32 research outputs found

    Parameter Identification of Image Models by the Recursive Maximum Likelihood Method

    Get PDF
    This paper considers the problem of identifying the blur parameters of the observed image. It is assumed that the original image is a sample from the homogeneous random field described by a two-dimensional (2-D) semicausal model, and that the point spread function (PSF) characterizing the image blur is symmetric. It is also assumed that the observation noise is negligibly small. By applying the discrete sine transform, we derive a set of nearly uncorrelated ARMA models, which are of non-minimum phase, for the blurred image. Although all-pass components of the MA part of the models can not be estimated, we show that the parameters of the non-minimum phase MA part can be restored by exploiting the fact that the PSF is symmetric. We develop a new algorithm for identifying the blur parameters of the image model from the MA parameters estimated by the recursive maximum likelihood (RML) method. Simulation studies are also included to show the feasibility of the algorithm

    Blur Identification Based on Higher Order Spectral Nulls

    Get PDF
    The identification of the point spread function (PSF) from the degraded image data constitutes an important first step in image restoration that is known as blur identification. Though a number of blur identification algorithms have been developed in recent years, two of the earlier methods based on the power spectrum and power cepstrum remain popular, because they are easy to implement and have proved to be effective in practical situations. Both methods are limited to PSF\u27s which exhibit spectral nulls, such as due to defocused lens and linear motion blur. Another limitation of these methods is the degradation of their performance in the presence of observation noise. The central slice of the power bispectrum has been employed as an alternative to the power spectrum which can suppress the effects of additive Gaussian noise. In this paper, we utilize the bicepstrum for the identification of linear motion and defocus blurs. We present simulation results where the performance of the blur identification methods based on the spectrum, the cepstrum, the bispectrum and the bicepstrum is compared for different blur sizes and signal-to-noise ratio levels

    Iterative methods for image deblurring

    Full text link

    A recursive algorithm for maximum likelihood-based identification of blur from multiple observations

    Full text link

    Two-dimensional recursive parameter identification for adaptive Kalman filtering

    Get PDF
    Includes bibliographical references (page 1081).This paper is concerned with the development of a 2-D adaptive Kalman filtering by recursive adjustment of the parameters of an autoregressive (AR) image model with non symmetric half-plane (NSHP) region of support. The image and degradation models are formulated in a 2-D state-space model, for which the relevant 2-D Kalman filtering equations are given. The recursive parameter identification is achieved using the extension of the stochastic Newton approach to the 2-D case. This process can be implemented on-line to estimate the image model parameters based upon the local statistics in every processing window. Simulation results for removing an additive noise from a degraded image are also presented

    Restoration of motion blurred images.

    Get PDF

    A recursive soft-decision approach to blind image deconvolution

    Full text link

    Restoration of Atmospheric Turbulence Degraded Video using Kurtosis Minimization and Motion Compensation

    Get PDF
    In this thesis work, the background of atmospheric turbulence degradation in imaging was reviewed and two aspects are highlighted: blurring and geometric distortion. The turbulence burring parameter is determined by the atmospheric turbulence condition that is often unknown; therefore, a blur identification technique was developed that is based on a higher order statistics (HOS). It was observed that the kurtosis generally increases as an image becomes blurred (smoothed). Such an observation was interpreted in the frequency domain in terms of phase correlation. Kurtosis minimization based blur identification is built upon this observation. It was shown that kurtosis minimization is effective in identifying the blurring parameter directly from the degraded image. Kurtosis minimization is a general method for blur identification. It has been tested on a variety of blurs such as Gaussian blur, out of focus blur as well as motion blur. To compensate for the geometric distortion, earlier work on the turbulent motion compensation was extended to deal with situations in which there is camera/object motion. Trajectory smoothing is used to suppress the turbulent motion while preserving the real motion. Though the scintillation effect of atmospheric turbulence is not considered separately, it can be handled the same way as multiple frame denoising while motion trajectories are built.Ph.D.Committee Chair: Mersereau, Russell; Committee Co-Chair: Smith, Mark; Committee Member: Lanterman, Aaron; Committee Member: Wang, May; Committee Member: Tannenbaum, Allen; Committee Member: Williams, Dougla

    Motion deblurring of faces

    Get PDF
    Face analysis is a core part of computer vision, in which remarkable progress has been observed in the past decades. Current methods achieve recognition and tracking with invariance to fundamental modes of variation such as illumination, 3D pose, expressions. Notwithstanding, a much less standing mode of variation is motion deblurring, which however presents substantial challenges in face analysis. Recent approaches either make oversimplifying assumptions, e.g. in cases of joint optimization with other tasks, or fail to preserve the highly structured shape/identity information. Therefore, we propose a data-driven method that encourages identity preservation. The proposed model includes two parallel streams (sub-networks): the first deblurs the image, the second implicitly extracts and projects the identity of both the sharp and the blurred image in similar subspaces. We devise a method for creating realistic motion blur by averaging a variable number of frames to train our model. The averaged images originate from a 2MF2 dataset with 10 million facial frames, which we introduce for the task. Considering deblurring as an intermediate step, we utilize the deblurred outputs to conduct a thorough experimentation on high-level face analysis tasks, i.e. landmark localization and face verification. The experimental evaluation demonstrates the superiority of our method
    corecore