993 research outputs found

    Prediction of nocturia in live alone elderly using unobtrusive in-home sensors

    Get PDF
    iCity Lab; SHINESeniors; National Research Foundation (NRF) Singapore under the Land and Livability National Innovation Challenge (L2NIC

    Fall Prediction and Prevention Systems: Recent Trends, Challenges, and Future Research Directions.

    Get PDF
    Fall prediction is a multifaceted problem that involves complex interactions between physiological, behavioral, and environmental factors. Existing fall detection and prediction systems mainly focus on physiological factors such as gait, vision, and cognition, and do not address the multifactorial nature of falls. In addition, these systems lack efficient user interfaces and feedback for preventing future falls. Recent advances in internet of things (IoT) and mobile technologies offer ample opportunities for integrating contextual information about patient behavior and environment along with physiological health data for predicting falls. This article reviews the state-of-the-art in fall detection and prediction systems. It also describes the challenges, limitations, and future directions in the design and implementation of effective fall prediction and prevention systems

    Use of nonintrusive sensor-based information and communication technology for real-world evidence for clinical trials in dementia

    Get PDF
    Cognitive function is an important end point of treatments in dementia clinical trials. Measuring cognitive function by standardized tests, however, is biased toward highly constrained environments (such as hospitals) in selected samples. Patient-powered real-world evidence using information and communication technology devices, including environmental and wearable sensors, may help to overcome these limitations. This position paper describes current and novel information and communication technology devices and algorithms to monitor behavior and function in people with prodromal and manifest stages of dementia continuously, and discusses clinical, technological, ethical, regulatory, and user-centered requirements for collecting real-world evidence in future randomized controlled trials. Challenges of data safety, quality, and privacy and regulatory requirements need to be addressed by future smart sensor technologies. When these requirements are satisfied, these technologies will provide access to truly user relevant outcomes and broader cohorts of participants than currently sampled in clinical trials

    Enhancing quality of life: Human-centered design of mobile and smartwatch applications for assisted ambient living

    Get PDF
    Background: Assisted ambient living interfaces are technologies designed to improve the quality of life for people who require assistance with daily activities. They are crucial for individuals to maintain their independence for as long as possible. To this end, these interfaces have to be user-friendly, intuitive, and accessible, even for those who are not techsavvy. Research in recent years indicates that people find it uncomfortable to wear invasive or large intrusive devices to monitor health status, and poor user interface design implies a lack of user engagement. Methods: This paper presents the design and implementation of non-intrusive mobile and smartwatch applications for detecting older adults when executing their routines. The solution uses an intuitive mobile application to set up beacons and incorporates biometric data acquired from the smartwatch to measure bio-signals correlated to the user’s location. User testing and interface evaluation are carried out using the User Experience Questionnaire (UEQ). Results: Six older adults participated in the evaluation of the interfaces. Results show that users found the interaction to be excellent in all the parameters of the UEQ in the evaluation of the mobile interface. For the smartwatch application, results vary from above average to excellent. Conclusions: The applications are intuitive and easy to use, and data obtained from integrating systems is essential to link information and provide feedback to the user.info:eu-repo/semantics/publishedVersio

    Exploring the Landscape of Ubiquitous In-home Health Monitoring: A Comprehensive Survey

    Full text link
    Ubiquitous in-home health monitoring systems have become popular in recent years due to the rise of digital health technologies and the growing demand for remote health monitoring. These systems enable individuals to increase their independence by allowing them to monitor their health from the home and by allowing more control over their well-being. In this study, we perform a comprehensive survey on this topic by reviewing a large number of literature in the area. We investigate these systems from various aspects, namely sensing technologies, communication technologies, intelligent and computing systems, and application areas. Specifically, we provide an overview of in-home health monitoring systems and identify their main components. We then present each component and discuss its role within in-home health monitoring systems. In addition, we provide an overview of the practical use of ubiquitous technologies in the home for health monitoring. Finally, we identify the main challenges and limitations based on the existing literature and provide eight recommendations for potential future research directions toward the development of in-home health monitoring systems. We conclude that despite extensive research on various components needed for the development of effective in-home health monitoring systems, the development of effective in-home health monitoring systems still requires further investigation.Comment: 35 pages, 5 figure

    Distributed Computing and Monitoring Technologies for Older Patients

    Get PDF
    This book summarizes various approaches for the automatic detection of health threats to older patients at home living alone. The text begins by briefly describing those who would most benefit from healthcare supervision. The book then summarizes possible scenarios for monitoring an older patient at home, deriving the common functional requirements for monitoring technology. Next, the work identifies the state of the art of technological monitoring approaches that are practically applicable to geriatric patients. A survey is presented on a range of such interdisciplinary fields as smart homes, telemonitoring, ambient intelligence, ambient assisted living, gerontechnology, and aging-in-place technology. The book discusses relevant experimental studies, highlighting the application of sensor fusion, signal processing and machine learning techniques. Finally, the text discusses future challenges, offering a number of suggestions for further research directions

    From Wearable Sensors to Smart Implants – Towards Pervasive and Personalised Healthcare

    No full text
    <p>Objective: This article discusses the evolution of pervasive healthcare from its inception for activity recognition using wearable sensors to the future of sensing implant deployment and data processing. Methods: We provide an overview of some of the past milestones and recent developments, categorised into different generations of pervasive sensing applications for health monitoring. This is followed by a review on recent technological advances that have allowed unobtrusive continuous sensing combined with diverse technologies to reshape the clinical workflow for both acute and chronic disease management. We discuss the opportunities of pervasive health monitoring through data linkages with other health informatics systems including the mining of health records, clinical trial databases, multi-omics data integration and social media. Conclusion: Technical advances have supported the evolution of the pervasive health paradigm towards preventative, predictive, personalised and participatory medicine. Significance: The sensing technologies discussed in this paper and their future evolution will play a key role in realising the goal of sustainable healthcare systems.</p> <p> </p

    Human intelligence in biomedical diagnostics

    Get PDF

    Sensing the care:Advancing unobtrusive sensing solutions to support informal caregivers of older adults with cognitive impairment

    Get PDF
    Older adults (65 years and above) make up a growing proportion of the world's population which is anticipated to increase further in the coming decades. As individuals age, they often become more vulnerable to cognitive impairments, necessitating a diverse array of care and support services from their caregivers to uphold their quality of life. However, the scarcity of professional caregivers and care facilities, compounded by the preference of many older adults to remain in their own homes, places a significant burden on informal caregivers, adversely affecting their physical, mental, and social well-being. To assist informal caregivers, numerous sensing solutions have been developed. However, many of these solutions are not optimally suited for older adult care, particularly in cases of cognitive impairments. In that regard, the overarching aim of this thesis was to develop and evaluate the Unobtrusive Sensing Solution (USS) for in-home monitoring of older adults with cognitive impairment (OwCI) who live alone in their own houses to ease the support of their informal caregivers. In the 'Explore and Scope' part, a scoping review was conducted to identify available unobtrusive sensing technology that can be implemented in older adult care. Subsequently, in the 'Develop and Test' part, Wi-Fi CSI technology was utilized to collect a dataset illustrating physical agitation activities (Wi-Gitation). However, upon evaluation of the Wi-Gitation dataset, a challenge of generalization across different domains (or environments) was identified. To address this, the Inter-data Selected Sequential Transfer Learning framework was proposed and implemented. Lastly, in the 'Design to Communicate' part, the thesis focused on identifying the needs and requirements of informal caregivers of OwCI towards USSs. These needs and requirements were gathered through interviews and surveys, informing the development of a Lo-Fi prototype for an interaction platform. Overall, the results obtained in this thesis not only enhance the development of Wi-Fi CSI (specifically for OwCI care) but also provide valuable insights into the informational and design requirements of informal caregivers, thereby promoting the context-aware development of USSs
    corecore