14 research outputs found

    Deep learning, radiomics and radiogenomics applications in the digital breast tomosynthesis: a systematic review

    Get PDF
    Background: Recent advancements in computing power and state-of-the-art algorithms have helped in more accessible and accurate diagnosis of numerous diseases. In addition, the development of de novo areas in imaging science, such as radiomics and radiogenomics, have been adding more to personalize healthcare to stratify patients better. These techniques associate imaging phenotypes with the related disease genes. Various imaging modalities have been used for years to diagnose breast cancer. Nonetheless, digital breast tomosynthesis (DBT), a state-of-the-art technique, has produced promising results comparatively. DBT, a 3D mammography, is replacing conventional 2D mammography rapidly. This technological advancement is key to AI algorithms for accurately interpreting medical images. Objective and methods: This paper presents a comprehensive review of deep learning (DL), radiomics and radiogenomics in breast image analysis. This review focuses on DBT, its extracted synthetic mammography (SM), and full-field digital mammography (FFDM). Furthermore, this survey provides systematic knowledge about DL, radiomics, and radiogenomics for beginners and advanced-level researchers. Results: A total of 500 articles were identified, with 30 studies included as the set criteria. Parallel benchmarking of radiomics, radiogenomics, and DL models applied to the DBT images could allow clinicians and researchers alike to have greater awareness as they consider clinical deployment or development of new models. This review provides a comprehensive guide to understanding the current state of early breast cancer detection using DBT images. Conclusion: Using this survey, investigators with various backgrounds can easily seek interdisciplinary science and new DL, radiomics, and radiogenomics directions towards DBT

    COVID-19 detection using chest X-rays: is lung segmentation important for generalization?

    Full text link
    We evaluated the generalization capability of deep neural networks (DNNs), trained to classify chest X-rays as COVID-19, normal or pneumonia, using a relatively small and mixed dataset. We proposed a DNN to perform lung segmentation and classification, stacking a segmentation module (U-Net), an original intermediate module and a classification module (DenseNet201). To evaluate generalization, we tested the DNN with an external dataset (from distinct localities) and used Bayesian inference to estimate probability distributions of performance metrics. Our DNN achieved 0.917 AUC on the external test dataset, and a DenseNet without segmentation, 0.906. Bayesian inference indicated mean accuracy of 76.1% and [0.695, 0.826] 95% HDI (high density interval, which concentrates 95% of the metric's probability mass) with segmentation and, without segmentation, 71.7% and [0.646, 0.786]. We proposed a novel DNN evaluation technique, using Layer-wise Relevance Propagation (LRP) and Brixia scores. LRP heatmaps indicated that areas where radiologists found strong COVID-19 symptoms and attributed high Brixia scores are the most important for the stacked DNN classification. External validation showed smaller accuracies than internal, indicating difficulty in generalization, which segmentation improves. Performance in the external dataset and LRP analysis suggest that DNNs can be trained in small and mixed datasets and detect COVID-19.Comment: This revision mainly changed the text to make explanations clearer and it added better comparisons to related works. Reported results and models did not chang

    Bioinformatics and Machine Learning for Cancer Biology

    Get PDF
    Cancer is a leading cause of death worldwide, claiming millions of lives each year. Cancer biology is an essential research field to understand how cancer develops, evolves, and responds to therapy. By taking advantage of a series of “omics” technologies (e.g., genomics, transcriptomics, and epigenomics), computational methods in bioinformatics and machine learning can help scientists and researchers to decipher the complexity of cancer heterogeneity, tumorigenesis, and anticancer drug discovery. Particularly, bioinformatics enables the systematic interrogation and analysis of cancer from various perspectives, including genetics, epigenetics, signaling networks, cellular behavior, clinical manifestation, and epidemiology. Moreover, thanks to the influx of next-generation sequencing (NGS) data in the postgenomic era and multiple landmark cancer-focused projects, such as The Cancer Genome Atlas (TCGA) and Clinical Proteomic Tumor Analysis Consortium (CPTAC), machine learning has a uniquely advantageous role in boosting data-driven cancer research and unraveling novel methods for the prognosis, prediction, and treatment of cancer

    Advanced Computational Methods for Oncological Image Analysis

    Get PDF
    [Cancer is the second most common cause of death worldwide and encompasses highly variable clinical and biological scenarios. Some of the current clinical challenges are (i) early diagnosis of the disease and (ii) precision medicine, which allows for treatments targeted to specific clinical cases. The ultimate goal is to optimize the clinical workflow by combining accurate diagnosis with the most suitable therapies. Toward this, large-scale machine learning research can define associations among clinical, imaging, and multi-omics studies, making it possible to provide reliable diagnostic and prognostic biomarkers for precision oncology. Such reliable computer-assisted methods (i.e., artificial intelligence) together with clinicians’ unique knowledge can be used to properly handle typical issues in evaluation/quantification procedures (i.e., operator dependence and time-consuming tasks). These technical advances can significantly improve result repeatability in disease diagnosis and guide toward appropriate cancer care. Indeed, the need to apply machine learning and computational intelligence techniques has steadily increased to effectively perform image processing operations—such as segmentation, co-registration, classification, and dimensionality reduction—and multi-omics data integration.

    Enhanced Digital Breast Tomosynthesis diagnosis using 3D visualization and automatic classification of lesions

    Get PDF
    Breast cancer represents the main cause of cancer-related deaths in women. Nonetheless, the mortality rate of this disease has been decreasing over the last three decades, largely due to the screening programs for early detection. For many years, both screening and clinical diagnosis were mostly done through Digital Mammography (DM). Approved in 2011, Digital Breast Tomosynthesis (DBT) is similar to DM but it allows a 3D reconstruction of the breast tissue, which helps the diagnosis by reducing the tissue overlap. Currently, DBT is firmly established and is approved as a stand-alone modality to replace DM. The main objective of this thesis is to develop computational tools to improve the visualization and interpretation of DBT data. Several methods for an enhanced visualization of DBT data through volume rendering were studied and developed. Firstly, important rendering parameters were considered. A new approach for automatic generation of transfer functions was implemented and two other parameters that highly affect the quality of volume rendered images were explored: voxel size in Z direction and sampling distance. Next, new image processing methods that improve the rendering quality by considering the noise regularization and the reduction of out-of-plane artifacts were developed. The interpretation of DBT data with automatic detection of lesions was approached through artificial intelligence methods. Several deep learning Convolutional Neural Networks (CNNs) were implemented and trained to classify a complete DBT image for the presence or absence of microcalcification clusters (MCs). Then, a faster R-CNN (region-based CNN) was trained to detect and accurately locate the MCs in the DBT images. The detected MCs were rendered with the developed 3D rendering software, which provided an enhanced visualization of the volume of interest. The combination of volume visualization with lesion detection may, in the future, improve both diagnostic accuracy and also reduce analysis time. This thesis promotes the development of new computational imaging methods to increase the diagnostic value of DBT, with the aim of assisting radiologists in their task of analyzing DBT volumes and diagnosing breast cancer

    An Investigation of Global and Local Radiomic Features for Customized Self-Assessment Mammographic Test Sets for Radiologists in China in Comparison with Those in Australia

    Get PDF
    Self-assessment test sets have demonstrated being effective tools to improve radiologists’ diagnostic skills through immediate error feedback. Current sets use a one-size-fits-all approach in selecting challenging cases, overlooking cohort-specific weaknesses. This thesis assessed feasibility of using a comprehensive set of handcrafted global radiomic features (Stage 1, Chapter 3) as well as handcrafted (Stage 2, Chapter 4) and deep-learning based (Stage 3, Chapter 5) local radiomic features to identify challenging mammographic cases for Chinese and Australian radiologists. In the first stage, global handcrafted radiomic features and Random Forest models analyzed mammography datasets involving 36 radiologists from China and Australia independently assessing 60 dense mammographic cases. The results were used to build and evaluate models’ performance in case difficulty prediction. The second stage focused on local handcrafted radiomic features, utilizing the same dataset but extracting features from error-related local mammographic areas to analyze features linked to diagnostic errors. The final stage introduced deep learning, specifically Convolutional Neural Network (CNN), using an additional test set and radiologists’ readings to identify features linked to false positive errors. Stage 1 found that global radiomic features effectively detected false positive and false negative errors. Notably, Australian radiologists showed less predictable errors than their Chinese counterparts. Feature normalization did not improve model performance. In Stage 2, the model showed varying success rates in predicting false positives and false negatives among the two cohorts, with specific mammographic regions more prone to errors. In Stage 3, the transferred ResNet-50 architecture performed the best for both cohorts. In conclusion, the thesis affirmed the importance of radiomic features in improving curation of cohort-specific self-assessment mammography test sets

    Irish Machine Vision and Image Processing Conference, Proceedings

    Get PDF

    Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries

    Get PDF
    This two-volume set LNCS 12962 and 12963 constitutes the thoroughly refereed proceedings of the 7th International MICCAI Brainlesion Workshop, BrainLes 2021, as well as the RSNA-ASNR-MICCAI Brain Tumor Segmentation (BraTS) Challenge, the Federated Tumor Segmentation (FeTS) Challenge, the Cross-Modality Domain Adaptation (CrossMoDA) Challenge, and the challenge on Quantification of Uncertainties in Biomedical Image Quantification (QUBIQ). These were held jointly at the 23rd Medical Image Computing for Computer Assisted Intervention Conference, MICCAI 2020, in September 2021. The 91 revised papers presented in these volumes were selected form 151 submissions. Due to COVID-19 pandemic the conference was held virtually. This is an open access book

    Deep Learning in Medical Image Analysis

    Get PDF
    The accelerating power of deep learning in diagnosing diseases will empower physicians and speed up decision making in clinical environments. Applications of modern medical instruments and digitalization of medical care have generated enormous amounts of medical images in recent years. In this big data arena, new deep learning methods and computational models for efficient data processing, analysis, and modeling of the generated data are crucially important for clinical applications and understanding the underlying biological process. This book presents and highlights novel algorithms, architectures, techniques, and applications of deep learning for medical image analysis

    Texture and Colour in Image Analysis

    Get PDF
    Research in colour and texture has experienced major changes in the last few years. This book presents some recent advances in the field, specifically in the theory and applications of colour texture analysis. This volume also features benchmarks, comparative evaluations and reviews
    corecore