
 -i-

Malware Forensics
Framework

Student Name: Provataki Athina

SID: 3301110017

SCHOOL OF SCIENCE & TECHNOLOGY

A thesis submitted for the degree of

Master of Science (MSc) in Information and Communication Systems

OCTOBER 2012

THESSALONIKI – GREECE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Hellenic University: IHU Open Access Repository

https://core.ac.uk/display/236120566?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

-ii-

Malware Forensics
Framework

Student Name: Provataki Athina

SID: 3301110017

Supervisor: Asst. Prof. Vasileios Katos

Supervising Committee Mem-

bers:

Asst. Prof. Vasileios Katos

Assoc. Prof. Nikolaos Bassiliades

Dr Christos Berberidis

SCHOOL OF SCIENCE & TECHNOLOGY

A thesis submitted for the degree of

Master of Science (MSc) in Information and Communication Systems

OCTOBER 2012

THESSALONIKI – GREECE

 -iii-

Abstract

Cybercriminals today are able to orchestrate and realize massive or more targeted at-

tacks using malware as the mean to invade and infect the victim’s machines thus ac-

complishing their malicious intents. Detecting and analyzing such attacks might not al-

ways be feasible and could become a daunting and frustrating process. Targeted attacks

are amongst the hardest to detect or analyze and pose a major security threat for organi-

zations and large corporations as such malware attacks are extremely sophisticated and

may go unnoticed for a large period of time magnifying the resulting damaging effects.

Modern malicious instances are characterized by composite behavior and functionality.

As malware evolves and becomes more sophisticated malicious intruders have the abil-

ity to adjust their behavior depending on the infected system and its surrounding envi-

ronment. Malevolent performance may be exhibited only upon the acknowledgment of

specific system factors and the combination of several adjacent parameters and condi-

tions. Certain behavioral aspects might be triggered upon the acknowledgment of spe-

cific environmental parameters while performance variances could differently affect

each infected machine.

To overcome such shortcomings, we introduce a novel forensics methodology for as-

sessing and reporting on the modus operandi of a malware in a specific organizational

context. The proposed malware forensics framework facilitates multiple executions of

the same malware in differently configured systems, in an automated manner, providing

fast and inclusive results on how each malware behaves under a specific organizational

context. The introduced analysis approach has the ability to correlate, analyze and inter-

pret malware analysis results in an automated manner, significantly reducing time and

effort needed to investigate and extract forensic intelligence information from a collec-

tion of analysis reports.

Student Name: Provataki Athina

Date: 29-10-2012

-iv-

 -v-

Contents

ABSTRACT ... III

CONTENTS ... V

1 CHAPTER 1 - INTRODUCTION.. 7

1.1 OVERVIEW .. 7

1.2 A STATEMENT OF THE PROBLEM ... 7

1.3 ACADEMIC RESEARCH QUESTION - AIMS AND OBJECTIVES 9

1.4 RESEARCH METHODOLOGY ... 10

1.5 SIGNIFICANCE OF RESEARCH .. 11

1.6 DISSERTATION STRUCTURE .. 12

2 CHAPTER 2 - LITERATURE REVIEW .. 12

2.1 OVERVIEW OF RELATED ACADEMIC AND RESEARCH WORK 12

2.2 HISTORICAL REVIEW .. 18

2.3 MALWARE EVOLUTION ... 20

2.3.1 The 70’s – Experiments and Games .. 20

2.3.2 The 80’s – From innocent pranks to “accidental” outbreaks 21

2.3.3 The 90’s – Polymorphism and Toolkits .. 25

2.3.4 The 2000 Decade – Social Engineering and Cybercrime 28

2.4 LATEST MALWARE ATTACKS ... 33

2.5 MALWARE TYPES ... 36

2.6 TYPES OF ATTACKS ... 48

2.7 MALWARE FORENSICS ... 55

2.8 MALWARE ANALYSIS .. 60

2.8.1 Static Analysis ... 62

2.8.2 Dynamic Analysis .. 63

2.8.3 Reverse Engineering .. 65

2.9 MALWARE ANALYSIS TOOLS .. 66

2.10 OVERVIEW OF MALWARE ANALYSIS TECHNIQUES AND METHODOLOGIES 70

-vi-

3 CHAPTER 3 - SETTING UP THE TEST BED .. 81

3.1 PLATFORM REQUIREMENTS .. 81

3.1.1 Hardware Requirements.. 82

3.1.2 Software Requirements ... 82

3.1.3 Virtual Machines ... 83

3.2 WORKING WITH CUCKOO .. 84

4 CHAPTER 4 - EXPERIMENTATION ... 87

4.1 MALWARE ACQUISITION .. 87

4.2 TESTING MALWARE BEHAVIOR IN DIFFERENT OPERATING SYSTEMS 87

4.2.1 Static Analysis ... 87

4.2.2 Dynamic Analysis ... 88

5 CHAPTER 5 - EXPERIMENTAL RESULTS ANALYSIS 89

5.1 MANUAL OBSERVATION OF MALWARE BEHAVIOR .. 89

5.2 AUTOMATED ANALYSIS OF MALWARE BEHAVIOR ... 89

5.3 MALWARE BEHAVIOR COMPARISON ... 91

5.4 IDENTIFYING BEHAVIORAL DIFFERENCES ... 91

6 CHAPTER 6 - MALWARE FORENSICS FRAMEWORK 95

6.1 A MALWARE FORENSICS FRAMEWORK PROPOSAL .. 95

6.2 INTEGRATION WITH CUCKOO ... 104

6.3 FRAMEWORK LIMITATIONS .. 105

7 CHAPTER 7 - CONCLUSIONS .. 107

7.1 SUMMARY .. 107

7.2 CONTRIBUTION .. 107

7.3 FUTURE WORK .. 107

BIBLIOGRAPHY AND REFERENCES ... 109

APPENDIX ... 116

 -7-

1 Chapter 1 - Introduction

1.1 Overview

This section will contain an introduction regarding malware and malware forensics as

well as the importance of malware analysis.

1.2 A Statement of the Problem

Every organization’s goal is to build appropriate defenses in order to protect their com-

pany and prevent, as much as possible, any lurking intruder. Undeniably though, if

criminals decide to attack they will sooner or later find a channel to achieve it. Cyber-

criminals today are able to orchestrate and realize massive or more targeted attacks us-

ing malware as the mean to invade and infect the victim’s machines thus accomplishing

their malicious intents. Detecting and analyzing such attacks might not always be feasi-

ble and could become a daunting and frustrating process.

As malware evolves and becomes more sophisticated malicious intruders have the abil-

ity to adjust their behavior depending on the infected system and its surrounding envi-

ronment. Malevolent performance may be exhibited only upon the acknowledgment of

specific system factors and the combination of several adjacent parameters and condi-

-8-

tions. For example a specific malware might unveil its behavior only when installed on

a Windows 7 platform or when a specific piece of software is installed on the victim’s

PC (like PDF Reader) and remain completely dormant in any other situation. Similarly

it may reveal a portion of its behavior while parts of its functionality will remain hidden

until certain conditions are met that will trigger additional activity. Efforts have been

made in order to unveil trigger-based behavior [13, 28] but it has also been proven that

it is feasible to impede such analyzers [34]. Additionally, the existence of the so called

Logic Bombs or Time Bombs further encumbers the analysis process and despite the

effort made in this area [27] this subject still remains a problem in malware analysis.

Signature based identification that Antivirus vendors follow phases some significant

drawbacks regarding the vastness of malicious samples submitted for analysis as well as

specific restrictions on analysis time and platform variances [23]. A common methodol-

ogy is to allow the executable to run for a short period of time and on test environments

based on commonly used operating systems and applications, thus possibly not extract-

ing its full functionality. To overcome such shortcomings modern approaches look for

more automated ways of generating signatures [93].

Targeted attacks that are most often and regularly employed by cybercriminals form one

of the major security threats that companies and organizations have to face and counter-

act [22, 23]. Such sophisticated and well instrumented attacks might remain undetected

for a prolonged period of time within the victims’ organizational boundaries, amplifying

the resulting damaging effects.

Recent approaches yield towards finding more automated procedures to facilitate the

analysis process. Several automated analysis tools have been developed, like Anubis

[86], GFI Sandbox
1
 and Cuckoo [54], with the ability to perform automated analysis in

a controlled environment. Some of these platforms are web-based and perform the anal-

ysis online while others can be locally installed and integrated into forming more holis-

tic and comprehensive analysis frameworks. However, commercial solutions, like GFI

Sandbox, are often a luxurious choice since a single product license costs at least $15K.

Whatever the case, with the appearance of such tools, malware constructors have also

come up with ways to identify if such a tool is being used and remain inactive or hide

their malicious intent [32]. Moreover utilizing on-line analysis tools also comes with

1
 http://www.gfi.com/malware-analysis-tool#overview

 -9-

restrictions regarding privacy and legal issues on the information that might be dis-

closed to such a third party [19].

Automated dynamic analysis tools alone suffer from restrictions and cannot fully ad-

dress the complexity and severity of a complete forensic analysis methodology [13].

Dynamic analysis involves executing malware samples in a controlled and isolated en-

vironment to monitor and record the observed functionality [23]. However, a single ex-

ecution of a given malware can only reveal a portion of the sample’s behavior, relevant

to the specific environmental conditions of the analysis run. Therefore different execu-

tions of the same malware could produce diverse analysis results.

Most of the available automated analysis tools work in a similar manner, performing the

analysis and then producing a detailed human readable report containing the results for

further processing. Even so new procedures need to be instrumented in order to provide

the means for more automatic ways of processing a large number of such reports. Latest

methodologies approach this issue by first submitting a number of malicious files for

analysis, collecting and storing the reports in a database and later on performing differ-

ential analysis on those reports with the purpose of identifying either differences or sim-

ilarities in the malwares’ behavior [91, 26], focusing mostly on providing new classifi-

cation and clustering mechanisms rather than revealing their full functionality.

To overcome such drawbacks and shortcomings, this dissertation introduces a novel

malware analysis approach that automatically correlates and processes the analysis re-

sults amongst multiple executions of the same malware sample. The proposed malware

forensics framework provides the means for assessing malware conduct and reporting

on how a specific malicious sample behaved under a certain organizational context.

1.3 Academic Research Question - Aims and Objec-
tives

Our research focuses on investigating the feasibility of developing an approach for as-

sessing and reporting on the modus operandi of a malware in a specific organizational

context.

The aim of this master thesis is to study and develop a methodology for analyzing mal-

ware conduct in a certain organizational context. More specifically, our goal is to devel-

op and describe a malware forensics framework that will allow forensics analysts to un-

-10-

derstand and recognize how a specific malware behaves in a certain environment apart

from its apparent and recorded behavior.

Our objectives, include describing the challenges in malware forensics, understanding

the practices used in malware analysis, constructing a test bed for empirically evaluating

malware and developing an analysis methodology for assessing malware conduct by

identifying behavioral differences and similarities amongst multiple executions of the

same sample in variant environments.

1.4 Research Methodology

An appropriate Literature review will initially take place, in order to gain a better under-

standing of recent malware analysis approaches and techniques as well as to identify the

current challenges that hinder malware forensics methodologies. By studying how mal-

ware has evolved over the years we will be able to realize the sophistication and com-

plexity of modern malicious instances that enable the deployment of advanced, highly

profitable and destructive cyber-attacks.

Exploring a malware’s complete structure and functionality is still a matter of ongoing

research, as malware authors are constantly aware of modern malware analysis ad-

vancements and continually develop new techniques to defeat detection mechanisms

and obstruct the analysis process.

Moser et al. [13] report that one possible solution to exploring and analyzing trigger

based malware behavior would be to execute the malicious sample multiple times in

various environments, in order to uncover and expose any diverse and variable mali-

cious behavior. Therefore by examining multiple execution paths results in a more ho-

listic view on the behavioral aspects of a specific malware.

In order to achieve the desired goals of this dissertation, a controlled environment,

where malware samples will be tested among different systems, will be developed and

configured. The Test Bed, which will be used for collecting primary data for analysis,

will include Linux as Host and various guest systems operating in Virtual Machines.

Offensivecomputing.net will be utilized as our malware pool, in order to acquire multi-

ple instances for testing and experimenting. Using Cuckoo as our main malware analy-

sis tool, each virus will be executed and tested in various systems. Malware behavior

will be recorded and analyzed using both static and dynamic analysis techniques.

 -11-

For each malware the analysis results among the different environments will then be

collected and analyzed. This analysis will be performed using two different methodolo-

gies. The first one includes the empirical and manual observation of the malware con-

duct by identifying dropped files, created processes and API calls, as well as network

activities. The second approach refers to a more automated analysis procedure. An ap-

propriate methodology will be introduced that will automatically correlate and process

the multiple analysis results, to extract significant behavioral artifacts and characteris-

tics. This will be accomplished by identifying possible differences and similarities be-

tween the variant analysis results. Based on these comparison results we will be able

assess malware conduct and generate comprehensive malware profiles corresponding to

the overall exhibited functionality of each given sample.

Upon the completion of this research, a malware forensics framework will be developed

and described.

1.5 Significance of Research

The proposed malware forensics framework facilitates multiple executions of the same

malware in differently configured systems, in an automated manner, providing fast and

inclusive results on how each malware behaves under a specific organizational context.

Our methodology utilizes open source tools and automates the analysis process of gen-

erated reports by tools like Cuckoo. This means that a malware analyst can submit a

sample for analysis multiple times and run “Profiler”, the core component of our

framework, to quickly get an insight on the sample’s behavior, starting at an abstracted

level and diving deeper into more specific behavioral characteristics.

The introduced analysis approach has the ability to correlate, analyze and interpret

malware analysis results in an automated manner, significantly reducing time and effort

needed to investigate and extract forensic intelligence information from a collection of

analysis reports. Furthermore the produced results are stored in both human and ma-

chine readable formats so as to enable further processing and investigative activities.

Even though our goal is not to detect deceptive activity, differences in a sample’s be-

havior might indicate malicious intent [25]. To this end, our framework may be also uti-

lized as a malware identification tool that can raise analysts’ attention towards perform-

ing a more thorough investigation on a malicious specimen, upon the detection of pos-

sible behavioral differences.

-12-

The overall architecture and flexibility of the introduced forensics methodology in com-

bination with the significant intelligence information that it can produce, has a major

impact in the whole computer enabled society, since malware attacks may target any

possible individual user as well as organizations and even entire nations.

1.6 Dissertation Structure

The contents of each chapter will be outlined and described in order to provide the read-

er with a holistic view of this dissertation.

2 Chapter 2 - Literature Review

This chapter includes an important literature review related to our topic of research as

well as a discussion around malware evolution. A survey regarding significant academic

and research work relevant to malware and malware forensics as well as malware analy-

sis tools, techniques and methodologies is imperative in order to gain insight on recent

advances and challenges associated with malware forensic analysis. Some significant

definitions and dimensions regarding malware, malware analysis, malware forensics,

methodologies and tools are presented and described.

2.1 Overview of Related Academic and Research
Work

Modern malware analysis approaches seek to address the problems of malware detec-

tion and analysis introducing novel techniques and more comprehensive analysis

frameworks. On the other hand, malware creators monitor analysis related research ad-

vancements and constantly manifest new mechanisms to hinder and evade analysis pro-

cesses. The vastness of malicious samples that are introduced each day as well as the

increasing complexity and intricacy of malware code further thwart antivirus research-

ers and analysis procedures. This has led analysts and malware authors into a continu-

ous “arms race” on the exhibition of power and skills [23].

 -13-

Malware analysis methodologies and related efforts can be generally classified into four

main areas of research:

 Developing stealth and transparent analysis frameworks.

 Detecting analysis evasion mechanisms.

 Improving the efficiency of dynamic analysis techniques.

 Creating clustering and classification methodologies.

Modern malware creations encompass sophisticated mechanisms and anti-analysis

characteristics that can significantly thwart analysis procedures and delude analysis re-

sults [32]. Analysis-aware malware has the ability to modify its behavior during execu-

tion or to remain completely dormant, hiding its malicious functionality upon the ac-

knowledgment of an analysis environment. To address the problem of evasive malware,

recent approaches focus on developing stealth and transparent analysis frameworks that

prohibit malicious creations from detecting the analysis environment.

Frameworks like Cobra [81] and Ether [82] have been specifically designed so as to

combat analysis detection mechanisms. Cobra performs dynamic malware analysis us-

ing stealth localized executions, by splitting the malicious code into segments and sepa-

rately inspecting their instructions before execution. Every suspicious detection-enabled

slice is replaced with a safe implant so as to protect the analysis process. Ether, on the

other hand, uses hardware virtualization extensions to eliminate any guest analysis

modules, susceptible to identification, and to remain undetectable by malware. Howev-

er, both approaches suffer from increased performance overhead especially when fine-

grained analysis is required [25]. Moreover, as stated by the authors themselves, Ether

is not destined to perform real-time analysis and Cobra’s performance is affected by the

required interactive analysis.

Modern analysis methodologies lean towards identifying differences in the malware be-

havior focusing mostly on creating new and more effective detection and analysis

methodologies or discovering previously unnoticed evasion mechanisms and anti-

analysis techniques [24, 25, 39].

Johnson et al. [24] introduced a differential slicing methodology, which given a target

difference between two executions of the same program, in either the same or different

environments, tries to identify the specific environmental parameters and input differ-

ences that led to the noticed behavioral change. Their approach seeks to automate and

facilitate the process of analyzing observed differences between two runs of the same

-14-

program and understanding their root cause, thus allowing analysts to identify possible

vulnerabilities or programs that exhibit different behavior among different systems. In

contrast to our method, which processes the dynamic analysis results as they are pro-

duced by Cuckoo analyzer, the differential slicing algorithm works directly on binary

programs and uses TEMU (a component of the BitBlaze framework [30]) as an execu-

tion monitor, in order to record execution traces for each program run, which are further

processed aiming at producing a final causal difference graph. Furthermore, our ap-

proach examines multiple executions of the same malware with the purpose of identify-

ing as many as possible behavioral differences under a specific environmental context,

whereas Johnson et al work on a given known difference and focus on discovering its

cause.

Balzarotti et al [25] proposed an approach aiming at discovering malware samples that

employ various anti-analysis techniques to detect whether the underlying execution en-

vironment is an emulated test system. To achieve this, the malware sample is executed

in an emulated environment as well as in a virtualized reference host and the sample’s

behavior between the two runs is then compared. The comparison is performed by re-

cording the malware’s interactions with the host during the normal run and then replay-

ing the execution in the emulated environment using the same input parameters. Based

on the perception that upon the same input arguments a program’s behavior should be

identical, any observed behavioral difference is conceived as an indication of a detec-

tion mechanism that led the malware to execute a different path. However, this ap-

proach suffers from various limitations as not all possible system calls can be recorded

and replayed. Moreover, malware interactions that use multiple processes and random

input numbers cannot be recorded and replayed. As opposed to our implementation

which uses Cuckoo analyzer [54] and virtualized guest systems, the proposed analysis

environment uses emulation technology and is based on Anubis [86]. Furthermore, the

fact that the reference host is virtualized while the analysis platform is emulated, allows

malware to manipulate and change its behavior simply by being run in such differently

configured systems. The basic distinction between our approaches, apart from the im-

plementation differences, is that, in contrast to our goal, the main purpose of their meth-

odology is to detect analysis aware malware.

Chen et al. [39] introduced a novel methodology to deter malicious programs from in-

fecting production systems. Based on an extensive research, a comprehensive taxonomy

 -15-

of possible evasion mechanisms actively employed by malware authors was created.

Their approach was based on large scale malware executions among virtualized envi-

ronments, uninstrumented machines and debugger implementations, to identify possible

behavioral deviations, obtained by execution traces’ comparisons. By creating finger-

prints of the observed characteristics, they were able to imitate them on real machines

so as to appear as instrumented, thus preventing malware infections. Even though the

recommended methodology attempts to identify possible behavioral differences, in con-

trast to our framework, Chen’s approach focuses on preventing possible system infec-

tions rather than identifying and understanding the behavioral plurality of malware

samples.

Another major category of malware analysis approaches, relates to identifying and in-

vestigating all possible behavioral characteristics of a given malware instance, thus

leading to more efficient and comprehensive analysis frameworks. Static analysis bene-

fits from the possibility of unveiling and uncovering the complete malware’s structure.

However its prospects are often limited by extremely sophisticated obfuscation and

packing mechanisms [33, 66, 74]. Dynamic analysis remains protected against such

techniques since the malware’s behavior is recorded during execution. Nonetheless on-

ly a single execution path can be analyzed, thus possibly not capturing any trigger-based

malware behavior [13].

Bayer et al. in 2006 presented TTAnalyse [12], a tool for dynamic malware analysis.

TTAnalyse uses Qemu, a PC emulator, to execute unknown binaries, restricted to Win-

dows executable PE files, in a Windows XP SP2 emulated environment and generates a

report containing analytical information regarding the sample’s behavior and functional-

ity. Through the process of monitoring calls to native Kernel and Windows API func-

tions, as well as performing function call injection, it can identify Windows Registry

and file system alternations, trace interactions with various system processes and log all

respective network activity.

Even though TTAnalyse provides an automated malicious code analysis environment

with fairly precise and accurate results, it still suffers from the monotony of the underly-

ing emulation environment and the restrictive nature of the malware types that it can

decompose. Furthermore, dynamic analysis alone cannot provide a holistic view on the

behavioral plurality and diversity that modern malware may exhibit. The cause is that

only one single execution path can be explored each time the analysis is performed [13].

-16-

This means that malicious actions that are activated under certain conditions, for exam-

ple on a specific date like the Michelangelo virus, upon the existence of a specific file or

with internet connection availability, cannot be observed and recorded. To address this

later problem Moser et al. in 2007 extend their previous work and introduce a system

with multiple execution paths exploration capabilities [13]. To achieve this, the pro-

posed system traces critical input values that the harmful code reads and identifies key

points during malware execution were control flow decisions depend upon those values.

Whenever such a key point is spotted, a snapshot of the program’s execution present

state is taken before it is allowed to continue running. As the analysis proceeds, by re-

turning to the captured snapshot for every identified conditional branch, requisite input

values are manipulated allowing different execution paths to be activated. Even though

this approach provides a more comprehensive assessment on malware’s behavior, it also

faces some drawbacks regarding the analysis time which can be hindered by dead code

insertion as well as the fact that complexity might grow exponentially in reference to

the number of possible conditional branches that might exist. Compared to our ap-

proach, the malware’s behavior is captured through multiple executions on differently

configured systems, rather than manipulating specific input values. This means that our

system remains unaffected by increased complexity and obfuscation techniques.

Similarly to Moser’s approach Brumley et al. implemented MineSweeper [28], a system

which employs mixed and symbolic binary execution in order to identify and investi-

gate trigger based code paths in an automatic and iterative manner. A possible issue

with MineSweeper, as the authors’ state, could be that their system might not be able to

explore all possible and diverse branches. BitScope [29] also uses symbolic execution

with the purpose of completely uncovering all possible aspects of the malware’s behav-

ior. A more general and holistic approach towards automated dynamic binary analysis

can be found in the BitBlaze framework [30] which integrates both MineSweeper and

BitScope, and along with a variety of components implements both static and dynamic

analysis and might also be used as an automated analysis tool. Even though the afore-

mentioned methodologies can provide more inclusive analysis results, recent work has

shown that trigger-based behavior analysis approaches can also be impeded by the ma-

licious authors [34].

Since antivirus vendors and security analysts are daily overwhelmed by massive

amounts of new malware samples, efficient analysis and signature generation method-

 -17-

ologies often become frustrating and daunting processes with possible ambiguous and

incomplete results [23]. Recent approaches implement clustering and classification

mechanisms in order to minimize analysis effort and time by reducing the number of

samples that require extensive and thorough research.

Rieck et al [91] introduced a framework that enables automatic malware analysis using

machine learning techniques. Their methodology allows the detection of malware be-

havioral similarities. Malicious samples that exhibit similar behavior are grouped into

clusters which are then used to classify malware with unknown functionality. The mal-

ware samples are executed in a sandbox environment. The generated sequential reports

are then correlated with behavioral patterns and machine learning methodologies are

applied to identify new or known classes. Similarly Bayer et al. [26] implemented a be-

havior-based malware clustering methodology by extending the Anubis [86] dynamic

analysis system. Their approach seeks to identify subsets of malware with similar be-

havioral profiles which are then used as primary data for their clustering algorithm. As

the authors state, their system might be affected by possible evasive mechanisms and

miss capturing specific trigger-based behaviors.

Perhaps closest to our approach is the methodology proposed by Martignoni et al. [80].

Similarly to our technique, they aim at improving behavior-based analysis procedures

by producing more comprehensive results though through a cloud-based implementa-

tion. The proposed system architecture allows multiple malware executions of the same

sample in differently configured systems. To achieve this, the malware samples are dis-

tributed to various end-users’ machines with variable configurations and perform an in-

the-cloud analysis sharing the computational power and recourses of the underlying

analysis lab. The analysis results are then merged to produce the resulting malware pro-

file. Even though the analysis concept and goals share many similar characteristics with

our framework, the implementation technique and resulting outcomes are quite differ-

ent. As the authors’ state they “have not yet addressed the problem of correlating the

results of multiple analyses”. This means that the multiple analysis outcomes are not

further processed and associated so as to produce a comprehensive behavioral malware

profile. Thus, differences or similarities in malware behavior cannot be determined. De-

spite the fact that each malware is executed multiple times, the analysis is preferably

terminated upon the acknowledgement of malicious behavior. To this end, the proposed

system can be utilized as a promising malware detector since it can identify malware

-18-

that might intentionally delay the exhibition of malicious activity or might enclose trig-

ger-based execution conditions. Moreover, the introduced methodology faces signifi-

cant limitations concerning security and privacy issues on the information disclosed to

external users as well as the lack of stealth analysis environments against possible mal-

ware evasive mechanisms.

2.2 Historical Review

Malicious software and more particularly viruses and worms have the ability to invade

and attack computer systems by attaching themselves into the infected host through the

process of self-reproduction and multiplication [6]. Iliopoulos et.al [44] in 2008 com-

pared malware evolution to the Darwinian evolution model resembling also the muta-

tion and replication capabilities of viruses and worms to biological viruses. This self-

replication mechanism though, that now defines and characterizes modern viruses, was

born in academia and was investigated and researched by scientists more than six dec-

ades ago [11], long before the idea of a virus even existed
2
.

John Von Neumann was the first to illustrate the idea of self-replicating machines while

giving a series of lectures at the University of Illinois, in the late 1940s, about the “The-

ory and Organization of Complicated Automata”. In his lectures, Von Neumann com-

pared the human brain and the human nervous system to computers with respect to vol-

ume, size and complexity elaborating also on the capabilities, hierarchy and evolution

of complicated artificial automata as well as exploring and describing the possibility of

designing a self-replicating computer program. His work, which constitutes the first ev-

er academic approach to the theory of computer viruses, was published some years later,

in 1966, as the “Theory of Self-Reproducing Automata” [1] and was implemented in

practice almost three decades later [10], in 1995, by Umberto Pesavento who demon-

strated a functioning simulation of Von Neumann’s machine [4].

Following the work of Von Neumann, who investigated the logical conditions of the

self-replicating problem and concluded in 1951 that it was possible to create a machine

with self-reproduction properties, Lionel Penrose, with the help of Roger Penrose, ap-

proached the mechanical aspect and complexity of the self-reproduction theory. In his

1959 report called “Self-Reproducing Machines” Penrose builds on the idea of design-

2
 http://www.securelist.com/en/threats/detect?chapter=105

 -19-

ing and constructing simple units with the ability to self-multiply, transmute and on-

slaught computer systems [2]. Inspired by Penrose, Frederic G. Stahl in 1961 created an

Artificial Universe in which creatures had the ability to crawl, eat and replicate them-

selves [3]. Despite the limited capabilities and memory sizes of computers during that

period, as well as the lack of presence of any OS, Stahl, using machine language on an

IBM type 650 system, managed to successfully demonstrate reproductive and mutation

mechanisms in computer programs.

In August of 1961, three engineers from Bell Telephone Laboratories (V. A. Vyssotsky

et al.) experimented further with the self-replication capabilities of computer code and

created a programming game which they called “Darwin: A Game of Survival and

(Hopefully) Evolution” [5]. In this game the players had to construct programs, or so

called species, on an IBM 7090 mainframe which were loaded into the arena, a desig-

nated memory area. Each one of the species could perform specific functions such as to

multiply and make copies of themselves in unoccupied memory locations, or to track

down and destroy other species by exploring their vulnerabilities, terminating the re-

spective program and taking over the arena. Darwin’s Umpire defined the rules of the

game and the goal was to devise the most fertile replicator that would kill all other spe-

cies. A screenshot of the game
3
 can be seen in Figure 2.2.1. Darwin later on evolved

into “Core War”, one of the earliest popular computer games [37].

Figure 2.2.1: Darwin – The game

For the years that followed, numerous theoretical approaches were born as researchers

and academics continued to study and experiment with the phenomenon of self-

replication and mutation [8, 9], driven primarily by their interest in the emerging fields

of Artificial Intelligence and Robotics.

3
 http://www.retroprogramming.com/2011/07/darwin-celebrating-50-years-of.html

-20-

It is of no doubt that the work of the aforementioned experts and scholars empowered

huge technological advancements, shaped and transformed future scientific trends and

inspired many forthcoming researchers to build upon, progress and expand their herit-

age. No one however could have foreseen during that period that their efforts would be-

come a stepping stone and fuel up what has later on proven to be a new form of an epi-

demic outbreak to the modern computer society.

2.3 Malware Evolution

A historical walkthrough around malware evolution is imperative in order to understand

their advancement and progress as well as their elevation of capabilities, that has result-

ed into the existence of extremely sophisticated malware that have the ability to adjust

their behavior depending on the infected environment, to perform evasive techniques to

avoid detection and furthermore to infect not only computers but also other hardware

and electronic devices. Throughout almost 40 years of history, malware evolved and

transformed into an advanced cybercrime and cyber-terrorism weapon. Based on a thor-

ough survey on related research and academic work [11, 15, 37, 52, 58], the following

sections provide a description of how malware has evolved over the years.

2.3.1 The 70’s – Experiments and Games

Historians and scientists are still debating on the actual birth date of the first virus.

Nonetheless the first approaches to viruses and worms were pitched off mainly for ex-

perimental and research reasons [11].

Bob Thomas at BBN technologies in 1971, while experimenting, created a program

with self-replicating capabilities called “Creeper”. Creeper, which is now identified as

the first computer worm, infected nodes of the ARPANET
4
, the precursor of today’s

internet, and spread throughout the network by creating copies of itself. Even though

Creeper managed to crawl and populate enormously it had no malicious intent and

simply displayed the message “I’m the Creeper: catch me if you can”. As a counter-

measure the “Reaper” was devised in order to track down and destroy Creeper copies

inside the network. Due to its capabilities, some not only consider Reaper to be the first

4
 Advanced Research Projects Agency Network (ARPANET) was the US military computer network

 -21-

computer virus to be found in the wild but also credit it as the first Antivirus prod-

uct[58].

Some years later, in 1974, the so called “Rabbit” virus appeared, stalling computer’s

performance by rapidly creating multiple instances of itself on a single system. It is not

yet clear whether it was part of another experiment or intentionally designed to crash

systems.

During the same period, John Walker created a game called “Animal”, designed to run

on Univac 1100 systems, which would prompt the players with appropriate questions in

an effort to predict which animal they were thinking of. In 1975, in the attempt to auto-

matically distribute copies of the game, he developed the “Prevade” routine, which

could independently explore all accessible directories. Animal was bundled with

Prevade and upon execution created a copy of the running game to any directory found

containing an outdated version or when the game was not present at all. Prevade is con-

sidered to be the first self-replicating piece of software in the wild, implemented as part

of another host program [15]. Some researchers even refer to Prevade as the origin of

Trojans [58].

Inspired by Creeper in 1979, two Xerox PARC researchers, John Shoch and Jon Hupp,

were the first to invent the term “worm” while exploring the idea of distributed compu-

ting [59]. They created an experimental program with the ability to search for idle pro-

cessors inside their company’s network. Their program could replicate and attach itself

to the inactive computers utilizing their CPU time. Even though appropriate precautions

were developed in order to control and contain any unpredictable growth, their worm

somehow escaped safeguards crashing a significant number of machines. Their pro-

gram, also known as the “Xerox worm”, had no malicious or harmful intent, but rather

was created to assist and promote research advancements in the field of distributed

computing. However it also revealed serious issues related to controlling and restraining

worm expansion.

2.3.2 The 80’s – From innocent pranks to “accidental” outbreaks

As the popularity of personal computers started to raise so did the interest of virus crea-

tors who began targeting microcomputers
5
. While the first era mostly dealt with exper-

5
 Personal computers during that time were called microcomputers as opposed to the existing mainframes.

-22-

imentation in favor to scientific advancements and beneficial purposes, the new trend

seemed to enclose no malicious intentions but rather focus on innocent pranks, annoy-

ing infections and exhibition of capabilities.

Malware authors continued to experiment, exploring previously unknown replication

and attack mechanisms, leading to the first actual destructive outbreaks, which were

caused primarily by unintentional programming bugs and accidents.

The first Apple-II virus, which spread through infected floppy disks, was written in

1982 by Rich Skrenta. Elk Cloner’s infection mechanism entailed copying itself to the

boot sector of floppy disks and was activated every time the computer booted from an

infected disk, subsequently spreading to any other disk being used. Its payload included

a symbolic message
6
 which was released every 50

th
 boot.

In 1984, Fred Cohen introduced the term “virus” for the first time, in his research work

“Computer Viruses - Theory and Experiments” where he presented a functioning

demonstration of a computer program with self-replicating abilities [49].

In 1986, the first PC virus that infected DOS-based systems appeared. Brain, presuma-

bly written by two Pakistani brothers, attached itself to the boot sector of floppy disks

and had no harmful payload rather than labeling the disks as “© Brain” and displaying a

simple advertising message. Brain managed to infect thousands of computers and pre-

sents the first instance of a stealth virus that effectively tried to hide its presence by dis-

playing information irrelevant to the virus every time someone tried to access the boot

sector’s data.

For the years that followed viruses and worms continued to appear in the wild but their

payloads remained quite innocuous and did not really cause any intentional damage to

victims’ computers. It seems though that during the late 80’s the intentions of malware

creators took a significant turn towards the development of more sophisticated malware

samples that enclosed deceptive mechanisms and potentially disruptive payloads.

The first instances of actual destructive viruses were detected in 1987. The Vienna virus

infected .COM executable files and is identified as the first one to curry a destructive

payload. Once in every eight infections, the first bytes of the target file were replaced

6
 ELK CLONER: THE PROGRAM WITH A PERSONALITY IT WILL GET ON ALL YOUR DISKS

IT WILL INFILTRATE YOUR CHIPS YES IT'S CLONER! IT WILL STICK TO YOU LIKE GLUE IT

WILL MODIFY RAM TOO SEND IN THE CLONER!

 -23-

with specific instructions that led to system reboot each time the program was executed,

permanently damaging the file. Several Vienna variants emerged, mostly due to the fact

that its assembly instructions were published in the book “Computer Viruses: A High

Tech Disease”, written by Ralph Burger, while demonstrating how a computer can be

infected by a virus [7]. The author also included a description of the Lehigh virus,

which is regarded as the first .COM file infector virus with the ability to overwrite data

residing on the disk. During that same year, the first virus with simple polymorphic fea-

tures emerged. Cascade carried an encrypted payload to encumber disassembly and de-

tection mechanisms. Figure 2.2.2 presents Cascade’s harmless payload of letters sliding

down on the screen (adopted from [58]). Leigh and Cascade are considered to be an im-

portant milestone into the development of antivirus software.

Figure 2.2.2: Cascade’s waterfall visual effect

The Christma Exec worm, that also made its appearance in 1987, marks the beginning

of email spreading malware as well as the first instance of social engineering exploita-

tion in order to lure IBM mainframe users into opening incoming infected emails. The

worm, using Rexx scripting language, deceptively displayed a Christmas tree on the

victims’ screen while in the background automatically emailed a copy of itself to the

unaware users’ contact list obtained from their address books. The recipients were

tricked into opening the infected message as it appeared to be sent by a familiar person.

Around late 1987 and early 1988, the first historically recorded targeted virus attack

was detected. Initially, the Scores Mac virus seemed to have no payload at all, but fur-

ther analysis of the disassembled viral code revealed that the virus looked for specific

system resources that were later on identified to be part of the “EDS” company’s inter-

-24-

nal network [52]. Even though no actual damage was done, Scores carried complicated

payload and trigger mechanisms. The first part of the payload was released upon infec-

tion and created two hidden folders and some notepad files, altering also their type and

icons. The second one was triggered exactly four days after the attack. It searched spe-

cifically for “ERIC” and “VULT” running applications, and ended their execution after

25 minutes. The final viral part was activated seven days after the initial infection which

caused a number of errors to the “VULT” related applications leading them eventually

to crash.

Another destructive file infecting virus was discovered in the wild towards the end of

1987. Unlike the previous ones, the Jerusalem virus was the first MS-DOS based mal-

ware to attack .COM as well as .EXE programs. Its damaging payload though, did not

manage to cause extensive losses because the virus was quickly detected due to an error

which caused it to re-infect already infected files multiple times, significantly increasing

their size.

Perhaps one of the most major security incidents and the first historically massively de-

structive malware outbreak took place in 1988 when the “Internet worm”, also named as

“Morris worm” after its creator Robert T. Morris, managed to bring down thousands of

Unix-based computers in just a few hours [53]. Unlike the Christma Exec worm, the

Morris worm did not employ any deceptive mechanisms and did not require human in-

teraction in order to spread. Moreover, it was one of the initial worm instances that em-

ployed a mixture of attack mechanisms to enhance its deployment. It could self-

replicate, infecting one system after the other, by exploiting some already known un-

patched networking and software vulnerabilities, such as in the Unix “sendmail” and

“finger” daemon programs. In addition, by using a self-carrying dictionary of common-

ly used words in combination with any other dictionary possibly detected on the vic-

tim’s system, it attempted to break weak passwords and climb privilege levels.

Although the Morris worm caused approximately 100 million US dollars of financial

damages, later enquiries inferred that the worm’s destructive behavior and outbreak

were not intentionally provoked but rather a result of unpredicted parameters and pro-

gramming faults. Such bugs also caused the worm to multiply uncontrollably, signifi-

cantly reducing the performance of the infected machines, which ultimately led to its

detection.

 -25-

Towards the end of the decade, new mechanisms were developed, that transformed the

previously exhibited virus functionality.

In 1989, a new arbitrary payload damage model was introduced by the Dark Avenger

virus. Upon execution, the virus was loaded in memory and remained there subsequent-

ly infecting any other file being accessed by the user. Consequently, backup processes

also became unreliable as data could get polluted and corrupted during copying at-

tempts. Frodo on the other hand, which was discovered in Israel, was the first parasitic

virus to enclose complete stealth behavioral characteristics. The virus tried to conceal

the changes that its 4K code caused to the size of the infected files. Any information

requests the users made regarding those files would display their initial size and not the

increased one.

Possibly one of the first attempts that employed malware specifically for financial gain

purposes was detected in late 1989 when a number of floppy disks, presumably enclos-

ing AIDS relevant information, were distributed to the conference members at an inter-

national medical meeting. The packages came with a License Agreement that warned

the users about the limited time period regarding the software’s free use but it mostly

got bypassed. The disks did indeed display some related material but the “AIDS” Tro-

jan, as it was named, worked in the background and after a number of system reboots

encrypted the hard disk’s data and then presented a pop up message extorting the vic-

tims into paying the amount of $378.00 in return for the encryption key [52, 58]. The

AIDS Trojan is also the first one of its kind that propagated using mailing lists and it is

estimated that about 10,000 samples were dispatched worldwide to various medical in-

stitutions and other organizations.

2.3.3 The 90’s – Polymorphism and Toolkits

By the beginning of 1990 users had become more aware of the risks involved and anti-

virus companies had already started to fight back by releasing new anti-virus tools able

to detect more virus samples. The basic malware patterns and mechanisms had already

been laid down and new malicious generations emerged mostly by building upon and

extending these previously exhibited techniques.

During the next years, malware creators, following the current trends and developments,

started to target also Windows-based systems and the first instances of macro viruses

were developed. Simple encryption routines evolved into extremely complex polymor-

-26-

phism mechanisms raising new challenges in the anti-virus sector. The design of auto-

mated mutation engines along with the appearance of the first virus construction toolkits

facilitated the massive creation of new malware instances. Furthermore, the expansion

of the Internet as well as the adoption of e-mail as a preferred mean of communication

provided new favored infection vectors for cyber attackers.

Earlier self-encryption techniques, aimed mainly at escaping byte pattern (signature)

detection mechanisms that anti-virus products used for uniquely identifying viral pieces

of code. Even so, the prepended decryption mechanism, responsible for returning the

virus to its original form, stayed unmodified consequently allowing the malware’s de-

tection. In 1990 more complicated instances of polymorphic viruses began to appear in

the wild. Attackers started to use complex encryption techniques such as transposing the

virus’s code and randomizing the decryption routine among different infections [11].

Amongst the first of such kind to appear was the Whale virus, discovered in June of

1990. This 9,000 bytes long virus employed innovative obfuscation techniques to avoid

detection and to hinder disassembly and analysis procedures. It could recode itself be-

tween infections, constantly changing its appearance, making typical string scanning

detection ineffective.

During the same period malware creators began establishing communities to better

promote their goals. From such groups the first virus exchange bulletin board system

(BBS) was launched, encouraging virus authors to upload new malicious programs in

exchange for access to the system’s virus source code database [58].

In 1991 the Michelangelo boot sector virus was detected. Its payload was triggered on

every March 6
th

 and could replace the first 256 hard disk’s tracks with random data, de-

stroying the system’s boot information. Later that year Tequila, the first multipartite,

fully polymorphic stealth virus entered the “battle field”. Using advanced forms of pol-

ymorphism, such as variable encryption, it completely changed its viral code between

infections, and could escape detection even from the best available antivirus software of

that time [52]. By December 1991, around one thousand virus instances had already

been identified.

The creation of polymorphic viruses required extensive programming skills. However,

in 1992, the notorious Dark Avenger programmer developed a self-mutating engine

(MtE) able to insert polymorphic characteristics to any virus [60]. With such a tool,

malware coding and their polymorphic transformation became an easy task. Even

 -27-

though it facilitated polymorphic virus generation, any malware instance created with

the MtE carried a unique signature, making it detectable. Soon after, new variations of

mutation engines were released such as the Trident Polymorphic Engine (TPE), the

Nuke Encryption Device (NED) and the Dark Angel’s multiple encryption engine

(DAME) [52].

In the summer of 1992 the virus creation landscape drastically changed. The first mal-

ware making toolkits emerged, enabling the massive generation of viruses through an

easy menu driven interface [60]. The “Virus Creation Laboratory” (VCL) and the

“Phalcon/Skism Mass-Produced Code Generator” (PS-MCP) that followed shortly after,

developed by Nowhere Man and the famous Dark Avenger programmers respectively,

provided amateur code writers with an already pre-constructed pool of viral codes to

select from and simply apply their desired payload. Although such toolkits facilitated

the creation of many different malware instances, their basic construction modules re-

mained identical. Detecting one such virus subsequently meant that all others could also

be identified [52]. Figure 2.2.3 illustrates a screenshot of the Virus Making Laboratory

[58] that attackers could use to deploy new viruses without using any code program-

ming at all.

Figure 2.2.3: The Virus Making Laboratory

Creating malware soon became a profitable underground business when constructors

started selling their virus creations. For example the European Virus Clinic offered their

-28-

malware samples for approximately $25 while another virus programmer was selling his

creations for about $100 [58].

In 1995 the first macro virus, named “Concept”, appeared in the wild. Concept targeted

Microsoft Word documents and quickly managed to spread worldwide. Macro viruses

in general are easily created and platform independent. However, in contrast to more

advanced modern creations, the initial instances of macro viruses could easily be

blocked, simply by disabling the text processor’s macros [11, 52].

In 1997 the first virus targeting Linux-based systems was detected. Bliss infected linux

executable files and exhibited worm spreading behavior locating potential victims

through the /etc/hosts.equiv trusted hosts list [58].

The appearance of the Melissa macro virus in 1999 designated the birth of a whole new

generation of fast e-mail spreading malware. Melissa spread around through an infected

word document as an e-mail attachment. Every time a user opened the e-mail, Melissa

automatically retrieved the first 50 contacts from the user’s Microsoft Outlook address

book and mailed itself to the recipients. This new mixed type of malware with worm-

like propagation mechanisms, managed to infect thousands of computers globally in just

a few hours crashing also a significant number of mail servers due to the increased vol-

ume of generated e-mails.

2.3.4 The 2000 Decade – Social Engineering and Cybercrime

During this new decade, malware creators’ exhibition of power and coding skills con-

tinued to surprise the computer security world. This new modern wave of malicious in-

vaders is characterized by an advanced level of sophistication and complexity accompa-

nied by more damaging payloads and destructive results. Malwares’ propagation speed

rapidly increased and new forms of blended threats emerged combining multiple infec-

tion vectors concurrently [11]. Cyber criminals widened their attack range by targeting

previously unthreatened platforms and network technologies, like Linux and Peer to

Peer networks, as well as modern electronic devices such as mobile phones. Antivirus

vendors not only faced the first attacks targeting antivirus software but were also chal-

lenged by new dynamic malware updating techniques.

The first attempts towards creating a network of compromised and controllable comput-

ers were realized and led to the evolution of Bots and Botnet technology [61] that facili-

tated the changing interests of cyber criminals. From noticeable data destructive and

 -29-

machine corruptive payloads attackers moved on to invisible and well hidden compo-

nents aiming at covertly monitoring on line activities and stealing personal information

and data that could then be utilized for internet fraud or other illegal financial gain pur-

poses. Malware designers soon started selling or leasing their malware creations in the

form of toolkits to any lurking cyber attacker [63]. The newly established underground

malware market became a profitable business, opening the gates to novel criminal busi-

ness models [64] and building an important foundation for the evolution and transfor-

mation of modern cybercrime [65].

Following Melissa’s traces pretty soon new advanced fast e-mail spreading hybrid mal-

ware forms were developed. The BubbleBoy scripting virus and the KAK scripting

worm that emerged in early 2000, revealed a new undiscovered security threat. The

malware’s viral code was not included as an attachment but rather executed automati-

cally as soon as the victim opened the received e-mail message. Their creators took ad-

vantage of an Internet Explorer’s vulnerability, which allowed them to insert an HTML

document containing the malicious Visual Basic script inside the main message body of

the e-mail [11, 52]. Similarly to Melissa, they then propagated throughout the network

by sending themselves to e-mails harvested from the victims address books.

Worm designers continued to come up with innovative mechanisms to increase their

victims range and enhance their destructive outcomes. The Love Letter worm for exam-

ple tried to manipulate e-mail recipients into opening the attached “Love Letter” mes-

sage, by prompting them to kindly read it. The attachment was actually a VB script and

the file’s name contained two extensions “.TXT.vbs” in the hope that it would pass un-

noticed [52]. To further extend its attack vector the worm also created an IRC connec-

tion subsequently infecting anyone who participated in the IRC channel [11]. Love Let-

ter’s destructive and information stealing attitude caused up to 10 billion US dollars

economic loses and is considered as one of the most damaging viruses in malware histo-

ry [58].

The trend towards employing social engineering techniques to trick unaware users soon

became a common practice among forthcoming massive e-mailing attacks while the en-

gagement of IRC technology set the ground for the development of future Botnets [61].

On the other hand, the appearance of the Hybris worm opened the gates to another gen-

eration of sophisticated malware that can dynamically modify their viral structure and

payloads by automatically downloading updated code versions.

-30-

The beginning of the new millennium also brought to surface probably the largest Deni-

al of Service (DoS) attack up to that time. A young attacker known as the Mafiaboy,

carried out a Distributed DoS (DDoS) attack targeting high profile websites like Ama-

zon, Yahoo and CNN. To achieve his goals he took under his control several computers

over the network and organized a large-scale Ping-of-Death attack
7
. Yahoo’s services

remained unavailable for approximately 8 hours costing the company millions of dollars

in financial damages. However the attacker was detained for only a few months and got

away with a $650 fine [58]. Even though modern networks are protected against Ping-

of-Death attacks, other types of DoS attacks are feasible and continue to pose a great

security threat.

Attackers soon started to target new communications devices such as the Timofonica

virus which is acknowledged as the first one to infect mobile phones [58]. Even though

its payload was harmless, it revealed a new movement towards compromising different

gadgets other than traditional computer systems.

The global expansion of the Internet and the continuous development of advanced web

services and web-based applications also brought along new security weaknesses that

attackers soon began to exploit. Malware authors started to explore new infection vec-

tors and propagation mechanisms in addition to the well established by now e-mail pro-

liferation method, and payloads become even more destructive and complex.

In 2001 the Lion worm attacked Linux platforms by exploiting a buffer overflow vul-

nerability of the BIND DNS server. Once installed, it gathered passwords and other per-

sonal information and e-mailed them to its controller. Lion’s complicated payload also

installed backdoors, binary toolkits and a DDoS agent.

The SadMind worm targeted both Sun Solaris systems and Microsoft’s Internet Infor-

mation Services (IIS) web servers. It took advantage of a buffer overflow weakness to

attack Sun systems. It then installed additional programs in order to infect Microsoft’s

web servers and coordinate website Defacement attacks.

The Code Red worm which also appeared in 2001, exploited the freshly discovered In-

dex Server ISAPI buffer overflow vulnerability in Microsoft’s IIS web servers. Immedi-

ately after infection, the worm created multiple duplicate threads responsible for attack-

7
 A Ping-of-Death attack entails sending ping packets larger than the maximum supported packet size in

IPv4 networks (65,535 bytes).

 -31-

ing additional IIS servers through a generated list of IP addresses. A programming bug

caused the worm to create the same IP lists on every victim host significantly slowing

its expansion. The Code Red v2 came to the rescue almost immediately to repair the

previous bug. By correctly creating a random IP address list it managed to infect

359,000 systems in just a few hours [11]. The worm’s payload carried out DoS and

website defacement attacks against specific targets. The Code Red II variant that fol-

lowed shortly after additionally created a Trojan and a backdoor and spread through an

IP target list randomly generated from inside the host’s subnet.

One of the fastest growing widespread blended attacks was realized also in 2001 by the

Nimda worm which combined multiple infection vectors concurrently in order to prolif-

erate, significantly increasing its complexity and propagation speed. The worm exploit-

ed a number of previously known vulnerabilities and infection vectors and spread by:

 Repeatedly e-mailing itself as an “.EXE” attachment to addresses retrieved

from the system’s cache and mailbox.

 Randomly infecting Microsoft IIS web servers using a buffer overflow vulnera-

bility that allowed code execution on the server.

 Creating exact copies of the worm on network shares of a compromised server.

 Inserting Javascript into web pages stored on the computer.

 Utilizing backdoors created by the SadMind and Code Red II worms.

The Nimda worm took extra measures to avoid detection and its payload included modi-

fying Registry and System files as well as creating shares and accounts with administra-

tive privileges to enable remote access.

The first instances of malware targeting anti-virus products were also identified. The

Bugbear and Klez worms were amongst the first to track down and kill any running

processes generated by antivirus software as well as destroy any related files stored on

the hard disk. The Bugbear additionally installed a Keylogger Trojan horse for captur-

ing and recording any keyboard typing actions.

Probably two of the worst disastrous security attacks and massive worm outbreaks ever

to have been realized took place in 2003. The SQL Slammer and Blaster worms

achieved an incredibly fast infection rate spreading to hundreds of thousands of systems

globally within just a few minutes. SQL Slammer carried no payload at all and rather

focused on rapidly replicating across the Internet. It performed a buffer overflow attack

on Microsoft’s SQL servers and propagated between hosts through a single UDP pack-

-32-

et. Blaster on the other hand targeted Windows XP and 2000 platforms by exploiting

their DCOM RPC
8
 system’s vulnerability. Copies of the worm were dispatched to the

victims’ machines through remote calls on port 4444. The worm’s payload installed a

DoS agent and attempted to perform a TCP SYN flood attack against Microsoft’s Win-

dows update website [11].

Another important milestone in malware’s advancement was set by the Sobig worm and

its variants. The worm propagated through e-mails and is considered as the first coordi-

nated effort towards creating a large network of infected computers that can be manipu-

lated and directed remotely by a master controller. It is believed that the attackers tried

to build a Botnet of zombie machines in order to perform massive Distributed Denial of

Service (DDoS) attacks [58].

During the next years malware and more particularly worms continued to appear and

spread throughout the globe evolving their infection mechanisms and widening their

attack vectors. The Bagle worm for example, detected in 2004, was able to attack all

Microsoft Windows versions while the Cabir worm was specifically designed to infect

Symbian-based mobile phones replicating through Bluetooth wireless transmissions.

In early 2007 a new emerging threat was detected. The fast spreading Storm worm em-

ployed social engineering techniques to attract victims and propagated through e-mail

attachments of various subjects, with the initial one pretending to deliver news regard-

ing a weather catastrophe. The worm came with a dangerous payload which upon exe-

cution downloaded and installed other Trojans, Backdoors and rootkits in order to re-

cruit computers into a huge Storm botnet. As it was reported, one of the infected sys-

tems was noticed to send out approximately 1,800 e-mails within only five minutes

[58]. In contrast to other common botnets, the infected zombie machines were not cen-

trally controlled but rather built on top of a Peer-to-Peer network technology. It is esti-

mated that a few months after its release the Storm botnet controlled up to 10 million

compromised machines. The resilience and complexity of the Storm makes it hard to

detect and contain as it is repeatedly modifying its packing routine and uses fast flux

technology to constantly change the IPs of the C&C servers
9
.

8
 Distributed Component Object Model Remote Procedure Call

9
 Looking inside the Storm worm botnet, http://news.cnet.com/8301-1009_3-10009953-83.html

 -33-

Botnets soon became a flourishing underground business for cybercriminals [64, 65].

Botnet creators started selling or leasing their bots allowing attackers to manipulate

their zombie networks as they pleased [63].

The Zeus Trojan, which was first spotted in 2007, was specifically designed to create a

botnet of compromised computers that could then be recruited for information stealing

and financial fraud activities. It spreads through phishing and drive-by attacks and col-

lects information using various techniques such as for example form grabbing and key-

stroke monitoring. It was estimated that by 2009 the Zeus botnet had already infected

3.6 million computers in the United States and was responsible for 44% of the known

banking cyber-attacks [62]. Pretty soon Zeus circulated in the underground market as a

crime-ware toolkit available for purchase with its price ranging from a few hundred dol-

lars up to $15,000 depending on the malware’s version and added features/modules
10

.

The toolkit comes with an easy installation procedure and customization mechanisms so

that attackers can select the type of information they want to steal or gain access to such

as banking account credentials, credit card details, e-mail accounts and any other type of

personal data. Zeus uses complicated multi-level obfuscation mechanisms to avoid de-

tection and hinder any analysis procedure. Researchers have only recently attempted to

reverse engineer the Zeus toolkit in an effort to get an insight on its advanced technolo-

gy and structure [62]. In 2012 new variations of ZitMo (Zeus’s version for mobile

phones) were discovered specifically designed to attack Android and BlackBerry devic-

es
11

.

By 2009 the cybercrime landscape had completely evolved and malware authors were

able to perform highly sophisticated attacks utilizing botnet technology and complicated

malicious constructions. This led to the formation of a flourishing underground econo-

my and to the emergence of highly profitable crimeware business models [71].

2.4 Latest Malware Attacks

Following the evolution of cybercrime, novel emerging threats formed a new trend to-

wards advanced cyber-terrorism attacks. These latest types of attacks have revealed ex-

10
 http://www.secureworks.com/research/threats/zeus/?threat=zeus

11
 http://www.scmagazine.com/blackberry-android-users-targeted-by-new-zeus-trojan/article/253940/

-34-

tremely dangerous and frightening attempts with the potential to threaten not only ex-

plicit organizations and industries, but even entire nations.

In June 2010, Stuxnet, a new threatening cyber-attack was detected [70, 92]. The Stux-

net worm was the first one to specifically target SCADA
12

 industrial systems and em-

ploy PLC rootkit technology that allowed PLC
13

 code modifications. Even though it

was initially found to target Iranian facilities, the worm managed to quickly spread to

various other countries. The worm was designed to propagate through various zero-day

vulnerabilities, such as previously unknown exploits on the print spooler service and

Microsoft Windows Server services, as well as through removable media. Stuxnet fea-

tures included stolen component certificates, complicated injection and hooking mecha-

nisms, dynamic updates and specific antivirus evasion utilities. Its ability to reprogram

PLCs and control such critical industrial infrastructure, position Stuxnet as one of the

most dangerous cyber weapons ever to have been created.

In 2011 a new sophisticated worm attack was identified. Dugu
14

 was specifically de-

signed to steal passwords, collect computer screenshots and any other information lo-

cated on the infected machine. Dugu spreads through a previously unknown vulnerabil-

ity in Microsoft word documents and unlike Stuxnet, its main purpose is to conduct in-

dustrial espionage.

Flame, another emerging cyber threat, was discovered most recently, in 2012, by

Kaspersky Labs
15

. Security experts announced that Flame was already in the wild for

two years but managed to remain undetected due to its extremely complicated and so-

phisticated structure as well as the targeted nature of its attacks. Flame’s primary objec-

tive is to perform cyber espionage collecting any type of available information with

abilities among others to intercept network connections and capture audio recordings.

Similarly to Stuxnet, Flame can replicate through removable disks and the same spooler

vulnerability. Latest researches have concluded that Stuxnet, Dugu and Flame are inter-

12
 Supervisory Control and Data Acquisition

13
 Programmable Logic Controller

14
 http://www.kaspersky.com/about/press/duqu

15
http://www.kaspersky.com/about/news/virus/2012/Kaspersky_Lab_and_ITU_Research_Reveals_New_

Advanced_Cyber_Threat

 -35-

related
16

. Analysis processes revealed that Dugu and Stuxnet were created using the

same platform while specific Flame modules were identified inside Stuxnet’s code.

More recently, a series of “High Roller” banking attacks were revealed
17

. The attackers

combined and customized three popular malware toolkits, targeting high balance bank

accounts. SpyEye, Zeus and Ice 9 were employed to perform one of the most sophisti-

cated, extremely automated and targeted banking fraud attacks. As it was difficult to

breach through banks’ security systems, cybercriminals infected the clients’ computers.

During the execution of on-line transactions, users were prompted with waiting messag-

es allowing on-line robbers to steal the funds from the users’ accounts by conducting

automatic transfers. According to McAfee’s report, the total amount of stolen funds is

estimated around 2 billion US dollars.

The ease by which such attacks can be realized as well as the wide availability of pre-

constructed malware toolkits (for example the Zeus toolkit can be purchased in the un-

derground market for about €1.000) and the extremely huge profits that can generated,

has significantly contributed to the massive expansion and evolution of cybercrime ac-

tivities and attacks [71].

While initial malware instances were quite innocuous and highly visible, their evolution

gradually moved towards extremely dangerous, highly profitable and well concealed

malware attacks. Figure 2.2.1 graphically presents the evolution of malware throughout

the decades in terms of maliciousness, profitability and visibility characteristics [71].

16
http://www.kaspersky.com/about/news/virus/2012/Resource_207_Kaspersky_Lab_Research_Proves_th

at_Stuxnet_and_Flame_Developers_are_Connected

17
 http://www.mcafee.com/us/resources/reports/rp-operation-high-roller.pdf

-36-

Figure 2.2.1: Malware evolution

2.5 Malware Types

Malware is a broad term and generally refers to any piece of software that intentionally

performs malign activities. Moser et al. define malicious code (malware) as “software

that fulfills the deliberately harmful intent of an attacker” [13]. Malicious software, de-

pending on its purpose and functionality, is further classified into several behavioral

categories. Terms like “Viruses”, “Worms” or “Trojans” are used to describe malware

samples with resembling behavior. This section provides a brief description of some of

the most common malware types that can be found in the wild, in order to gain a better

understanding of their characteristics and how each malware family functions and oper-

ates.

Even though we usually classify and refer to malicious code as a “virus” or a “worm”

etc., it should be noted that a specific malware sample may not exclusively belong to

only one class [23]. This is because many times the observed functionality of a certain

malware might resemble the behavioral characteristics of multiple malware types con-

currently. More details and information regarding malware types and malicious soft-

ware in general can be found in [15, 22, 37, 52].

Viruses. The term “virus” was introduced for the first time in 1984 by Dr. Frederick

Cohen who described a virus as “a program that can ‘infect’ other programs by modify-

ing them to include a, possibly evolved, copy of itself” [49]. Even though the term virus

is closely associated with harmful intentions and damaging results, according to Co-

hen’s definition the main characteristic of a virus is its ability to self-replicate by infect-

 -37-

ing other programs. Therefore, if strictly interpreted, someone may conclude that any

type of software with replicating abilities, even with no malicious payload, can be re-

ferred to as a virus [52]. Skoudis and Zeltser define a virus as “a self-replicating piece

of code that attaches itself to other programs and usually requires human interaction to

propagate” [15]. Consequently, a virus needs to infect and modify other files in order to

replicate and spread.

In general, a computer virus cannot be executed autonomously. It inserts its set of in-

structions into the command chain of another program (host) so that when the host file

is activated, usually by a user’s intervention, the viral piece of code is also executed.

Typical virus hosts may include [51]:

- Executable files usually disseminated through emails as attachments.

- Disk partitions’ Boot sectors.

- Script files such as batch or shell scripts.

- Any macro containing document, such as Microsoft Office documents etc.

Depending on the target host, viruses can further be distinguished into “File Infecting

Viruses”, “Boot Sector Viruses”, “Scripting Viruses” or “Macro Viruses” [52]. The

basic structure of a computer virus usually contains at most three main subroutines or

mechanisms [11, 52]:

 Infection: This part of the viral code defines the propagation methods of the vi-

rus.

 Payload: Specifies the actions to be performed on the polluted host.

 Trigger: Defines when exactly to release the payload.

The infection mechanism, unlike the other two, is always activated and defines how the

virus will proliferate among possible candidate hosts as for example files of a specific

type and content or whether to prepend or append itself inside the host file. Upon execu-

tion, the host also behaves as a virus and, based on the infection routine, copies the viral

code into other programs thus enabling the virus’s replication mechanism.

Moreover, the virus does not always simply create exact duplicates of itself. To further

encumber detection, it may modify itself, for example by rearranging the sequence of

some instructions, thus mutating as it spreads from host to host while preserving the

same functionality (Metamorphic viruses). More advanced viruses might also encrypt

themselves using different keys along infections while preserving the decryption algo-

rithm (Polymorphic viruses). Viruses additionally insert a signature inside the infected

-38-

hosts in order to avoid reinfection of the same files, which could cause their size to

grow enormously.

The payload component, if present, defines the usually harmful intentions of the virus

and the exact instructions to be executed on the infected host. Such actions may include

deleting or corrupting files on the user’s system or stealing information and performing

more advanced and sophisticated attacks. The trigger mechanism on the other hand,

specifies the conditions upon which the payload will be delivered such as for example at

a specific time or date.

For example, one of the most damaging and destructive viruses ever to have appeared in

the wild is the CIH virus also known as the “Chernobyl” virus which was first detected

in 1998 in Taiwan
18

. According to Symantec’s Security Response
19

, the CIH virus in-

fected around one million computers in Korea alone, causing more than 250 million US

dollars economic damage. The virus was designed to attack 32-bit Windows executable

files and was triggered to be activated for the first time on the 26
th

 of April, 1999. Cher-

nobyl carried two different injurious payloads. The first payload was responsible for

corrupting the victim’s hard disk by replacing all of its contents with random data caus-

ing the system to crash, while the second one tried to permanently damage the computer

by attacking the Flash BIOS and altering the stored data.

Viruses usually spread through removable storage media, shared folders, emails and un-

reliable internet downloads [15]. Moreover, if the infected file resides somewhere on a

server, the virus, with appropriate human interaction, will most likely propagate

throughout the network, thus infecting more computers [23].

Figure 2.3.1 presents Cohen’s example of a simple virus and its three-partite structure in

pseudo code [49].

program virus:=

{1234567;

subroutine infect-executable:=

 {loop:file = get-random-executable-file;

 if first-line-of-file = 1234567 then goto loop;

 prepend virus to file;

 }

subroutine do-damage:=

18
 http://www.techopedia.com/2/26178/security/the-most-devastating-computer-viruses

19
 http://www.symantec.com/security_response/writeup.jsp?docid=2000-122010-2655-99

 -39-

 {whatever damage is to be done}

subroutine trigger-pulled:=

 {return true if some condition holds}

main-program:=

 {infect-executable;

 if trigger-pulled then do-damage;

 goto next;}

next:}

Figure 2.3.1: A simple virus example by Dr. Cohen.

Worms. Spafford in 1989 defined a computer worm as “a program that can run inde-

pendently and can propagate a fully working version of itself to other machines” [53].

Worms, in general, are fully functional stand-alone programs that can be executed au-

tonomously and replicate by creating copies of themselves as they move from one sys-

tem to another. Their basic infection strategy resides mostly on exploiting system and

network vulnerabilities with minimum or no user interaction. Due to the scale and mag-

nitude of the attacks that they can accomplish as well as their proliferation speed, they

are quite popular among cybercriminals aiming at performing massive system infec-

tions.

Viruses and worms are similar in the sense that they both have self-replicating capabili-

ties. The main difference between them is that a worm does not need to attach itself to

another file in order to propagate [52]. According to Dr. Cohen, the basic distinction

between the two is the absence of an infection mechanism in worms [49]. This of course

does not mean that a worm doesn’t have the ability to modify or infect other files but

rather that it does not require the presence of another program or file in order to prolif-

erate. Skoudis, Zeltser and Szor state that what explicitly distinguishes a worm is its

network-based infection mechanisms [15, 37]. Skoudis specifically denotes that “if it

doesn't spread across the network, it just isn't a worm”, while Szor further classifies

worms as a subclass of viruses.

The basic structure of a worm is anatomically similar to that of a virus, in the sense that

it also includes specific infection, trigger and payload mechanisms. Skoudis and Zeltser

delineate the structural components of a worm in analogy to a missile, referencing to

worms as weapons of war [15].

Table 2.3.2 presents and correlates the main component elements of a worm along with

a small description of their functionality and mechanisms, as they are discussed in [15,

37, 57, 67, 68].

-40-

Table 2.3.2. Worm Component Elements

Worm

Component
Functionality Techniques / Actions / Mechanisms

Warhead Consists of exploits that explore

possible system vulnerabilities

in order to gain access on a tar-

get machine.

Buffer Overflow, File Sharing, E-mail

readers / servers, System and Net-

work Misconfigurations / Flaws

Propagation

Engine

Specifies the propagation meth-

ods necessary for the worm

crawl and copy itself on the tar-

get, once the door is open.

Peer to Peer and File Sharing net-

works, File Transfer mechanisms

(FTP, TFTP, HTTP, SMB), Instant

Messaging, IRC channels, Web Ser-

vices, owned SMTP engines, pre-

installed malware.

Target

Selection

Algorithm

Defines how the worm searches

for additional targets to attack.

IP Scanning/Generating, E-mail har-

vesting (address books, inbox, IE

cash, personal directories, Google

searches), Network shares / Neigh-

bors, DNS queries, Hosts Lists, Ser-

vice Discovery, OS Fingerprinting,

Pre-configured Hit Lists, File System

Traversal

Scanning

Engine

Scans the identified targets to

determine whether they can be

also exploited by the warhead

and if so, replicates and repeats

the process on the new victim.

Sends packets to the addresses select-

ed by the target algorithm to deter-

mine potential penetration opportuni-

ties

Payload Any additional action to be exe-

cuted on the compromised sys-

tem.

Recruit Bots, Install Trojans, DDoS

agents, spam servers, viruses, rootkits,

spyware, backdoors, key loggers etc.

A worm’s payload component might not always be present. In such cases the worm’s

ultimate goal is to quickly proliferate to as many machines as possible and the conse-

 -41-

quent damages are mostly due to the massive consumption of system and network re-

sources [15]. The existence and nature of a payload mechanism on the other hand,

might also indicate the attacker’s motives and incentives [67]. Modern malware pay-

loads, like for example the Storm worm’s payload, demonstrate a multipartite nature

and may include diverse mechanisms to be executed on the target machines.

Figure 2.3.2 displays the anatomy of the Bugbear.B worm, as it is presented by Skoudis

and Zeltser [15]. The Bugbear.B worm was detected in 2003 and is identified as a new

form of Combo malware which embraces multiple malware characteristics concurrent-

ly. Bugbear.B uses a combination of common worm propagation mechanisms to spread

and its payload includes a mixture of attack techniques that blend together virus and

backdoor features as well as polymorphic and antivirus disabling mechanisms.

Figure 2.3.2: Anatomy of the Bugbear.B worm.

Such blended threats [37] have the ability to combine multiple infection strategies con-

currently and are increasingly being utilized by modern malware, like the Conflicker

worm, to augment their infection routines.

Worms can be generally classified into two major categories [52]:

 Host computer worms. Worms that run integrally on the victim’s computer and

use the network to simply replicate on other machines. Rabbits are host worms

that terminate their execution on the previous machine after jumping on the next

victim.

 Network worms. Worms that are divided into multiple segments which are then

interspersed throughout the network. Each segment is executed on different

computers and their overall communication takes place through the network.

-42-

Octopuses are network worms that contain one basic segment responsible for the

management and coordination of all the other worm parts.

Based on their launching mechanisms, Harley, Slade, and Gattiker [52] additionally cat-

egorize worms to:

 Self-launching worms that can self-replicate without any human intervention.

 User-launched worms that employ social engineering techniques to trick users

into executing their code.

 Hybrid-launch worms that combine both aforementioned techniques.

Even though recent attacks like the one performed by the ultimate cyber weapon Stux-

net have introduced a new hybrid, mixed type of worms that can additionally propagate

through other means such as removable usb devices, most worm instances are network-

based and can replicate by exploiting network and system vulnerabilities. Based on their

propagation and payload mechanisms, worms can be further classified into [68]:

 Email Worms

 Instant Messaging Worms

 IRC Worms

 Internet Worms

 File-sharing Network Worms

 Peer to Peer Network Worms

 PDF Worms

Trojan Horses. Skoudis and Zeltser [15] define a Trojan horse as “a program that ap-

pears to have some useful or benign purpose, but really masks some hidden malicious

functionality”. Trojan horses in general are programs that disguise their actual nature

and present themselves as innocent software programs pretending to perform something

other than their true functionality. To further confuse the victims, some Trojans might

actually execute what they are claiming to deliver in conjunction with the undesirable

results. Harley, Slade, and Gattiker [52] describe Trojans as “programs that claim to do

something useful or desirable, and may do so, but also perform actions that the victim

wouldn’t expect or want” and denote that what distinguishes them from viruses and

worms is the lack of self-replicating properties and the absence of proprietary infection

mechanisms.

 -43-

Trojan makers try to deceive the victims and conceal their malicious programs behind

common names of system processes such as “init” in Unix systems or “iexplore” in

Windows. Several techniques might be engaged to hide executable suffixes and wrapper

tools are used that merge the illicit code with other legitimate programs so as to be exe-

cuted alongside them [15].

According to Kaspersky Labs’ classification
20

 as well as related research work [15, 52,

56], several different types of Trojan programs exist and can be categorized according

to their functionality:

 Backdoors. Trojan Backdoors are programs that provide attackers privileged ac-

cess on a compromised computer [52]. Backdoors in general are utilized by

cyber criminals to gain remote access on the infected machine with the purpose

of controlling its behavior, remotely executing commands, installing additional

malware, exchanging files and data or even to monitor and control the victim’s

GUI. This can be done by illegitimately using legitimate administrative tools

like Netcat, Back Orifice and Virtual Network Computing (VNC) [15].

 Droppers. Trojan droppers (also known as infectors [52]) contain various addi-

tional malware components, such as worms, backdoors etc., and are designed to

secretly install and execute them on the victim’s computer. These might include

new malicious code instances or updated versions of previously installed ones.

 Downloaders. Upon the successful connection to a remote server they secretly

download, install and execute malware on the victim’s computer. They are

smaller than droppers and are often used to dynamically download updated

malware code versions.

 PSW Trojans. Password Stealing Ware programs are specifically designed to

steal personal information and passwords which are then communicated to the

controller.

 Spies. Trojan spies monitor and record user actions which are then dispatched to

the attacker.

20
 Kaspersky Labs, http://www.securelist.com/en/threats/detect/trojan-programs?behavior=19

-44-

 Proxies. Work as proxy servers providing internet access and at the same time

hiding the attacker’s identity. They are most often used for massively distrib-

uting spam e-mails.

 Notifiers. Report to the controller relevant information regarding the installation

of malware and the infection status of the victim’s machine.

 Arcbombs. Archive bombs are compressed files constructed to crash the system

upon any un-packing attempt. When decompressed they flood the disk with ran-

dom data significantly affecting the system’s performance. They are most often

used to disrupt anti-virus software and crash mail and file servers.

 Clickers. Trojan Clickers are programmed to redirect the victim’s computer to

various, usually predefined, internet resources such as specific web pages. This

is usually done with the purpose of increasing a website’s traffic for promoting

on-line ad campaigns, to perform a Denial of Service (DoS) attacks against a

specific target or to lead the unaware users to an already compromised website

for further infection.

 DDoS Agents. These programs are installed on the targets to organize DoS at-

tacks against a specific victim machine. Usually the attackers infect multiple

computers concurrently which are then coordinated to massively attack another

machine.

Bots. The invention of the IRC
21

 technology in 1988 led to the development of the first

IRC bot in 1989 [61]. Bots (short for robots) were initially developed as virtual robot

users to perform several human related actions and to assist their owners with the man-

agement of their IRC connections. Bots were capable of acting on behalf of their own-

ers, while they were busy with other activities, and could occupy the IRC channel pre-

venting others from taking it over. Bots evolved into effective tools that helped users

manage IRC channels and provided various additional services such as enabling shell

user accounts on the IRC host allowing remote commands execution. Pretty soon cyber-

criminals started to utilize IRC bots and related technology to promote their malicious

activities and launch massive attacks [65].

21
 Internet Relay Chat (IRC)

 -45-

A botnet is a collection of computers (bot clients) whose actions are secretly controlled

and coordinated by a botherder with the purpose of achieving a common goal [61]. The

botherder directs the bot clients’ actions through remote IRC communication from a

command and control (C&C) server. The infected computers that are under the bot-

herder’s control are also known as zombies and allow the attacker to manipulate their

activities without even logging into their systems. Since the illegal actions are per-

formed by the infected bot clients, the attackers remain invisible and undetectable be-

hind the IRC channel and might further complicate investigators by using obfuscation

and multiple hop techniques to direct their commands. Modern botnets append an extra

layer of complexity as they usually comprise of a collection of bot servers, managed by

the botherder, that each controls a different group of zombie machines. If one commu-

nication path is destroyed the rest remain unaffected [61].

According to Schiller et al [61] a botclient’s lifecycle begins by its exploitation. This

can be achieved by various means such as deceiving the user into executing the infec-

tious code through phishing and spam mailing attacks, taking advantage of system vul-

nerabilities and backdoors opened by other malware invasions or brute force attacks on

user passwords. Upon infection the freshly recruited bot initiates communication with

its C&C server to notify the botherder and receive any possible updates necessary. It

then receives and executes appropriate software to disable any antivirus programs and

conceals its presence using rootkits and other tools. At this point the bot starts receiving

commands from its controller, downloads and executes various payloads and sends re-

ports back to the botherder, a process which is repeated until its final abandonment and

termination.

Bots can be utilized by the botherder to perform multiple actions [61, 64, 71] such as:

 Act as recruiting agents to enlist other botclients.

 Perform coordinated DDoS attacks.

 Collect any type of personal, financial, or system information including identi-

ties, credit card or social security numbers and banking credentials.

 Execute massive spamming or phishing attacks.

 Storing and distributing illegal digital material.

 Organize ransoming attacks like for example encrypting the victims data and

then extorting them in return for the decryption key or performing DoS attacks

and demand ransom to terminate them.

-46-

 Secretly install adware or deceive on-line advertising vendors and affiliate net-

works with iconic website visits and ad hits.

Botnets can be utilized to perform massive or more targeted attacks. The botherder has

the ability to customize the range of the targeted hosts through a desired predefined list

of IP addresses. More over botclients’ behavior can be adapted accordingly based on

each infected host’s system variables and installed applications. Modern botnets engage

new communications mechanisms such as peer to peer technologies or Fastflux and dy-

namic DNS services that further enhance their presence and hinder their detection.

Fastflux DNS technology for example, which was used by the recent Storm Worm, con-

stantly and repetitively changes the IP address of the C&C server while preserving the

same Domain name. The use of such technologies encumbers bot servers’ detection and

containment, if not making it impossible [61].

Botnet technology is widely used by cybercriminals, as a major profit making oppor-

tunity, forming new underground crimeware business models [64]. According to Schil-

ler et al [61] a spamming campaign alone can generate up to $750,000 profit per month.

With the global range and scale of attacks that botnets can accomplish, the underground

economic market is flourishing. According to a report by Kaspersky Labs related to the

economics of botnets [63], botnets are prevalent in the underground market due to their

low maintenance costs as well as the limited knowledge skills required for their man-

agement. Figure 2.3.3 is imprinted from Kaspersky’s report [63] and illustrates how

botnets can generate money for their creators.

 -47-

Figure 2.3.3: The money making business of Botnets

Latest research studies reveal that cybercriminals use botnets as their main platform for

organizing global cyber-attacks [69]. Schiller et al [61] denote that “Today’s bots are

easy to customize, modular, adaptive, targetable, and stealthy” and identify botnet

technology as one of the major driving forces behind organized cybercrime with global

impacts that can threaten not only large organizations but even entire nations.

Rootkits. Rootkits are programs specifically crafted to hide and conceal malicious activ-

ity by substituting running processes, network traffic or system and registry files [52].

They are used to avoid detection mechanisms and to prolong their presence on the in-

fected machine.

Spyware. Spyware is a general term used to describe any type of software that gathers

information from users’ machines without their knowledge or consent [65]. The infor-

mation collected might include personal or financial data, passwords, browsing habits

and history, banking and credit card credentials etc. Advanced spyware might also inter-

fere and modify system settings or consume various resources affecting the computer’s

performance.

Adware. Adware programs are secretly installed on the users’ machines with the pur-

pose of automatically downloading and launching various types of advertisements [65].

They most often create a web browsing profile of the victim which is then used to direct

targeted pop-up advertisements based on the user’s interests.

Key-loggers. Keystroke loggers are programs that monitor and record every typing ac-

tion on a user’s keyboard [65]. Keystrokes are logged and saved on the victim’s disk,

which are then later communicated to the attacker. Keyloggers are commonly used by

cybercriminals that want to retrieve confidential information to be used for illegal pur-

poses and financial gain.

Table 2.3 presents a generic taxonomy of the aforementioned malware types based on

their propagation mechanisms and host requirement.

-48-

Table 2.3: Malware taxonomy

 Host Requirement

Propagation method Host Required Independent

Self-Replicating Viruses Worms

Non-Replicating Trojan Horses, Rootkits Keyloggers, Spyware, Adware

2.6 Types of Attacks

Cybercriminals engage malware in order to serve their malevolent goals and have the

ability to manifest various types of massive or targeted cyber-attacks such as prohibiting

access to information systems and services, performing espionage, stealing confidential

or identity information, conducting on-line banking fraud and even extorting potential

victims for financial profit [71]. The following paragraphs provide a description of

some of the most common types of cyber-attacks.

DoS attacks. The main goal of a Denial of Service (DoS) attack is to make services and

applications inaccessible to end users [65]. DoS attacks do not involve bypassing securi-

ty mechanisms but rather focus on tying up network and system resources leading to

diminished network connectivity and unavailable services and applications [52]. This is

usually achieved either by consuming network bandwidth or by issuing an excessive

number of connection requests. Examples of DoS attacks include flooding the network

with large volumes of data or massively dispatching e-mails degrading network connec-

tivity and consuming the system’s disk space. Another form of DoS attack involves

clogging the system’s processing power for example by performing login attempts forc-

ing the computer to authenticate the requests. A variant type of attack could relate to

forbidding user access on a system by repetitively entering invalid passwords until the

user is locked out [65].

Two of the most common types of DoS employed technologies are TCP SYN Flood and

UDP Flood attacks [61]. TCP SYN flood attacks exploit the TCP handshake process

that most network applications rely on. The attacker sends a large number of SYN re-

quests to a server, without responding to the SYN-ACK acknowledgement messages of

the receiver. This is achieved either by simply not replying to the messages or by spoof-

ing (forging) the sender’s IP address. The server on the other hand binds resources and

 -49-

time while waiting for the response. A large amount of SYN messages could set the re-

ceiver unresponsive to other legitimate TCP requests. UDP flooding on the other hand,

entails directing a massive amount of trivial UDP packets to randomly selected ports,

blocking out regular network traffic by consuming the system’s processing power and

bandwidth.

To further enhance their attack power and destructive outcomes attackers employ bot

networks and launch Distributed Denial of Service (DDoS) attacks [52, 65]. Thousands

of infected zombie machines are controlled and coordinated by the botherder and

through various simple commands can be accordingly instructed so as to serve the at-

tacker’s goals. The bot master can direct multiple geographically scattered bots to con-

currently conduct DoS attacks against a specific target. Through such massively syn-

chronized DDoS attacks, cybercriminals are able to significantly affect and damage not

only powerful companies and organizations but also threaten entire countries and na-

tions [65].

Arbor Networks, a major DDoS research and response group, monitors global DDoS

attacks on a 24 hour basis and provides insights and intelligence analysis on worldwide

DDoS threats. Figure 2.3.4 presents the amount and type of global DDoS attacks as they

were recorded by Arbor's Threat Level Analysis System (ATLAS) during a very recent

and specific 24 hour period
22

, with TCP SYN and UDP flooding techniques counting to

more than 60% of the overall number of realized DDoS attacks.

22
 http://atlas.arbor.net/summary/dos, Accessed at 16-10-2012. DDoS summary refers to attacks realized

between 15-10-2012 and 16-10-2012.

-50-

Figure 2.3.4: Global Distributed Denial of Service (DDoS) attacks Summary.

The reasons behind a DoS attack vary and may involve extorting victims for profit,

overpowering and unlawfully gaining competitive advantage against rivals by disinte-

grating competitor services subsequently causing substantial financial losses or even

organizing daunting terrorizing cyber-attacks [63, 64, 65]. For example in early 2009 a

coordinated DDoS attack was realized against godaddy.com, a large ISP company, lead-

ing to thousands of disrupted hosted client websites that remained of-line for about 24

hours [63]. The motivations are yet to be clarified but speculations involve either a rival

company’s attack or a blackmailing attempt.

Cybercriminals go even further, indiscriminately advertising pay-per-hour or pay-per-

day DDOS services
23

. The ease, by which DDoS attacks can be realized, as well as the

massiveness of attack sources and the magnitude of the resulting outcomes, marks

DDoS as one of the most intimidating forms of cybercrime [65].

Information and Identity Theft. Identity (ID) theft relates to illegally acquiring, com-

municating or abusing personal information with the purpose of committing fraudulent

activities or other related crimes [71]. Attackers usually employ social engineering

23
 http://ddos.arbornetworks.com/2012/07/ddos-attacks-targeting-traditional-telecom-systems/

 -51-

techniques, such as distributing phishing e-mails, to deceptively persuade victims into

disclosing private information to a presumably reliable source. Cybercriminals engage

botnets to send out spam e-mails that might contain links to deceitful websites that ap-

pear as legitimate companies to deviously retrieve information. Other types of spam e-

mails may embed malicious code or lead to already compromised sites so that malware

will be automatically installed on the victims’ machines enabling the collection of con-

fidential and private information.

Figure 2.3.5 illustrates how an attacker can perform an on-line identity theft attack, uti-

lizing malware, botnets and social engineering techniques to eventually extract the de-

sired information from the victims and their systems [71].

Figure 2.3.5: Example of an organized Identity Theft attack using malware.

Espionage. Malware can also be engaged by criminals to illegally penetrate on various

systems and perform political, industrial or even nation-wide espionage attacks [71].

Malicious cyber-spies use malware to gather confidential data by breaching the private

or public sector’s security infrastructure. Espionage attempts are also often found

-52-

among rival organizations that seek to attain information regarding competitors’ opera-

tions.

On-line Banking Fraud. Information collected from unaware victims as well as specific

malware creations are most often related to illegal withdrawals or fraudulent convey-

ance of funds from bank accounts [71]. The very recent “High-Roller” attacks
24

 demon-

strated how malware can be utilized by on-line robbers to perform targeted, extremely

automated and sophisticated banking cyber-thefts. The attackers combined and specifi-

cally customized the SpyEye, Zeus and Ice 9 malware toolkits targeting only high bal-

ance bank accounts. They infected the bank clients’ computers and illegally transferred

the funds while the users were prompted with waiting messages during their on-line

transactions.

Targeted attacks. Targeted attacks involve specially crafted malware instances designed

to specifically target a particular organization or company [22]. Matrosov et al. [70] fur-

ther describe an additional class of targeted attacks that does not focus at a specific

company but target certain types of software and IT related infrastructure such as for

example a malware attacking banking software or SCADA systems like the recent

Stuxnet worm.

Targeted attacks are amongst the hardest to detect or analyze and pose a major security

threat for organizations and large corporations as such malware attacks are extremely

sophisticated and may go unnoticed for a large period of time magnifying the resulting

damaging effects [22, 23].

Infection Vectors.

A malware’s ability to penetrate and invade target systems is reinforced and facilitated

by various infection vectors that are exploited by malicious authors in order to augment

their chances of infiltrating and polluting unaware users’ machines. Some of the most

common propagation mechanisms, as they are discussed by Egele et al. [23], as well as

exploitation attempts on new IPv6-based networks [46] are described in the following

paragraphs.

Exploiting Network Services Vulnerabilities is a famous propagation method most often

used by worms. An employable pathway is often found in services that are provided

24
 http://www.enisa.europa.eu/media/press-releases/eu-cyber-security-agency-enisa-201chigh-roller201d-

online-bank-robberies-reveal-security-gaps

 -53-

over the network, running on a server, to a large number of clients sharing the same re-

sources. If a vulnerability of such a service is discovered then the malicious code could

be executed on the server, subsequently allowing the malware to automatically spread

over the connected systems.

Drive-by Downloads typically concern unintentionally downloading malicious software

from the internet. Malicious attackers search for Web browser and plug-ins vulnerabili-

ties with the intent of installing and executing the maleficent code on the victim’s ma-

chine. In order for such an attack to be realized, the user must first visit a malicious or

tampered web site. Assailants try to manipulate users by deploying spam emails enclos-

ing links to malicious sites, displaying misleading pop-up windows, tricking search en-

gines’ ranking mechanisms or tainting already existing vulnerable pages, not necessarily

part of popular or high traffic sites.

For example, a drive-by download attack, which exploited an ActiveX’s vulnerability

with the purpose of installing a Trojan on the users’ machines, took place recently at a

pizza online ordering website where the attackers used SQL injection as a method for

inserting an iFrame into the website’s code, referencing to a malicious site
25

. A variant,

yet similar drive-by cash attack, in which the malicious file is not downloaded and in-

stalled on the victim’s computer but executed through the browser’s cash, exploited a

security hole in Adobe’s Flash 0-day player and infected Amnesty’s International Hu-

man Rights web site by inserting spyware camouflaged as a javascript file
26

.

IFrames, a browser feature used to insert the content of a webpage inside a part of an-

other page, is one of the most popular methods for infecting legitimate websites
27

. Cy-

bercriminals exploit this vulnerability and inject invisible iFrames, usually containing

encrypted or packed executable code which is placed in a remote site, into existing

webpages. Typically the inserted code is a downloader that contains a simple redirect

command pointing to another IP address. When a user lands on an iFramed page the

downloader is executed and the browser is instructed to visit the malicious IP which in

turn, for obfuscation reasons, may contain another downloader referencing to another

25
 http://www.h-online.com/security/features/CSI-Internet-Alarm-at-the-pizza-service-1019940.html

26
 http://blog.armorize.com/2011/04/newest-adobe-flash-0-day-used-in-new.html

27
 http://www.cio.com/article/135452/Death_by_iFrame?page=1&taxonomyId=3089

-54-

address. This process is often repeated many times until the malware is finally dropped

into the user’s machine.

Another popular method of deceiving users into visiting malicious websites is by taking

advantage of high ranking search engine keywords most often involving famous celebri-

ties. Attackers monitor the latest trends and hide malicious software behind webpages

that pretend to display relevant information, pictures and videos regarding favorite su-

perstars. According to McAfee’s recent study, Emma Watson was declared as the most

dangerous cyber celebrity of 2012
28

. Their research reveals that there is a 12.6% possi-

bility of visiting a malware flooded website when searching for pictures and videos of

Emma Watson. Downloading any kind of material from such a site will also result into

receiving all sorts of spyware, viruses, adware etc. along with the desired content.

Social Engineering forms another major infection vector and refers to all possible tricks

and ingenious appealing means that attackers engage in order to trap and allure oblivi-

ous users into compromising their own machines. This could involve conducting

spamming and phishing campaigns or deceptively uploading malicious links on social

networking platforms, blogs and forums. According to Microsoft’s Intelligence Report

[31], which involves information collected in the first half of 2011, approximately 44.8

% of the noted propagation mechanisms required human interaction for the malware to

spread while only 6% of malware relied on exploiting software vulnerabilities.

IPv6 attacks. Recent studies have shown that the new internet protocol is also suscep-

tive to potential internet threats and faces some serious flaws and security concerns that

make IPv6 based networks vulnerable to cyber-attacks [45, 46, 47, 48]. Researchers

have demonstrated that IP fragmentation attacks are also possible in IPv6 networks and

may result to firewalls evasion, OS fingerprinting, Intrusion Detection Systems (IDS)

insertion/evasion as well as remote code execution [46]. Furthermore the absence of

sufficient malware defense mechanisms in mobile and networked devices, such as

iPhones, Android-based gadgets, iPads etc., enables the opportunity for such devices to

be recruited as active botnet members or to be utilized as an infection vector, facilitating

malware distribution and transcendent attacks on other interconnected networks [45].

Cybercriminals have become aware of these security weaknesses and have already

started to target the new communications protocol and exploit its vulnerabilities. In fact,

28
 http://www.mcafee.com/us/about/news/2012/q3/20120910-01.aspx?cid=110907

 -55-

according to Arbor Networks’ 7th annual Worldwide Infrastructure Security Report
29

which was published in February 2012, the first ever DDoS attacks against IPv6 net-

works have already been realized and recorded for the first time in 2011. An example of

such a DoS attack is the one performed by the IPv6f**k malware which uses TCP SYN

flooding as a resource depletion method in order to immobilize network services
30

. Oth-

er types of attacks can also be realized in IPv6 such as address spoofing and redirecting

network traffic through ICMPv6 redirects.

Even though the attacks on IPv6 based networks still remain rare, they are considered to

be an emerging threat as the traffic volume in such networks is growing rapidly and the

adoption of the new network layer protocol is being accelerated by the massive expan-

sion of the mobile and other networked electronic devices market.

Modern malware samples may exhibit multipartite behavior [52], meaning that they

might engage multiple infection strategies (for example a virus infecting both the boot

sector and executable files) in order to accomplish their malevolent purposes on variant

platforms. Blended threats additionally might use various infection vectors, exploiting

multiple vulnerabilities, to propagate and spread [37]. For example an attacker could

send a spam email luring the victim to visit a legitimate but iframed website. As soon as

the user lands on the tampered page the malware is installed on the target computer and

upon execution a specific file could be dropped which in turn will download additional

malicious software such as Trojans, Spyware, Key-loggers etc.

2.7 Malware Forensics

In-depth malware analysis techniques are increasingly being utilized within forensic in-

vestigative procedures [28, 42]. By uncovering malware functionality and examining

possible traces and patterns left behind on the infected host, digital investigators can re-

trieve substantial intrinsic information that enable the effectiveness of investigative pro-

cesses as well as the successful discovery of advanced malicious intrusions and cyber-

crimes. The significance of malware analysis within digital investigations combined

with the continuous evolvement, sophistication and complexity of malware code has led

to the development of more complete and formal malware forensics frameworks [21].

29
 http://www.arbornetworks.com/report

30
 http://zvelo.com/blog/ipv6-malware-virus-worm-dos-attacks-tunneling-examples-samples

-56-

Modern malware forensics methodologies incorporate both malware analysis techniques

and forensic analysis tools to produce comprehensive and reliable analysis results that

can substantiate investigative procedures and provide usable and valid prosecution evi-

dence.

Cyber criminals nowadays are constantly trying to engineer new anti-forensic mecha-

nisms thus hindering a forensics’ analyst job and thwarting the analysis process [23, 32,

39]. Anti-forensics is a generic term used to describe techniques employed to escape

both forensic detection and forensic analysis procedures and can be generally achieved

either by destroying residues of data or by hiding or not storing it at all on the disk [32].

The reason being that concealing network traffic and hiding file system traces left on

the compromised computer obstructs digital investigators from unveiling the malware’s

behavior and discovering malicious intrusions as well as eliminates possible evidence

that may lead to the intruder’s identity [21]. Moreover, the longer the malware remains

undetected or hides its malicious profile the greater the chances of succeeding and prof-

iting by achieving its goals, consequently causing the maximum possible damage.

Malware authors manifest sophisticated mechanisms to impede reverse engineering

processes as well as both static and dynamic analysis procedures. The following sec-

tions highlight and describe some of the most commonly employed anti analysis tech-

niques as they are presented and discussed in relevant research papers [20, 23, 73].

Obfuscation and Packing Mechanisms. Malware creators use obfuscation techniques in

an attempt to avoid detection and impede the static analysis of the program by modify-

ing the malicious code and hiding its actual intentions. This means that the code under

analysis is not the actual code being executed [23]. Obfuscation can be achieved

through various techniques such as for example dead code injection, code permutation

and instruction substitution [33, 66].

Dead code insertion injects trash code into the program leaving its semantics un-

changed. Code permutation or transposition changes the order of the instructions either

by swapping the independent ones or by arbitrarily rearranging them and adding uncon-

ditional branches to preserve the initial control-flow. The first method aims at creating a

binary representation with a different instruction stream than the one included in the

malware’s signature that Anti-Virus vendors use for detection, while the second one fo-

cuses on differentiating the binary’s instruction order from the execution order. Instruc-

 -57-

tion substitution involves replacing sequences of instructions with other semantically

equivalent order sets usually drawn from a predefined instruction dictionary.

Christodorescu et al. [33] present a clarifying example of how these techniques can be

applied in practice by modifying the detection signature of the Chernobyl (CIH) virus.

Figure 2.5.1 shows the original IA-32 code fragment, generated from the hexadecimal

sequence “E800 0000 005B 8D4B 4251 5050 0F01 4C24 FE5B 83C3 1CFA 8B2B”

which is used by Anti-virus software in order to detect the Chernobyl virus, as well as

the obfuscated code produced by the aforementioned techniques. The newly generated

code retains the same functionality but corresponds to a different signature pattern than

the original one.

Table 2.5.1: Example of Obfuscation Techniques

 Obfuscation Technique

Original Code
Dead Code

Insertion
Code Transposition

Instruction

Substitution

call 0h

pop ebx

lea ecx, [ebx+42h]

push ecx

push eax

push eax

sidt [esp - 02h]

pop ebx

add ebx, 1Ch

cli

mov ebp, [ebx]

call 0h

pop ebx

lea ecx, [ebx+42h]

nop

nop

push ecx

push eax

inc eax

push eax

dec [esp - 0h]

dec eax

sidt [esp - 02h]

pop ebx

add ebx, 1Ch

cli

mov ebp, [ebx]

S3:

S2:

S4:

S5:

call 0h

pop ebx

jmp S2

push eax

push eax

sidt [esp - 02h]

jmp S4

add ebx, 1Ch

jmp S6

lea ecx, [ebx+42h]

push ecx

jmp S3

pop ebx

cli

jmp S5

mov ebp, [ebx]

call 0h

pop ebx

lea ecx, [ebx+42h]

sub esp, 03h

sidt [esp - 02h]

add [esp], 1Ch

mov ebx, [esp]

inc esp

cli

mov ebp, [ebx]

Such obfuscation mechanisms can significantly obstruct manual static analysis ap-

proaches. Tools like “SAFE” [33], a static malware analyzer introduced by the afore-

-58-

mentioned authors, have the ability to detect some of the most common obfuscation

techniques. SAFE creates an abstract representation of the malware’s code and executa-

ble and detects malicious patterns, generated from the abstracted code, inside the gener-

alized version of the executable.

Other common obfuscation techniques, usually employed by self-modifying programs,

are polymorphism, used to avoid signature matching antivirus software, and metamor-

phism, employed to escape heuristic analysis techniques [33, 37]. A polymorphic mal-

ware has the ability to decrypt its contend during execution with randomly chosen keys

while a metamorphic one can automatically mutate and recode itself every time it is

proliferated and unpacked. Modern malware samples implicate more complex and ad-

vanced obfuscation mechanisms using emulation technologies that transform malicious

binaries into randomly generated instruction sets which are interpreted by an enclosed

binary emulator [72].

More recently Wenke Lee et al. [34] presented a malware obfuscation technique with

the ability to cover the malware’s trigger based behavior by automatically encrypting

the parts of the code that are activated by a specific input value, using that same value to

create the encryption key which is afterwards taken out of the program. This mechanism

was devised to specifically obstruct analysis procedures that use multiple path explora-

tion, symbolic or conditional execution processes for identifying trigger based malware

behavior [13, 28]. Several other obfuscation mechanisms can also be found in [35, 36,

74].

Packer programs are used in order to transform an executable into a different form

while preserving the same functionality [23]. The packer automatically obfuscates or

encrypts the original code, prepending also an unpacker responsible for reverting the

data to its initial form, resulting to a new executable. The entire unpacking procedure

takes place solely in memory and is activated during loading.

Dynamic analysis is generally not affected either by obfuscation or by packing tech-

niques [23]. The reason is that once the program is unpacked it will be executed and

perform its malicious actions. On the contrary, static analysis that depends on binary

examination may be significantly obstructed. To overcome this obstacle, the packed

program needs first to be unpacked either automatically by using unpacker programs,

such as for example Renovo [77], OmniUnpack [76] and PolyUnpack [75], or manually

with the help of a debugger and other related tools [20].

 -59-

Malware authors have also come up with procedures to obstruct dynamic analysis and

advanced reverse engineering techniques [22]. Modern malware instances can detect the

usage of analysis tools and either modify their performance or remain dormant during

analysis processes [23, 39]. Table 2.5.2 correlates and summarizes some of the most

commonly employed anti-forensic techniques that target dynamic and reverse engineer-

ing methodologies as they are presented and discussed by Brand et al. [20, 73], Egele et

al [23] and Sikorski et al. [22] in their related research work.

Table 2.5.2: Summary of Anti Forensic techniques employed by malware

Technique Description

Detection of Analysis

Environments

Malware has the ability to identify the use of an instrumented

virtualized or emulated analysis environment through:

 Hardware fingerprints in virtual machines.

 The existence of external monitoring applications like

debuggers or registry tools.

 Behavioral differences between emulated and real

hardware systems such as CPU bugs or timing vari-

ances.

 Artifacts that exist in a monitored execution environ-

ment like status flags of a debugger etc.

Detection of On-line

Analysis

Various techniques allow malware to identify whether it is exe-

cuted in an on-line analysis tool like Anubis.

Anti Tools Modifies its behavior upon the detection of certain analysis

tools.

Anti Debuggers If a debugger is detected malware can manipulate the execution

flow to deceive analysis results.

Anti Disassembly Utilizes the disassemblers’ functionality to generate incorrect

disassembly results.

Logic Bombs Instead of attempting to detect the analysis environment mal-

ware can devise logic bombs to conceal malicious activities. A

-60-

logic bomb unveils its behavior only under certain conditions

such as on a specific date or user input.

Analysis performance To enhance an automated analysis system’s throughput

(amount of analyzed malware instances per time unit) and to

allocate time accordingly so as to manage all necessary analy-

sis tasks, a usual approach is to terminate the execution after a

predefined timeout period. The behavior of malware samples

that deliberately delay the generation of relevant processes

might not be captured.

Rootkits Malware uses rootkits to deceptively conceal malicious pro-

cesses.

To countermeasure and mitigate anti forensic mechanisms, several methodologies and

frameworks have been proposed [25, 40, 81, 82]. Aquilina et al. in 2008 recommended

a malware forensics methodology, in order to address the problems of forensic analysis

in a more holistic manner, which integrates the forensic analysis procedure into a wider

investigative and forensic framework [21]. The proposed forensic methodology is di-

vided into five subsequent investigative phases:

 Conservation and inspection of volatile data using forensic tools.

 Memory analysis.

 Investigation of hard drives using forensic analysis.

 Static analysis.

 Dynamic analysis.

2.8 Malware Analysis

Malware analysis, in a broadest sense, refers to all the necessary techniques and proce-

dures that analysts employ in order to dissect, to examine and to completely unfold a

malware’s inner structure in an effort to unveil all possible aspects of its malicious be-

havior and functionality. Kris Kendal in 2007 defined malware analysis as “The action

of taking malware apart to study it” [43], while Moser et al. refer to malware analysis as

“the process of determining the behavior and purpose of a given malware sample” [13].

 -61-

Before digging further into specific analysis techniques and methodologies it is im-

portant to understand the significance of malware analysis and what it tries accomplish.

Security analysts constantly have to face and protect their organization from new

emerging cyber threats involving the loss of private and confidential corporate infor-

mation, industrial espionage, financial theft or any other possible attacks related to cy-

bercrime. One of the most recent examples of cyber espionage broke out in Peru and

some surrounding countries in 2012
31

. A worm called ACAD/Medre.A injected an in-

fected AutoCAD template to a number of companies that used the respective software.

Every time a user opened a drawing, a copy was dispatched to more the 40 mail boxes

hosted at two different Chinese ISPs. According to ESET, who first detected the threat,

approximately 100,000 drawings were stolen before it was finally contained.

 A security analyst, facing such an attack, must take some immediate actions in order to

minimize the company’s loses and exposure, and answer some significant questions for

preventing a similar intrusion in the future. By conducting malware analysis, the analyst

will be able to understand the purpose of the malware, what it does exactly, how long it

remained in the system, what exactly was stolen, how it was stolen, who attempted to

steal it, how to contain it, and how to defend against future similar attacks. Consequent-

ly, by realizing how a specific malware operates, the analyst has the ability to assess the

damages that were caused, to identify the exploited vulnerability and enhance the organ-

ization’s defenses [43].

As Distler outlines “The goal of malware analysis is to gain an understanding of how a

specific piece of malware functions so that defenses can be built to protect an organiza-

tion’s network” [14]. Sikorski and Honig [22] further denote that the goal of malware

analysis is to deliver significant information so as to properly address a malicious intru-

sion. This involves identifying all possible compromised systems and files inside the

company’s network, precisely determining the malware’s functionality and understand-

ing how to estimate and confine the consequent damages.

Anti-virus vendors utilize malware analysis techniques in order to identify weather a

suspicious sample is malicious. Malware analysis provides insights on the exact behav-

ior of a sample and the intentions of malware creators. Thus appropriate detection and

mitigation mechanisms can be developed to address new emerging threats [23].

31
 http://www.pcworld.com/article/258245/malware_gets_snoopy.html

-62-

Two essential techniques of malware analysis are available, namely static and dynamic

analysis. Static analysis focuses on examining the malicious code without executing it,

while dynamic analysis monitors the malware’s actions during execution [22].

Static analysis is often hindered by malicious authors who apply obfuscation and pack-

ing mechanisms to prevent the inspection of the original code. This means that the code

under investigation might not be the code that is actually executed [13]. On the other

hand dynamic analysis might not provide inclusive results as malevolent performance

might be stalled or hidden upon the detection of a simulated execution environment

[23].

2.8.1 Static Analysis

Static analysis refers to the process of analyzing programs without having to execute

them [22]. Static analysis enables the extraction of important information on the code’s

functionality and structure from an executable using a variety of available tools. The

malicious code is analyzed through call graphs, strings identification, corresponding as-

sembly instructions, control or data flow graphs, function and library calls and various

other code artifacts that can be possibly rebuilt [19]. Such techniques are applicable on

various code representations such as for example the binary equivalent of the program

[23]. Various static analysis approaches have been demonstrated [33, 78], that enable

and utilize static analysis methodologies.

The main advantage of static analysis is that it is relatively faster than dynamic analysis

methodologies and it provides the ability of examining all possible aspects of the mali-

cious code thus possibly uncovering the complete malware’s behavior [13]. On the oth-

er hand a basic consideration concerning static analysis is that the inquiries involving

the properties and functionalities of a given malware are often undefined which forces

analysts to work with approximations regarding the solution of a specific problem [12].

This approach however, can be proven ineffective when examining malware, as it can

be directly constructed by the attacker to deliberately thwart analysis procedures.

The static analysis process might be significantly obstructed through various obfusca-

tion and packing mechanisms that are widely employed by self-modifying malware in-

stances [23]. Such manifestations might hinder static code analysis approaches as well

as lead tools like disassemblers to generate ambiguous assembly instructions that do not

correspond to the actual executed ones. Moser et al. [74] introduced an obfuscation

 -63-

technique that uses opaque constants to overcast the control flow of the program and

demonstrated that even modern semantics-based detection mechanisms can be eluded.

Moreover, since the malware’s source code is not available beforehand, the range of

static techniques is limited to those the extract information from the malware’s binary

representation [23]. Malicious code that relies on dynamically defined variables and

values (such as the system’s time or date) can further intensify and hinder static analysis

processes.

Recent efforts, like the development of the Eureka framework [78], try to improve the

efficiency of static analysis techniques and to mitigate relevant limitations. However,

the increasing complexity, structure plurality and sophistication of malware code, en-

hances the necessity for the development of more resilient and reliable static analysis

procedures [23].

2.8.2 Dynamic Analysis

Dynamic analysis refers to the process of executing the malware in order to monitor,

examine and analyze the performed actions [23]. Different types of dynamic analysis

approaches are available and can be utilized to gain insights and retrieve essential in-

formation on the malware’s behavior and functionality [38].

Behavior-based malware analysis monitors the actions of a given malware sample dur-

ing run time. The malicious code is executed in an instrumented and controlled analysis

environment, and its behavior and interactions with the host system are observed and

recorded. Appropriate tools provide the opportunity to examine registry and file modifi-

cations, network traffic and packets, created or deleted files, generated processes, load-

ed DLLs, API calls, memory and disk usage as well as multiple other related infor-

mation. Various frameworks have been introduced that implement behavior-based mal-

ware analysis [26, 79, 80]. This “black box” type of approach reveals significant infor-

mation on the malware’s exhibited behavior but fails to expose the program’s inner

structure and logic.

Comparing system’s snapshots involves executing the malware in a simulated environ-

ment and identifying differences between snapshots that capture the system’s state be-

fore and after execution. Implementing and applying such a technique as a stand-alone

process can be done with relative ease however the obtained analysis results are quite

coarse-grained in nature as any intermediate actions, such as for example the creation

-64-

and deletion of files during execution, will be missed. Distler [14] incorporates this

technique in a combined malware analysis approach as a supplementary process to en-

hance the resulting analysis outcomes.

Dynamic code analysis observes the program’s activities while it is executed, usually

with the use of specialized tools like debuggers. Debuggers provide control over the

program’s execution which can be intercepted, restricted and modified. Analysts have

the ability to monitor memory and registry values, function calls and passing arguments

as the code runs. In contrast to disassemblers that generate a static assembly representa-

tion of the code exactly before its execution, debuggers provide a dynamic insight on

the malware’s behavior. Modern dynamic analysis approaches [22] employ debuggers

as the means to better understanding the internal structure of malware and enrich the

attained analysis information.

As opposed to static analysis techniques, dynamic analysis has the advantage of analyz-

ing the actual executed instructions [12]. To this end, dynamic analysis is basically un-

affected by anti-forensic techniques such as obfuscation or packing mechanisms, as the

code’s functionality will eventually be demonstrated during execution. However, the

main drawback of dynamic analysis is its inherently non-exhaustive nature in the sense

that only a single execution path is monitored per analysis attempt. This means that the

analysis results may not be inclusive regarding the malware’s complete behavioral char-

acteristics. Towards this end, researchers have developed new approaches that seek to

expose possible trigger-based malware behavior [13, 28]. Nonetheless analyzing and

extracting all possible behavioral characteristics is still a matter of ongoing research.

Moreover malware authors have developed various anti-forensic mechanisms that allow

the detection of an instrumented analysis environment such as an emulator or a virtual

machine as well as the use of automated on-line or locally installed analysis sandboxes

[23]. If such a tool is identified, malware might hide its true payload to deceive the

analysis results, terminate its execution or remain completely dormant and even destroy

any possible execution evidence [32]. Researchers have approached this issue with an

effort and emphasis on developing more complete and comprehensive dynamic tech-

niques with the ability to uncover and mitigate anti-forensic mechanisms [19, 21], creat-

ing stealth platforms and transparent analysis frameworks [81, 82] or detecting evasive

malware behaviors and split personalities [25, 39].

 -65-

Efforts have also been made towards improving the efficiency of dynamic analysis pro-

cedures [83]. However, as analysis techniques and tools evolve and become more ad-

vanced and effective, attackers also manifest new mechanisms to avoid detection and

impede modern analyzers, leading to a continuous “arms race” between analysts and

malware creators [23].

2.8.3 Reverse Engineering

Reverse engineering refers to the process of generating and analyzing the corresponding

assembly instructions of a given malware [22]. This is achieved by importing the exe-

cutable file into a disassembler, to produce the assembly code, and examining its in-

structions to discover the code’s functionality.

However, the compilation of a program’s source code results into a machine optimized

code which is typically stored in a binary form so that it can be efficiently executed by

the computer [15]. Disassembling the complied code could provide complicated and

confusing assembly instructions accompanied by machine produced variable names.

Moreover, as assembly instructions provide a low level representation of the original

code and they are inherently dependent on the microprocessor’s family, the reverse en-

gineering process requires high expertise, advanced programing skills and extensive

knowledge of system’s architecture [22].

Regardless of the aforementioned difficulties, reverse engineering can provide im-

portant information about the malware’s inner programming structure and logic that

simple static analysis techniques fail to reveal. Figure 2.6.1 illustrates a typical reverse

engineering technique that uses static extraction to produce a resulting Control Flow

Graph (CFG) representation of the binary, which assists the discovery of different exe-

cution paths inside the code [84].

-66-

Figure 2.6.1: Static extraction reverse engineering methodology.

To hinder reverse engineering methodologies, malware authors have also developed

various anti-disassembly techniques to produce false assembly listings and to frustrate

any reverse engineering efforts [15, 32]. Modern analysis methodologies and tools are

commonly oriented towards extenuating and overcoming such mechanisms. Recently

researchers have attempted to reverse engineer the Zeus toolkit [62] using the “PaiMei”

reverse engineering framework [85]. However, reverse engineering software phases

some legal considerations and restrictions [15]. Before attempting to reverse engineer a

program, one should be aware of the respective laws and regularities, applicable in each

distinct analysis case.

2.9 Malware Analysis Tools

A variety of analysis tools exists to facilitate the entire process of malware investiga-

tion. Such tools include disassemblers, debuggers, memory managers, unpackers, net-

work, registry and process monitors, strings searchers, text extractors and numerous

others valuable in common malware analysis practices. These tools can be incorporated

in various combinations to assist both static as well as dynamic analysis procedures.

 -67-

However, prior to employing and engaging any type of analysis tool, important consid-

erations should be taken into account regarding their validity and forensic acceptability

[19]. The pool of existing tools includes various commercial, open source or freeware

packages in addition to multiple others that can be retrieved from numerous on-line

sites. The forensic soundness and legality of these tools should be thoroughly examined

so as to legitimately support all stages of forensic investigations and prosecutions.

A plethora of available analysis tools as well as an extensive description and demonstra-

tion of their usage and functionalities can be found in [21, 22]. Table 2.7.1 presents an

explicit example of a distinct set of tools that were combined to assist the process of a

detailed analysis approach towards dissecting and examining a specific malware sample

[18].

Table 2.7.1: Example of a combination of analysis tools to dissect a specific malware.

Technique Functionality Tool

Static

Analysis

Automatically packs and unpacks mal-

ware.

UPX (upx.sourceforge.net, 2008)

Searches for ASCII and Unicode strings

in binary files.

Strings (sysinternals.com, 2008)

Reads files and displays documents in

textual or hexadecimal format.

FileInsight (McAfee, 2009)

Identifies packers, cryptors and compil-

ers in PE files.

PEiD (peid.info, 2008)

Allows viewing and editing of PE files. Stud PE (cgsoftlabs.ro, 2008)

Disassembler with graphing abilities. IDA Pro, (hex-rays.com, 2008)

Dynamic

Analysis

Debugger with GUI. OllyDBG (ollydbg.de, 2004)

Lists auto-starting locations AutoRuns (sysinternals.com,

2011)

Displays running processes, threads,

DLLs, handles etc.

Process Explorer

(sysinternals.com, 2011)

Monitors and logs filesystem, registry,

process and network activity.

Process Monitor (sysinter-

nals.com, 2011)

CaptureBAT (honeynet.org, 2007)

-68-

Lists loaded DLLs. ListDLLs (sysinternals.com, 2011)

Lists all TCP and UDP endpoints. TCPView (sysinternals.com, 2011)

Displays the physical and virtual

memory usage of a process.

VMmap (sysinternals.com, 2011)

Displays the namespace of Windows’

Object Manager.

Winobj (sysinternals.com, 2011)

Extracts text. BinText (McAfee, 2000)

Displays registry and file changes by

comparing two snapshots.

Regshot
(sourceforge.net/projects/regshot,

2007)

Identifies variations in the process’

handle tables.

HandleDiff (malwarecook-

book.com, 2011)

Captures network traffic and analyzes

packets and protocols.

Wireshark (wireshark.org, 2010)

Contains utilities useful in malware

analysis such as an MD5 hash calcula-

tor, FakeDNS etc.

Malcode Analysis Pack

(http://www.woodmann.com/collabor

ative/tools/index.php/ , 2001)

Static and

Dynamic

Analysis

A lightweight Linux distribution that

incorporates various tools and utilities

for analyzing and reverse-engineering

malware.

REMnux

(http://zeltser.com/remnux, 2011)

To facilitate the analysis process as well as to reduce analysis time and manual effort,

recent research efforts and advancements have introduced various automated malware

analysis tools and platforms. These tools have the ability to perform malware analysis in

an automatic manner, resulting to a set of generated reports that help analysts to identify

and understand a malware’s behavior. By utilizing automated tools, security experts can

promptly respond to a potential threat and quickly built appropriate defenses. The fol-

lowing paragraphs provide a brief description of some of the most common automated

dynamic analysis tools as they are presented and discussed by Egele et al. [23] as well

as a brief overview of the Cuckoo Sandbox analyzer [54].

http://www.woodmann.com/collaborative/tools/index.php/
http://www.woodmann.com/collaborative/tools/index.php/
http://zeltser.com/remnux

 -69-

Anubis [86], which was based on TTAnalyse [12], analyzes suspicious binaries by exe-

cuting the samples in a Windows XP guest OS that runs inside Qemu emulator [87]. To

perform the analysis Anubis monitors and records all Windows API calls as well as the

corresponding passing parameters and arguments relevant to the processes that were

generated by the sample under investigation. The analysis results are stored in reports

containing all recorded activities. Since the analysis was able to capture only one execu-

tion path, Moser et al. [13] extended Anubis so as to enable the exploration of multiple

execution traces.

CWSandbox [88] can perform malware analysis in either a native dedicated physical

machine or in a virtualized Windows environment. It implements API hooking to hook

functions responsible for monitoring API calls. CWSandbox additionally applies rootkit

technology to conceal the presence of the analysis tools from the investigated sample.

The analysis outcome is a report that includes all the performed actions of the analyzed

sample. Recently security experts developed the GFI Sandbox
32

 automated malware

analysis tool which was built based on CWSandbox. It is designed to analyze Windows

executable files preferably on a native machine. GFI Sandbox can be used either as an

online service
33

 by submitting a sample for analysis or purchased as a commercial mal-

ware analysis package. One of its included features provides multiple malware analysis

comparison between the same or different malware samples which is much similar to

the current proposed approach of this dissertation. However, in contrast to our method-

ology, the analysis offered by GFI Sandbox is restricted into Windows files only. More-

over a single product license starts at $15.000 making it a luxurious choice as opposed

to the recommended open source solution.

Cuckoo Sandbox [54] is an open source malware analysis tool which implements auto-

mated malware analysis in an isolated and controlled virtualized environment. The exe-

cution of the malware samples can be applied in various guest operating systems includ-

ing multiple versions of Windows and linux distributions. Its features, among others,

include monitoring and recording native functions and Windows API calls, network

traffic, memory dumps, generated processes and dropped files. The functionality and

behavior of each given malware sample is processed and documented in both human

32
 http://www.gfi.com/malware-analysis-tool#overview

33
 http://www.threattrack.com/

-70-

and machine readable reports to allow additional processing and investigation. It can be

installed locally and further customized or used as an online analysis engine
34

.

It is important to mention that utilizing automated and on-line analysis tools also comes

with legal considerations regarding any confidential information that might be disclosed

to an external party [19].

2.10 Overview of Malware Analysis Techniques and
Methodologies

The selection of the appropriate techniques, implementation methodologies and analysis

process solely resides in the analysts hands who needs to leverage between the available

choices and either follow a predefined and already demonstrated procedure or deploy a

custom made and tailored methodology, which would better assist accomplishing the

desired goals and achieving the necessary results.

Static Analysis Techniques

Static analysis entails inspecting the malware code without executing it. To this end

static analysis is safer as the malware will not be allowed to deliver its payload and real-

ize any destructive actions. To avoid any accidental activation of the sample under in-

vestigation, using an analysis environment other than the one intended for the malware

to run is usually a safe choice [43].

Different techniques and approaches are utilized to make the static analysis process fea-

sible [22, 43], some of which are described below:

Virus Scanning. Before initiating the analysis process it would be a good practice to first

check if the malware sample has already been identified and examined. Various online

platforms like VirusTotal
35

 allow the submission of suspicious files which are then

scanned among multiple antivirus scan engines. The results can provide an important

initial insight on the malware’s behavior.

File Fingerprinting. Obtaining a cryptographic hash of the suspicious specimen is im-

perative before proceeding further into the analysis process. By computing the hash

value of the investigative file (e.g. MD5, SHA256, SHA1) the analyst can identify other

34
 http://malwr.com/

35
 http://www.virustotal.com/

 -71-

instances of the same malware, possibly using a different name, as well as to occasion-

ally authenticate the sample in order to identify any file alternations and modifications

that may have caused changes to the original malware sample.

Strings Search. Most programs contain strings (character sequences) embedded inside

the executable which are usually symbolized in either ASCII or Unicode format. These

strings may involve status, error or other messages that are usually outputted on the

screen, URL connections or even the locations of created files. Tools like Strings
36

 can

be used to identify and extract strings from executables. By examining such strings,

many features and functionalities of the sample can be revealed.

Packer Detection. Malware authors are widely employing obfuscation and packing

mechanisms to confuse analysts and obstruct the static analysis process. Since legiti-

mate software usually contains multiple strings, the absence or limited number of

strings within an executable might indicate malicious intent. Various tools can identify

whether a program has been packed. In such cases the sample needs to be unpacked be-

fore performing the analysis.

PE files Examination. The Portable Executable (PE) format is basically a data structure

used in Windows operating systems for executable files. A variety of information such

the compilation date, imported and exported functions, linked libraries, code and ver-

sion details and many more, can be retrieved by analyzing the metadata that are stored

inside the PE file’s header. Tools like the Depends
37

 and PEview
38

 examine PE files and

retrieve valuable information.

Disassembly. Advanced static analysis involves examining the code’s inner logic (se-

mantics) and requires extensive reverse engineering knowledge. This is accomplished

with the use of a disassembler and by analysing the assembly instructions of the mal-

ware’s code. A detailed description and instructions on how to disassemble a malware

and interpret the assembly code, as well as insights on systems’ architecture and design

can be found in [22].

Dynamic Analysis Techniques

36
 http://bit.ly/ic4plL

37
 http://www.dependencywalker.com/

38
 http://www.magma.ca/~wjr/

-72-

Dynamic analysis deals with analyzing the malware’s activities during execution. Vari-

ous techniques are available and can be found in related literature [21, 22, 23, 38]. Some

of the most important techniques related to automated dynamic analysis as well as dy-

namic code analysis are described in the following paragraphs.

Function Hooking. One of the most important aspects of malware analysis is the ability

to monitor and record the functions that are invoked by the malicious code. This can be

realized by intercepting the corresponding function calls [23], a process known as hook-

ing. For each different function call, a hook function is also evoked alongside. The hook

function is able to examine and record the function’s execution and passing parameters.

This process can be applied to monitor API
39

 calls, responsible for managing files or

network connections, System calls as well as Windows Native API calls. Function

hooking can be implemented in different ways:

 If the source code is available, calls to the hook functions can be attached di-

rectly inside the program.

 If the sample is in binary form the one approach would be to rewrite the inves-

tigated function so as to call the hook before its execution.

 Replacing the binary’s invocation instructions so as to call the hook function

instead of the intended one.

 Insert breakpoints, either inside the monitored function or at each invocation

command to that function so that on each breakpoint’s activation, a debugger

will be executed to control the entire process.

Function Parameter Analysis is used in order to examine the values of the invoked

function’s passing parameters. Tracing input and return values allows clustering func-

tion calls into groups of similar functionality.

Information Flow Tracking. The purpose of this technique is to provide an understand-

ing on how the corresponding data of a program are circulated inside the infected sys-

tem throughout its execution. Following the traces of the data can provide significant

information on the processing behavior of the sample. To achieve this, the monitored

data are tainted with a distinct label. This label is propagated whenever the data are pro-

cessed by the program and the information flow is monitored and recorded.

39
 Application Programming Interface

 -73-

Instruction Tracing is applied in order to better realize how the analyzed sample be-

haved during execution. Instruction trace refers to monitoring and analyzing the order of

the sample’s executed instructions during the analysis.

Autostart extensibility points (ASEPs) are techniques used to automatically execute a

program upon the system’s reboot process or upon the execution of an application.

Malware samples most often attach themselves to existing ASEPs so as to be executed

automatically. Monitoring and analyzing such mechanisms is imperative in order to un-

derstand inherent malware behavior and infection strategies.

Implementation methodologies.

Designing an appropriate system in which to execute the malware sample and to per-

form the analysis techniques is a complicated and difficult task that can significantly

affect the resulting outcomes. Important consideration should be given to the defined

privilege levels in the execution environment. There are mainly three available ap-

proaches [23] to implementing a dynamic analysis system:

Kernel or User Level implementation entails using a native dedicated system to perform

the analysis. Executing the malware in user-space allows capturing a wide range of in-

formation, such as for example all types of invoked calls and executed processes, as the

same operating system’s recourses are available to all implicated applications. The main

limitation of this type of implementation is that the analysis modules can be easily de-

tected by the malware. Executing the analysis modules with kernel level privileges pro-

vides additional information, like on specific system calls, and can conceal the usage of

the analysis tools. However, malware that can elevate privilege levels will still be able

to detect the analysis mechanisms.

Implementation in an Emulator allows the execution of the malware sample inside a

controlled simulated environment. Specialized software, like for example Qemu [87],

can emulate parts or the entire structure of a personal computer including the operating

system and applications as well as the system’s hardware recourses such as the proces-

sor, storage disks, peripherals and more [12]. The operating system inside the emulator

is referred to as the guest OS. Additionally, the host and the guest architectures could be

different. This type of implementation, depending on the level of emulation, can provide

full control over the test environment and prevent malware from detecting it. However,

advanced malware instances have the ability to identify specific emulation characteris-

-74-

tics and terminate its activity. Moreover, significant high level information such as sys-

tem or function calls need to be deduced from raw system data.

Implementation in a Virtual Machine. With this approach the malware is executed in-

side an isolated virtualized environment. Virtualization software, like VirtualBox [89],

can simulate various operating systems and assign subsets of the host system’s hard-

ware recourses to the running guests [12]. The management and control of the virtual

machines is performed through a Virtual Machine Monitor (VMM) which is responsible

for allocating system resources to the guests [23]. After each malware execution, the

related VM can be reinstated to an uninfected status using clean VM snapshots. In gen-

eral, virtualization enables fast malware analysis mechanisms and provides full control

over the analysis environment. As opposed to emulation, it uses the host’s physical

hardware resources to execute the malware’s instructions. However, the resources are

strongly isolated, thus concealing the analysis tools from the malware. Nevertheless,

malicious authors have also manifested techniques to detect virtualized analysis envi-

ronments [32, 39].

Analysis Methodologies

Early manual analysis methodologies like the one proposed by Skoudis and Zeltser [15]

were quite straightforward and solid, involving a successive number of steps while

combining both static and dynamic analysis techniques. The authors illustrate a detailed

analysis concept, were the malicious sample can be examined either in a physical dedi-

cated test laboratory or in a virtualized environment, and additionally provide a malware

analysis template, which can be used for the purpose of recording observed results dur-

ing the analysis process. The respective template including all necessary activities that

need to take place has been revived in the following table:

Table 2.1: Malware Analysis Template provided by Skoudis and Zeltser.

Activity Observed Results

Load specimen onto victim machine

Run Antivirus program

Research antivirus results and file names

Conduct Strings analysis

Look for scripts

Conduct binary analysis

Disassemble code

Reverse-compile code

Monitor file changes

 -75-

Monitor file integrity

Monitor process activity

Monitor local network activity

Scan for open ports remotely

Scan for vulnerabilities remotely

Sniff network activity

Check promiscuous mode locally

Check promiscuous mode remotely

Monitor registry activity

Run code with debugger

The above methodology presents a rather linear attitude and does not focus on providing

the means towards overcoming possible anti analysis techniques that the malware might

engage.

In 2007 Zeltser introduces a new methodology [17] which enhances the possibility of

revealing and overcoming modern anti forensic techniques. Zeltser proposes a series of

repetitive steps, with the purpose of extracting the complete functionality of the under-

lying code, which are summarized and respectively reproduced as follows
40

:

 Step 1. Set up a controlled, isolated environment to perform the analysis.

 Step 2. Examine the malware’s behavior through behavioral analysis.

 Step 3. Conduct static code analysis to understand the code’s inner-structure.

 Step 4. Perform dynamic code analysis to get additional information on the code.

 Step 5. If packed, unpack the sample

 Step 6. Execute steps 2, 3, and 4 repetitively until the analysis goals are met.

 Step 7. Record results and clean the test environment for future analysis.

The proposed methodology blends together static and dynamic analysis techniques and,

as opposed to the linear nature of Skoudis’ approach, through an iterative and recursive

procedure dives deeper into the analysis process from a higher and abstracted level view

to a more detailed and refined view. After each analysis cycle the test platform is mold-

ed and tailored based upon specific findings and behavioral observations, in order to

promote interactions with the specimen, stimulate additional malware activity and un-

fold possible hidden aspects of its malicious intentions. Moreover, through the dissemi-

nation of behavioral and code analysis techniques that interchange and intertwine

40
 http://zeltser.com/reverse-malware/reverse-malware-cheat-sheet.html

-76-

throughout the analysis process, Zeltser’s method also facilitates the opportunity to dis-

cover and mitigate anti forensic techniques as the analysis process proceeds [19].

Distler in “Malware Analysis: An Introduction” [14], building on Zeltser’s technique,

presents an analysis methodology were both static and dynamic techniques are incorpo-

rated. The author implements a malware lab for the analysis which consists of four icon-

ic systems created with VMware virtualization software and exhibits a step by step ex-

amination procedure by employing several manual analysis tools in order to assist every

stage of the analysis process. Distler thoroughly and practically demonstrates how one

can create a sandbox environment, execute the malicious code, monitor malware’s ac-

tivity, collect the appropriate data and analyze it accordingly.

The proposed method comprises of a series of actions that can be broken down and dis-

tinguished depending on their involvement in the preparation, static or dynamic analysis

phases. The preparation phase consists of malware acquisition, virtual lab preparation,

copying, extracting and installing, when required, the appropriate tools into the virtual

machines, taking MD5 hashes of the tools, base lining the system and taking a snapshot

of the VM. It is suggested that upon proper preparation, multiple AV software should be

executed to determine whether the suspicious file can be detected as malicious. During

static analysis the malware should be first examined in a hex editor to define its type

and determine the possible usage of a packer utility (like UPX). If a compression mech-

anism is identified, a copy of the original file must be kept before decompressing or un-

packing the program. For the remaining code analysis process, following steps involve

performing a strings search, disassembling and reverse engineering the malware. For the

dynamic part of the analysis the suggested steps involve:

 Update and install all necessary applications, service packs, patches and hot fix-

es.

 Set VM networking to “Host-Only” networking.

 Perform one more Baseline, upon finishing the code analysis.

 Run Process Explorer, TCPview, Windump and explorer

 Execute the malware

 Monitor and record system status changes

 Take another snapshot using WinAnalysis

 Compare Snapshots

 -77-

 Run PE and TCPview one more time and identify changes from the previous

baseline

 Examine Network Trafic

 Identify and observe new processes installed by the malware

 Search for listeners

 Adjust Environment

 Inspect network traffic again

 Distler’s approach sketches, in a clear and solid manner, a complete analysis methodol-

ogy which includes all the necessary courses of action from the preparation of the sand-

box environment to the analysis of the acquired results. The proposed methodology is

much similar to the one discussed also by Hutcheson in “Malware Analysis the Basics”

[16]. Hutcheson additionally implements an initial visual analysis, prior to conducting

static and dynamic analysis, aiming to gather some primary data involving the malicious

file. In both techniques, analogous to Zeltser’s method, in order to trigger additional ac-

tivity and unveil as much of the malwares’ personality as possible, through the process

of multiple executions, the test environment is adapted and system parameters are fur-

thermore customized depending on behavioral findings after each code run. The differ-

ence can be found in the process where part of the functionality of the investigated

malware is revealed by comparing snapshots of the system before and after execution, a

function which is not implemented by Hutcheson.

The aforementioned analysis approaches [14, 16, 17] provide an initial attempt towards

alleviating some of the anti-detection mechanisms employed by malicious authors, such

as code obfuscation and encryption.

Aquilina et al. in 2008 recommend file profiling, as an essential preliminary phase dur-

ing the initial analysis procedure [21], in which static analysis constitutes a basic pro-

cess module, and entails the inspection of the suspicious file in an effort to acquire sig-

nificant information surrounding the malware thus leading to more accurate and target-

ed decisions on selecting the most suitable analysis approach. In general the profiling

stages include:

 Detail. Detect and record the system details from which the suspect file was ob-

tained.

 Hash. Acquire the cryptographic hash of the suspicious file.

 Compare. Perform a similarity assessment against known samples.

-78-

 Classify. Identify the target architecture, format of the file, authoring language

and the compiler used.

 Scan. Use anti-virus and anti-spyware tools to determine the existence of a pre-

identified malicious signature.

 Examine. Determine whether the sample has malicious intentions through ap-

propriate analysis tools.

 Extract and Analyze. Mine strings, and discover file metadata and symbolic in-

formation.

 Reveal. Reveal armoring and code obfuscation techniques.

 Correlate. Define the existence of static or dynamic linkage of the file.

 Research. Perform online research to find out if the file has already been ana-

lyzed.

For the subsequent dynamic analysis phase, the authors propose the execution of the

following successive actions:

 Establishing the Environment Baseline

 Pre-execution Preparation

 Executing the Malicious Code Specimen

 System and Network Monitoring

 Environment Emulation and Adjustment

 Process Spying

 Defeating Obfuscation

 Decompiling

 Advanced PE Analysis

 Interacting with and Manipulating the Malware Specimen

 Exploring and Verifying Specimen Functionality and Purpose

 Event Reconstruction and Artifact Review

Through a number of case scenarios, the proposed methodology is practically applied in

both Windows and Linux based environments and depending on the investigative sur-

roundings a plethora of manual analysis tools is utilized and a hands-on demonstration

of their usage takes place.

The above mentioned methodology shares many similar characteristics with Zeltser’s

approach [17], like the adaptation of the test system based on intermediary analysis ob-

 -79-

servations and interactions with the malware, but also additionally deploys explicit steps

and formulas focusing specifically on defeating possible shielding and defensive mech-

anisms employed by the malicious specimen.

Brand, Valli and Woodward in 2010 extend Zeltser’s methodology [17] and introduce a

spiral analysis model [20], which alternately uses static and dynamic techniques, with

additional emphasis on unmasking and extenuating anti analysis tactics. This enhanced

method embeds a number of consequent phases which are imprinted in the following

lines:

 Preliminary Static Analysis

 Tailor Static Analysis Environment

 Detect and Mitigate Static Analysis Avoidance Technique

 Detailed Static Analysis

 Preliminary Dynamic Analysis

 Tailor Dynamic Analysis Environment

 Detect and Mitigate Dynamic Analysis Avoidance Technique

 Detailed Dynamic Analysis

These subsequent steps are repeated in an iterative and recursive manner as the exami-

nation process continues and based on the obtained results after each phase appropriate

decisions are made on how to tailor and adjust the following stage. Frankie Li in his

technical paper “A Detailed Analysis of an Advanced Persistent Threat Malware” [18]

adopts and applies Zeltser’s technique in an effort to analyze and dissect a specific

malware sample by conducting a detailed analysis in a spiral way [20].

A complete, hands-on practical guide to manual analysis can be found in “Practical

Malware Analysis” by Sikorski and Honig [22]. The authors implement and exhibit an

analysis methodology which embraces some of the most modern techniques and tools

concerning static and dynamic analysis methods. The recommended approach starts

with a primary basic static and dynamic analysis of the malicious file and moves on to

more advanced and sophisticated static and dynamic procedures. The initial static anal-

ysis consists of using antivirus tools, hashes and gathering information from strings,

functions and headers while the dynamic part implicates running the code in a virtual-

ized environment and monitoring processes, registry and file system changes, simulat-

ing a network and sniffing packets. Following this initial investigation, advanced re-

verse engineering techniques are used in order to disassemble the binary and extensive

-80-

debugging mechanisms and tools are employed in order to obtain a vibrant picture of

the program as it is executed.

What has become evident through the aforementioned approaches is that modern manu-

al analysis methodologies append an extra layer into the analysis process and under-

standing, detecting and escaping anti forensic mechanisms has become a prerequisite

towards developing and implementing a fully functional and effective forensic analysis

methodology.

Modern analysis methodologies lean towards implementing automated analysis tech-

niques or integrating already existing automated analysis tools in order to form more

complete and comprehensive automated frameworks and reduce analysis time and man-

ual effort.

Ligh et.al [90], present an automated analysis methodology and introduce various py-

thon modules that can be utilized to automate several aspects of the analysis process.

The proposed scripts and tools facilitate executing and monitoring malware inside virtu-

alized environments as well as in physical machines. Figure 2.8.1 illustrates the sug-

gested methodology, as it is presented by the authors, and demonstrates how to perform

malware analysis in a reusable automated sandbox environment.

 -81-

Figure 2.8.1: Automated malware analysis methodology

Each one of the distinct analysis steps can be automated through appropriate python

scripts. For an automated analysis without any programming requirements, the authors

propose ZeroWine
41

 and Buster Sandbox Analyzer
42

 as a pre-constructed solution.

3 Chapter 3 - Setting up the
Test Bed

The design of the proposed malware analysis framework relies on the proper configura-

tion and deployment of a safe and reliable Test Bed that will allow the execution of var-

ious malware samples multiple times. Cuckoo [54] is incorporated within the frame-

work, as the main automated malware analysis tool, to produce the necessary primary

data for analysis. The following sections provide a brief description of Cuckoo’s func-

tionality as well as the specifications of the hardware and software requirements that are

imperative in order to create an isolated and controlled environment for testing multiple

malware.

3.1 Platform Requirements

The Test Bed operates as the main analysis platform in which various malware samples

can be executed and examined multiple times. The corresponding analysis results are

utilized as primary data which are further correlated and processed to produce compre-

hensive malware profiles. To ensure the correctness of the analysis process and the ac-

curacy of the analysis results, certain conditions and requirements need to be taken into

consideration during the design of the Test Bed and the selection of the appropriate un-

derlying infrastructure.

41
 http://zerowine.sourceforge.net/

42
 http://bsa.isoftware.nl/

-82-

3.1.1 Hardware Requirements

The required hardware infrastructure, for the deployment of a reliable and efficient

malware analysis platform, mainly depends on the system’s purpose and functionality

and could range from a plain personal computer with minimal characteristics to more

powerful and multiplicate machines. An appropriate infrastructure is imperative in order

to enhance the system’s performance and support the successful accomplishment of the

desired goals.

For the implementation of the proposed malware forensics framework, a simple dedi-

cated physical machine has been accordingly set-up and configured. The recruited ma-

chine is a personal computer with a Pentium IV at 3.8 GHz processor and an Asus P5

GV-MX motherboard. A hard drive of 160 GB storage capacity and a 3.5 GB RAM

have been attached to support all required tools, applications and analysis activities.

Additionally, an external 250 GB hard drive has been used for holding regular backups

and disk images. The aforementioned hardware choices have been found to adequately

support all necessary applications, storage and processing requirements of the intro-

duced analysis framework.

3.1.2 Software Requirements

The proposed malware forensics framework utilizes Cuckoo Sandbox Analyzer [54] as

the main malware analysis tool. Therefore the selection of appropriate software, com-

plementary tools and applications was primarily based on Cuckoo’s software dependen-

cies as well as required components, libraries and modules. Any additional packages

were chosen on the basis of Cuckoo’s support and proper assimilation.

The Test Bed uses Ubuntu 12.04 LTS Linux distribution
43

 as the underlying host oper-

ating system, with a running installation of Cuckoo version 0.4, and VirtualBox [89] as

the main Virtual Machine emulator. Since Cuckoo’s host modules are written in python,

the corresponding python version 2.7
44

 has been installed on the host. To stimulate addi-

tional features and to explore Cuckoo’s full analysis potentials, several other python li-

braries have been utilized such as:

 Magic: To identify various file formats.

43
 http://www.ubuntu.com/

44
 http://www.python.org/

 -83-

 Pyssdeep: To compute the ssdeep fuzzy hash of files.

 Dpkt: To retrieve network traffic information from PCAP files.

 Mako: To form the HTML reports and Cuckoo’s web interface.

 Pymongo: To store the analysis results in a MongoDB database.

 Image Library: To capture guest desktop screenshots during the analysis.

Tcpdump has been installed in order to capture and record any network activities per-

formed by the malware during execution. Tcpdump works as a network sniffer and is

responsible for monitoring network traffic and dumping it on a .pcap file for further

processing.

In order for VirtualBox to function properly, the corresponding Software Developer Kit

(SDK) extension package has also been installed on the host whilst the required Virtu-

alBox guest additions have been set up inside each guest operating system.

To correctly set up and prepare the Test Bed for conducing malware analyses, all the

aforementioned tools and applications along with possible available patches, service

packs, updates etc. need to be installed and suitably configured. For the completeness of

the proposed framework some additional libraries have been included. Numpy, Scipy
45

and Matplotlib
46

 serve as scientific computing tools that facilitate the automatic charts

generation feature of the introduced analysis methodology.

3.1.3 Virtual Machines

VirtualBox provides complete and flexible software-based or hardware assisted virtual-

ization solutions, where multiple guest operating systems can be concurrently installed

and manipulated on a single host machine. It additionally enables safe communication

between the host and the isolated virtual guests, allowing full control and independent

management abilities. The guest operating systems running inside VirtualBox, operate

as potential victim machines in which various malware samples are executed and ana-

lyzed.

To demonstrate the functionality and effectiveness of the proposed analysis approach,

four differently configured virtualized environments have been instrumented based on

45
 http://numpy.scipy.org/

46
 http://matplotlib.org/

-84-

two different operating systems. These include a clean installation of Windows XP SP3

along with a second duplicate operating system enriched with various applications as

well as two differently configured and software populated Windows 7 systems. After

the appropriate preparation and customization of the guest systems, each virtual ma-

chine is cloned and separate “clean” snapshots are taken through either the Virtual Ma-

chine Monitor or the VBoxManage utility provided by VirtualBox. These snapshots are

later on utilized so as to reinstate the machines to their previously uninfected status, af-

ter each analysis run.

The selection of the appropriate test systems and their internal configuration is neither

exclusive nor restrictive and can be adjusted to suitably reflect each specific organiza-

tional context for which the malware investigation is being conducted.

3.2 Working with Cuckoo

Cuckoo Sandbox [54] is a newly developed open source software package which incor-

porates fully automated malware analysis features, providing fast and complete analysis

results. Cuckoo’s components are written in python making them fully customizable

and extensible so as to serve specific analysis goals and requirements. Moreover, Cuck-

oo can be employed either as a standalone analysis tool or integrated within broader in-

vestigative procedures facilitating the development of more coherent and comprehen-

sive analysis frameworks.

Cuckoo is designed to automatically execute and analyze suspicious files inside isolated

environments. Each malware sample is separately executed on the guest machines and

the entire analysis process is managed through the core components that run on the host.

An agent running inside the guests undertakes the communication with the host. Fur-

thermore, Cuckoo embodies stealth characteristics, as it employs rootkit-based technol-

ogy to safely perform the analysis procedures and conceal its activities from the mali-

cious samples under analysis. Figure 3.1 presents Cuckoo’s basic architecture.

 -85-

Figure 3.1: Cuckoo’s Architecture

Before submitting any samples for analysis, Cuckoo’s configuration files need to be

modified to comply with the underlying system specifications, Virtual Machines’ char-

acteristics and individual user settings.

Cuckoo analyzer can be activated by executing the command python cuckoo.py through

a terminal window. The analyzer is launched inside the host and retrieves samples for

analysis from the available Cuckoo SQL database. The submission of malware samples

can be done either through Cuckoo’s provided web interface or from a new terminal

window through the submit.py utility. Samples can be submitted in random order multi-

ple times with various analysis specifications. Even though this process is currently per-

formed manually, it can be automated using appropriate python scripts. All analysis re-

quests are stored inside Cuckoo’s DB with a distinct analysis ID.

The analyzer retrieves the analysis requests from the database and performs the analysis

independently for each malware sample. Cuckoo has the ability to execute and analyze

multiple suspicious files concurrently. For each analysis process, separate subfolders are

created to hold all available analysis information and observed malware behavior. Each

subfolder is named after the distinct ID of the specified analysis request. After the com-

pletion of each analysis procedure, the results are stored in the respective subfolder.

These results include:

-86-

 An analysis.log file with information relevant to the analysis process.

 A dump.pcap file with the recorded network traffic.

 All files that were manipulated by the malware.

 Row CSV log files that contain all generated processes and relevant API calls.

 Various reports documenting the malware’s behavior in both human and ma-

chine readable formats.

 Various screenshots captured during the malware’s execution inside the guest.

During processing Cuckoo holds the observed malware activities in a “Global Contain-

er” with a json-like format, which is basically a large python dictionary. This dictionary

is used to produce all related html, json, pickle, and xml formatted reports. Cuckoo ad-

ditionally adopts MAEC
47

, the new standardized language for malware characterization,

and generates the respective maec11.xml report, thus enabling the correct and accurate

communication of malware behavioral attributes and artifacts. Optionally the infor-

mation within the global container can be stored in a MongoDB
48

 database to enable

further querying and processing capabilities.

47
 https://maec.mitre.org/

48
 http://www.mongodb.org/

 -87-

4 Chapter 4 - Experimentation

After the successful preparation of the Test Bed various malware types will be acquired

and tested against different systems. This chapter will contain a description of our re-

search and experimentation process.

After each malware testing procedure, the platform as well as the quest operating sys-

tems will be returned to their original “clean” state in order to ensure the accuracy of

our test results for each virus. The research and experimentation process is expected to

be conducted until the beginning of August.

4.1 Malware Acquisition

Offensivecomputing.net will be used in order to acquire and test multiple viruses. This

section contains and describes the procedure of malware acquisition and preparation.

4.2 Testing Malware Behavior in Different Operating
Systems

Using Cuckoo as our main malware analysis tool, each acquired virus will be tested in

different environments and the analysis results will be recorded in an appropriate format

for further study.

4.2.1 Static Analysis

For each malware the static analysis procedure will be described and the corresponding

results will be documented.

-88-

4.2.2 Dynamic Analysis

The dynamic analysis procedure and results for each malware under investigation will

be described in this section.

 -89-

5 Chapter 5 - Experimental Re-
sults Analysis

The entire experimentation phase will be thoroughly monitored in order to gain a deep

insight and understanding of each malware behavior. During and after the completion of

each test phase, the recorded and observed results will be analyzed and compared. This

research phase will be conducted in parallel to the experimentation process.

This chapter includes the description of the manual and automatic analysis procedures

of the experimental results of each malware execution, as well as the development of a

research methodology that will allow us to compare malware conduct and identify pos-

sible behavioral differences in malware performance among different systems.

5.1 Manual Observation of Malware Behavior

Malware conduct as well as static and dynamic analysis results produced by Cuckoo

will be manually and empirically observed in order to identify malware specific perfor-

mance, file system and registry changes in each system, network traffic will be moni-

tored etc.

This process will help us to manually identify malware behavioral differences in various

systems.

5.2 Automated Analysis of Malware Behavior

An effort will be given in order to develop a methodology for a more automated mal-

ware analysis procedure and comparison of the results among the malware specific be-

havior in different environments. A methodology will be developed that will automati-

cally compare the analysis results that are produced by Cuckoo and identify possible

differences in its behavior.

This new research approach and methodology will be described and discussed in this

section.

-90-

After the execution of dg003.exe malware sample, profiler automatically generated a txt

report containing all analysis information in a human readable format.

The following txt segment displays some initial abstracted information regarding the

results from the multiple executions of the sample.

==

 Analysis of dg003.exe

 MD5 4ec0027bef4d7e1786a04d021fa8a67f

 Total Executions: 11

==

==

 Content Menu

==

 1. General information

 2. Dropped files

 15 Total different dropped files

 3 Files were dropped in all executions

 9 Files were dropped only in one execution

 3 Files were dropped in various executions

 Files dropped in all executions

 2.1 File: ws2help.PNF

 2.2 File: 11025

 2.3 File: 1.txt

 Files dropped in one execution

 2.4 File: msvcr.dll

 2.5 File: msvcr.dll

 2.6 File: msvcr.dll

 2.7 File: msvcr.dll

 2.8 File: msvcr.dll

 2.9 File: msvcr.dll

 2.10 File: msvcr.dll

 2.11 File: msvcr.dll

 2.12 File: msvcr.dll

 Files dropped in various executions

 2.13 File: IECheck.exe

 2.14 File: netstat.exe

 2.15 File: msvcr.dll

 3. Network analysis

 3.1 DNS requests

 3.2 HTTP requests

 4. Behavior analysis

 4.1 Process: dg003.exe (1768) Found in all executions

 2178 Total different API Calls

 311 APIs found in all executions

 31 APIs found in only in one execution

 1836 APIs found in various executions

==

 -91-

5.3 Malware Behavior Comparison

Based on both manual and automatic analysis procedures, the results will be compared

and the outcome will be discussed and documented.

[2.2] "11025":

 File size: 36864 bytes

 File type: PE32 executable (console) Intel 80386, for MS Win-

dows

 CRC32: 81D040BE

 MD5: 8a7ee413726790398d6b315b7cfb5b0a

 SHA-1: 43a10634c617ce6f4d598a6f3ca3d5fe403d986c

 SHA-256:

958eb25df9d1f1f1cf807b9a6efe6041d93885ccedc3f6a2f3cbb113ffc842ac

 SHA-512:

674c9c1148dffee67c37a2e2693bbebd2d95c43ce1c88115086717bfad9f6d09

fb7679c48e6f416a95799e2f061ce9735da7ad5d644858f38e87b780f3a414b7

 Ssdeep: None

 Same as :

 1 "18114" in analysis : "5028cbb6f489330c7600006e"

 2 "19208" in analysis : "5028cc76f489330c76000079"

 3 "28198" in analysis : "5086b353f489330a70000066"

 4 "1430" in analysis : "5087cce6f489330d7100006a"

 5 "10899" in analysis : "508a99cff48933160d00006e"

 6 "12447" in analysis : "508a9ba8f489331650000072"

 7 "13897" in analysis : "508a9cd3f4893316a900000c"

 8 "9485" in analysis : "508b0db6f48933240100006c"

 9 "26150" in analysis : "508b6ffef4893309ce00005c"

 10 "31637" in analysis: "508c3a86f489331814000064"

5.4 Identifying Behavioral Differences

Using all aforementioned techniques we will be able to draw conclusions and identify

possible malware behavioral differences deriving from both manual observation and

automated analysis procedures.

These differences in the malware conduct between different systems will be recorded,

analyzed and discussed in this section.

-92-

 -93-

 -95-

6 Chapter 6 - Malware Foren-
sics Framework

This chapter provides a detailed description of the design, architecture and implementa-

tion aspects of the introduced malware forensics framework. The functionality of the

framework as well as its internal characteristics and processing components are present-

ed and discussed. The proposed malware forensics framework was mainly conceived

and developed with the purpose of providing a holistic and comprehensive view on the

behavioral aspects of malicious creations so as to allow forensics analysts to offer an

opinion as to how a specific malware behaves under a certain environment as well as

the ability to identify malware behavioral differences and similarities among variant

systems.

6.1 A Malware Forensics Framework Proposal

Modern malicious instances are characterized by composite behavior and functionality.

Certain behavioral aspects might be triggered only upon the acknowledgment of specif-

ic environmental parameters while performance variances could differently affect each

infected machine. Therefore a single execution of a given malware can only reveal the

behavior of the sample under those specific system conditions. To stimulate and moni-

tor multiplicate behavioral characteristics, as well as to understand how the sample act-

ed within a desired organizational context, the proposed analysis process entails execut-

ing the same malware sample multiple times in variant simulated platforms.

The basic idea behind our malware forensics framework proposal resides on finding an

appropriate method for collecting, processing and correlating the analysis results as they

are produced by Cuckoo Sandbox analyzer.

As mentioned earlier, Cuckoo processes malware samples and stores the results in an

analysis results folder. For each analysis request, Cuckoo creates a separate subfolder

containing all generated human and machine readable reports, raw log files, .pcap files,

screenshots, and any other information captured during the analysis. Samples may be

submitted multiple times, randomly, and subfolders are named after each analysis dis-

-96-

tinct ID. Optionally Cuckoo stores the results in an analysis collection inside a Mon-

goDB database for further querying and processing activities. The results are stored

based on the submission order of the analysis requests.

The first step towards implementing our framework is to decide how to collect the pri-

mary data for analysis. Three different options seem to be available:

 Retrieve the machine readable reports from the analysis storage folders.

 Collect and process the raw analysis results from the respective folders.

 Connect to the MongoDB and retrieve stored data.

Collecting and analyzing the raw CSV logs and .pcap files would initially require their

appropriate transformation to a processible data structure format. Even though this ap-

proach could enhance the framework’s flexibility and eliminate possible Cuckoo de-

pendencies, the fact that Cuckoo already processes and converts the results to a machine

accessible format in conjunction with specific restrictions with regards to the duration

of the framework’s development and implementation period, led to the selection of a

different data collection methodology.

The json-like generated reports enclose the analysis results obtained from Cuckoo’s

global container, formatted as a dictionary data structure. However the location of the

results folder depends on the original Cuckoo installation path which can be user de-

fined. On the other hand, the MongoDB’s installation path is standard and resides inside

a predefined system’s folder. Since the analysis results stored in the MongoDB database

follow the exact same dictionary format, utilizing the storage, querying and processing

capabilities provided by the MongoDB would significantly enhance the overall effec-

tiveness and usability of the proposed framework. Therefore, the collection of the pri-

mary data for analysis for the current implementation of the proposed framework is per-

formed through the MongoDB database collections.

Figure 6.1 presents the general architecture of the suggested malware forensics frame-

work. The malware samples can be submitted for analysis multiple times and in random

order. Cuckoo retrieves the analysis requests from the SQL database, executes the sam-

ples inside the guest VMs, stores the results in the respective folders as well as in the

mondodb and communicates the analysis status back to the SQL database.

Profiler, the framework’s core processing module, runs independently of any Cuckoo

related actions. It’s design and implementation is completely python based, thus allow-

ing it to be fully customizable, modular and platform independent. It can be installed to

 -97-

any desired location inside the host machine and executed at any point. The installation

process does not require any additional configuration on the host system and can be

achieved simply by copying the profiler’s python script and its additional components

inside any folder and at any location in the host. Since Cuckoo’s SQL database can be

located anywhere inside the host, the only current requirement is to place a copy of the

SQL database inside the running directory of profiler. If the location of Cuckoo inside

the host is already known and predefined, profiler can be customized so as to directly

connect to the SQL database.

Figure 6.1: Malware Forensics Framework Architecture.

Profiler can be executed through a terminal window by running the command $ python

profiler.py inside profiler’s root directory. Upon execution, profiler connects to the SQL

database and retrieves a list of unique md5 hashes corresponding to the various malware

samples that have been analyzed by Cuckoo. It then connects to the MongoDB and col-

lects all respective analysis results for each distinct malware. These primary data are

then processed and correlated, per sample, to produce a comprehensive malware profile

corresponding to the overall behavioral characteristics that were exhibited during each

malware’s multiple executions. These profiles are then stored in a separate “profiles”

collection inside the MongoDB. Based on the correlated results, profiler automatically

-98-

generates a set of human and machine readable reports, in json, txt and html format, as

well as various charts that visualize the sample’s behavior and activities.

Figure 6.2 demonstrates how profiler collects the primary analysis data and stores the

processed results in the “profiles” collection as well as in different subfolders inside a

“profiles” directory.

Figure 6.2: Profiler’s Collection and Storage procedures.

After the completion of the data processing, profiler automatically terminates. Every

time profiler is executed, old malware profiles are updated, upon the recognition of ad-

dable analysis results, and new profiles are created for each additional malware sample.

The framework’s processing functionality heavily relies on appropriately specifying the

exact behavioral characteristics for which intelligence information need to be extracted.

 -99-

To demonstrate the feasibility of developing a malware forensics framework with the

ability to identify multiple behavioral aspects and to asses malware conduct under a

specific organizational context, the current implementation focuses on three major mal-

ware analysis aspects, without excluding additional information retrieved during the ini-

tial analysis process:

 Dropped files.

 Behavioral analysis.

 Network activity.

Profiler has the ability to identify possible similarities and differences in the malware’s

behavior between multiple executions, relevant to the aforementioned aspects, and can

trace any significant behavioral variance back to the specific malware execution that

stimulated the observed functionality. To achieve this, a new “profile” dictionary struc-

ture is used as a reference for comparing and accumulating the multiple analysis results.

The new container follows the same structure as the original Cuckoo’s results diction-

ary, with some additional attributes to hold information about any observed difference

or similarity to the malware’s behavior among its various executions.

The following segment presents profiler’s container with the newly added fields high-

lighted:

{

"info": {

"started": <timestamp>,

"ended": <timestamp>,

"duration": <duration in seconds>,

"version": <version of Cuckoo>

},

"signatures": [

{

"severity": <severity level>,

"description": <signature description>

"alert": <boolean value>,

"references": [<any reference link>],

"data": [<any contextual data>],

"name": <signature name>

}

],

"behavior": {

 "processes": [

{

"parent_id": <parent PID>,

"process_name": <process name>,

-100-

"process_id": <PID>,

"first_seen": <timestamp when the process was first seen>,

"calls": [

{

"category": <API function category>,

"status": <SUCCESS or FAILURE>,

"return": <any returned value>,

"timestamp": <timestamp of the call>,

"repeated": <how many times it was repeated consecutively>,

"api": <API function>,

"arguments": [

{

"name": <argument name>,

"value": <argument value>

}

]

},

<...>

],

<...>

}

],

"processtree": [

{

"pid": <PID>,

"name": <process name>,

"children": [<recursive child entries>]

}

],

"summary": {

"files": [<list of files accessed>],

"keys": [<list of registry keys accessed>],

"mutexes": [<list of mutexes accessed>]

}

},

"static": {<static analysis if available for the file type>},

"dropped": [

{

"size": <file size>,

"sha1": <SHA1 hash>,

"name": <file name>,

"type": <file type>,

"crc32": <CRC32 hash>,

"ssdeep": <Ssdeep hash>,

"sha256": <SHA256 hash>,

"sha512": <SHA512 hash>,

"md5": <MD5 hash>

},

<...>

],

 -101-

"file": {

"size": <file size>,

"sha1": <SHA1 hash>,

"name": <file name>,

"type": <file type>,

"crc32": <CRC32 hash>,

"ssdeep": <Ssdeep hash>,

"sha256": <SHA256 hash>,

"sha512": <SHA512 hash>,

"md5": <MD5 hash>

},

"debug": {

"log": <content of analysis.log>

},

"network": {

"http": [

{

"body": <request body>,

"uri": <request URI>,

"method": <request method>,

"host": <host name>,

"version": <HTTP version>,

"path": <path of the request>,

"data": <dump of whole request>,

"port": <port>

},

<...>

],

"udp": [

{

"dport": <destination port>,

"src": <source IP>,

"dst": <destination IP>,

"sport": <source port>

},

<...>

],

"hosts": [<list of involved IP addresses>],

"dns": [

{

"ip": <IP address>,

"hostname": <domain name>

},

],

"tcp": [

{

"dport": <destination port>,

"src": <source IP>,

"dst": <destination IP>,

"sport": <source port>

-102-

},

<...>

]

}

}

When a malware sample is processed for the first time, the container starts at an “emp-

ty” state. The multiple analysis results of the malware under investigation are compared

side by side with the container’s data. Dropped files, API calls and Network activities

are uniquely inserted inside the dictionary. If a specific characteristic has been exhibited

multiple times, a single record is inserted and specific fields are updated with infor-

mation relevant to the multiple analyses were the specific behavior was detected. If the

profile of the given malware has already been created at a previous profiler’s execution,

the stored data from the MongoDB are passed on to the temporary container and any

additional analysis results are compared against the current profile. Therefore the pro-

files of the malware samples can be created and updated at any point, irrelevant of how

often profiler is executed in between the analysis processes of Cuckoo.

The following python code segment demonstrates how dropped files are aggregated and

correlated to produce the resulting profile container.

if k == "dropped":

 for dropped in res["dropped"]:

 found = False

 found_name = False

 found_size = False

 for i in range(0,len(results_dict["dropped"])):

 if dropped["md5"] == results_dict["dropped"][i]["md5"]:

 found = True

 pos = i

 if dropped["name"] == results_dict["dropped"][i]["name"]:

 found_name = True

 if dropped["size"] == results_dict["dropped"][i]["size"]:

 found_size = True

 break;

 if not found:

 temp_value = {}

 temp_value = deepcopy(dropped)

 analysis = []

 analysis.append(res["_id"])

 temp_value["analysis"]=analysis

 temp_value["repeated"] = 0

 temp_value["all_execs"] = "No"

 -103-

 if len(temp_value["analysis"]) == total:

 temp_value["all_execs"] = "Yes"

 temp_value["same_as"] =[]

 results_dict["dropped"].append(temp_value)

 else:

 if res["_id"] not in results_dict["dropped"][pos]["analysis"]:

 results_dict["dropped"][pos]["analysis"].append(res["_id"])

 if not found_name:

 same_as = {}

 same_as["name"] = dropped["name"]

 same_as["in_analysis"] = res["_id"]

 results_dict["dropped"][pos]["same_as"].append(same_as)

 else:

 results_dict["dropped"][pos]["repeated"] += 1

 count_repeated_files += 1

 if len(results_dict["dropped"][pos]["analysis"]) == total:

 results_dict["dropped"][pos]["all_execs"] = "Yes"

 count_dropped_simm +=1

Since the name of the files may vary between executions, dropped files are compared

based on their MD5 hash value. If the same file was dropped in multiple executions, the

respective analysis IDs and MongoDB’s ID are stored in a relevant attribute. Files with

different names but with the same MD5 hash are also recorded with details on the spe-

cific execution that they appeared. Moreover, if the same file was identified more than

once inside the same execution, profiler holds the number of times that it was dropped.

Regarding the behavioral aspects of the malware sample, all processes and API calls are

also stored using the same methodology. Information relevant to similar or different

processes are recorded. API calls are considered identical if their category, name, status,

arguments and repeats are the same. Profiler additionally holds information relevant to

API calls with the same name and arguments but different return status and repetitions.

The respective python code that processes the API calls can be found in Part I of the

Appendix.

Network traffic is processed in the same manner. Information relevant to the specific

analysis, in which the same or different http, dns, tcp or udp requests were observed, are

respectively stored.

In order to be able to identify and trace a specific behavior back to the original analysis

of the sample and the related raw and detailed analysis results, a small modification in-

side Cuckoo’s processing code took place. Cuckoo currently does not relate the Mon-

goDB’s records with the respective SQL ID of each analysis. Thus it was not possible to

-104-

connect the mongodb’s data with the Cuckoo’s detailed analysis results that stored in

separate directories for each different analysis request. To this end, we simply custom-

ized a small part of a single Cuckoo’s processing module so as to additionally store the

specific analysis path of the produced results for each analysis request.

All the initial processing results of the above procedure, that is the created profile con-

tainer for each sample, are stored inside the “profiles” collection of the MongoDB as

well as in a generated json report inside a “Profiles” Directory with relevant subfolders

named after the malware’s MD5 hashes. These files include some initial abstracted and

summary data regarding the malware’s multiple executions results, as well as additional

detailed information on each different behavioral aspect of the given malware.

After the creation of the “profile” container, a new processing procedure takes place in

order to analyze the produced results and extract inherent intelligence information rele-

vant to the overall behavior of the examined samples. The outcomes of this analysis are

stored in both txt and html formats. Furthermore, in order to visualize the produced re-

sults, a number of charts in bar formats are automatically generated graphically present-

ing information regarding the differences and similarities identified in the dropped files

and API calls.

The aforementioned proposed framework refers to utilizing Profiler as an external inde-

pendent processing tool that correlates and analyzes the results from multiple executions

of the same malware sample, producing comprehensive malware profiles. The overall

architecture of the proposed framework can be utilized to gain an understanding on how

a certain malware behaved under a specific organizational context.

6.2 Integration with Cuckoo

To further enhance the proposed framework’s efficiency, usability and overall perfor-

mance overhead, Profiler can be fully integrated within the operational activities of

Cuckoo Sandbox. By appropriately customizing and slightly modifying Profiler’s code,

the component can be entirely incorporated within Cuckoo’s implementation as an extra

reporting module. Figure 6.3 presents the modified architecture of the proposed frame-

work, which integrates the modified version of Profiler with Cuckoo.

 -105-

Figure 6.3: Framework’s Integrated Architecture.

The core functionality of the introduced Profiler module remains unaffected. The differ-

ence of this approach can be found in the manner that profiler is initiated and executed.

Each time Cuckoo performs an analysis on a given sample, a predefined set of reporting

modules are called upon, to produce various types of reports. By including profiler as a

reporting module, Cuckoo automatically executes Profiler in every malware analysis

request. Therefore, the malware’s profiles are automatically created or updated, upon

each malware’s execution.

By adopting this specific implementation the overall performance of the proposed

framework is significantly enhanced and Profiler’s total analysis time is impressively

reduced. This is mostly due to the fact that Profiler performs only one comparison and

for a single malware each time it is executed.

6.3 Framework Limitations

Based on the experiments and malware analyses that were conducted in order to asses

and evaluate the introduced analysis approach, the proposed malware forensics frame-

work has proven to be efficient and reliable, providing comprehensive results on each

malware’s conduct and characteristics. However, the current implementation of profiler

-106-

and its internal architecture, encapsulate some important limitations with regards to the

framework’s dependencies with external parameters and possible structural restrictions.

The introduced core processing module of the suggested framework is heavily depend-

ent on the current dictionary structure that Cuckoo uses to store the analysis results. Any

future alternations or transformations to the standard dictionary format, could affect the

execution of Profiler as it will not be able to recognize the modified structure so as to

extract and process the analysis results.

The fact that Profiler utilizes this specific structure also makes it completely Cuckoo

dependent. Since Profiler does not process the raw analysis results to produce its own

accessible data format, it can only manipulate and operate on the analysis results as they

are produced by Cuckoo analyzer.

The limitations regarding the restricted time period in which the framework was devel-

oped and realized, also led to restricting various processing aspects of Profiler. The be-

havioral characteristics of each different malware sample are complex and multivariate.

In order to fully investigate all possible aspects and diverse observations, multiple filters

and comparisons have to be constructed. Even though the current implementation of

profiler can identify and extract many different behavioral features, additional filters

and analysis processes would significantly complement the produced malware profiles.

 -107-

7 Chapter 7 - Conclusions

This final chapter will summarize the work and effort of this research as well as the

conclusions and results of our experimentation and analysis methodology.

7.1 Summary

A summary of our research and experimentation methodology and our overall effort and

work will be given in this section.

7.2 Contribution

Our contribution will be analyzed and assessed in this section.

7.3 Future Work

Possible future work and research regarding our topic will be discussed in this section.

 -109-

Bibliography and References

[1]. Von Neumann, John. Theory of Self-Reproducing Automata. In Essays of Cellular

Automata (University of Illinois Press):66-87, 1966.

 [2]. Penrose, Lionel S. “Self-Reproducing Machines”. Scientific American, June 1959:

105-114.

[3]. Stahl, Frederick G. “On Artificial Universes”, 1961. Available at:

http://fredstahl.com/Fred_Stahl/CV_files/On%20Artificial%20Universes.pdf

 [4]. Pesavento, U. (1995) An implementation of von Neumann's self-reproducing ma-

chine. Artificial Life 2(4):337-354.

[5]. Vyssotsky, Victor A. Darwin: A Game of Survival and (Hopefully) Evolution.

New Jersey: Bell Telephone Laboratories, 1961.

[6]. Dr. Solomon's Virus Encyclopedia, 1995, ISBN 1897661002

[7]. Ralph, Burger. “Computer Viruses: A High Tech Disease”. Abacus, 1988.

[8]. Risak, Veith, "Selbstreproduzierende Automaten mit minimaler Informationsüber-

tragung", Zeitschrift für Maschinenbau und Elektrotechnik, 1972

[9]. Kraus, Jürgen, Selbstreproduktion bei Programmen, February 1980

[10]. McMullin, B. “John von Neumann and the Evolutionary Growth of Complexity:

Looking Backwards, Looking Forwards...” Artificial Life 6(4):347-361 by the MIT

Press, Fall 2000

[11]. Thomas Chen, Jean-Marc Robert. "The Evolution of Viruses and Worms". 2004

[12]. Bayer, U., Moser, A., Kruegel, C., and Kirda, E. Dynamic analysis of malicious

code. Journal in Computer Virology 2, 1, 67–77, 2006

[13]. Moser, A., Kruegel, C., and Kirda, E. 2007. Exploring Multiple Execution Paths

for Malware Analysis. In IEEE Symposium on Security and Privacy, Oakland.

[14]. Distler, D. Malware Analysis: An Introduction. SANS Institute, 2007.

http://fredstahl.com/Fred_Stahl/CV_files/On%20Artificial%20Universes.pdf
http://www.cosy.sbg.ac.at/~risak/bilder/selbstrep.html
http://www.cosy.sbg.ac.at/~risak/bilder/selbstrep.html
http://vx.netlux.org/lib/pdf/Selbstreproduktion%20bei%20programmen.pdf
http://vx.netlux.org/lib/atc01.html

-110-

[15]. Skoudis, E., Zeltser, L. Malware Fighting Malicious Code. New Jersey: Prentice

Hall PTR, 2003.

[16]. Lorna Hutcheson. Malware Analysis The Basics, 2006. Available at:

http://isc.sans.org/presentations/cookie.pdf

[17]. Zeltser, L. Reverse Engineering Malware: Tools and Techniques Hands-On. Be-

thesda: SANS Institute, 2007.

[18]. Li, Frankie. A Detailed Analysis of an Advanced Persistent Threat Malware.

SANS institute, 2011

[19]. Valli, C. & Brand, M. The Malware Analysis Body of Knowledge (MABOK),

Edith Cowan University, School of Computer and Information Science, 2008

[20]. Brand, M., Valli, C. & Woodward, A. Malware Forensics: Discovery of the Intend

of Deception. Edith Cowan University, Australian Digital Forensics Conference, 2010.

[21]. Aquilina, J., Casey, E., & Malin, C. Malware Forensics Investigating and Analyz-

ing Malicious Code. Burlington, MA: Syngress, 2008.

[22]. Sikorski, M.,Honig, A. Practical Malware Analysis. No Starch Press. San Fran-

cisco, 2012

[23] Egele, M., Scholte, T., Kirda, E., Kruegel, C. A Survey on Automated Dynamic

Malware-Analysis Techniques and Tools. ACM Computing Surveys, Vol 44, No 2, Ar-

ticle 6, February 2012

[24] Noah M. Johnson, Juan Caballero, Kevin Zhijie Chen, Stephen McCamant, Pong-

sin Poosankam, Daniel Reynaud, and Dawn Song. Differential Slicing: Identifying

Causal Execution Differences for Security Applications. In Proceedings of the 32nd

IEEE Symposium on Security and Privacy, 2011.

[25]. Davide Balzarotti, Marco Cova, Christoph Karlberger, Christopher Kruegel, Engin

Kirda, and Giovanni Vigna. Efficient Detection of Split Personalities in Malware. In

Proceedings of the 17th Annual Network and Distributed System Security Symposium,

2010.

[26]. Ulrich Bayer, Paolo Milani Comparetti, Clemens Hlauschek, Christopher Kruegel,

and Engin Kirda. Scalable, Behavior-Based Malware Clustering. In Proceedings of the

16th Annual Network and Distributed System Security Symposium (NDSS), 2009.

 -111-

[27]. J. Crandall, G. Wassermann, D. Oliveira, Z. Su, F. Wu, and F. Chong. Temporal

Search: Detecting Hidden Malware Timebombs with VirtualMachines. In Conference

on Architectural Support for Programming Languages and OS, 2006.

[28]. Brumley, D., Hartwig, C., Liang, Z., Newsome, J., Song, D., Yin, H.: Towards au-

tomatically identifying trigger-based behavior in malware using symbolic execution and

binary analysis. Technical Report CMU-CS-07-105, Carnegie Mellon University

School of Computer Science (January 2007).

 [29]. Brumley, D., Hartwig, C., Kang, M.G., Liang, Z., Newsome, J., Poosankam, P.,

Song, D.: Bitscope: Automatically dissecting malicious binaries. Technical Report CS-

07-133, School of Computer Science, Carnegie Mellon University (March 2007)

[30] Dawn Song David Brumley Heng Yin Juan Caballero Ivan Jager Min Gyung Kang

Zhenkai Liang James Newsome Pongsin Poosankam and Prateek Saxena. Bitblaze: A

new approach to computer security via binary analysis. 2008.

[31]. Microsoft Security Intelligence Report, Volume 11. An in-depth perspective on

software vulnerabilities and exploits, malicious code threats, and potentially unwanted

software in the first half of 2011. Microsoft Corporation, 2011.

Available at: http://www.microsoft.com/security/sir/archive/default.aspx

[32]. Brand, M. Forensic Analysis Avoidance Techniques of Malware. Paper presented

at the 5th Australian Digital Forensics Conference, Edith Cowan University, Mount

Lawley Campus, Western Australia, 2007.

[33]. M. Christodorescu and S. Jha. Static analysis of executables to detect malicious

patterns. In Proceedings of the 12th USENIX Security Symposium (Security’03), pages

169–186, Washington, DC, USA, Aug. 4–8, 2003. USENIX Association.

[34]. SHARIF, M., LANZI, A., GIFFIN, J., AND LEE, W. Impeding malware analysis

using conditional code obfuscation. In Proceedings of the 15th Annual Network and

Distributed System Security Symposium, 2008.

[35]. C. Linn and S. Debray. Obfuscation of Executable Code to Improve Resistance to

Static Disassembly. In ACM Conference on Computer and Communications Security,

2003.

[36]. G.Wroblewski. General Method of Program Code Obfuscation. PhD thesis,

Wroclaw University of Technology, 2002.

http://www.microsoft.com/security/sir/archive/default.aspx

-112-

[37]. P. Szor. The Art of Computer Virus Research and Defense. Addison Wesley,

2005.

[38]. Weber, L. Dynamic Analysis of Malware. Master Seminar, Horst-Görtz Institute

2010.

[39]. Chen, X., Andersen, J., Mao, Z.M., Bailey, M., Nazario, J.: Towards an Under-

standing of Anti-Virtualization and Anti-Debugging Behavior in Modern Malware. In:

Proceedings of the 38th Annual IEEE International Conference on Dependable Systems

and Networks, 2008.

[40]. Kang, M.G., Yin, H., Hanna, S., McCamant, S., Song, D.: Emulating Emulatio-

Resistant Malware. In: Proceedings of the 2nd Workshop on Virtual Machine Security,

2009.

[41]. Simson Garfinkel, Alex J. Nelson and Joel Young. A general strategy for differen-

tial forensic analysis. Digital Investigation 9, S50–S59. Published by Elsevier Ltd.

2012.

[42]. Gursimran Kaur and Bharti Nagpal. Malware Analysis & its Application to

Digital Forensic. International Journal on Computer Science and Engineering (IJCSE),

Vol. 4 No. 04. 2012.

[43]. Kris Kendal. Practical Malware Analysis. Mandiant- Intelligent Information Secu-

rity, 2007.

[44]. Dimitris Iliopoulos, Christoph Adami and Peter Szor, Darwin inside the machines:

malware evolution and the consequences for computer security, Virus Bulletin Confer-

ence, 2008.

[45]. Qing Li, Chris Larsen, Tim van der Horst, "IPv6 - a Catalyst and an Evasion Tool

for Botnets and Malware Distribution Networks," Computer, 10 Sept. 2012. IEEE com-

puter Society Digital Library. IEEE Computer Society.

[46]. Antonios Atlasis, Attacking ipv6 implementation using fragmentation.

http://media.blackhat.com/bh-eu-12/Atlasis/bh-eu-12-Atlasis-Attacking_IPv6-WP.pdf,

March 2012.

[47]. Fernando Gont, “Results of a Security Assessment of the Internet Protocol version

6 (IPv6)”. Research project carried out on behalf of the United Kingdom’s Centre for

the Protection of National Infrastructure. Presentation available at:

http://media.blackhat.com/bh-eu-12/Atlasis/bh-eu-12-Atlasis-Attacking_IPv6-WP.pdf

 -113-

http://www.si6networks.com/presentations/hacklu2011/fgont-hacklu2011-ipv6-

security.pdf, Sept. 2011.

[48]. Marc Heuse, “Recent advances in IPv6 insecurities”. 27th Chaos Communication

Congress, 2010.

 [49]. Frederick. Cohen, "Computer viruses: theory and experiments,", 1984. Available

at: http://web.eecs.umich.edu/~aprakash/eecs588/handouts/cohen-viruses.html

[50]. Frederick. Cohen, “A Short Course on Computer Viruses”. ASP Press, 1990.

[51]. Avinash Kak, “Malware: Viruses and Worms”. Lecture Notes on “Computer and

Network Security”, Purdue University, 2012.

[52]. David Harley, Robert Slade, Urs Gattiker, “Viruses Revealed”. 2001

[53]. Spafford, E. H. “The Internet worm incident”. In Proceedings of the 2nd European

Software Engineering Conference. 446–468. 1989.

[54]. Cuckoo Sandbox. Automated Malware Analysis. Available at:

http://www.cuckoosandbox.org/

[55]. Vishrut, Sharma. “An Analytical Survey of Recent Worm Attacks”. In IJCSNS

International Journal of Computer Science and Network Security, VOL.11 No.11, No-

vember 2011.

[56]. Murray, Brand. “Analysis Avoidance Techniques of Malicious Software”. Edith

Cowan University, Perth, WA. November 2010.

[57]. Glenn, Gebhart. “Worm Propagation and Countermeasures”. SANS Institute 2004.

[58]. Bit Defender. Malware History. Available at :

http://download.bitdefender.com/resources/files/Main/file/Malware_History.pdf

[59]. J. Shoch, J. Hupp, "The 'worm' programs - early experience with a distributed

computation," Commun. Of ACM, vol. 25 , pp. 172-180, March 1982.

[60]. G. Smith, “The Virus Creation Labs: A Journey into the Underground”, American

Eagle Publications, Tucson, AZ, 1994.

[61]. Botnets The Killer Web Applications.

[62]. H. Binsalleeh, T. Ormerod, A. Boukhtouta, P. Sinha, A. Youssef, M. Debbabi, L.

Wang. On the Analysis of the Zeus Botnet Crimeware Toolkit. Eighth Annual Interna-

tional Conference on Privacy Security and Trust (PST), 2010.

[63]. Yuri, Namestnikov. The economics of botnets. Kaspersky Lab, 2009.

http://www.si6networks.com/presentations/hacklu2011/fgont-hacklu2011-ipv6-security.pdf
http://www.si6networks.com/presentations/hacklu2011/fgont-hacklu2011-ipv6-security.pdf
http://download.bitdefender.com/resources/files/Main/file/Malware_History.pdf

-114-

[64]. Johannes. Bauer, Michel. van Eeten, John. Groenewegen, Wolter. Lemstra. “The

Economics of Malware. Problem Description, Literature Review and Preliminary Re-

search Design”. Report to the OECD Working Party on Information Security and Priva-

cy and the Ministry of Economic Affairs of the Netherlands. 2007.

[65]. Samuel C. McQuade, III. “Encyclopedia of Cybercrime”. Greenwood Press, 2009.

[66]. Ilsun. You, Kangbin. Yim, “Malware Obfuscation Techniques: A Brief Survey”.

International Conference on Broadband, Wireless Computing, Communication and Ap-

plications, 2010.

[67]. Thomas. M. Chen, Gregg. W. Tally, “Network Worms”. Encyclopedia of Infor-

mation Science and Technology, 2nd Edition, pages 2783-2788, 2009.

[68]. Vishrut. Sharma, “An Analytical Survey of Recent Worm Attacks”. IJCSNS Inter-

national Journal of Computer Science and Network Security, VOL.11 No.11, November

2011.

[69]. L. Wenke, W. Cliff, and D. David, Eds., Botnet Detection: Countering the Largest

Security Threat, ser. Advances in Information Security. Springer-Verlag New York,

2008, vol. 36.

[70]. Aleksandr Matrosov, Eugene Rodionov, David Harley, and Juraj Malcho, “Stuxnet

Under the Microscope”, Revision 1.2, ESET, November, 2010.

[71]. OECD, Organization for Economic Co-operation and Development. “Malicious

Software (Malware): A Security Threat to the Internet Economy”. Report presented at

the OECD Ministerial Meeting on the Future of the Internet Economy, June 2008.

[72]. Monirul Sharif, Andrea Lanzi, Jonathon Giffin, and Wenke Lee. Automatic re-

verse engineering of malware emulators. In Proceedings of the IEEE Symposium on

Security and Privacy, 2009.

[73]. Brand, M., Valli, C., Woodward, A. Lessons Learned from an Investigation into

the Analysis Avoidance Techniques of Malicious Software, 2010.

[74]. Moser, A., Kruegel, C., and Kirda, E. 2007. Limits of static analysis for malware

detection. In 23rd Annual Computer Security Applications Conference (ACSAC). 421–

430.

[75]. Royal, P., Halpin, M., Dagon, D., Edmonds, R., Lee, W.: Polyunpack: Automating

the hidden-code extraction of unpack-executing malware. In: Jesshope, C., Egan, C.

(eds.) ACSAC 2006. LNCS, vol. 4186. Springer, Heidelberg (2006).

 -115-

[76]. Martignoni, L., Christodorescu, M., Jha, S.: Omniunpack: Fast, generic, and safe

unpacking of malware. In: Choi, L., Paek, Y., Cho, S. (eds.) ACSAC 2007. LNCS, vol.

4697. Springer, Heidelberg (2007).

[77]. Kang, M.G., Poosankam, P., Yin, H.: Renovo: a hidden code extractor for packed

executables. In: Proceedings of WORM (2007)

[78]. M. Sharif, V. Yegneswaran and H. Saidi, et al. Eureka: A Framework for Enabling

Static Malware Analysis. In Proc. of ESORICS’08, 481-500, 2008.

[79]. G. Wagener, R. State, and A. Dulaunoy. Malware Behaviour Analysis. Journal in

Computer Virology, 4:279–287, 2008.

[80]. Lorenzo Martignoni, Roberto Paleari, and Danilo Bruschi. A Framework for Be-

havior-Based Malware Analysis in the Cloud. In Proceedings of the 5th International

Conference on Information Systems Security (ICISS), 2009.

[81]. A. Vasudevan and R. Yerraballi. Cobra: Fine-grained Malware Analysis using

Stealth Localized Executions. In Proceedings of the IEEE Symposium on Security and

Privacy, 2006.

[82]. A. Dinaburg, P. Royal, M. Sharif, and W. Lee. Ether: Malware Analysis via

Hardware Virtualization Extensions. In Proceedings of the ACM Conference on Com-

puter and Communications Security (CCS), 2008.

[83]. U. Bayer, E. Kirda, and C. Kruegel. Improving the efficiency of dynamic malware

analysis. In Proceedings of the 2010 ACM Symposium on Applied Computing, pages

1871–1878. ACM, 2010.

[84]. Jacob, G., Debar, H., Filiol, E.: Behavioral detection of malware: from a survey

towards an established taxonomy. Journal in Computer Virology 4(3) (2008).

[85]. PaiMei - a reverse engineering framework. Available at:

 http://github.com/OpenRCE/paimei

[86]. Anubis. Analysis of unknown binaries. http://anubis.iseclab.org.

[87]. Bellard, F. 2005. QEMU, a Fast and Portable Dynamic Translator. In FREENIX

Track of the USENIX Annual Technical Conference.

[88]. Willems, C., Holz, T., and Freiling, F. 2007. Toward automated dynamic malware

analysis using CWSandbox. IEEE Security and Privacy 5, 2, 32–39.

[89]. Virtual Box. Available at : https://www.virtualbox.org/

http://github.com/OpenRCE/paimei
http://anubis.iseclab.org/
https://www.virtualbox.org/

-116-

[90]. Michael Ligh, Steven Adair, Blake Hartstein and Matthew Richard. Malware Ana-

lyst’s Cookbook and DVD. Wiley Publishing, Inc., 2011.

[91]. K. Rieck, P. Trinius, C. Willems, and T. Holz. Automatic Analysis of Malware

Behavior using Machine Learning. In Journal of Computer Security, 2011.

[92]. Nicolas Falliere, Liam O Murchu, Eric Chien. W32.Stuxnet Dossier, Symantec

Security Response. 2011.

[93] H.Wang, S.Jha, and V.Ganapathy. Netspy: Automatic generation of spyware signa-

tures for NIDS. In Proceedings of Annual Computer Security Applications Conference,

2006.

Appendix

http://www.mnin.org/
http://www.securityzone.org/
http://jsunpack.blogspot.com/
http://mullingsecurity.com/

