest trends and hide malicious software behind webpages 

that pretend to display relevant information, pictures and videos regarding favorite su-

perstars. According to McAfee’s recent study, Emma Watson was declared as the most 

dangerous cyber celebrity of 2012
28

. Their research reveals that there is a 12.6% possi-

bility of visiting a malware flooded website when searching for pictures and videos of 

Emma Watson. Downloading any kind of material from such a site will also result into 

receiving all sorts of spyware, viruses, adware etc. along with the desired content.  

Social Engineering forms another major infection vector and refers to all possible tricks 

and ingenious appealing means that attackers engage in order to trap and allure oblivi-

ous users into compromising their own machines. This could involve conducting 

spamming and phishing campaigns or deceptively uploading malicious links on social 

networking platforms, blogs and forums. According to Microsoft’s Intelligence Report 

[31], which involves information collected in the first half of 2011, approximately 44.8 

% of the noted propagation mechanisms required human interaction for the malware to 

spread while only 6% of malware relied on exploiting software vulnerabilities. 

IPv6 attacks. Recent studies have shown that the new internet protocol is also suscep-

tive to potential internet threats and faces some serious flaws and security concerns that 

make IPv6 based networks vulnerable to cyber-attacks [45, 46, 47, 48]. Researchers 

have demonstrated that IP fragmentation attacks are also possible in IPv6 networks and 

may result to firewalls evasion, OS fingerprinting, Intrusion Detection Systems (IDS) 

insertion/evasion as well as remote code execution [46]. Furthermore the absence of 

sufficient malware defense mechanisms in mobile and networked devices, such as 

iPhones, Android-based gadgets, iPads etc., enables the opportunity for such devices to 

be recruited as active botnet members or to be utilized as an infection vector, facilitating 

malware distribution and transcendent attacks on other interconnected networks [45].  

Cybercriminals have become aware of these security weaknesses and have already 

started to target the new communications protocol and exploit its vulnerabilities. In fact, 

                                                 

28
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according to Arbor Networks’ 7th annual Worldwide Infrastructure Security Report
29

 

which was published in February 2012, the first ever DDoS attacks against IPv6 net-

works have already been realized and recorded for the first time in 2011. An example of 

such a DoS attack is the one performed by the IPv6f**k malware which uses TCP SYN 

flooding as a resource depletion method in order to immobilize network services
30

. Oth-

er types of attacks can also be realized in IPv6 such as address spoofing and redirecting 

network traffic through ICMPv6 redirects.  

Even though the attacks on IPv6 based networks still remain rare, they are considered to 

be an emerging threat as the traffic volume in such networks is growing rapidly and the 

adoption of the new network layer protocol is being accelerated by the massive expan-

sion of the mobile and other networked electronic devices market. 

Modern malware samples may exhibit multipartite behavior [52], meaning that they 

might engage multiple infection strategies (for example a virus infecting both the boot 

sector and executable files) in order to accomplish their malevolent purposes on variant 

platforms. Blended threats additionally might use various infection vectors, exploiting 

multiple vulnerabilities, to propagate and spread [37]. For example an attacker could 

send a spam email luring the victim to visit a legitimate but iframed website. As soon as 

the user lands on the tampered page the malware is installed on the target computer and 

upon execution a specific file could be dropped which in turn will download additional 

malicious software such as Trojans, Spyware, Key-loggers etc.  

2.7 Malware Forensics 

In-depth malware analysis techniques are increasingly being utilized within forensic in-

vestigative procedures [28, 42]. By uncovering malware functionality and examining 

possible traces and patterns left behind on the infected host, digital investigators can re-

trieve substantial intrinsic information that enable the effectiveness of investigative pro-

cesses as well as the successful discovery of advanced malicious intrusions and cyber-

crimes. The significance of malware analysis within digital investigations combined 

with the continuous evolvement, sophistication and complexity of malware code has led 

to the development of more complete and formal malware forensics frameworks [21]. 
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Modern malware forensics methodologies incorporate both malware analysis techniques 

and forensic analysis tools to produce comprehensive and reliable analysis results that 

can substantiate investigative procedures and provide usable and valid prosecution evi-

dence.  

Cyber criminals nowadays are constantly trying to engineer new anti-forensic mecha-

nisms thus hindering a forensics’ analyst job and thwarting the analysis process [23, 32, 

39]. Anti-forensics is a generic term used to describe techniques employed to escape 

both forensic detection and forensic analysis procedures and can be generally achieved 

either by destroying residues of data or by hiding or not storing it at all on the disk [32]. 

The reason being that concealing network traffic and hiding file system traces left on 

the compromised computer obstructs digital investigators from unveiling the malware’s 

behavior and discovering malicious intrusions as well as eliminates possible evidence 

that may lead to the intruder’s identity [21]. Moreover, the longer the malware remains 

undetected or hides its malicious profile the greater the chances of succeeding and prof-

iting by achieving its goals, consequently causing the maximum possible damage. 

Malware authors manifest sophisticated mechanisms to impede reverse engineering 

processes as well as both static and dynamic analysis procedures. The following sec-

tions highlight and describe some of the most commonly employed anti analysis tech-

niques as they are presented and discussed in relevant research papers [20, 23, 73].  

Obfuscation and Packing Mechanisms. Malware creators use obfuscation techniques in 

an attempt to avoid detection and impede the static analysis of the program by modify-

ing the malicious code and hiding its actual intentions. This means that the code under 

analysis is not the actual code being executed [23]. Obfuscation can be achieved 

through various techniques such as for example dead code injection, code permutation 

and instruction substitution [33, 66].  

Dead code insertion injects trash code into the program leaving its semantics un-

changed. Code permutation or transposition changes the order of the instructions either 

by swapping the independent ones or by arbitrarily rearranging them and adding uncon-

ditional branches to preserve the initial control-flow. The first method aims at creating a 

binary representation with a different instruction stream than the one included in the 

malware’s signature that Anti-Virus vendors use for detection, while the second one fo-

cuses on differentiating the binary’s instruction order from the execution order. Instruc-



  -57- 

tion substitution involves replacing sequences of instructions with other semantically 

equivalent order sets usually drawn from a predefined instruction dictionary.  

Christodorescu et al. [33] present a clarifying example of how these techniques can be 

applied in practice by modifying the detection signature of the Chernobyl (CIH) virus. 

Figure 2.5.1 shows the original IA-32 code fragment, generated from the hexadecimal 

sequence “E800 0000 005B 8D4B 4251 5050 0F01 4C24 FE5B 83C3 1CFA 8B2B” 

which is used by Anti-virus software in order to detect the Chernobyl virus, as well as 

the obfuscated code produced by the aforementioned techniques. The newly generated 

code retains the same functionality but corresponds to a different signature pattern than 

the original one. 

 

 

 

Table 2.5.1: Example of Obfuscation Techniques  

 Obfuscation Technique 

Original Code 
Dead Code  

Insertion 
Code Transposition 

Instruction  

Substitution 

call 0h 

pop ebx 

lea ecx, [ebx+42h] 

push ecx 

push eax 

push eax 

sidt [esp - 02h] 

pop ebx 

add ebx, 1Ch 

cli 

mov ebp, [ebx] 

 

call 0h 

pop ebx 

lea ecx, [ebx+42h] 

nop 

nop 

push ecx 

push eax 

inc eax 

push eax 

dec [esp - 0h] 

dec eax 

sidt [esp - 02h] 

pop ebx 

add ebx, 1Ch 

cli 

mov ebp, [ebx] 

 

 

 

 

S3: 

 

 

 

 

 

S2: 

 

 

S4: 

 

 

S5: 

call 0h 

pop ebx 

jmp S2 

push eax 

push eax 

sidt [esp - 02h] 

jmp S4 

add ebx, 1Ch 

jmp S6 

lea ecx, [ebx+42h ] 

push ecx 

jmp S3 

pop ebx 

cli 

jmp S5 

mov ebp, [ebx] 

 

call 0h 

pop ebx 

lea ecx, [ebx+42h] 

sub esp, 03h 

sidt [esp - 02h] 

add [esp], 1Ch 

mov ebx, [esp] 

inc esp 

cli 

mov ebp, [ebx] 

 

 

Such obfuscation mechanisms can significantly obstruct manual static analysis ap-

proaches. Tools like “SAFE” [33], a static malware analyzer introduced by the afore-
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mentioned authors, have the ability to detect some of the most common obfuscation 

techniques. SAFE creates an abstract representation of the malware’s code and executa-

ble and detects malicious patterns, generated from the abstracted code, inside the gener-

alized version of the executable.   

Other common obfuscation techniques, usually employed by self-modifying programs, 

are polymorphism, used to avoid signature matching antivirus software, and metamor-

phism, employed to escape heuristic analysis techniques [33, 37]. A polymorphic mal-

ware has the ability to decrypt its contend during execution with randomly chosen keys 

while a metamorphic one can automatically mutate and recode itself every time it is 

proliferated and unpacked. Modern malware samples implicate more complex and ad-

vanced obfuscation mechanisms using emulation technologies that transform malicious 

binaries into randomly generated instruction sets which are interpreted by an enclosed 

binary emulator [72]. 

More recently Wenke Lee et al. [34] presented a malware obfuscation technique with 

the ability to cover the malware’s trigger based behavior by automatically encrypting 

the parts of the code that are activated by a specific input value, using that same value to 

create the encryption key which is afterwards taken out of the program. This mechanism 

was devised to specifically obstruct analysis procedures that use multiple path explora-

tion, symbolic or conditional execution processes for identifying trigger based malware 

behavior [13, 28]. Several other obfuscation mechanisms can also be found in [35, 36, 

74].  

Packer programs are used in order to transform an executable into a different form 

while preserving the same functionality [23]. The packer automatically obfuscates or 

encrypts the original code, prepending also an unpacker responsible for reverting the 

data to its initial form, resulting to a new executable. The entire unpacking procedure 

takes place solely in memory and is activated during loading.  

Dynamic analysis is generally not affected either by obfuscation or by packing tech-

niques [23]. The reason is that once the program is unpacked it will be executed and 

perform its malicious actions. On the contrary, static analysis that depends on binary 

examination may be significantly obstructed. To overcome this obstacle, the packed 

program needs first to be unpacked either automatically by using unpacker programs, 

such as for example Renovo [77], OmniUnpack [76] and PolyUnpack [75], or manually 

with the help of a debugger and other related tools [20]. 
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Malware authors have also come up with procedures to obstruct dynamic analysis and 

advanced reverse engineering techniques [22]. Modern malware instances can detect the 

usage of analysis tools and either modify their performance or remain dormant during 

analysis processes [23, 39]. Table 2.5.2 correlates and summarizes some of the most 

commonly employed anti-forensic techniques that target dynamic and reverse engineer-

ing methodologies as they are presented and discussed by Brand et al. [20, 73], Egele et 

al [23] and Sikorski et al. [22] in their related research work. 

 

Table 2.5.2: Summary of Anti Forensic techniques employed by malware 

Technique Description 

Detection of Analysis 

Environments 

Malware has the ability to identify the use of an instrumented 

virtualized or emulated analysis environment through: 

 Hardware fingerprints in virtual machines. 

 The existence of external monitoring applications like 

debuggers or registry tools. 

 Behavioral differences between emulated and real 

hardware systems such as CPU bugs or timing vari-

ances. 

 Artifacts that exist in a monitored execution environ-

ment like status flags of a debugger etc.  

Detection of On-line 

Analysis 

Various techniques allow malware to identify whether it is exe-

cuted in an on-line analysis tool like Anubis. 

Anti Tools Modifies its behavior upon the detection of certain analysis 

tools.  

  

Anti Debuggers If a debugger is detected malware can manipulate the execution 

flow to deceive analysis results. 

Anti Disassembly Utilizes the disassemblers’ functionality to generate incorrect 

disassembly results. 

Logic Bombs Instead of attempting to detect the analysis environment mal-

ware can devise logic bombs to conceal malicious activities. A 
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logic bomb unveils its behavior only under certain conditions 

such as on a specific date or user input.   

Analysis performance To enhance an automated analysis system’s throughput 

(amount of analyzed malware instances per time unit) and to 

allocate time accordingly so as to manage all necessary analy-

sis tasks, a usual approach is to terminate the execution after a 

predefined timeout period. The behavior of malware samples 

that deliberately delay the generation of relevant processes 

might not be captured. 

Rootkits Malware uses rootkits to deceptively conceal malicious pro-

cesses. 

 

To countermeasure and mitigate anti forensic mechanisms, several methodologies and 

frameworks have been proposed [25, 40, 81, 82]. Aquilina et al. in 2008 recommended 

a malware forensics methodology, in order to address the problems of forensic analysis 

in a more holistic manner, which integrates the forensic analysis procedure into a wider 

investigative and forensic framework [21]. The proposed forensic methodology is di-

vided into five subsequent investigative phases: 

 Conservation and inspection of volatile data using forensic tools. 

 Memory analysis. 

 Investigation of hard drives using forensic analysis. 

 Static analysis. 

 Dynamic analysis. 

2.8 Malware Analysis 

Malware analysis, in a broadest sense, refers to all the necessary techniques and proce-

dures that analysts employ in order to dissect, to examine and to completely unfold a 

malware’s inner structure in an effort to unveil all possible aspects of its malicious be-

havior and functionality. Kris Kendal in 2007 defined malware analysis as “The action 

of taking malware apart to study it” [43], while Moser et al. refer to malware analysis as 

“the process of determining the behavior and purpose of a given malware sample” [13].  
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Before digging further into specific analysis techniques and methodologies it is im-

portant to understand the significance of malware analysis and what it tries accomplish.  

Security analysts constantly have to face and protect their organization from new 

emerging cyber threats involving the loss of private and confidential corporate infor-

mation, industrial espionage, financial theft or any other possible attacks related to cy-

bercrime. One of the most recent examples of cyber espionage broke out in Peru and 

some surrounding countries in 2012
31

. A worm called ACAD/Medre.A injected an in-

fected AutoCAD template to a number of companies that used the respective software. 

Every time a user opened a drawing, a copy was dispatched to more the 40 mail boxes 

hosted at two different Chinese ISPs. According to ESET, who first detected the threat, 

approximately 100,000 drawings were stolen before it was finally contained. 

 A security analyst, facing such an attack, must take some immediate actions in order to 

minimize the company’s loses and exposure, and answer some significant questions for 

preventing a similar intrusion in the future. By conducting malware analysis, the analyst 

will be able to understand the purpose of the malware, what it does exactly, how long it 

remained in the system, what exactly was stolen, how it was stolen, who attempted to 

steal it, how to contain it, and how to defend against future similar attacks. Consequent-

ly, by realizing how a specific malware operates, the analyst has the ability to assess the 

damages that were caused, to identify the exploited vulnerability and enhance the organ-

ization’s defenses [43].  

As Distler outlines “The goal of malware analysis is to gain an understanding of how a 

specific piece of malware functions so that defenses can be built to protect an organiza-

tion’s network” [14]. Sikorski and Honig [22] further denote that the goal of malware 

analysis is to deliver significant information so as to properly address a malicious intru-

sion. This involves identifying all possible compromised systems and files inside the 

company’s network, precisely determining the malware’s functionality and understand-

ing how to estimate and confine the consequent damages. 

Anti-virus vendors utilize malware analysis techniques in order to identify weather a 

suspicious sample is malicious. Malware analysis provides insights on the exact behav-

ior of a sample and the intentions of malware creators. Thus appropriate detection and 

mitigation mechanisms can be developed to address new emerging threats [23]. 
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Two essential techniques of malware analysis are available, namely static and dynamic 

analysis. Static analysis focuses on examining the malicious code without executing it, 

while dynamic analysis monitors the malware’s actions during execution [22].  

Static analysis is often hindered by malicious authors who apply obfuscation and pack-

ing mechanisms to prevent the inspection of the original code. This means that the code 

under investigation might not be the code that is actually executed [13]. On the other 

hand dynamic analysis might not provide inclusive results as malevolent performance 

might be stalled or hidden upon the detection of a simulated execution environment 

[23]. 

2.8.1 Static Analysis 

Static analysis refers to the process of analyzing programs without having to execute 

them [22]. Static analysis enables the extraction of important information on the code’s 

functionality and structure from an executable using a variety of available tools. The 

malicious code is analyzed through call graphs, strings identification, corresponding as-

sembly instructions, control or data flow graphs, function and library calls and various 

other code artifacts that can be possibly rebuilt [19]. Such techniques are applicable on 

various code representations such as for example the binary equivalent of the program 

[23]. Various static analysis approaches have been demonstrated [33, 78], that enable 

and utilize static analysis methodologies.   

The main advantage of static analysis is that it is relatively faster than dynamic analysis 

methodologies and it provides the ability of examining all possible aspects of the mali-

cious code thus possibly uncovering the complete malware’s behavior [13]. On the oth-

er hand a basic consideration concerning static analysis is that the inquiries involving 

the properties and functionalities of a given malware are often undefined which forces 

analysts to work with approximations regarding the solution of a specific problem [12]. 

This approach however, can be proven ineffective when examining malware, as it can 

be directly constructed by the attacker to deliberately thwart analysis procedures. 

The static analysis process might be significantly obstructed through various obfusca-

tion and packing mechanisms that are widely employed by self-modifying malware in-

stances [23]. Such manifestations might hinder static code analysis approaches as well 

as lead tools like disassemblers to generate ambiguous assembly instructions that do not 

correspond to the actual executed ones. Moser et al. [74] introduced an obfuscation 
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technique that uses opaque constants to overcast the control flow of the program and 

demonstrated that even modern semantics-based detection mechanisms can be eluded. 

Moreover, since the malware’s source code is not available beforehand, the range of 

static techniques is limited to those the extract information from the malware’s binary 

representation [23]. Malicious code that relies on dynamically defined variables and 

values (such as the system’s time or date) can further intensify and hinder static analysis 

processes. 

Recent efforts, like the development of the Eureka framework [78], try to improve the 

efficiency of static analysis techniques and to mitigate relevant limitations. However, 

the increasing complexity, structure plurality and sophistication of malware code, en-

hances the necessity for the development of more resilient and reliable static analysis 

procedures [23]. 

2.8.2 Dynamic Analysis 

Dynamic analysis refers to the process of executing the malware in order to monitor, 

examine and analyze the performed actions [23]. Different types of dynamic analysis 

approaches are available and can be utilized to gain insights and retrieve essential in-

formation on the malware’s behavior and functionality [38]. 

Behavior-based malware analysis monitors the actions of a given malware sample dur-

ing run time. The malicious code is executed in an instrumented and controlled analysis 

environment, and its behavior and interactions with the host system are observed and 

recorded. Appropriate tools provide the opportunity to examine registry and file modifi-

cations, network traffic and packets, created or deleted files, generated processes, load-

ed DLLs, API calls, memory and disk usage as well as multiple other related infor-

mation. Various frameworks have been introduced that implement behavior-based mal-

ware analysis [26, 79, 80]. This “black box” type of approach reveals significant infor-

mation on the malware’s exhibited behavior but fails to expose the program’s inner 

structure and logic.  

Comparing system’s snapshots involves executing the malware in a simulated environ-

ment and identifying differences between snapshots that capture the system’s state be-

fore and after execution. Implementing and applying such a technique as a stand-alone 

process can be done with relative ease however the obtained analysis results are quite 

coarse-grained in nature as any intermediate actions, such as for example the creation 
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and deletion of files during execution, will be missed. Distler [14] incorporates this 

technique in a combined malware analysis approach as a supplementary process to en-

hance the resulting analysis outcomes. 

Dynamic code analysis observes the program’s activities while it is executed, usually 

with the use of specialized tools like debuggers. Debuggers provide control over the 

program’s execution which can be intercepted, restricted and modified. Analysts have 

the ability to monitor memory and registry values, function calls and passing arguments 

as the code runs. In contrast to disassemblers that generate a static assembly representa-

tion of the code exactly before its execution, debuggers provide a dynamic insight on 

the malware’s behavior. Modern dynamic analysis approaches [22] employ debuggers 

as the means to better understanding the internal structure of malware and enrich the 

attained analysis information. 

As opposed to static analysis techniques, dynamic analysis has the advantage of analyz-

ing the actual executed instructions [12]. To this end, dynamic analysis is basically un-

affected by anti-forensic techniques such as obfuscation or packing mechanisms, as the 

code’s functionality will eventually be demonstrated during execution. However, the 

main drawback of dynamic analysis is its inherently non-exhaustive nature in the sense 

that only a single execution path is monitored per analysis attempt. This means that the 

analysis results may not be inclusive regarding the malware’s complete behavioral char-

acteristics. Towards this end, researchers have developed new approaches that seek to 

expose possible trigger-based malware behavior [13, 28]. Nonetheless analyzing and 

extracting all possible behavioral characteristics is still a matter of ongoing research. 

Moreover malware authors have developed various anti-forensic mechanisms that allow 

the detection of an instrumented analysis environment such as an emulator or a virtual 

machine as well as the use of automated on-line or locally installed analysis sandboxes 

[23]. If such a tool is identified, malware might hide its true payload to deceive the 

analysis results, terminate its execution or remain completely dormant and even destroy 

any possible execution evidence [32]. Researchers have approached this issue with an 

effort and emphasis on developing more complete and comprehensive dynamic tech-

niques with the ability to uncover and mitigate anti-forensic mechanisms [19, 21], creat-

ing stealth platforms and transparent analysis frameworks [81, 82] or detecting evasive 

malware behaviors and split personalities [25, 39].  
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Efforts have also been made towards improving the efficiency of dynamic analysis pro-

cedures [83]. However, as analysis techniques and tools evolve and become more ad-

vanced and effective, attackers also manifest new mechanisms to avoid detection and 

impede modern analyzers, leading to a continuous “arms race” between analysts and 

malware creators [23].    

2.8.3 Reverse Engineering 

Reverse engineering refers to the process of generating and analyzing the corresponding 

assembly instructions of a given malware [22]. This is achieved by importing the exe-

cutable file into a disassembler, to produce the assembly code, and examining its in-

structions to discover the code’s functionality.  

However, the compilation of a program’s source code results into a machine optimized 

code which is typically stored in a binary form so that it can be efficiently executed by 

the computer [15]. Disassembling the complied code could provide complicated and 

confusing assembly instructions accompanied by machine produced variable names. 

Moreover, as assembly instructions provide a low level representation of the original 

code and they are inherently dependent on the microprocessor’s family, the reverse en-

gineering process requires high expertise, advanced programing skills and extensive 

knowledge of system’s architecture [22].  

Regardless of the aforementioned difficulties, reverse engineering can provide im-

portant information about the malware’s inner programming structure and logic that 

simple static analysis techniques fail to reveal. Figure 2.6.1 illustrates a typical reverse 

engineering technique that uses static extraction to produce a resulting Control Flow 

Graph (CFG) representation of the binary, which assists the discovery of different exe-

cution paths inside the code [84]. 
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Figure 2.6.1: Static extraction reverse engineering methodology. 

 

To hinder reverse engineering methodologies, malware authors have also developed 

various anti-disassembly techniques to produce false assembly listings and to frustrate 

any reverse engineering efforts [15, 32]. Modern analysis methodologies and tools are 

commonly oriented towards extenuating and overcoming such mechanisms. Recently 

researchers have attempted to reverse engineer the Zeus toolkit [62] using the “PaiMei” 

reverse engineering framework [85]. However, reverse engineering software phases 

some legal considerations and restrictions [15]. Before attempting to reverse engineer a 

program, one should be aware of the respective laws and regularities, applicable in each 

distinct analysis case.  

2.9 Malware Analysis Tools 

A variety of analysis tools exists to facilitate the entire process of malware investiga-

tion. Such tools include disassemblers, debuggers, memory managers, unpackers, net-

work, registry and process monitors, strings searchers, text extractors and numerous 

others valuable in common malware analysis practices. These tools can be incorporated 

in various combinations to assist both static as well as dynamic analysis procedures. 
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However, prior to employing and engaging any type of analysis tool, important consid-

erations should be taken into account regarding their validity and forensic acceptability 

[19]. The pool of existing tools includes various commercial, open source or freeware 

packages in addition to multiple others that can be retrieved from numerous on-line 

sites. The forensic soundness and legality of these tools should be thoroughly examined 

so as to legitimately support all stages of forensic investigations and prosecutions.    

A plethora of available analysis tools as well as an extensive description and demonstra-

tion of their usage and functionalities can be found in [21, 22]. Table 2.7.1 presents an 

explicit example of a distinct set of tools that were combined to assist the process of a 

detailed analysis approach towards dissecting and examining a specific malware sample 

[18].  

Table 2.7.1: Example of a combination of analysis tools to dissect a specific malware. 

Technique Functionality Tool 

Static 

Analysis 

Automatically packs and unpacks mal-

ware. 

UPX (upx.sourceforge.net, 2008) 

Searches for ASCII and Unicode strings 

in binary files. 

Strings (sysinternals.com, 2008) 

Reads files and displays documents in 

textual or hexadecimal format.  

FileInsight (McAfee, 2009) 

 

Identifies packers, cryptors and compil-

ers in PE files.  

PEiD (peid.info, 2008) 

Allows viewing and editing of PE files. Stud PE (cgsoftlabs.ro, 2008) 

Disassembler with graphing abilities. IDA Pro, (hex-rays.com, 2008) 

Dynamic 

Analysis 

Debugger with GUI. OllyDBG (ollydbg.de, 2004) 

Lists auto-starting locations AutoRuns (sysinternals.com, 

2011) 

Displays running processes, threads, 

DLLs, handles etc. 

Process Explorer 

(sysinternals.com, 2011) 

Monitors and logs filesystem, registry, 

process and network activity. 

Process Monitor (sysinter-

nals.com, 2011) 

CaptureBAT (honeynet.org, 2007) 
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Lists loaded DLLs. ListDLLs (sysinternals.com, 2011) 

Lists all TCP and UDP endpoints. TCPView (sysinternals.com, 2011) 

Displays the physical and virtual 

memory usage of a process.  

VMmap (sysinternals.com, 2011) 

Displays the namespace of Windows’ 

Object Manager. 

Winobj (sysinternals.com, 2011) 

Extracts text.  BinText (McAfee, 2000) 

Displays registry and file changes by 

comparing two snapshots. 

Regshot 
(sourceforge.net/projects/regshot, 

2007) 

Identifies variations in the process’ 

handle tables.  

HandleDiff  (malwarecook-

book.com, 2011) 

Captures network traffic and analyzes 

packets and protocols. 

Wireshark (wireshark.org, 2010) 

Contains utilities useful in malware 

analysis such as an MD5 hash calcula-

tor, FakeDNS etc. 

Malcode Analysis Pack 

(http://www.woodmann.com/collabor

ative/tools/index.php/ , 2001) 

Static and 

Dynamic 

Analysis 

A lightweight Linux distribution that 

incorporates various tools and utilities 

for analyzing and reverse-engineering 

malware. 

REMnux 

(http://zeltser.com/remnux, 2011) 

 

To facilitate the analysis process as well as to reduce analysis time and manual effort, 

recent research efforts and advancements have introduced various automated malware 

analysis tools and platforms. These tools have the ability to perform malware analysis in 

an automatic manner, resulting to a set of generated reports that help analysts to identify 

and understand a malware’s behavior. By utilizing automated tools, security experts can 

promptly respond to a potential threat and quickly built appropriate defenses. The fol-

lowing paragraphs provide a brief description of some of the most common automated 

dynamic analysis tools as they are presented and discussed by Egele et al. [23] as well 

as a brief overview of the Cuckoo Sandbox analyzer [54]. 

http://www.woodmann.com/collaborative/tools/index.php/
http://www.woodmann.com/collaborative/tools/index.php/
http://zeltser.com/remnux
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Anubis [86], which was based on TTAnalyse [12], analyzes suspicious binaries by exe-

cuting the samples in a Windows XP guest OS that runs inside Qemu emulator [87]. To 

perform the analysis Anubis monitors and records all Windows API calls as well as the 

corresponding passing parameters and arguments relevant to the processes that were 

generated by the sample under investigation. The analysis results are stored in reports 

containing all recorded activities. Since the analysis was able to capture only one execu-

tion path, Moser et al. [13] extended Anubis so as to enable the exploration of multiple 

execution traces. 

CWSandbox [88] can perform malware analysis in either a native dedicated physical 

machine or in a virtualized Windows environment. It implements API hooking to hook 

functions responsible for monitoring API calls. CWSandbox additionally applies rootkit 

technology to conceal the presence of the analysis tools from the investigated sample. 

The analysis outcome is a report that includes all the performed actions of the analyzed 

sample. Recently security experts developed the GFI Sandbox
32

 automated malware 

analysis tool which was built based on CWSandbox. It is designed to analyze Windows 

executable files preferably on a native machine. GFI Sandbox can be used either as an 

online service
33

 by submitting a sample for analysis or purchased as a commercial mal-

ware analysis package. One of its included features provides multiple malware analysis 

comparison between the same or different malware samples which is much similar to 

the current proposed approach of this dissertation. However, in contrast to our method-

ology, the analysis offered by GFI Sandbox is restricted into Windows files only. More-

over a single product license starts at $15.000 making it a luxurious choice as opposed 

to the recommended open source solution. 

Cuckoo Sandbox [54] is an open source malware analysis tool which implements auto-

mated malware analysis in an isolated and controlled virtualized environment. The exe-

cution of the malware samples can be applied in various guest operating systems includ-

ing multiple versions of Windows and linux distributions. Its features, among others, 

include monitoring and recording native functions and Windows API calls, network 

traffic, memory dumps, generated processes and dropped files. The functionality and 

behavior of each given malware sample is processed and documented in both human 

                                                 

32
 http://www.gfi.com/malware-analysis-tool#overview 

33
 http://www.threattrack.com/ 
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and machine readable reports to allow additional processing and investigation. It can be 

installed locally and further customized or used as an online analysis engine
34

. 

It is important to mention that utilizing automated and on-line analysis tools also comes 

with legal considerations regarding any confidential information that might be disclosed 

to an external party [19].  

2.10  Overview of Malware Analysis Techniques and 
Methodologies 

The selection of the appropriate techniques, implementation methodologies and analysis 

process solely resides in the analysts hands who needs to leverage between the available 

choices and either follow a predefined and already demonstrated procedure or deploy a 

custom made and tailored methodology, which would better assist accomplishing the 

desired goals and achieving the necessary results. 

Static Analysis Techniques 

Static analysis entails inspecting the malware code without executing it. To this end 

static analysis is safer as the malware will not be allowed to deliver its payload and real-

ize any destructive actions. To avoid any accidental activation of the sample under in-

vestigation, using an analysis environment other than the one intended for the malware 

to run is usually a safe choice [43]. 

Different techniques and approaches are utilized to make the static analysis process fea-

sible [22, 43], some of which are described below: 

Virus Scanning. Before initiating the analysis process it would be a good practice to first 

check if the malware sample has already been identified and examined. Various online 

platforms like VirusTotal
35

 allow the submission of suspicious files which are then 

scanned among multiple antivirus scan engines. The results can provide an important 

initial insight on the malware’s behavior. 

File Fingerprinting. Obtaining a cryptographic hash of the suspicious specimen is im-

perative before proceeding further into the analysis process.  By computing the hash 

value of the investigative file (e.g. MD5, SHA256, SHA1) the analyst can identify other 

                                                 

34
 http://malwr.com/ 

35
 http://www.virustotal.com/ 
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instances of the same malware, possibly using a different name, as well as to occasion-

ally authenticate the sample in order to identify any file alternations and modifications 

that may have caused changes to the original malware sample.  

Strings Search. Most programs contain strings (character sequences) embedded inside 

the executable which are usually symbolized in either ASCII or Unicode format. These 

strings may involve status, error or other messages that are usually outputted on the 

screen, URL connections or even the locations of created files. Tools like Strings
36

 can 

be used to identify and extract strings from executables. By examining such strings, 

many features and functionalities of the sample can be revealed. 

Packer Detection. Malware authors are widely employing obfuscation and packing 

mechanisms to confuse analysts and obstruct the static analysis process. Since legiti-

mate software usually contains multiple strings, the absence or limited number of 

strings within an executable might indicate malicious intent. Various tools can identify 

whether a program has been packed. In such cases the sample needs to be unpacked be-

fore performing the analysis.  

PE files Examination. The Portable Executable (PE) format is basically a data structure 

used in Windows operating systems for executable files. A variety of information such 

the compilation date, imported and exported functions, linked libraries, code and ver-

sion details and many more, can be retrieved by analyzing the metadata that are stored 

inside the PE file’s header. Tools like the Depends
37

 and PEview
38

 examine PE files and 

retrieve valuable information. 

Disassembly. Advanced static analysis involves examining the code’s inner logic (se-

mantics) and requires extensive reverse engineering knowledge. This is accomplished 

with the use of a disassembler and by analysing the assembly instructions of the mal-

ware’s code. A detailed description and instructions on how to disassemble a malware 

and interpret the assembly code, as well as insights on systems’ architecture and design 

can be found in [22].  

Dynamic Analysis Techniques 

                                                 

36
 http://bit.ly/ic4plL 

37
 http://www.dependencywalker.com/ 

38
 http://www.magma.ca/~wjr/ 
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Dynamic analysis deals with analyzing the malware’s activities during execution. Vari-

ous techniques are available and can be found in related literature [21, 22, 23, 38]. Some 

of the most important techniques related to automated dynamic analysis as well as dy-

namic code analysis are described in the following paragraphs.  

Function Hooking. One of the most important aspects of malware analysis is the ability 

to monitor and record the functions that are invoked by the malicious code. This can be 

realized by intercepting the corresponding function calls [23], a process known as hook-

ing. For each different function call, a hook function is also evoked alongside. The hook 

function is able to examine and record the function’s execution and passing parameters. 

This process can be applied to monitor API
39

 calls, responsible for managing files or 

network connections, System calls as well as Windows Native API calls. Function 

hooking can be implemented in different ways: 

 If the source code is available, calls to the hook functions can be attached di-

rectly inside the program. 

 If the sample is in binary form the one approach would be to rewrite the inves-

tigated function so as to call the hook before its execution.  

  Replacing the binary’s invocation instructions so as to call the hook function 

instead of the intended one. 

 Insert breakpoints, either inside the monitored function or at each invocation 

command to that function so that on each breakpoint’s activation, a debugger 

will be executed to control the entire process.  

Function Parameter Analysis is used in order to examine the values of the invoked 

function’s passing parameters. Tracing input and return values allows clustering func-

tion calls into groups of similar functionality. 

Information Flow Tracking. The purpose of this technique is to provide an understand-

ing on how the corresponding data of a program are circulated inside the infected sys-

tem throughout its execution. Following the traces of the data can provide significant 

information on the processing behavior of the sample. To achieve this, the monitored 

data are tainted with a distinct label. This label is propagated whenever the data are pro-

cessed by the program and the information flow is monitored and recorded. 

                                                 

39
 Application Programming Interface 
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Instruction Tracing is applied in order to better realize how the analyzed sample be-

haved during execution. Instruction trace refers to monitoring and analyzing the order of 

the sample’s executed instructions during the analysis. 

Autostart extensibility points (ASEPs) are techniques used to automatically execute a 

program upon the system’s reboot process or upon the execution of an application. 

Malware samples most often attach themselves to existing ASEPs so as to be executed 

automatically. Monitoring and analyzing such mechanisms is imperative in order to un-

derstand inherent malware behavior and infection strategies.  

Implementation methodologies. 

Designing an appropriate system in which to execute the malware sample and to per-

form the analysis techniques is a complicated and difficult task that can significantly 

affect the resulting outcomes. Important consideration should be given to the defined 

privilege levels in the execution environment. There are mainly three available ap-

proaches [23] to implementing a dynamic analysis system:  

Kernel or User Level implementation entails using a native dedicated system to perform 

the analysis. Executing the malware in user-space allows capturing a wide range of in-

formation, such as for example all types of invoked calls and executed processes, as the 

same operating system’s recourses are available to all implicated applications. The main 

limitation of this type of implementation is that the analysis modules can be easily de-

tected by the malware. Executing the analysis modules with kernel level privileges pro-

vides additional information, like on specific system calls, and can conceal the usage of 

the analysis tools. However, malware that can elevate privilege levels will still be able 

to detect the analysis mechanisms.  

Implementation in an Emulator allows the execution of the malware sample inside a 

controlled simulated environment. Specialized software, like for example Qemu [87], 

can emulate parts or the entire structure of a personal computer including the operating 

system and applications as well as the system’s hardware recourses such as the proces-

sor, storage disks, peripherals and more [12]. The operating system inside the emulator 

is referred to as the guest OS. Additionally, the host and the guest architectures could be 

different. This type of implementation, depending on the level of emulation, can provide 

full control over the test environment and prevent malware from detecting it. However, 

advanced malware instances have the ability to identify specific emulation characteris-



-74- 

tics and terminate its activity. Moreover, significant high level information such as sys-

tem or function calls need to be deduced from raw system data. 

Implementation in a Virtual Machine. With this approach the malware is executed in-

side an isolated virtualized environment. Virtualization software, like VirtualBox [89], 

can simulate various operating systems and assign subsets of the host system’s hard-

ware recourses to the running guests [12]. The management and control of the virtual 

machines is performed through a Virtual Machine Monitor (VMM) which is responsible 

for allocating system resources to the guests [23]. After each malware execution, the 

related VM can be reinstated to an uninfected status using clean VM snapshots. In gen-

eral, virtualization enables fast malware analysis mechanisms and provides full control 

over the analysis environment. As opposed to emulation, it uses the host’s physical 

hardware resources to execute the malware’s instructions. However, the resources are 

strongly isolated, thus concealing the analysis tools from the malware. Nevertheless, 

malicious authors have also manifested techniques to detect virtualized analysis envi-

ronments [32, 39]. 

Analysis Methodologies 

Early manual analysis methodologies like the one proposed by Skoudis and Zeltser [15] 

were quite straightforward and solid, involving a successive number of steps while 

combining both static and dynamic analysis techniques. The authors illustrate a detailed 

analysis concept, were the malicious sample can be examined either in a physical dedi-

cated test laboratory or in a virtualized environment, and additionally provide a malware 

analysis template, which can be used for the purpose of recording observed results dur-

ing the analysis process. The respective template including all necessary activities that 

need to take place has been revived in the following table: 

 

Table 2.1: Malware Analysis Template provided by Skoudis and Zeltser. 

Activity Observed Results 

Load specimen onto victim machine  

Run Antivirus program  

Research antivirus results and file names  

Conduct Strings analysis  

Look for scripts  

Conduct binary analysis  

Disassemble code  

Reverse-compile code  

Monitor file changes  
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Monitor file integrity  

Monitor process activity  

Monitor local network activity  

Scan for open ports remotely  

Scan for vulnerabilities remotely  

Sniff network activity  

Check promiscuous mode locally  

Check promiscuous mode remotely  

Monitor registry activity  

Run code with debugger  

 

The above methodology presents a rather linear attitude and does not focus on providing 

the means towards overcoming possible anti analysis techniques that the malware might 

engage. 

In 2007 Zeltser introduces a new methodology [17] which enhances the possibility of 

revealing and overcoming modern anti forensic techniques. Zeltser proposes a series of 

repetitive steps, with the purpose of extracting the complete functionality of the under-

lying code, which are summarized and respectively reproduced as follows
40

: 

 Step 1. Set up a controlled, isolated environment to perform the analysis. 

 Step 2. Examine the malware’s behavior through behavioral analysis. 

 Step 3. Conduct static code analysis to understand the code’s inner-structure. 

 Step 4. Perform dynamic code analysis to get additional information on the code. 

 Step 5. If packed, unpack the sample 

 Step 6. Execute steps 2, 3, and 4 repetitively until the analysis goals are met. 

 Step 7. Record results and clean the test environment for future analysis. 

The proposed methodology blends together static and dynamic analysis techniques and, 

as opposed to the linear nature of Skoudis’ approach, through an iterative and recursive 

procedure dives deeper into the analysis process from a higher and abstracted level view 

to a more detailed and refined view. After each analysis cycle the test platform is mold-

ed and tailored based upon specific findings and behavioral observations, in order to 

promote interactions with the specimen, stimulate additional malware activity and un-

fold possible hidden aspects of its malicious intentions. Moreover, through the dissemi-

nation of behavioral and code analysis techniques that interchange and intertwine 

                                                 

40
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throughout the analysis process, Zeltser’s method also facilitates the opportunity to dis-

cover and mitigate anti forensic techniques as the analysis process proceeds [19]. 

Distler in “Malware Analysis: An Introduction” [14], building on Zeltser’s technique, 

presents an analysis methodology were both static and dynamic techniques are incorpo-

rated. The author implements a malware lab for the analysis which consists of four icon-

ic systems created with VMware virtualization software and exhibits a step by step ex-

amination procedure by employing several manual analysis tools in order to assist every 

stage of the analysis process. Distler thoroughly and practically demonstrates how one 

can create a sandbox environment, execute the malicious code, monitor malware’s ac-

tivity, collect the appropriate data and analyze it accordingly.  

The proposed method comprises of a series of actions that can be broken down and dis-

tinguished depending on their involvement in the preparation, static or dynamic analysis 

phases.  The preparation phase consists of malware acquisition, virtual lab preparation, 

copying, extracting and installing, when required, the appropriate tools into the virtual 

machines, taking MD5 hashes of the tools, base lining the system and taking a snapshot 

of the VM. It is suggested that upon proper preparation, multiple AV software should be 

executed to determine whether the suspicious file can be detected as malicious. During 

static analysis the malware should be first examined in a hex editor to define its type 

and determine the possible usage of a packer utility (like UPX). If a compression mech-

anism is identified, a copy of the original file must be kept before decompressing or un-

packing the program. For the remaining code analysis process, following steps involve 

performing a strings search, disassembling and reverse engineering the malware. For the 

dynamic part of the analysis the suggested steps involve: 

 Update and install all necessary applications, service packs, patches and hot fix-

es. 

 Set VM networking to “Host-Only” networking. 

 Perform one more Baseline, upon finishing the code analysis. 

 Run Process Explorer, TCPview, Windump and explorer 

 Execute the malware 

 Monitor and record system status changes 

 Take another snapshot using WinAnalysis 

 Compare Snapshots 
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 Run PE and TCPview one more time and identify changes from the previous 

baseline 

 Examine Network Trafic 

 Identify and observe new processes installed by the malware 

 Search for listeners 

 Adjust Environment 

 Inspect network traffic again 

 Distler’s approach sketches, in a clear and solid manner, a complete analysis methodol-

ogy which includes all the necessary courses of action from the preparation of the sand-

box environment to the analysis of the acquired results. The proposed methodology is 

much similar to the one discussed also by Hutcheson in “Malware Analysis the Basics” 

[16]. Hutcheson additionally implements an initial visual analysis, prior to conducting 

static and dynamic analysis, aiming to gather some primary data involving the malicious 

file. In both techniques, analogous to Zeltser’s method, in order to trigger additional ac-

tivity and unveil as much of the malwares’ personality as possible, through the process 

of multiple executions, the test environment is adapted and system parameters are fur-

thermore customized depending on behavioral findings after each code run.  The differ-

ence can be found in the process where part of the functionality of the investigated 

malware is revealed by comparing snapshots of the system before and after execution, a 

function which is not implemented by Hutcheson. 

The aforementioned analysis approaches [14, 16, 17] provide an initial attempt towards 

alleviating some of the anti-detection mechanisms employed by malicious authors, such 

as code obfuscation and encryption.  

Aquilina et al. in 2008 recommend file profiling, as an essential preliminary phase dur-

ing the initial analysis procedure [21], in which static analysis constitutes a basic pro-

cess module, and entails the inspection of the suspicious file in an effort to acquire sig-

nificant information surrounding the malware thus leading to more accurate and target-

ed decisions on selecting the most suitable analysis approach. In general the profiling 

stages include: 

 Detail. Detect and record the system details from which the suspect file was ob-

tained. 

 Hash. Acquire the cryptographic hash of the suspicious file. 

 Compare. Perform a similarity assessment against known samples. 
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 Classify. Identify the target architecture, format of the file, authoring language 

and the compiler used. 

 Scan. Use anti-virus and anti-spyware tools to determine the existence of a pre-

identified malicious signature.  

 Examine. Determine whether the sample has malicious intentions through ap-

propriate analysis tools.  

 Extract and Analyze. Mine strings, and discover file metadata and symbolic in-

formation. 

 Reveal. Reveal armoring and code obfuscation techniques. 

 Correlate. Define the existence of static or dynamic linkage of the file. 

 Research. Perform online research to find out if the file has already been ana-

lyzed. 

For the subsequent dynamic analysis phase, the authors propose the execution of the 

following successive actions: 

 Establishing the Environment Baseline 

 Pre-execution Preparation 

 Executing the Malicious Code Specimen 

 System and Network Monitoring 

 Environment Emulation and Adjustment 

 Process Spying 

 Defeating Obfuscation 

 Decompiling 

 Advanced PE Analysis 

 Interacting with and Manipulating the Malware Specimen 

 Exploring and Verifying Specimen Functionality and Purpose 

 Event Reconstruction and Artifact Review 

Through a number of case scenarios, the proposed methodology is practically applied in 

both Windows and Linux based environments and depending on the investigative sur-

roundings a plethora of manual analysis tools is utilized and a hands-on demonstration 

of their usage takes place.  

The above mentioned methodology shares many similar characteristics with Zeltser’s 

approach [17], like the adaptation of the test system based on intermediary analysis ob-
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servations and interactions with the malware, but also additionally deploys explicit steps 

and formulas focusing specifically on defeating possible shielding and defensive mech-

anisms employed by the malicious specimen.  

Brand, Valli and Woodward in 2010 extend Zeltser’s methodology [17] and introduce a 

spiral analysis model [20], which alternately uses static and dynamic techniques, with 

additional emphasis on unmasking and extenuating anti analysis tactics. This enhanced 

method embeds a number of consequent phases which are imprinted in the following 

lines: 

 Preliminary Static Analysis 

 Tailor Static Analysis Environment 

 Detect and Mitigate Static Analysis Avoidance Technique 

 Detailed Static Analysis 

 Preliminary Dynamic Analysis 

 Tailor Dynamic Analysis Environment 

 Detect and Mitigate Dynamic Analysis Avoidance Technique 

 Detailed Dynamic Analysis 

These subsequent steps are repeated in an iterative and recursive manner as the exami-

nation process continues and based on the obtained results after each phase appropriate 

decisions are made on how to tailor and adjust the following stage. Frankie Li in his 

technical paper “A Detailed Analysis of an Advanced Persistent Threat Malware” [18] 

adopts and applies Zeltser’s technique in an effort to analyze and dissect a specific 

malware sample by conducting a detailed analysis in a spiral way [20]. 

A complete, hands-on practical guide to manual analysis can be found in “Practical 

Malware Analysis” by Sikorski and Honig [22]. The authors implement and exhibit an 

analysis methodology which embraces some of the most modern techniques and tools 

concerning static and dynamic analysis methods. The recommended approach starts 

with a primary basic static and dynamic analysis of the malicious file and moves on to 

more advanced and sophisticated static and dynamic procedures. The initial static anal-

ysis consists of using antivirus tools, hashes and gathering information from strings, 

functions and headers while the dynamic part implicates running the code in a virtual-

ized environment and monitoring processes, registry and file system changes, simulat-

ing a network and sniffing packets. Following this initial investigation, advanced re-

verse engineering techniques are used in order to disassemble the binary and extensive 
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debugging mechanisms and tools are employed in order to obtain a vibrant picture of 

the program as it is executed. 

What has become evident through the aforementioned approaches is that modern manu-

al analysis methodologies append an extra layer into the analysis process and under-

standing, detecting and escaping anti forensic mechanisms has become a prerequisite 

towards developing and implementing a fully functional and effective forensic analysis 

methodology. 

Modern analysis methodologies lean towards implementing automated analysis tech-

niques or integrating already existing automated analysis tools in order to form more 

complete and comprehensive automated frameworks and reduce analysis time and man-

ual effort. 

Ligh et.al [90], present an automated analysis methodology and introduce various py-

thon modules that can be utilized to automate several aspects of the analysis process. 

The proposed scripts and tools facilitate executing and monitoring malware inside virtu-

alized environments as well as in physical machines. Figure 2.8.1 illustrates the sug-

gested methodology, as it is presented by the authors, and demonstrates how to perform 

malware analysis in a reusable automated sandbox environment. 
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Figure 2.8.1: Automated malware analysis methodology 

 

Each one of the distinct analysis steps can be automated through appropriate python 

scripts. For an automated analysis without any programming requirements, the authors 

propose ZeroWine
41

 and Buster Sandbox Analyzer
42

 as a pre-constructed solution.  

3 Chapter 3 - Setting up the 
Test Bed 

The design of the proposed malware analysis framework relies on the proper configura-

tion and deployment of a safe and reliable Test Bed that will allow the execution of var-

ious malware samples multiple times. Cuckoo [54] is incorporated within the frame-

work, as the main automated malware analysis tool, to produce the necessary primary 

data for analysis. The following sections provide a brief description of Cuckoo’s func-

tionality as well as the specifications of the hardware and software requirements that are 

imperative in order to create an isolated and controlled environment for testing multiple 

malware. 

3.1 Platform Requirements 

The Test Bed operates as the main analysis platform in which various malware samples 

can be executed and examined multiple times. The corresponding analysis results are 

utilized as primary data which are further correlated and processed to produce compre-

hensive malware profiles. To ensure the correctness of the analysis process and the ac-

curacy of the analysis results, certain conditions and requirements need to be taken into 

consideration during the design of the Test Bed and the selection of the appropriate un-

derlying infrastructure.  
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3.1.1 Hardware Requirements 

The required hardware infrastructure, for the deployment of a reliable and efficient 

malware analysis platform, mainly depends on the system’s purpose and functionality 

and could range from a plain personal computer with minimal characteristics to more 

powerful and multiplicate machines. An appropriate infrastructure is imperative in order 

to enhance the system’s performance and support the successful accomplishment of the 

desired goals.  

For the implementation of the proposed malware forensics framework, a simple dedi-

cated physical machine has been accordingly set-up and configured. The recruited ma-

chine is a personal computer with a Pentium IV at 3.8 GHz processor and an Asus P5 

GV-MX motherboard. A hard drive of 160 GB storage capacity and a 3.5 GB RAM 

have been attached to support all required tools, applications and analysis activities. 

Additionally, an external 250 GB hard drive has been used for holding regular backups 

and disk images. The aforementioned hardware choices have been found to adequately 

support all necessary applications, storage and processing requirements of the intro-

duced analysis framework.    

3.1.2 Software Requirements 

The proposed malware forensics framework utilizes Cuckoo Sandbox Analyzer [54] as 

the main malware analysis tool. Therefore the selection of appropriate software, com-

plementary tools and applications was primarily based on Cuckoo’s software dependen-

cies as well as required components, libraries and modules. Any additional packages 

were chosen on the basis of Cuckoo’s support and proper assimilation. 

The Test Bed uses Ubuntu 12.04 LTS Linux distribution
43

 as the underlying host oper-

ating system, with a running installation of Cuckoo version 0.4, and VirtualBox [89] as 

the main Virtual Machine emulator. Since Cuckoo’s host modules are written in python, 

the corresponding python version 2.7
44

 has been installed on the host. To stimulate addi-

tional features and to explore Cuckoo’s full analysis potentials, several other python li-

braries have been utilized such as: 

 Magic: To identify various file formats. 

                                                 

43
 http://www.ubuntu.com/ 

44
 http://www.python.org/ 
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 Pyssdeep: To compute the ssdeep fuzzy hash of files. 

 Dpkt: To retrieve network traffic information from PCAP files. 

 Mako: To form the HTML reports and Cuckoo’s web interface. 

 Pymongo: To store the analysis results in a MongoDB database. 

 Image Library: To capture guest desktop screenshots during the analysis.  

Tcpdump has been installed in order to capture and record any network activities per-

formed by the malware during execution. Tcpdump works as a network sniffer and is 

responsible for monitoring network traffic and dumping it on a .pcap file for further 

processing. 

In order for VirtualBox to function properly, the corresponding Software Developer Kit 

(SDK) extension package has also been installed on the host whilst the required Virtu-

alBox guest additions have been set up inside each guest operating system. 

To correctly set up and prepare the Test Bed for conducing malware analyses, all the 

aforementioned tools and applications along with possible available patches, service 

packs, updates etc. need to be installed and suitably configured. For the completeness of 

the proposed framework some additional libraries have been included. Numpy, Scipy
45

 

and Matplotlib
46

 serve as scientific computing tools that facilitate the automatic charts 

generation feature of the introduced analysis methodology.   

 

3.1.3 Virtual Machines 

VirtualBox provides complete and flexible software-based or hardware assisted virtual-

ization solutions, where multiple guest operating systems can be concurrently installed 

and manipulated on a single host machine. It additionally enables safe communication 

between the host and the isolated virtual guests, allowing full control and independent 

management abilities. The guest operating systems running inside VirtualBox, operate 

as potential victim machines in which various malware samples are executed and ana-

lyzed.  

To demonstrate the functionality and effectiveness of the proposed analysis approach, 

four differently configured virtualized environments have been instrumented based on 

                                                 

45
 http://numpy.scipy.org/ 

46
 http://matplotlib.org/ 
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two different operating systems. These include a clean installation of Windows XP SP3 

along with a second duplicate operating system enriched with various applications as 

well as two differently configured and software populated Windows 7 systems. After 

the appropriate preparation and customization of the guest systems, each virtual ma-

chine is cloned and separate “clean” snapshots are taken through either the Virtual Ma-

chine Monitor or the VBoxManage utility provided by VirtualBox. These snapshots are 

later on utilized so as to reinstate the machines to their previously uninfected status, af-

ter each analysis run.  

The selection of the appropriate test systems and their internal configuration is neither 

exclusive nor restrictive and can be adjusted to suitably reflect each specific organiza-

tional context for which the malware investigation is being conducted. 

3.2 Working with Cuckoo 

Cuckoo Sandbox [54] is a newly developed open source software package which incor-

porates fully automated malware analysis features, providing fast and complete analysis 

results. Cuckoo’s components are written in python making them fully customizable 

and extensible so as to serve specific analysis goals and requirements. Moreover, Cuck-

oo can be employed either as a standalone analysis tool or integrated within broader in-

vestigative procedures facilitating the development of more coherent and comprehen-

sive analysis frameworks. 

Cuckoo is designed to automatically execute and analyze suspicious files inside isolated 

environments. Each malware sample is separately executed on the guest machines and 

the entire analysis process is managed through the core components that run on the host. 

An agent running inside the guests undertakes the communication with the host. Fur-

thermore, Cuckoo embodies stealth characteristics, as it employs rootkit-based technol-

ogy to safely perform the analysis procedures and conceal its activities from the mali-

cious samples under analysis. Figure 3.1 presents Cuckoo’s basic architecture.     
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Figure 3.1: Cuckoo’s Architecture 

 

Before submitting any samples for analysis, Cuckoo’s configuration files need to be 

modified to comply with the underlying system specifications, Virtual Machines’ char-

acteristics and individual user settings.  

Cuckoo analyzer can be activated by executing the command python cuckoo.py through 

a terminal window. The analyzer is launched inside the host and retrieves samples for 

analysis from the available Cuckoo SQL database. The submission of malware samples 

can be done either through Cuckoo’s provided web interface or from a new terminal 

window through the submit.py utility. Samples can be submitted in random order multi-

ple times with various analysis specifications. Even though this process is currently per-

formed manually, it can be automated using appropriate python scripts. All analysis re-

quests are stored inside Cuckoo’s DB with a distinct analysis ID. 

The analyzer retrieves the analysis requests from the database and performs the analysis 

independently for each malware sample. Cuckoo has the ability to execute and analyze 

multiple suspicious files concurrently. For each analysis process, separate subfolders are 

created to hold all available analysis information and observed malware behavior. Each 

subfolder is named after the distinct ID of the specified analysis request. After the com-

pletion of each analysis procedure, the results are stored in the respective subfolder. 

These results include: 
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 An analysis.log file with information relevant to the analysis process. 

 A dump.pcap file with the recorded network traffic. 

 All files that were manipulated by the malware. 

 Row CSV log files that contain all generated processes and relevant API calls. 

 Various reports documenting the malware’s behavior in both human and ma-

chine readable formats. 

 Various screenshots captured during the malware’s execution inside the guest. 

During processing Cuckoo holds the observed malware activities in a “Global Contain-

er” with a json-like format, which is basically a large python dictionary. This dictionary 

is used to produce all related html, json, pickle, and xml formatted reports. Cuckoo ad-

ditionally adopts MAEC
47

, the new standardized language for malware characterization, 

and generates the respective maec11.xml report, thus enabling the correct and accurate 

communication of malware behavioral attributes and artifacts. Optionally the infor-

mation within the global container can be stored in a MongoDB
48

 database to enable 

further querying and processing capabilities.  

                                                 

47
 https://maec.mitre.org/ 

48
 http://www.mongodb.org/ 
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4 Chapter 4 - Experimentation 

After the successful preparation of the Test Bed various malware types will be acquired 

and tested against different systems. This chapter will contain a description of our re-

search and experimentation process.  

After each malware testing procedure, the platform as well as the quest operating sys-

tems will be returned to their original “clean” state in order to ensure the accuracy of 

our test results for each virus. The research and experimentation process is expected to 

be conducted until the beginning of August. 

4.1 Malware Acquisition 

Offensivecomputing.net will be used in order to acquire and test multiple viruses. This 

section contains and describes the procedure of malware acquisition and preparation. 

4.2 Testing Malware Behavior in Different Operating 
Systems 

Using Cuckoo as our main malware analysis tool, each acquired virus will be tested in 

different environments and the analysis results will be recorded in an appropriate format 

for further study. 

4.2.1 Static Analysis 

For each malware the static analysis procedure will be described and the corresponding 

results will be documented. 
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4.2.2 Dynamic Analysis 

The dynamic analysis procedure and results for each malware under investigation will 

be described in this section.  
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5 Chapter 5 - Experimental Re-
sults Analysis 

The entire experimentation phase will be thoroughly monitored in order to gain a deep 

insight and understanding of each malware behavior. During and after the completion of 

each test phase, the recorded and observed results will be analyzed and compared. This 

research phase will be conducted in parallel to the experimentation process. 

This chapter includes the description of the manual and automatic analysis procedures 

of the experimental results of each malware execution, as well as the development of a 

research methodology that will allow us to compare malware conduct and identify pos-

sible behavioral differences in malware performance among different systems. 

 

5.1 Manual Observation of Malware Behavior 

Malware conduct as well as static and dynamic analysis results produced by Cuckoo 

will be manually and empirically observed in order to identify malware specific perfor-

mance, file system and registry changes in each system, network traffic will be moni-

tored etc.  

This process will help us to manually identify malware behavioral differences in various 

systems. 

5.2 Automated Analysis of Malware Behavior 

An effort will be given in order to develop a methodology for a more automated mal-

ware analysis procedure and comparison of the results among the malware specific be-

havior in different environments. A methodology will be developed that will automati-

cally compare the analysis results that are produced by Cuckoo and identify possible 

differences in its behavior. 

This new research approach and methodology will be described and discussed in this 

section. 
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After the execution of dg003.exe malware sample, profiler automatically generated a txt 

report containing all analysis information in a human readable format.  

The following txt segment displays some initial abstracted information regarding the 

results from the multiple executions of the sample. 

================================================================ 

 Analysis of dg003.exe 

 MD5 4ec0027bef4d7e1786a04d021fa8a67f 

 Total Executions:    11 

================================================================ 

 

================================================================ 

 Content Menu 

================================================================ 

 

    1. General information 

    2. Dropped files 

        15 Total different dropped files 

        3 Files were dropped in all executions 

        9 Files were dropped only in one execution 

        3 Files were dropped in various executions 

     Files dropped in all executions 

        2.1 File: ws2help.PNF 

        2.2 File: 11025 

        2.3 File: 1.txt 

     Files dropped in one execution 

        2.4 File: msvcr.dll 

        2.5 File: msvcr.dll 

        2.6 File: msvcr.dll 

        2.7 File: msvcr.dll 

        2.8 File: msvcr.dll 

        2.9 File: msvcr.dll 

        2.10 File: msvcr.dll 

        2.11 File: msvcr.dll 

        2.12 File: msvcr.dll 

     Files dropped in various executions 

        2.13 File: IECheck.exe 

        2.14 File: netstat.exe 

        2.15 File: msvcr.dll 

    3. Network analysis 

        3.1 DNS requests 

        3.2 HTTP requests 

    4. Behavior analysis 

        4.1 Process: dg003.exe (1768) Found in all executions 

                 2178 Total different API Calls 

                 311 APIs found in all executions 

                 31 APIs found in only in one execution 

                 1836 APIs found in various executions 

 

================================================================ 
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5.3 Malware Behavior Comparison 

Based on both manual and automatic analysis procedures, the results will be compared 

and the outcome will be discussed and documented. 

 

[2.2] "11025": 

  File size: 36864 bytes 

  File type: PE32 executable (console) Intel 80386, for MS Win-

dows 

  CRC32:     81D040BE 

  MD5:       8a7ee413726790398d6b315b7cfb5b0a 

  SHA-1:     43a10634c617ce6f4d598a6f3ca3d5fe403d986c 

  SHA-256:   

958eb25df9d1f1f1cf807b9a6efe6041d93885ccedc3f6a2f3cbb113ffc842ac 

  SHA-512:   

674c9c1148dffee67c37a2e2693bbebd2d95c43ce1c88115086717bfad9f6d09

fb7679c48e6f416a95799e2f061ce9735da7ad5d644858f38e87b780f3a414b7 

  Ssdeep:    None 

  Same as : 

             1  "18114" in analysis : "5028cbb6f489330c7600006e"  

             2  "19208" in analysis : "5028cc76f489330c76000079"  

             3  "28198" in analysis : "5086b353f489330a70000066"  

             4  "1430" in analysis : "5087cce6f489330d7100006a"  

             5  "10899" in analysis : "508a99cff48933160d00006e"  

             6  "12447" in analysis : "508a9ba8f489331650000072"  

             7  "13897" in analysis : "508a9cd3f4893316a900000c"  

             8  "9485" in analysis : "508b0db6f48933240100006c"  

             9  "26150" in analysis : "508b6ffef4893309ce00005c"  

             10  "31637" in analysis: "508c3a86f489331814000064"  

 

 

5.4 Identifying Behavioral Differences 

Using all aforementioned techniques we will be able to draw conclusions and identify 

possible malware behavioral differences deriving from both manual observation and 

automated analysis procedures. 

These differences in the malware conduct between different systems will be recorded, 

analyzed and discussed in this section. 
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6 Chapter 6 - Malware Foren-
sics Framework 

This chapter provides a detailed description of the design, architecture and implementa-

tion aspects of the introduced malware forensics framework. The functionality of the 

framework as well as its internal characteristics and processing components are present-

ed and discussed. The proposed malware forensics framework was mainly conceived 

and developed with the purpose of providing a holistic and comprehensive view on the 

behavioral aspects of malicious creations so as to allow forensics analysts to offer an 

opinion as to how a specific malware behaves under a certain environment as well as 

the ability to identify malware behavioral differences and similarities among variant 

systems. 

6.1 A Malware Forensics Framework Proposal 

Modern malicious instances are characterized by composite behavior and functionality. 

Certain behavioral aspects might be triggered only upon the acknowledgment of specif-

ic environmental parameters while performance variances could differently affect each 

infected machine. Therefore a single execution of a given malware can only reveal the 

behavior of the sample under those specific system conditions. To stimulate and moni-

tor multiplicate behavioral characteristics, as well as to understand how the sample act-

ed within a desired organizational context, the proposed analysis process entails execut-

ing the same malware sample multiple times in variant simulated platforms. 

The basic idea behind our malware forensics framework proposal resides on finding an 

appropriate method for collecting, processing and correlating the analysis results as they 

are produced by Cuckoo Sandbox analyzer.  

As mentioned earlier, Cuckoo processes malware samples and stores the results in an 

analysis results folder. For each analysis request, Cuckoo creates a separate subfolder 

containing all generated human and machine readable reports, raw log files, .pcap files, 

screenshots, and any other information captured during the analysis. Samples may be 

submitted multiple times, randomly, and subfolders are named after each analysis dis-
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tinct ID. Optionally Cuckoo stores the results in an analysis collection inside a Mon-

goDB database for further querying and processing activities. The results are stored 

based on the submission order of the analysis requests. 

The first step towards implementing our framework is to decide how to collect the pri-

mary data for analysis. Three different options seem to be available: 

 Retrieve the machine readable reports from the analysis storage folders. 

 Collect and process the raw analysis results from the respective folders. 

 Connect to the MongoDB and retrieve stored data. 

Collecting and analyzing the raw CSV logs and .pcap files would initially require their 

appropriate transformation to a processible data structure format. Even though this ap-

proach could enhance the framework’s flexibility and eliminate possible Cuckoo de-

pendencies, the fact that Cuckoo already processes and converts the results to a machine 

accessible format in conjunction with specific restrictions with regards to the duration 

of the framework’s development and implementation period, led to the selection of a 

different data collection methodology. 

The json-like generated reports enclose the analysis results obtained from Cuckoo’s 

global container, formatted as a dictionary data structure. However the location of the 

results folder depends on the original Cuckoo installation path which can be user de-

fined. On the other hand, the MongoDB’s installation path is standard and resides inside 

a predefined system’s folder. Since the analysis results stored in the MongoDB database 

follow the exact same dictionary format, utilizing the storage, querying and processing 

capabilities provided by the MongoDB would significantly enhance the overall effec-

tiveness and usability of the proposed framework. Therefore, the collection of the pri-

mary data for analysis for the current implementation of the proposed framework is per-

formed through the MongoDB database collections.  

Figure 6.1 presents the general architecture of the suggested malware forensics frame-

work. The malware samples can be submitted for analysis multiple times and in random 

order. Cuckoo retrieves the analysis requests from the SQL database, executes the sam-

ples inside the guest VMs, stores the results in the respective folders as well as in the 

mondodb and communicates the analysis status back to the SQL database.  

Profiler, the framework’s core processing module, runs independently of any Cuckoo 

related actions. It’s design and implementation is completely python based, thus allow-

ing it to be fully customizable, modular and platform independent. It can be installed to 
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any desired location inside the host machine and executed at any point. The installation 

process does not require any additional configuration on the host system and can be 

achieved simply by copying the profiler’s python script and its additional components 

inside any folder and at any location in the host. Since Cuckoo’s SQL database can be 

located anywhere inside the host, the only current requirement is to place a copy of the 

SQL database inside the running directory of profiler. If the location of Cuckoo inside 

the host is already known and predefined, profiler can be customized so as to directly 

connect to the SQL database.   

 

 

Figure 6.1: Malware Forensics Framework Architecture. 

 

Profiler can be executed through a terminal window by running the command $ python 

profiler.py inside profiler’s root directory. Upon execution, profiler connects to the SQL 

database and retrieves a list of unique md5 hashes corresponding to the various malware 

samples that have been analyzed by Cuckoo. It then connects to the MongoDB and col-

lects all respective analysis results for each distinct malware. These primary data are 

then processed and correlated, per sample, to produce a comprehensive malware profile 

corresponding to the overall behavioral characteristics that were exhibited during each 

malware’s multiple executions. These profiles are then stored in a separate “profiles” 

collection inside the MongoDB. Based on the correlated results, profiler automatically 
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generates a set of human and machine readable reports, in json, txt and html format, as 

well as various charts that visualize the sample’s behavior and activities. 

Figure 6.2 demonstrates how profiler collects the primary analysis data and stores the 

processed results in the “profiles” collection as well as in different subfolders inside a 

“profiles” directory.  

   

 

Figure 6.2: Profiler’s Collection and Storage procedures. 

 

After the completion of the data processing, profiler automatically terminates. Every 

time profiler is executed, old malware profiles are updated, upon the recognition of ad-

dable analysis results, and new profiles are created for each additional malware sample. 

The framework’s processing functionality heavily relies on appropriately specifying the 

exact behavioral characteristics for which intelligence information need to be extracted. 
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To demonstrate the feasibility of developing a malware forensics framework with the 

ability to identify multiple behavioral aspects and to asses malware conduct under a 

specific organizational context, the current implementation focuses on three major mal-

ware analysis aspects, without excluding additional information retrieved during the ini-

tial analysis process: 

 Dropped files. 

 Behavioral analysis. 

 Network activity. 

Profiler has the ability to identify possible similarities and differences in the malware’s 

behavior between multiple executions, relevant to the aforementioned aspects, and can 

trace any significant behavioral variance back to the specific malware execution that 

stimulated the observed functionality. To achieve this, a new “profile” dictionary struc-

ture is used as a reference for comparing and accumulating the multiple analysis results. 

The new container follows the same structure as the original Cuckoo’s results diction-

ary, with some additional attributes to hold information about any observed difference 

or similarity to the malware’s behavior among its various executions.  

The following segment presents profiler’s container with the newly added fields high-

lighted: 

{ 

"info": { 

"started": <timestamp>, 

"ended": <timestamp>, 

"duration": <duration in seconds>, 

"version": <version of Cuckoo> 

}, 

"signatures": [ 

{ 

"severity": <severity level>, 

"description": <signature description> 

"alert": <boolean value>, 

"references": [<any reference link>], 

"data": [<any contextual data>], 

"name": <signature name> 

} 

], 

"behavior": { 

 "processes": [ 

{ 

"parent_id": <parent PID>, 

"process_name": <process name>, 
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"process_id": <PID>, 

"first_seen": <timestamp when the process was first seen>, 

"calls": [ 

{ 

"category": <API function category>, 

"status": <SUCCESS or FAILURE>, 

"return": <any returned value>, 

"timestamp": <timestamp of the call>, 

"repeated": <how many times it was repeated consecutively>, 

"api": <API function>, 

"arguments": [ 

{ 

"name": <argument name>, 

"value": <argument value> 

} 

] 

}, 

<...> 

], 

<...> 

} 

], 

"processtree": [ 

{ 

"pid": <PID>, 

"name": <process name>, 

"children": [<recursive child entries>] 

} 

], 

"summary": { 

"files": [<list of files accessed>], 

"keys": [<list of registry keys accessed>], 

"mutexes": [<list of mutexes accessed>] 

} 

}, 

"static": {<static analysis if available for the file type>}, 

"dropped": [ 

{ 

"size": <file size>, 

"sha1": <SHA1 hash>, 

"name": <file name>, 

"type": <file type>, 

"crc32": <CRC32 hash>, 

"ssdeep": <Ssdeep hash>, 

"sha256": <SHA256 hash>, 

"sha512": <SHA512 hash>, 

"md5": <MD5 hash> 

}, 

<...> 

], 
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"file": { 

"size": <file size>, 

"sha1": <SHA1 hash>, 

"name": <file name>, 

"type": <file type>, 

"crc32": <CRC32 hash>, 

"ssdeep": <Ssdeep hash>, 

"sha256": <SHA256 hash>, 

"sha512": <SHA512 hash>, 

"md5": <MD5 hash> 

}, 

"debug": { 

"log": <content of analysis.log> 

}, 

"network": { 

"http": [ 

{ 

"body": <request body>, 

"uri": <request URI>, 

"method": <request method>, 

"host": <host name>, 

"version": <HTTP version>, 

"path": <path of the request>, 

"data": <dump of whole request>, 

"port": <port> 

}, 

<...> 

], 

"udp": [ 

{ 

"dport": <destination port>, 

"src": <source IP>, 

"dst": <destination IP>, 

"sport": <source port> 

}, 

<...> 

], 

"hosts": [<list of involved IP addresses>], 

"dns": [ 

{ 

"ip": <IP address>, 

"hostname": <domain name> 

}, 

], 

"tcp": [ 

{ 

"dport": <destination port>, 

"src": <source IP>, 

"dst": <destination IP>, 

"sport": <source port> 
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}, 

<...> 

] 

} 

} 

 

When a malware sample is processed for the first time, the container starts at an “emp-

ty” state. The multiple analysis results of the malware under investigation are compared 

side by side with the container’s data. Dropped files, API calls and Network activities 

are uniquely inserted inside the dictionary. If a specific characteristic has been exhibited 

multiple times, a single record is inserted and specific fields are updated with infor-

mation relevant to the multiple analyses were the specific behavior was detected. If the 

profile of the given malware has already been created at a previous profiler’s execution, 

the stored data from the MongoDB are passed on to the temporary container and any 

additional analysis results are compared against the current profile. Therefore the pro-

files of the malware samples can be created and updated at any point, irrelevant of how 

often profiler is executed in between the analysis processes of Cuckoo. 

The following python code segment demonstrates how dropped files are aggregated and 

correlated to produce the resulting profile container.  

 

if k == "dropped": 

                    for dropped in res["dropped"]:                    

                        found = False 

                        found_name = False 

                        found_size = False 

                        for i in range(0,len(results_dict["dropped"])): 

                            if dropped["md5"] == results_dict["dropped"][i]["md5"]:   

                                  found = True 

                                  pos = i 

                                  if dropped["name"] == results_dict["dropped"][i]["name"]: 

                                       found_name = True 

                                  if dropped["size"] == results_dict["dropped"][i]["size"]:   

                                       found_size = True                                                             

                                  break;                                                     

                        if not found: 

                            temp_value = {}                        

                            temp_value = deepcopy(dropped) 

                            analysis = [] 

                            analysis.append(res["_id"]) 

                            temp_value["analysis"]=analysis 

                            temp_value["repeated"] = 0 

                            temp_value["all_execs"] = "No" 
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                            if len(temp_value["analysis"]) == total: 

                                temp_value["all_execs"] = "Yes"   

                            temp_value["same_as"] =[]                       

                            results_dict["dropped"].append(temp_value)     

                        else: 

                            if res["_id"] not in results_dict["dropped"][pos]["analysis"]: 

                                results_dict["dropped"][pos]["analysis"].append(res["_id"]) 

                                if not found_name: 

                                    same_as = {} 

                                    same_as["name"] = dropped["name"] 

                                    same_as["in_analysis"] = res["_id"] 

                                    results_dict["dropped"][pos]["same_as"].append(same_as) 

                            else: 

                                results_dict["dropped"][pos]["repeated"] += 1 

                                count_repeated_files += 1 

                            if len(results_dict["dropped"][pos]["analysis"]) == total: 

                                results_dict["dropped"][pos]["all_execs"] = "Yes"  

                                count_dropped_simm +=1                        

 

Since the name of the files may vary between executions, dropped files are compared 

based on their MD5 hash value. If the same file was dropped in multiple executions, the 

respective analysis IDs and MongoDB’s ID are stored in a relevant attribute. Files with 

different names but with the same MD5 hash are also recorded with details on the spe-

cific execution that they appeared. Moreover, if the same file was identified more than 

once inside the same execution, profiler holds the number of times that it was dropped.  

Regarding the behavioral aspects of the malware sample, all processes and API calls are 

also stored using the same methodology. Information relevant to similar or different 

processes are recorded. API calls are considered identical if their category, name, status, 

arguments and repeats are the same. Profiler additionally holds information relevant to 

API calls with the same name and arguments but different return status and repetitions. 

The respective python code that processes the API calls can be found in Part I of the 

Appendix.  

Network traffic is processed in the same manner. Information relevant to the specific 

analysis, in which the same or different http, dns, tcp or udp requests were observed, are 

respectively stored. 

In order to be able to identify and trace a specific behavior back to the original analysis 

of the sample and the related raw and detailed analysis results, a small modification in-

side Cuckoo’s processing code took place. Cuckoo currently does not relate the Mon-

goDB’s records with the respective SQL ID of each analysis. Thus it was not possible to 
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connect the mongodb’s data with the Cuckoo’s detailed analysis results that stored in 

separate directories for each different analysis request. To this end, we simply custom-

ized a small part of a single Cuckoo’s processing module so as to additionally store the 

specific analysis path of the produced results for each analysis request.  

All the initial processing results of the above procedure, that is the created profile con-

tainer for each sample, are stored inside the “profiles” collection of the MongoDB as 

well as in a generated json report inside a “Profiles” Directory with relevant subfolders 

named after the malware’s MD5 hashes. These files include some initial abstracted and 

summary data regarding the malware’s multiple executions results, as well as additional 

detailed information on each different behavioral aspect of the given malware.   

After the creation of the “profile” container, a new processing procedure takes place in 

order to analyze the produced results and extract inherent intelligence information rele-

vant to the overall behavior of the examined samples. The outcomes of this analysis are 

stored in both txt and html formats. Furthermore, in order to visualize the produced re-

sults, a number of charts in bar formats are automatically generated graphically present-

ing information regarding the differences and similarities identified in the dropped files 

and API calls.  

The aforementioned proposed framework refers to utilizing Profiler as an external inde-

pendent processing tool that correlates and analyzes the results from multiple executions 

of the same malware sample, producing comprehensive malware profiles. The overall 

architecture of the proposed framework can be utilized to gain an understanding on how 

a certain malware behaved under a specific organizational context. 

6.2 Integration with Cuckoo 

To further enhance the proposed framework’s efficiency, usability and overall perfor-

mance overhead, Profiler can be fully integrated within the operational activities of 

Cuckoo Sandbox. By appropriately customizing and slightly modifying Profiler’s code, 

the component can be entirely incorporated within Cuckoo’s implementation as an extra 

reporting module. Figure 6.3 presents the modified architecture of the proposed frame-

work, which integrates the modified version of Profiler with Cuckoo. 
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Figure 6.3: Framework’s Integrated Architecture. 

 

The core functionality of the introduced Profiler module remains unaffected. The differ-

ence of this approach can be found in the manner that profiler is initiated and executed. 

Each time Cuckoo performs an analysis on a given sample, a predefined set of reporting 

modules are called upon, to produce various types of reports. By including profiler as a 

reporting module, Cuckoo automatically executes Profiler in every malware analysis 

request. Therefore, the malware’s profiles are automatically created or updated, upon 

each malware’s execution. 

By adopting this specific implementation the overall performance of the proposed 

framework is significantly enhanced and Profiler’s total analysis time is impressively 

reduced. This is mostly due to the fact that Profiler performs only one comparison and 

for a single malware each time it is executed.   

6.3 Framework Limitations 

Based on the experiments and malware analyses that were conducted in order to asses 

and evaluate the introduced analysis approach, the proposed malware forensics frame-

work has proven to be efficient and reliable, providing comprehensive results on each 

malware’s conduct and characteristics. However, the current implementation of profiler 
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and its internal architecture, encapsulate some important limitations with regards to the 

framework’s dependencies with external parameters and possible structural restrictions. 

The introduced core processing module of the suggested framework is heavily depend-

ent on the current dictionary structure that Cuckoo uses to store the analysis results. Any 

future alternations or transformations to the standard dictionary format, could affect the 

execution of Profiler as it will not be able to recognize the modified structure so as to 

extract and process the analysis results. 

The fact that Profiler utilizes this specific structure also makes it completely Cuckoo 

dependent. Since Profiler does not process the raw analysis results to produce its own 

accessible data format, it can only manipulate and operate on the analysis results as they 

are produced by Cuckoo analyzer. 

The limitations regarding the restricted time period in which the framework was devel-

oped and realized, also led to restricting various processing aspects of Profiler. The be-

havioral characteristics of each different malware sample are complex and multivariate. 

In order to fully investigate all possible aspects and diverse observations, multiple filters 

and comparisons have to be constructed. Even though the current implementation of 

profiler can identify and extract many different behavioral features, additional filters 

and analysis processes would significantly complement the produced malware profiles.    
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7 Chapter 7 - Conclusions 

This final chapter will summarize the work and effort of this research as well as the 

conclusions and results of our experimentation and analysis methodology.  

7.1 Summary 

A summary of our research and experimentation methodology and our overall effort and 

work will be given in this section. 

7.2 Contribution 

Our contribution will be analyzed and assessed in this section. 

7.3 Future Work 

Possible future work and research regarding our topic will be discussed in this section. 
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