1,694 research outputs found

    The design of a turboshaft speed governor using modern control techniques

    Get PDF
    The objectives of this program were: to verify the model of off schedule compressor variable geometry in the T700 turboshaft engine nonlinear model; to evaluate the use of the pseudo-random binary noise (PRBN) technique for obtaining engine frequency response data; and to design a high performance power turbine speed governor using modern control methods. Reduction of T700 engine test data generated at NASA-Lewis indicated that the off schedule variable geometry effects were accurate as modeled. Analysis also showed that the PRBN technique combined with the maximum likelihood model identification method produced a Bode frequency response that was as accurate as the response obtained from standard sinewave testing methods. The frequency response verified the accuracy of linear models consisting of engine partial derivatives and used for design. A power turbine governor was designed using the Linear Quadratic Regulator (LQR) method of full state feedback control. A Kalman filter observer was used to estimate helicopter main rotor blade velocity. Compared to the baseline T700 power turbine speed governor, the LQR governor reduced droop up to 25 percent for a 490 shaft horsepower transient in 0.1 sec simulating a wind gust, and up to 85 percent for a 700 shaft horsepower transient in 0.5 sec simulating a large collective pitch angle transient

    Rotorcraft flight-propulsion control integration: An eclectic design concept

    Get PDF
    The NASA Ames and Lewis Research Centers, in conjunction with the Army Research and Technology Laboratories, have initiated and partially completed a joint research program focused on improving the performance, maneuverability, and operating characteristics of rotorcraft by integrating the flight and propulsion controls. The background of the program, its supporting programs, its goals and objectives, and an approach to accomplish them are discussed. Results of the modern control governor design of the General Electric T700 engine and the Rotorcraft Integrated Flight-Propulsion Control Study, which were key elements of the program, are also presented

    An exploratory investigation of the flight dynamics effects of rotor rpm variations and rotor state feedback in hover

    Get PDF
    This paper presents the results of an analytical study conducted to investigate airframe/engine interface dynamics, and the influence of rotor speed variations on the flight dynamics of the helicopter in hover, and to explore the potential benefits of using rotor states as additional feedback signals in the flight control system. The analytical investigation required the development of a parametric high-order helicopter hover model, which included heave/yaw body motion, the rotor speed degree of freedom, rotor blade motion in flapping and lead-lag, inflow dynamics, a drive train model with a flexible rotor shaft, and an engine/rpm governor. First, the model was used to gain insight into the engine/drive train/rotor system dynamics and to obtain an improved simple formula for easy estimation of the dominant first torsional mode, which is important in the dynamic integration of the engine and airframe system. Then, a linearized version of the model was used to investigate the effects of rotor speed variations and rotor state feedback on helicopter flight dynamics. Results show that, by including rotor speed variations, the effective vertical damping decreases significantly from that calculated with a constant speed assumption, thereby providing a better correlation with flight test data. Higher closed-loop bandwidths appear to be more readily achievable with rotor state feedback. The results also indicate that both aircraft and rotor flapping responses to gust disturbance are significantly attenuated when rotor state feedback is used

    Simulation Techniques for Design and Control of a Waste Heat Recovery System in Marine Natural Gas Propulsion Applications

    Get PDF
    Waste Heat Recovery (WHR) marine systems represent a valid solution for the ship energy eciency improvement, especially in Liquefied Natural Gas (LNG) propulsion applications. Compared to traditional diesel fuel oil, a better thermal power can be recovered from the exhaust gas produced by a LNG-fueled engine. Therefore, steam surplus production may be used to feed a turbogenerator in order to increase the ship electric energy availability without additional fuel consumption. However, a correct design procedure of the WHR steam plant is fundamental for proper feasibility analysis, and from this point of view, numerical simulation techniques can be a very powerful tool. In this work, the WHR steam plant modeling is presented paying attention to the simulation approach developed for the steam turbine and its governor dynamics. Starting from a nonlinear system representing the whole dynamic behavior, the turbogenerator model is linearized to carry out a proper synthesis analysis of the controller, in order to comply with specific performance requirements of the power grid. For the considered case study, simulation results confirm the validity of the developed approach, aimed to test the correct design of the whole system in proper working dynamic conditions

    An update of engine system research at the Army Propulsion Directorate

    Get PDF
    The Small Turboshaft Engine Research (STER) program provides a vehicle for evaluating the application of emerging technologies to Army turboshaft engine systems and to investigate related phenomena. Capitalizing on the resources at hand, in the form of both the NASA facilities and the Army personnel, the program goal of developing a physical understanding of engine system dynamics and/or system interactions is being realized. STER entries investigate concepts and components developed both in-house and out-of-house. Emphasis is placed upon evaluations which have evolved from on-going basic research and advanced development programs. Army aviation program managers are also encouraged to make use of STER resources, both people and facilities. The STER personnel have established their reputations as experts in the fields of engine system experimental evaluations and engine system related phenomena. The STER facility has demonstrated its utility in both research and development programs. The STER program provides the Army aviation community the opportunity to perform system level investigations, and then to offer the findings to the entire engine community for their consideration in next generation propulsion systems. In this way results of the fundamental research being conducted to meet small turboshaft engine technology challenges expeditiously find their way into that next generation of propulsion systems

    Optimal air and fuel-path control of a diesel engine

    Get PDF
    The work reported in this thesis explores innovative control structures and controller design for a heavy duty Caterpillar C6.6 diesel engine. The aim of the work is not only to demonstrate the optimisation of engine performance in terms of fuel consumption, NOx and soot emissions, but also to explore ways to reduce lengthy calibration time and its associated high costs. The test engine is equipped with high pressure exhaust gas recirculation (EGR) and a variable geometry turbocharger (VGT). Consequently, there are two principal inputs in the air-path: EGR valve position and VGT vane position. The fuel injection system is common rail, with injectors electrically actuated and includes a multi-pulse injection mode. With two-pulse injection mode, there are as many as five control variables in the fuel-path needing to be adjusted for different engine operating conditions. [Continues.

    Exhaust Recirculation Control for Reduction of NOx from Large Two-Stroke Diesel Engines

    Get PDF

    Development of an electronic control unit for the T63 gas turbine

    Get PDF
    Includes bibliographical references.Fundamental research has been undertaken at the SASOL Advanced Fuels Laboratory to investigate the effects of the chemistry and physical properties of both conventional and synthetic jet fuels on threshold combustion. This research was undertaken using a purpose built low pressure continuous combustion test facility. Researchers at the laboratory now wish to examine these effects on an aviation gas turbine in service for which “off-map” scheduling of fuel to the engine would be required. A two phase project was thus proposed to develop this capability; the work of this thesis embodies Phase I of that project

    Aircraft Turbine Engine Control Research at NASA Glenn Research Center

    Get PDF
    This paper provides an overview of the aircraft turbine engine control research at the NASA Glenn Research Center (GRC). A brief introduction to the engine control problem is first provided with a description of the state-of-the-art control law structure. A historical aspect of engine control development since the 1940s is then provided with a special emphasis on the contributions of GRC. With the increased emphasis on aircraft safety, enhanced performance, and affordability, as well as the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch (CDB) at GRC is leading and participating in various projects to develop advanced propulsion controls and diagnostics technologies that will help meet the challenging goals of NASA Aeronautics Research Mission programs. The rest of the paper provides an overview of the various CDB technology development activities in aircraft engine control and diagnostics, both current and some accomplished in the recent past. The motivation for each of the research efforts, the research approach, technical challenges, and the key progress to date are summarized
    corecore