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ABSTRACT

This paper presents a formulation for identification of
linear multivariable systems .from a single set of input-
output data. The identification method is formulated with
the mathematical framework of learning identification,
by extension of the repetition domain concept to include
shifting time intervals. This approach contrasts with
existing learning approaches that require data from
multiple experiments. In this method, the system input-
output relationship is expressed in terms of an observer,
which is mode asymptotically stable by an embedded
real eigenvalue assignment procedure. Through this
relationship, the Markov parameters of the observer are
identified. The Markov parameters of the actual system
are recovered from those of the observer, and then used
to obtain a state space model of the system by standard
realization techniques. The basic mathematical
formulation is derived, and numerical examples
presented to illustrate the proposed method.

INTRODUCTION

The aim of learning system identification is to
provide methods to improve identification of system
parameters as new data in the form of input-output
measurements are available. New information regarding
the system characteristics may come from multiple
experiments. For system identification of flexible
structures, multiple experiments are usually performed to
develop or improve a mathematical representation. Due
to structural complexity and data irregularities such as
slight non-linearities, inslrumentation errors, background
noises, and repetitive disturbances, multiple tests are used
to reduce the irregularity effects on the identified model
parameters. The conventional approach is to average data
sets from multiple experiments with the hope that the
averaged data will reduce the irregularity effects. In
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learning identification, new information from successive
experiments are used to effectively improve current
identification result. In fact, current work in learning
identification falls within this conceptual framework.

They require the availability of different input-output sets
of data from different experiments of generally short
duration. However, new information about the system
need not come from new experiments, but rather it may
be derived from a single experiment of extended duration.
This motivates the development of an identification
algorithm using a single set of input-output data.
Originally motivated by the learning problem, the
algorithm is derived using the mathematical framework
and techniques of learning control and system
identification, Refs. [1-9], and related in general concepts
to identification methods proposed in Refs. [10,11]. In
particular, this requires the extension of the concept of the
repetition domain to shifting time intervals.

In usual identification techniques, the system time
domain parameters are determined from input-output data.
In learning system identification, however, the parameters
of interest to be identified are the Markov parameters.
Once this step is completed, standard realization
procedures can then be used to realize the system time
domain parameters. This shifting emphasis on
identification of the Markov parameters offers some
advantages. First, there is no ambiguity in the dimensions
the Markov parameters. Second, in the learning
formulation, the Markov parameters are related to input-
output data by a simple linear relation, hence many
existing techniques can be applied. Third, for a given
linear system, the Markov parameters are unique and
invariant with respect to any coordinate transformation of
the state vectors.

In this paper, a treatment of this problem is presented
to identify a linear multivariable system in state space
format by first identifying its Markov parameters. From a
single set of input-output data, direct solution of the
system state space matrices is non-trivial for a general
system of completely unknown characters. However,
when additional information about the system is imposed,
the mathematical problem becomes simplified. For clarity
of exposition, identification procedures are presented for
the following three cases of increasing complexities.
First, the order of the system is known, and is equal to
the number of outputs. Second, the order of the system is
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not known, but the system is known to be asymptotically
stable. Third, the order is known, but no assumption on
the stability of the system is made. The resultant scheme
is re.cursive coupled with an eigenvalue assignment
procedure, and is based on techniques developed in the fwst
two cases. The algorithm has an embedded observer

structure wRh pole placcment. It is cmphasizrA here that
the role of the observer structure is not to provide
estimates of the system states for identification, but mthex
to provide by design a set of asymptotically stable auto-

regressive moving average equations whose parameters
can be identified. These parameters contain in them the
desired information about the actual system. The initial
assumption regarding the system order can be later
removed by an iterating process, or by knowledge of an
upper bound on the effective order of the system.

The Markov parameters of a linear system in state
space format are related to the system impulse response
functions which can be used in medal identification. From

the identified Markov parameters, the modal parameters of
the system such as natural frequencies, modal damping,

and mode shapes can be deduced by standard realization
procedures, e.g., the Eigensystem Realization Algorithm
(ERA), Refs. [12,13].

STATEMENT OF THE PROBLEM

Consider a general discrete multivariable linear
system expressed in state space format as

x(t+l) = Ax(k) + Bu(k)
(1)

y(k) = Cx(k)

where x e R", y e R q, u _ R'. The number of inputs
m, and of outputs q are known, the order of the system n
is in general assumed not known, and neither are the
system matrices A, B, C. Starting from some arbitrary,
possibly unknown initial state x(0), the system (1) yields
a sequence of outputs y(i), when driven by some known
sequence of inputs u(i-l), i = 1, 2, 3 .... for an extended
amount of time. The main objective of the problem is to
recover the set of Markov parameters of the system

CB, CAB ..... CAP-IB for a given value of p. For

purpose of identification, knowledge of a sufficient
number of the system Markov parameters is adequate to
deduce a state variable de_fiption of the system, hence
completely characterizes the system of interest.

MATHEMATICAL FORMULATION

First, the set of known input-output data is divided
into intervals of p time steps each. For i = 1, 2 ..... p, the

solution to (1) is

i-1

x(O = Aix(O) + _ A i*qBu(z) (2)
')=0

For the next interval, i = p+ 1, p+2 ..... 2p, the solution
is wri{ten as

i-(p÷ 1)

x(t _) = Ai'Px(p) + _ A i"°_+l)Bu(l;+p) (3)

¢=o

Introduce a repetition variable j, and a new time step

variable k, so that the general solution to Eq. (1) for the
first, second, and all subsequent intervals can be expressed
as

i-O't,+l )

x(i) = AiJPx(J'p) + _ A i'"qe+l)Bu(z+yp) (4)
¢-0

fori=jp+k,j=O,l,2 ..... k= 1,2 ..... p. Atanytime
step i = jp + k, the state vector x(i) is written as

x(jp+k) = xj_k) and x(jp) = xi(O ) (5)

and similarly for y(]p+k). Associated with each state
vector x(0 is an input vector u(i-l) which is also rewritten

in terms ofj and k as

u(i-1) = uj_k-l) (6)

Applying the definitions in (5) and (6) to (4), one obtains
the following description of the system in the repetition
domain

where

.gi+l = Axi(O) + P l_'+l (7)

A=[A IA';

[ °lp= BAB B . ".

APIB At'-2B B

using yj(k) = Cxj(k), the equivalent output description to

(7) is

where

Y4*l = CAxi+1 (0) + Po g/+1 (8)

2Z= [yr(1) yr(2) ... yr(p)]r

C=diag[C C ... C] eo=C' e
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eo _ o]CAB CB

CAPIB CAP2B ... CB

Note that in the repetition domain, the unknown sequence
of Markov parameters to be determined, CB, CAB. CAZB,
... appears naturally. One can make the following general
observations before proceeding to the respective
algorithms.

Equation (8), in a succinct form, relates the known
input-output data in terms of the system Markov

parameters, and necessarily the quantities CAxj÷I(O). If the

states xj+l(0) are known, then given a sufficiently long
sequence of input-output dam, subject to some appropriate
conditions on the input sequence, the system Markov
parameters can be uniquely recovered. In general, however,

the states xj+l(0)are not known. Equation (8) when
written for all available input-output data, relxesents a set

of under-determined equations, with the quantifies xj+_(O)
as additional unknowns. Therefore, the system Markov
parameters cannot be uniquely determined without
imposing additional constraints to the set of equations,
i.e., without assuming additional knowledge about the
system to be identified. In particular, we consider the
following ca._s.

If the order of the system is equal to the number of
outputs, and the system is observable, i.e., if C is square

and full rank, then with Ao= CAC _, the output
description (8) can be rewritten as

_+1 = Aoyi+l (0) + Pou.,_-i (9)

From Eq. (9) it is clear that subject to some usual
condition on the richness of input sequence, from a given
set of input-output data of sufficiently long duration, the
Markov parameters can be uniquely determined.

There are various methods that can be employed to
.solve for the Markov parameters from (9). Here, we are
particularly concerned with recursive algorithms.
Recursive algorithms offer some fundamental advantages
for this particular problem. Namely, they are efficient in
processing a large amount of data on-line. Furthermore,
rccursive methods are essentially approximation methods
to _lving the problem. As such they can be tailored to
solve for certain aspect of the problem without solving
the full problem as would be required by any exact
method, which is some cases, may require exact solution
to a difficult non-linear problem. To solve (9) recursively,
first let the rows of A 0, P0 be defined as

at(k)=[a(k.l),+t,l a(k-l),+t.2 ... a<k.l),+t.,f

pt(k)=[p(_-t),.t.i p(k.O,+l,2 ... P(k-l)n*t.mS,]r

where the subscripts on a and p denote the position of the
elements in Aoand Po respectively, I = 1, 2 ..... q, k = 1,
2..... p. The ink-dimensional input vector is defined as

/t,,d+l(k-l)=[uLj÷l(0) ... u,,.j÷l(0) ... um.j+l(k-1)] r

Making use of the above definitions, Eq. (9) can be
cxp_ as

ytj+l(k) = aT(k)yj+l(O) + pr(k)l_.j+l(k'l) (10)

for all (l,k) pairs. Equation (10) represents a set of single-
output, multiple-input models in the repetition domain.
Grouping the unknown parameters together, Eq. (10) can
be rewritten as

y,.m(k) = pf(k)_g.._+_(k-l) 01)

where

u_ = _.j+_(k-l)][g,(o) z T,j+l(k-1)

"kThe parameter estimates of Pt ( ) at repetition j, denoted

by pt_(k) can be updated recursively by various methods,
for example,

i) The Projection Algorithm:

• ÷T ^+ l

+T +

l+ u_.Ak-_)u_Ak-OJ

for all (l, k) pairs, 0 < aj < 2.

ii) The Least Squares Algorithm:

pt_() =pu-,(k)+ Rj.2(k)u_.,<k-O_pu(k)

I +T ^+ 1

^+ yt, j(k)- Rm,){k- l)p/,/-t(k)

a/,,j<k)= - +----7-_ "
1 + u_.,<_-l)Rj-2(_)_.j(k-1)]

+ 1 ÷r R k-Rj,(k)= R_._(k)- Rj__(_)a.,_(t-)u.,_(______________)_.2______()
+T ÷

R.x(k)= cff,_, for some large ct>0. In actual
implementation of this algorithm, covariance resetting
may be employed to speed up the convergence of the
parameter estimates.

3



Otherrecursivealgorithmscan be easilyincorporated
withinthisframework,and arenotconsideredhereforthe

moment. One can analyze the above algorithms to

establishthenecessaryconditionon theinputsequenceto

guarantee that the estimated parameters do indeed converge
to the true values. For the present development, another
class of problems where recursive approximation methods
can be used to recover the system Markov parameters is
considered.

Consider a special class of problems, where the
system matrix A is known to be asymptotically stable. In
particular, p can be chosen to be sufficiently large such

that A _ can be approximated to be zero for k _> p. Then

the sequence of Markov parameters CB, CAB, CA p B .....
CAPqB can be recovered by the following method. First,

Eq. (8) is rewritten here for clarity and convenience

_+I = CAxj+I (0)+ PoK/+l (12)

We seek to write an expression for xi+l(0) from (7). Note
that (7) can be rewritten as

_i= Axj._(0)+ P Ki (13)

which yields

xlQg)=aPxil (O)+[APIB ... AB B] iIJ (14)

Defining

P(P)=[AP-IB at"2B ... AB B]

and noting that xj(p) = x).l(0 ), Eq. (14) becomes

xj+t(0) = AVxj (0) + P(P)Ri _ P_)Ri (15)

after making the approximation A t' = 0. Substituting (15)
into (12) yields

(16)

Consider the product CAP(p)

GO'(p) =
ca]CA_

[Ae'IB:CA pa

CA t"J

An'2B ... AB B] (17)

I CAVB CA_'IB ... CA2B CAB ]

= CAPIB CAPB ... CASB CAZB
: : ,,, : :

CA_,,-IB CA_,-2B .., CA_'NqB CAPB

l O CAn'IB ... CA2B CAB ]

= 0 0 CAnqB ... CA2B
i : ... : :

0 0 ... 0 0

after neglecting all terms involving p or higher powers of
A. Then

[CAP(p) Po]=

OCAI-IB ... CA2B CAB CB 0 l

CAPqB ... CA2B CAB "'.0

"".... : : ! CBO

0 CAP'1B CAP2B ... CB 0

0 CAPqB ...... CB

Defining

P°(p)=[CAP"B ... CA2B CB] (18)

to be the matrix of Markov parameters to be identified,
Eq] (i6) thusbcc6m6s: :

÷
yj+_(k)=Po(p)_+,(k-1), k= 1,2 .....p (19)

where _q(k-l) is a mp-dimensional input vector defined

rt_;

_._(k-1) =

[,,:(k)l),• uj+_(0)u_+_(l)
T T

• .. uj+_(k-1)]

(2O)

To estimate Po(p) recursively, the rows of Po(P) can be

recursivcly updated in parallel. Let yt(k) denote the l-th

output at time step k, and Pt denote the column vector

formed by the l-th row of Po(p), Eq. (19) becomes

yt.pl(k) = p[ _+l(k-1) (21)

for I = 1, 2 ..... q. Each l-th row of Po(p) is now updated

from input-output data associated with the/-th output at
time step k, k = 1, 2 ..... p of repetition j+ 1, j+2 .....
The resultant identified parameters are smoothed both in
time and in repetition. Hence, the identification scheme
makes use of all available input-output data to arrive at
one single set of parameter estimates. Once the
identification is put into the form as in Eq. (21), a
recursive solution is simple, for example, the recursive

least squares estimate is

"* k "+ k + "+pti( ) = pt,i-l( ) + Ri-2(k)ai (k-l) Apt,i(k)

(k-1)pt.i.l(k)
^+

1 + Ik_T(k-l)Rj-2(k)llq+(k'l)

4



1
i+ r(t-1 +2(kM(k-1)J

Note that in the above algorithm, the identified system is
required to be asymptotically stable. In the following
development, this restriction will be removed.

Consider the system in Eq. (1). It has an observer of
the form

x(i+l)= A_ 0 + Bu(i)-M [Y(O"_(0]

ffi(A+MC)_x(i)+ Bu(O -My(O

Defining the state estimation error _(i) = x(i) - _0, the

equation that governs _(i) is

_(i+I)= (A + MC) x'(0 (23)

If M is chosen such that A +MC is asymptotically
stable, then the estimated slate will converge to the true
state as i tends to infinity. If the system (1) is observable,
then M may be chosen so as to place the eigenvalues of
A +MC in any desired (symmetric) configuration. The
above is a Luenberger observer, a well-known result.
However, in our problem, the system matrices A, B, C,
and hence M are not known. Multiplying C to both sides
of (22) yields

y(i+l) = CAx(O + CBu(i)- CMy(i) (24)

where for simplicity,

A= A +MC

If A-is asymptotically stable, then for large i, _(0 tends to
A

x(i), hence Y(0 tends to y(i), then Eq. (24) becomes

y(i+l) = CAx(i) + CBu(O- CMy(O

= c x(O + cB,,(O
(25)

where

-if= [ B -M ] and v(i) = [u(0]
[y{OJ

If A-is asymptotically stable, then by the method
developed above for asymptotically stable system, the
Markov parameters of the observer equation,

CB, CAB ..... CAP1B can be identified. This can be

easily seen by noting that from (22) and (25) for
asymptotically stable A and large i, the system in (22)
becomes

x(i+l) = Ax(i) + By(i)

Y(0 = Cx(0
(9.6)

which when compared to (1), A, B, v(i) play the same
roles as A, B, u(i), respectively.

It is noted here that since Eq. (26) is derived from
(22), hence it can be interpreted in terms of an observer
equation. But in fact it is an exact relation which always
holds true for any matrix M. Equation (26) can be derived
by simply adding and subtracting the product My(i) to the
right hand side of Eq. (1). Recall that if the system (1) is
observable, then there exists at least a matrix M such that

the eigenvalues of A can be assigned in any arbitrary
symmetric configuration. Such an M is not necessarily
unique, but this poses no restriction to the present
problem. In the following development, the additional
freedom introduced by the matrix M will now be used to
derive a recursive algorithm to identify the Markov
parameters of the system in (26), i.e.,

CB, CAB ..... C_'-_B, and at the same time place the

eigenvalues of A in desired asymptotically stable
locations. Note, however, that the identified parameters
are the observer system Markov parameters, but they will
be used to recover the desired actual system Markov
parameters. This will be done in later sections.

Applying the technique developed before for
asymptotically stable systemto the system in (26),
assuming for the moment that A is asymptotically stable,
yields the corresponding version of (19)

4.

yj+1(k)= Po(P)Y4+i(k+l),k = I,2.....p (27)

P'o(p)and _++t(k- 1) are defined as

...
and

(28)

r.,.: = (29)

T T T
[v:(k) ..-v:(p'1), U:I(0 ) Vj+I(i) "-- Vj+l(k-l)]

where

vf(k)=[uf(k) yf(k)] (30)

The eigenvalue assignment procedure can be de_rived, first

by noting that for desired (real) eigenvalues of A, we have
for some T

A= TIAT (31)
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wheze

A_

_,i 0

.Z2

0 _,,

O2)

Let _1, a.2..... a_ denote the desired eigenvalues of A to

be selected a priori. Then the product CA*B becomes

---k--
CA B = cr_ A _r_

03)
= C'AkB s

If the elemems of C" and B° are written explicitly as

kcq_ cq2.. cq.j

b_, & ...

B'= b_, bh •..
. . .

ii,

b.l b.'2 ---

bl,. -m_l -m_2 -.-

0f,. -m_l -m;2 -.-

: • : ",

b:,m -m,:l -m_2 ...

-m_

-m_¢

-m.'q

then in general, the l-th row of the matrix product in (33),

denoted #t<_),is equal to

-i!_ = r, ^i c,io. , , ... , ,
i=I i=I /-I

- 2, c,,m,,.-Z2,'c,:m;2,... ,- ,_:c,;m;]
i=l i=l i=l

Let the l-th row of Po(p) of equation (27) be denoted as
--T = =

pl, then the/-th output at time step k of repetition j+l,
denoted by ytj÷l(k), can be expressed as

yt.j+l(k)= -fiTVj++l(k-l) (34)

where

Note that each _k) is a mw vector, each with m+q sums•

Each sum has n terms. Together each _[k) has n(m+q)

terms of the products c_b;kand ci;m;t. First, write for m
inputs and q outputs

ur(k)=[u,.#) u2.j(k) ... u.._(k)]

and

YT(k)=[y,.,(k)y2.,qO... y,.#)]

Note that

_ ,_p-! * *Ul,j(k) A i ctibll =

i-I

F r"l
It>:, '1

Lx:' ]

u,.#)

With the following simplifying definitions of the
unknown parameters

at, = [ c_b_, c;b_ ... ct*,,b,:,]

J_=[c_tm; c_m_ ... ct*,,m=,]

r=l,2 ..... m; s=l,2 ..... q

and a vector of the assigned eigenvalues

(35)

Equation (34) can then can be expressed as

yt.j+t(k) =

Fl,-I k.1 ]
a,,_ Z x(_""'u,.J< _)+ Z ;t(__"u,._,_(_)

fffi k _= 0

-p-I k-I ]
+ a_ E x(_"+"%_.,<_)+E x(__"u=.;÷,(_)

xf k tr=O

T p-I k-1 1+ at,, Y. X(k"*"Ou,._IT)+ _ _.¢_"'u,.._+_(_')
J_'ffi k _= 0

p-I k-I ]
. fir y. /i(_-.w.,)y,,j(z)+ _ /l.(t-.-,)y,,j÷_(Z)

_r-k x=O

"p-I k-I ]
• =k TffiO

-/IT X(_-'÷_%,X_) + 5". x(_-"Uyq._,(_)
k _-0

*;" ...a.""]T <36>



or

yt.j+,(k) =

¢-I L_-k ,-o

_=1 f-o

This equation can be simplified further by making the
following definitions

P'! k-!

¢,,.j÷,(k-O= y_,,,_(_"_PUu,.j(t)+_ X(_"')u,._+,(O
1"=k f-0

p-I k-'

I//,. j+l (k- l ) -- E _'(k"c'P'1)Ys../'(T)4- E _'(k'¢'l)ya.j+l(T)

_= k T-O

Then it becomes

T

ytj+t(k) = a_ 0,,i+,(k-1) + .-- + at., ¢.,/+1(k-1) (37)

- .....pr V/,.,.,(k-l)

...

¢_.b,,(k-I)

_m,j+l(k'|)

V/_,_._(k-l)

Wq,_._(k-l)

By making obvious definitions for 9' r, and _÷,(k-l), the
above equation becomes simply

y,,/÷t(k)= 9'r 08)

for 1 = 1, 2..... q. The above set of equations is in linear
form, with unknown (time-invariant) observer parameter

vector Ytand known "input" vector/_+l(k-l), therefore 9't
can bc solved for in one step, or recursively. Any
appropriate method to solve linear equations can be used.
For example, the recursive least squares solution to (38)
can be written down immediately for the I-th row of

C*AkB *, which corresponds to the I-th output, as

"_.,(k)= _t._.,(k)+ ej.2(k)V,(k-Oa_.j(k)
(39)

[R_-2(k)lXk-l)_r(k-l)Rj.2(k)1

.;_2(k)LgT ]

The above algorithm in (39) identifies the observer
parameters 9't which consists of an, an ..... at,,, fin,

fit2 ..... flt¢. Each an, ctt2, fit,, flrz .... in turn contains
certain products of the elements of C" and B', e.g.,

c_b_n, c_m_, ..... These products together with the
assigned eigenvalues _, 22 ..... _, can be used to
construct the I-th row of the observer Markov parameters

CAlB. Thus any row of the observer Markov parameter

for any given k can be computed. Hence a complete set of

the parameters CB, CAB ..... C_' tB can be identified.
Furthermore, note that Eq. (38) is true for all k = 0, 1, 2,
.... p; and j = 1, 2, 3.... hence the identified 7_,which is
then used to recover the l-th row of CA_B is smoothed
over all k and j. Note that Eq. (27) is simply an ARMA
model of the system, and the observer Markov parameters
are precisely the matrix coefficients of this ARMA model.
Through the embedded eigenvalue assignment procedure,
the ARMA model is made asymptotically stable by
design. It is the stabilizing property of this model that
allows a straight forward application of existing parameter
estimation techniques to identify its matrix coefficients.
What remains to be done is to recover the actual Markov
parameters of the open loop system from these identified
matrix coefficients.

In the following a procedure to recover the actual
system Markov parameters is presented for the general
case of multiple-input, multiple-output systems. First,
recall that A = A +M C , B = [B, -M ], and the Markov
parameters of the observer system are now known from
the identification algorithm developed above. For ease of
presentation, the following definitions are made

Yo= [ . -CM]

(40)

and similarly for Y2, Y3 .... From the first equation in
(40), the first Markov parameter of the actual system,
Yo = CB, is simply

ro=

Next, consider the product CA B

C'A B=C(A + MC) [B , -M ]

=[CAB + CMCB , -(CAM +CMCM)]

7



Hence, the second system Markov parameter Y1 = CAB
can be computed as

Y1 = CAB

= _111) . _oo2)yo

(42)

To obtain an expression for Y2 = CA2B, consider the

product =

• CA _'ff= C(A+MC) 2 [B ,-M]

Thus

.--(1)
Y2 = C(A + MC)2B

= CA 2B + (CM)CAB + (CAM + CMCM)CB

ner'tce

Y2 = CA 2B

= _21)+ _oo2)yl + _12)yo

(43)

w

Similarly, an expression for Y3 can be obtained from Y3
as

Y3 = CA 3B

= 3 + leo 1"2+ _222)y0

(44)

By induction, the general solution for the actual system

Markov parameters Yt = CAkB can be written as a
convolution product of its previous values and the
Markov parameters of the observer system as

Yk = CA _B
(45)

i=O

Once the Markov parameters are identified, a

realization procedure such as ERA can be applied to
obtain a realization of the system matrices. Physical
aspects of the model such as natural frequencies, damping
ratios, mode shapes can then be found.

EXAMPLES

In this section numerical examples are presented to
illustrate the above developed identification algorithm.
Recall that in this formulation, for the multivariable case,

all the couplings between the outputs are expressed in the
"input" vectors. Hence for each output, the multiple-input
multiple-output (MIMO) problem is treated as a multiple-

input single-output (MISO) problem. The results are then
combined for MIMO identification. Multiple-input single-
output problems, however, are essentially similar to
single-input single-output (SISO) problems, therefore the
algorithm can be best illustrated by first considering the
SISO case.

EXAMPLE 1: Consider a fourth-order single-input single-
output system in observable canonical form driven by a
random input sequence

f °A 0 0 -0.110| B= ,
I 0 -0.I10]'

0 0 1 0.000 J 1

C= [0 0 0 1]

The first 30 Markov parameters are to be identified. The

number of time step in each interval is thus chosen to be
p = 30. With a 90-time step input-output history, this
results in 3 available repetitions for learning. In this

example, the eigenvalues chosen are +0.6 and 4-0.7. In
fact, any real, distinct value 2i with magnitude less than

one can be used as long as 2_' is sufficiently small to

allow for accurate identification. In this example, the
standard least squares method is employed, and
convergence of the identified observer parameters is shown
in Figure 1. With these parameters, the observer Markov
parameters are constructed, and then used to recover
correctly the system Markov parameters. This is shown in
Table 1.

EXAMPLE 2: The algorithm is applied to identify a state
space model of a mass-spring-dashpot system. This is a
sixth-order system with three inputs and three outputs
with the discrete-time system matrices given as

[- 0.9691 0.0154 0.0001
|0.0154 0.9690 0.0155

A = | 0.0000 0.0077 0.9768
/-0.2817 0.1395 0.0009
| 0.1401 -0.2838 0.1412
L 0.0005 0.0699 -0.2122

0.2120 0.0014 0.0000]
0.0014 0.2139 0.0014 /
0.0000 0.0007 0.2127 /
0.9458 0.0180 0.00011
0.0180 0.9134 0.0182 /
0.0000 0.0091 0.95443

Vo.o232
10.0001

a - / o.oooo
-/0.2120

/o.oo14
LO.O000

0.0001 0.0000-
0.0233 0.0001
0.0000 0.0232
0.0014 0.0000
0.2139 0.0014
0.0007 0.2127-

,C= 1 0 0 0
0100

: 7 : : ±

The first twenty five Markov parameters are to be

identified, thus p is chosen to be 25. Using a single time
history of 100 time steps under random input excitation,
this yields four repetitions for learning. Assuming for the
moment, the true order of the system, n = 6, is known.

The eigenvalues for the observer are placed at 4-0.2,

4-0.3, and 4-0.4. The observer equation parameters
corresponding to each output are first identified, and then
the results combined to recover the actual system Markov

parameters. Figure 2 shows the convergence of some
arbitrarily selected observer parameter estimates
corresponding to the first output. Results for the two

• 8
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remaining outputs are similar, and not shown here. The
algorithm correctly identifies all desired Markov
parameters, each is a 3 x 3 matrix.

The Eigensystem Reali_tion Algorithm (ERA) is
then applied to decompose the identified Markov
parameters to obtain a set of realized system matrices
which is equivalent to the set (A, B, G') above. They are
listed here in that order as follows.

0.9971 0.0561 0.0238 0.0606
-0.0553 0.9406 0.1879 -0.1115
-0.0357 -0.1762 0.9878 -0.0341
-0.0497 0.1321 0.0173 0.9725
0.0113 0.0232 -0.1827 -0.2027

-0.1178 0.0050 -0.0703 0.0326

-0.0049 0.1166 ]
-0.0291 0.0289 /
0.1757 0.0753 /
0.2365 -0.0193 |
0.9207 0.0923 |
-0.1105 0.9600.1

0.2015 0.2770 0.2140"]
-0.1835-0.01380.3051|
0.0380-0.1269 0.2732/
0.2712 0.0430-0.1038/
0.1925-0.20850.0613|
0.1514 0.2515 0.1813J

[0.1804 -0.2296 0.2651 -0.0293-0.1461-0.1934]
|0.2757 -0.1481 -0.1093 -0.3034 0.1177 -0.1246 /
t0.2309 0.2355-0.1408 0.1200 0.0625 -0.2810.1

Now, consider the identification algorithm used in
Example 2, but this time the system order is assumed
incorrectly. First, the system is over-estimated to he of

eighth-order. This calls for two additional eigenvalues in
the algorithm, here chosen to be -t-0.25. Note that since

the assumed order of the system is higher, there are more
parameters to be identified. However, at the final step, the
algorithm correctly identifies the true order of the system
and recovers all desired Markov parameters of the open
loop system. This means that over-parametedzation does
not affect the final result. Second, the system is under-
estimated to be only of second-order. This reduces the

number of parameters to he identified substantially. Yet,
again, the true order of the system and all the Markov

parameters are recovered correctly at the final step, This
indicates that under-estimation of the system order does
not lead automatically to incorrect identification. Correct

results are also obtained when the order of the system in
this example is under-estimated to be 5, 4, or 3. The
algorithm fails when the order is assumed to be 1, which

is obviously an erroneous over-simplification. The
identified observer parameters are different under different

order assumptions, yet they yield the same result in the
final reconstruction of the actual system Markov
parameters.

EXAMPLE 3: In the absence of noise, the identified
values are found to be practically identical to the actual
values. In the deterministic theory, this error can he made

arbitrarily small simply by choosing p to be sufficiently
large, and the eigenvalues _,i sufficiently small such that

the approximation in deriving Eq. (27) is valid. With
regard to identification accuracy in the presence of noise,
more effective recursive identification methods, e.g., the

instrumental variable method, can he used to replace the
standard least squares method at one step in this
identification procedure. For example, consider the case in
Example 1. When the output data is corrupted by about
12% measurement noise, the standard recursive least
squares method leads to biased results which can be
corrected by using the instrumental variable method
instead. Figure 3 shows this improvement in the accuracy
of some arbitrarily selected identified observer parameter
estimates.

CONCLUSIONS

This paper formulates an algorithm for identification
of linear multivariable systems from a one set of input-
outputdata. Instead of identifying the system directly, the
proposed scheme identifies an observer for the system,
whose poles can be assigned by an embedded real
eigenvalue assignment procedure. Recursive techniques
are used to estimate the matrix coefficients of an auto-

regressive moving average model formed from this
observer. These matrix coefficients are precisely its
Markov parameters. From the identified observer Markov
parameters, the true system Markov parameters are
recovered through simple algebraic relations, and then
used to obtain a realization of the system of interest. For
modal identification, the modal parameters such as natural

frequencies, modal damping, and mode shapes of the open
loop system can then be found. Preliminary results
indicates that the deterministic algorithm is fast and
accurate. Stochastic aspects of the procedure is currently
under investigation.
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APPENDIX

Table 1: Identification of Markov Pararaeter¢ of a Single-Input

Single-Output System

IDF/CFIFIED
OBSERVF_R
PARAMETERS

-10.1021
7.3337

10.0710
-6.3025
-3A628
2.6168
3.7143

-2.8682

RECONS'rRLICIED IDF3qTIFIED ACTUAL
OBSERVER MARKOV MARKOV
MARKOV PARAMETERS PARAMEIERS PARAMEI'ERS

1.0000 0.0000 0.0003 0.0003
1.0000 -0.9600 -0.0005 -0.0005
0.8499 -0.1100 -0.0012 -0.0012
1,8500 -0.9446 -0.0015 -0.0015
0.5460 -0.0935 0.0000 0.0000
1.3961 -0.6336 0.0023 0.0023

0.3142 -0.0601 0.0030 0.0030

0.8603 -0.3719 0.0031 0.0031
O. 1707 -0.0346 -0.0022 -0.0022

0,4850 -0.2044 -0.0080 -0.0080
0.0897 -0.0188 -0.0062 -0.0062

0.2605 -0.1081 -0.0051 -0.005 !
0.0461 -0.0099 0.0114 0.011,1
0.1359 -0.0558 0.0239 0.0239
0.0234 -0.0051 0.0077 0.0077
0.0695 -0.0284 0.0054 0.0054

0.0117 -0.0026 -0.0,122 -0.0422
0.0351 -0.0143 -0.0652 -0.0652
0.0059 -0.0013 0.0135 0.0135
0.0 i 76 -0.0071 O.00(Y) 0.00(F)

0.0029 -0.0006 0.1331 0.1331
0.0088 -0.0035 O. 1654 O. 1654
0.0014 -0.0003 -0.1519 -0.1520
0.0043 -0.0018 -0.0079 -0.0079
0.0007 -0.0002 -0.371_7 -0.3787
0.0021 -0.00(0) -0.4029 -0.4029

0.O(X)3 -0.0(Oi 0.7800 0.7800
0.0011 -0.0004 -0.1100 -0.1101
0.0002 -0.0000 1.(KK_ 1.(K)O0
0.0005 -0.0002 1.0000 1.0000
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