13,474 research outputs found

    Neural Modeling and Control of Diesel Engine with Pollution Constraints

    Full text link
    The paper describes a neural approach for modelling and control of a turbocharged Diesel engine. A neural model, whose structure is mainly based on some physical equations describing the engine behaviour, is built for the rotation speed and the exhaust gas opacity. The model is composed of three interconnected neural submodels, each of them constituting a nonlinear multi-input single-output error model. The structural identification and the parameter estimation from data gathered on a real engine are described. The neural direct model is then used to determine a neural controller of the engine, in a specialized training scheme minimising a multivariable criterion. Simulations show the effect of the pollution constraint weighting on a trajectory tracking of the engine speed. Neural networks, which are flexible and parsimonious nonlinear black-box models, with universal approximation capabilities, can accurately describe or control complex nonlinear systems, with little a priori theoretical knowledge. The presented work extends optimal neuro-control to the multivariable case and shows the flexibility of neural optimisers. Considering the preliminary results, it appears that neural networks can be used as embedded models for engine control, to satisfy the more and more restricting pollutant emission legislation. Particularly, they are able to model nonlinear dynamics and outperform during transients the control schemes based on static mappings.Comment: 15 page

    Robustness and performance trade-offs in control design for flexible structures

    Get PDF
    Linear control design models for flexible structures are only an approximation to the “real” structural system. There are always modeling errors or uncertainty present. Descriptions of these uncertainties determine the trade-off between achievable performance and robustness of the control design. In this paper it is shown that a controller synthesized for a plant model which is not described accurately by the nominal and uncertainty models may be unstable or exhibit poor performance when implemented on the actual system. In contrast, accurate structured uncertainty descriptions lead to controllers which achieve high performance when implemented on the experimental facility. It is also shown that similar performance, theoretically and experimentally, is obtained for a surprisingly wide range of uncertain levels in the design model. This suggests that while it is important to have reasonable structured uncertainty models, it may not always be necessary to pin down precise levels (i.e., weights) of uncertainty. Experimental results are presented which substantiate these conclusions

    Learning for Advanced Motion Control

    Full text link
    Iterative Learning Control (ILC) can achieve perfect tracking performance for mechatronic systems. The aim of this paper is to present an ILC design tutorial for industrial mechatronic systems. First, a preliminary analysis reveals the potential performance improvement of ILC prior to its actual implementation. Second, a frequency domain approach is presented, where fast learning is achieved through noncausal model inversion, and safe and robust learning is achieved by employing a contraction mapping theorem in conjunction with nonparametric frequency response functions. The approach is demonstrated on a desktop printer. Finally, a detailed analysis of industrial motion systems leads to several shortcomings that obstruct the widespread implementation of ILC algorithms. An overview of recently developed algorithms, including extensions using machine learning algorithms, is outlined that are aimed to facilitate broad industrial deployment.Comment: 8 pages, 15 figures, IEEE 16th International Workshop on Advanced Motion Control, 202

    Active vibration damping of the Space Shuttle remote manipulator system

    Get PDF
    The feasibility of providing active damping augmentation of the Space Shuttle Remote Manipulator System (RMS) following normal payload handling operations is investigated. The approach used in the analysis is described, and the results for both linear and nonlinear performance analysis of candidate laws are presented, demonstrating that significant improvement in the RMS dynamic response can be achieved through active control using measured RMS tip acceleration data for feedback

    Control of a train of high purity distillation columns for efficient production of 13C isotopes

    Get PDF
    It is well-known that high-purity distillation columns are difficult to control due to their ill-conditioned and strongly nonlinear behaviour. The fact that these processes are operated over a wide range of feed compositions and flow rates makes the control design even more challenging. This paper proposes the most suitable control strategies applicable to a series of cascaded distillation column processes. The conditions for control and input-output relations are discusssed in view of the global control strategy. The increase in complexity with increased number of series cascaded distillation column processes is tackled. Uncertainty in the model parameters is discussed with respect to the dynamics of the global train distillation process. The main outcome of this work is insight into the possible control methodologies for this particular class of distillation processes

    Alpha-canonical form representation of the open loop dynamics of the Space Shuttle main engine

    Get PDF
    A parameter and structure estimation technique for multivariable systems is used to obtain a state space representation of open loop dynamics of the space shuttle main engine in alpha-canonical form. The parameterization being used is both minimal and unique. The simplified linear model may be used for fault detection studies and control system design and development

    Identification of linear multivariable systems from a single set of data by identification of observers with assigned real eigenvalues

    Get PDF
    A formulation is presented for identification of linear multivariable from a single set of input-output data. The identification method is formulated with the mathematical framework of learning identifications, by extension of the repetition domain concept to include shifting time intervals. This method contrasts with existing learning approaches that require data from multiple experiments. In this method, the system input-output relationship is expressed in terms of an observer, which is made asymptotically stable by an embedded real eigenvalue assignment procedure. Through this relationship, the Markov parameters of the observer are identified. The Markov parameters of the actual system are recovered from those of the observer, and then used to obtain a state space model of the system by standard realization techniques. The basic mathematical formulation is derived, and numerical examples presented to illustrate

    Space Structures: Issues in Dynamics and Control

    Get PDF
    A selective technical overview is presented on the vibration and control of large space structures, the analysis, design, and construction of which will require major technical contributions from the civil/structural, mechanical, and extended engineering communities. The immediacy of the U.S. space station makes the particular emphasis placed on large space structures and their control appropriate. The space station is but one part of the space program, and includes the lunar base, which the space station is to service. This paper attempts to summarize some of the key technical issues and hence provide a starting point for further involvement. The first half of this paper provides an introduction and overview of large space structures and their dynamics; the latter half discusses structural control, including control‐system design and nonlinearities. A crucial aspect of the large space structures problem is that dynamics and control must be considered simultaneously; the problems cannot be addressed individually and coupled as an afterthought
    corecore