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ABSTRACT

Image restoration is an important part of any image 
understanding system. One of the most common source of 
degradation is due to motion blur and focus blur. Valuable 
information contained in blurred images can be extracted 
only if these blurs are successfully removed.

This thesis deals with the problem of restoring images 
blurred by linear spatially invariant rigid body motion 
blur. In this thesis first a review of important techniques 
for restoration of blurred images is given. It is shown that 
the majority of the restoration techniques require a priori 
knowledge of certain parameters in their degradation model 
to yield successful results. Therefore the robustness of any 
algorithm depends on its success under the wrong estimate 
of these parameters. This thesis discusses various methods 
to extract the value of the blur parameters in three 
domains, namely, spatial, frequency and cepstral domain.

In this thesis an algorithm based on a reverse mapping 
technique is developed to restore motion blurred images. 
Also presented are details of issues Involved in the reverse 
mapping algorithm along with the advantages and
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disadvantages o£ the technique. The proposed algorithm is 
then used on a variety of motion blurred Images to 
demonstrate its usefulness and robustness.
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CHAPTER I

INTRODUCTION

In recent decades with the advent of high resolution 
cameras and digital computers, the use of visual information 
has become important and possible in many scientific 
applications. The speed and accuracy of a digital computer 
makes it possible to interpret this data reliably. The 
decision making can be done by a digital computer or by a 
human. This visual information is in the form of two 
dimensional digital images. Some examples of the application 
of digital imagery are crop prediction, satellite tracking, 
robotics, medicine etc.

This use of digital images, in a decision making process 
has made it neccesary to acquire an ability to accurately 
Identify objects in the images. Due to various factors in 
nature, these images are often blurred making identification 
of objects and hence interpretation difficult. Scientists 
have thus given importance to image restoration as an 
integral part of visual interpretation. Blurs are a very 
prominent class of image degradations. This thesis deals 
with restoring images blurred by relative motion between the 
object and the camera.

- 1-
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In the next section, the problem of restoring images 
blurred by motion is defined. The sources and different 
types of motion blurs are discussed in Section 1.2. The
Impulse matrix is studied in section 1.3. The cepstrum
domain is studied in Section 1.4. Finally a brief literature
survey of image restoration techniques is done in Section
1.5.

1.1 Problem Definition

The problem tackled in this thesis is to obtain the 
original image, once the image degraded due to motion is 
given. This degradation can be treated as a filter for 
nearly all the motion blurs. As shown in Figure 1, the 
degraded image g(x,y) is assumed to have been obtained, by 
passing the original image f(x,y) through the motion blur 
filter H, in the presense of the additive noise n(x,y). 
The degraded image is restored by implementing techniques 
that are known to succeed on such filters. This can also be 
stated as determining the mathematical operation to be 
performed on the degraded image to get the original image. 
Figure 2 shows an original image of a chess board with 
the corresponding degraded Image. This was obtained by 
passing the original image through a computer simulated 
motion blur filter, in the absence of noise.

The characteristics of this filter depend upon the type
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of motion blur. The sources and types of motion blur are 
discussed in the next section. This thesis studies linear 
spatially invariant rigid body motion blur. As shown in 
Figure 1, noise is assumed to be additive. In this case the 
filter is best denoted by a convolution model as in 
Equation ( 1-1 ). This gives the mathematical definition of 
the motion blur.

The convolution model is one of the most widely used for 
motion blurs. Equation ( 1-1 ) gives the continuous 
convolution model for a two dimensional motion blur as in
U ]  - [17], [25], [31], [33] - [36].

00 00

g (x,y) ■ J J h (a,fl) f (x-o,y-B) dads + n (x,y)
-* -«   ( 1-1 )

Where :
g (x,y) - the degraded image,
f (x,y) - the original image.
h (a,A) - the impulse response of the degradation

filter, also called the point spread 
function ( PSF ) of the filter, 

n (x,y) - the additive noise.
The model given by Equation ( 1-2 ) Is a discrete 

equivalent for the digital computer as in [1]- [7], [11], 
(1*1, [17], [34] - [36]. Since the Impulse response for
motion blurs is finite in nature, the limits of integration
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n(x,y)
4

f(x.y)

(a) The Blur Modal

9(x,y) 2(x.y)

(b) The Restoration Modal 

Figure 1. The Motion Blur Modal.

Where :
g (x,y) is the degraded image,
f (x.y) is the original Image.
2 (x,y) is the estimate of the original inage.
H is the Motion Blur filter.
H is the Restoration f liter*.

n (x,y) is assumed to be zero.
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(b)

figure 2. A  Computer Simulated Motion Blur Image.

(a) Tha original image.
(b) Tha blurred image.
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are modified to i M.

H M
9 (x,y) = X  X  h (i,j) f (x-i,y-j) + n (x,y)

i=-M j=-H   ( 1-2 )
In Equation ( 1-2 ) all the notations are discrete 

equivalents of Equation ( 1-1 ). These discrete samples are 
called pixels.

The digital convolution is implemented on computers in 
the form of matrices as in [2] - [10], [13], [14], [18]. The 
discete samples are converted into matrix formats as 
follows.

[ g ] * [ h ] [ f ] + [ n ]   ( 1-3 )
Where :

[ g ] - is a matrix of order N x N representing the
degraded signal.

[ f ] - is a matrix of order H x N representing the
original signal.

[ h ] - is the impulse matrix of the order N x H.
[ n ] - is a matrix of order N x N representing noise.

Here M > N, i.e., a loss of information has taken place. 
This also means that the Impulse matrix is singular. Thus 
Image restoration can be defined as the extraction of this 
lost information.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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1.2 Sources and Types of Motion Blurs

An optical system is defined as a system consisting of 
the camera tracking the object(s) with a transparent medium 
in between them. Images get degraded due to imperfections in 
any part of this optical system.

Blurs are one of the degradations resulting from an 
imperfect camera tracking ( motion and focus blurs ). Other 
sources of degradations are grain noise or over/under 
exposure of film. The image degradations due to Imperfect 
objects Include sun photography, sky and star's images, 
nuclear reactor core, snow gaze, etc. Image degradations due 
to Imperfect medium are underwater photography, fog, 
atmospheric turbulence, etc.

Camera errors mostly give rise to linear image 
degradations. Image degradations due to object errors are 
both linear and non linear. Image degradations due to the 
medium are mostly non linear.

Motion blurs are caused by a relative motion between an 
object(s) being photographed and the camera. There is a 
different degradation for each type of relative motion. The 
main types of motions are translation along the plane 
perpendicular to the optical axis, translation parallel to 
the optical axis ( assumed to be the z axis ), rotation
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about any random axis and any combination of the above. 
Motion blur Is classified into different types based on the 
source of the motion blur. In this section the types 
related to this thesis are discussed.

Motion blurs can be classified as spatially variant and 
spatially Invariant blurs. This classification depends upon 
the co-ordinate system used. It also depends upon the 
spatial discretization formats which are rectangular, 
triangular and hexagonal format as shown in Figure 3. This 
thesis uses only the cartesian co-ordinate system ( square 
discretization ). The orthogonality of this system has made 
it an universally accepted format for image discretization. 
Images used in this thesis are in the form of two 
dimensional data matrix with each location being a pixel 
element.

Motion blurs are also classified as linear blurs 
or non linear blurs. A majority of motion blurs are 
linear transformations of the original image pixels into the 
degraded image pixels. The exceptions take place due to the 
non linearities of the film response and a non planar 
structure of the object.

The film response of a typical film is given by the 
Hurter-Drlffield curve given in Figure 4. The Hurter- 
Driffield curve plots the film response ( logarithm of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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(a) Rectangular Format

(b) Triangular Format.

(c) Hexagonal Format.

figure 3. Spatial Domain Discretization Formats.
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film response

shoulder

toe

logarithm of exposure

Figure 4. Hurter-Driffield Curve.
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ratio of the incident light intensity to the transmitted 
light intensity ) and the logarithm of the exposure ( light 
energy per unit area ). The upper and the lower regions of 
the curve are called the shoulder and the toe respectively. 
The linear region is in between the toe and the shoulder. 
The slope of the linear region is called the gamma of the 
curve. The film response is linear only in the gamma region, 
as stated in [1] and [34].

Non linearities due to the non planar structure of the 
object are best defined by irradiance R, i.e., the light 
energy flux incident on an infinitesimal surface element 
dA, as follows. Ballard et al. [1] have proved that this is
a source of non linearity due to the variations of the off
axis angle Q ( see Figure 5 ) of the object.

R = K Co s 4(Q) ........... ( 1-4 )
Where

K : is a constant depending upon the focal
length, the surface area of the lens and the
distance between the lens and the object.

Q : is the off axis angle as in Figure 5 .
R : is the irradiance, i.e., the light energy flux

Incident on an infinitesimal surface element dA.
In this thesis the off axis angle Q is assumed to be 

constant. This is based on the assumption that the object 
planar and the camera-object distance is large compared
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lens

non
planar
object

Figure S. An Xaage Forming System.
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to the size of the object.

Motion blur can also be one involving a rigid body even 
if there are multiple objects. Silverman et al. [11], 
[12], [13] defined rigid body motion blur as, "if the motion 
is such that the object always shows the same face towards 
the imaging system and the object image distance remains 
constant, then the object appears at each Instant as a 
translated or rotated version of what is termed as the 
object plane. Thus the motion may be interpreted as a 
relative motion and translation of two constant distance 
Parallel planes - the image plane associated with the 
imaging system and the object plane associated with the 
object. The Intensity at each point of recorded image 
( Pixel ) is a combination of intensities of the several 
object plane points passing beneath that point during the 
exposure".

L»3 The Impulse Matrix

The problem of deblurring using a digital computer 
Involves the implementation of blur filter as a matrix, 
called the Impulse matrix ( [ h ] in Equation ( 1-3 ) ). In 
this section the impulse matrix for a linear spatially 
Invariant rigid body notion blur is studied.

. V - ; _ '

The Impulse matrix for any linear motion blur filter can

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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always be expressed In the form of a Toeplitz matrix as In 
[1]* [2], [11]/ [25]/ [34]. But for a general linear motion 
blur, Toeplitz matrix has a very high order [1] and [34]. In
the case of a rigid body motion blur the order of the
Impulse matrix can be significantly reduced.

The impulse matrix denotes the matrix equivalent of the 
blur filter in the simplest form possible. It is the most 
important information involved in the deblurring the motion 
blurred image. Silverman et al. [11] - [13], Sondhi [2],
Trussell et al. [14] - [16], Harris [3] - [4] and Horner [5] 
~ [6] have proved that in the case of a linear and 
spatially invariant rigid body motion blur, the Impulse 
matrix is always singular. This means that a loss of
information has taken place, as shown in [2], [14] - [18].

Loss of Information can also be visualized as a lack of 
sufficient equations to solve for original image. Equation 
( 1-3 ) shows that there are N 2 equations to solve for N x H 
variables ( M > N ). In certain other cases of motion blur 
like z directional motion, the original set may consists of 
Ml x H2 but the loss of information still takes place in all 
these cases of motion blur, as proved in [2], [11], [12], 
[16].

The ease with which the lost information can be
extracted depends upon the set of equations provided by
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Equation ( 1-3 ). This implies that the most important 
factors in deblurring are the impulse matrix and the 
presense of noise.

Depending on the type of motion blur, the impulse matrix 
is classified as spatially invariant point spread function 
( SIPSF } or spatially variant point spread function 
( SVp s f ). The impulse matrix is also defined as a 
many-to-one mapping function between the original image and 
degraded image. The restoration is then viewed as a reverse 
mapping. This problem has infinite solutions. In the later 
chapters a method is developed to select the best possible
solution.

Without loss of generality, in this section it is
assumed that the direction of motion is along the x
direction. The degraded and the original signal are
therefore denoted by the corresponding one dimensional
vector. This is done because the motion blur is independant
°f the direction perpendicular to the motion ( i.e., the y 
axis ).

0 * g (x) s gtaax x c [ 1,N ]
0 * f (x) s fnax x e C 1,M ]    { 1-5 )
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Where
9max = ^max = 255.

Since gmax and *max sane» we have Equation ( 1-6 ) .
M M
X X h(i,j) = 1

i=-M j=-M   ( 1-6 )
Equation { 1-6 ) could also be proved using the law of 

conservation of energy as in [2], [18]. In the case of rigid 
body uniform linear motion, the lower limit on the summation 
in Equation ( 1-6 ) can be put to zero.

The amount of lost information is decided by the type of 
degradation i.e., the impulse matrix. But it is also 
expressed in the form of the blur parameter.

Sondhi [2] defined the- blur parameter as, " a  

variable(s) which characterises any blurring". TeXalp et al. 
[25] defined it as, ” the parameter(s) which determines the 
?SF so as to completely Identify it". Broida et al. [24] 
defined it as, " the parameter(s) which defines the model 
used to describe the degradation filter".

For motion blur the blur parameter Is the distance moved 
'd', while for focus blur it is the defocus radius 'r'. 
Trussell et al. [18] established an empirical relation 
between the blur parameter and the eigenvalues of the 
Inpulse matrix and their effect on restoration.
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The impulse response of the blur filter to any linear 
motion, is the response of the filter to a unit Impulse in 
the direction of motion. The impulse response for uniform 
linear motion is given below. The impulse matrix is the 
impulse response in a matrix notation.

Let 6(G) be the unit impulse in the direction 0. If d is 
the total distance moved then the impulse response is as 
follows.

Where
f * u Cos(G) ♦ v Sin(G)
u,v : are the frequency co-ordinates.

The loci of the zeros of the impulse response is 
Perpendicular to the direction of motion. Equation ( 1-9 ) 
•hows that they lie a distance (1/d) apart.

{ l/v(G) } 6(G) 0 * x $ d Cos(0)
0 1 y 1 d Sin(6)
else ( 1-7 )

Where
v (0) : The constant speed in direction.

The frequency response of this filter is 
H (u,v) « Sin (ndf)/(ndf) 

s sine (ndf) ( 1-8 )

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



18

Sine(Rdf) = 0
ndf n r  ( n is an Integer )

ie the loci is
frequency f = n/d

n (1/d) ( 1-9 )
A special case is x direction motion. The impulse matrix 

is x direction linear and spatially invariant rigid body 
uniform motion blur is as follows.

1.4 Cepstral Domain

Cepstrum domain processing is used for deconvolution of 
two signals [22]. There are three types of cepstrums, 
namely, complex cepstrum, power cepstrum and phase cepstrum. 
The units of a parameter in the cepstral domain are the 
units of that parameter in the time domain. To avoid 
confusion Bogert et al. [22], [31] and [35] . proposed the 
following paraphases.

Time domain units Cepstrum domain units

l/d 0 £ x S d.

else ( 1-10 )

frequency
spectrum

quefrency
cepstrum

phase saphe
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magnitude ...............  gamnitude
filtering ...............  liftering
harmonic ...............  rahmonic

period ...............  repiod ........... ( l-ll )
The power cepstrum was first defined by Bogert et al. 

Equation ( 1-12 ) is a very useful tool in data extraction.

3 nTJ = IFFT(In I(u ,v )I)   ( 1-12 )
Where

3 pC : is the power cepstrum of the degraded signal.
T : the sampling time period.

In : stands for natural logarithm, 
n : denotes the n th sample.

Complex cepstrum as a tool for deblurring was first 
introduced by Oppenheim [31]/ [35] and [29]. He used complex 
cepstrum for signal recovery.

3 cc(nT) * IFFT(cln(G (u,v))) ........... ( 1-13 )
Where

g cc : is the complex cepstrum of the degraded signal,
cln : stands for complex natural logarithm.

From Equations ( 1-13 ) and ( 1-2 ), in the absence of
noise,

3 cc(nT) » f c c (nT) + h c c ( nT) ..  ( 1-14 )
Where

3 cc : is the complex cepstrum of the degraded signal.
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f cc : is the complex cepstrum of the original signal, 
h cc : is the complex cepstrum of the impulse matrix.

Ahmadi et al. [27] have shown that the properties of 
the cepstrum are related to the stability of the impulse 
response ( of a digital recursive filter ). Hence this 
information is also useful in the dynamical system approach 
where the stability of the filter is an important 
information regarding the feasibility of any restoration.

Complex logarithm is a multivalued function. This 
sometimes gives rise to unwrapping errors. Unwrapping errors 
can be avoided by integrating the phase derivative or 
sequential unwrapping as shown in [22].

The main drawback of the cepstral domain processing is 
that it is more sensitive to noise than both the other 
domains. However, cepstral domain processing is a very 
useful tool for data extraction ( i.e., blur parameter 
estimation ).

1.5 A Survey of image Restoration Techniques and 
Applications

Image restoration techhnlques are algorithms used to 
extract the original image from the degraded one. There are 
several image restoration techniques developed in the last 
two decades. These differ in terms of the domains in which
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image restoration is carried out as well as the approaches 
used, for example, deterministic or stochastic, adaptive or 
static, iterative or non iterative, etc.

Image restoration techniques are classified as iterative 
and non iterative. Iterative techniques reach the final 
solution in steps, using the result of the previous 
step(s) as a guide for further improvement. They exit when 
no further improvement is possible. Non iterative techniques 
consist of a single step approach. Iterative image 
restoration techniques try to minimize some error 
criteria or to maximize some performance criteria. Iterative 
image restoration techniques take more computational time, 
and also have a much greater control over the restoration 
( and thus the final solution ). In this thesis iterative 
image restoration techniques are considered.

In any image restoration application, two main problems 
have to be solved. The first step is to obtain data 
regarding the Impulse matrix ( or the blur parameter). This 
falls under the class of data extraction techniques which 
ere specifically designed just to find the impulse matrix 
**•••# the blur parameter. This is a very important part of 
blur removal because the performance of any image 
restoration technique is very sensitive to an accurate 
knowledge of the blur parameter. The second atep is to 
*»Plement the image restoration technique. In this chapter a
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brief survey of image restoration techniques is presented.

The first successful mathematical modelling of motion 
blur as a filter was developed by Marechal et al. ( see 
[2] ). Motion blur as a filter operating on the original 
image is now an established blur model.

Oppenheim [29] - [31] and Schafer [35] evaluated and 
developed models in non linear filtering of blurs using a 
combination of homomorphic filtering and inverse filtering. 
Oppenheim proposed a theory of combining linear prediction 
with homomorphic filtering calling it as homomorphic 
prediction [29]. Homomorphic signal processing, a non linear 
technique based on linear filtering operations on the 
complex cepstrum of the blurred signal was introduced by 
Oppenheim et al. [31].

Cannon used blind deconvolution [31] as an inverse 
of convolution filter models in the cepstrum domain. This 
»eant averaging in the cepstrum domain to get an approximate 
idea of the blur parameter, thereby improving the deblur 
filter performance.

Sondhi [2] reviewed spatial domain image restoration 
techniques for linear motion blurs. Sondhi [2] established 
the accuracy of the assumptions of linear and spatially 
Invariant models of a great variety of configurations of
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practical interest.

The technique of minimizing least square errors between 
the blurred signal and an estimate of it, was shown to have 
a very good performance in blur restoration by Harris [3] - 
[4], Horner [5] - [6] and by Helstrom [7], Helstrom [7] 
pioneered the technique of using the conditional expectation 
of the original signal in solving for the information lost. 
Harris and Horner [3] - [4] developed a varied set of 
definitions for norms of minimum squared error (MSE).

Slepian [8] and [9] proved that the discrete motion blur 
models have a wide range of applications. McAdam [10] 
used a method of constrained deconvolution, using 
signals as sample sets and the matrix deconvolution models. 
He proved that all blurs can be mathematically modelled as 
a one dimensional filter. Mcadam [10] attributes this 
discovery of vector deconvolution by interspersing zeros 
to Preissendorfer. This model is similar to the present 
day projections onto convex sets.

Aboutalib et al. [11] used a theory, in which they 
implemented the impulse matrix as a combination of digital 
delay elements. The dynamical system representation of 
degradation due to motion blur was used. The dynamical 
eystem approach ( state space approach ) towards the 
blurring systems was pioneered by Silverman et al. [11] -
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[13]. This approach allows the implementation of all the 
concepts of the dynamical systems theory to be applied to 
removal of motion blur.

Aboutalib [11] used the stability of any Inverse 
filter as a guide to the rate of convergence and thereby 
improving the performance of the blur restoration filter. He 
termed the loss of information as a non causality of the 
blur restoration filter ( a term copied from the dynamical 
systems theory ).

Trussell et al. [14] - [18] developed the concepts 
of spatial domain filtering, like constraints analysis, 
feasible sets, eigenvalues of the Impulse matrix, 
convergence, etc. Using the -definition of PSF as a 
mapping function they defined restoration as inverse mapping 
onto the feasible set. To prove this they compared the 
performance of spatial domain filtering using minimization 
of least square error between the original signal and the 
signal estimate, with frequency domain techniques. They 
chose the feasible set as the exit point. They established 
similarities in performance and some theoretical links 
between these image restoration techniques.

Trussell, Clvanlar and Hunt [14] - [18] established
an empirical link between the convergence rate and the 
eigenvalues of the impulse matrix. They also proved that
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the convergence criterion and the constraints had an 
effect not only on the path and the rate of convergence but
also on the final solution. This meant that the
feasibility of any technique depended on the assumptions 
made about the restoration. They also developed ad hoc 
techniques for the choice of the convergence criterion for
the feasibility of any technique. These are very important
results, since they constitute the guidelines as to how much 
constraints or assumptions any technique could allow without 
affecting the success of deblurring.

Tekalp et al. [37] conducted a comparative evaluation 
of the effect of different kinds of a priori information 
on different image restoration techniques. The performances 
of linear spatially invariant reduced update Kalman filter 
( RUKF ), edge-adaptive RUKF and adaptive convex-type 
constraint based restoration implemented via the method 
of projection onto convex sets ( POCS ) were compared. They 
showed that spatially variant restoration methods namely the 
adaptive POCS algorithm and the edge-adaptive RUKF have a 
better potential to incorporate more a priori information 
into the final solution than the spatially invariant RUKF. 
They also proved that in the presence of noise the spatially 
invariant reduced update Kalman filter ( RUKF ) has a better 
Performance. They concluded that numerous factors about the 
blur have to be considered before deciding the optimal image 
restoration technique.
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Tekalp et. al. [38] developed a new decision-directed 
filtering algorithm for deblurring of images blurred by 
spatially variant motion blurs. They assumed that the 
spatially variant blur could be represented by a collection 
of distinct point spread functions. Each of these point 
spread functions were spatially invariant. A posteriori 
information was used to decide the method to split the 
blurred image. This method constituted a segmentation of the 
blurred image into regions of spatially invariant blurs. 
This algorithm saved the computation time required to deblur 
the blurred image by making use of faster algorithms 
available for spatially invariant blurs. They proved that 
the computation time could be further saved if the blurred 
image could be split into regions with no blurs in them. 
They confirmed that the technique succeeds when the blurred 
image consists of distinct edges or textures but fails to 
reliably deblur the flat regions in the blurred image.

Angwin et. al. [39] proposed a technique that reduced 
the computation time required for using Kalman filter on 
spatially variant blurs. The dimensions of the state space 
model for spatially variant blurs are very large'. They 
Proposed a reduced order model Kalman filter ( ROMKF ) which 
used a state space model with reduced dimensions. This was 
achieved by splitting the image into smaller regions thereby 
reducing the order of the impulse matrix. Thus the blurred 
image was effectively split into asymmetric regions with 
spatially variant blur. This approach enables the use of 
Kalman filters for adaptive image restoration.
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Trussell [15] points out that all the iterative 
algorithms assume that a suitable starting point for 
Iteration is either available or immaterial in deciding the 
success o£ that technique. He proved that this assumption 
is erroneous. He took two different starting estimates 
( henceforth called the initial estimate ) and used the 
same constrained iterative restoration technique and found 
that one initial estimate was more successful than other. 
This question has been addressed in this thesis. An 
algorithm is developed, which does not depend upon any 
starting point. The algorithm generates a reliable starting 
point from the degraded signal for subsequent restoration.

Three image restoration techniques are studied in detail 
In the second chapter. The conclusions and results of these 
techniques are used to develop a new algorithm as mentioned 
earlier. The second chapter also presents the techniques 
used to Identify the blur parameter.

The third chapter presents the new algorithm that was 
used successfully for restoring rigid body motion blur. This 
algorithm guarantees a good initial estimate for spatial 
domain iterative restoration. This reliability improves the 
preformance of the restoration filter. Zt succeeded in 
restoring motion blurred Images in the presence of additive 
noise with signal-to-noise ratio as low as 1.0. It had a 
fair performance for signal-to-noise ratio between 1.0 and
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0.5. The robust nature of this algorithm was thus
established. The implementation issues of this algorithm are 
also tackled in Chapter 3. This algorithm has an in built 
structure for a parallel hardware implementation, thus
reducing the computational cost. The sensitivity of this 
algorithm to an error in the value of the blur parameter is
studied. The last section of Chapter 3 provides the test
results.

The fourth chapter provides the summary and the 
conclusion.
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CHAPTER II 
IMAGE RESTORATION TECHNIQUES

2.l introduction

Three image restoration techniques are discussed in this 
Chapter. Their results are used by a new algorithm proposed 
in chapter 3. These results are presented in Sections 2.3,
2.4 and 2.5, along with a brief introduction to the 
fundamentals involved in these three image restoration 
techniques.

A brief study of some of the important image restoration 
techniques which are to be used later is done in section 
2.6. a  review of the techniques to find the value of the 
blur parameter is presented in Section 2.7. The uses and 
applications of other models like bilinear representation 
and multiple filter approach are discussed in Section 2.8. 
Section 2.9 gives the conclusions based on study done in 
this chapter.

2_. 2 Definitions

Terminologies specifically used in restoration of 
blurred images in spatial domain are defined in this
section.

-29-
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2.2.1 Constraints

Restoration of any blurred image has to satisfy certain 
mathematical conditions. These constraints may be on entire 
restoration ( for example, CPU time taken, implementation 
cost, etc. ) or on the signal or the signal estimate ( for 
example, continuity, pixel limits, contrast, good frequency 
resolution, etc. ) or on the noise ( for example, zero mean 
noise, noise spectrum, etc ). Each of these constraints have 
an inherent assumption about the process, which need not be 
universally true. The success of an image restoration 
technique depends on the amount and the validity of the 
constraints [2] and [14]. Excessive constraints may cause a 
failure ( for example, ringing ). Excessive constraints can 
be avoided by trial and error as proved in [2] and [14].

Hunt [17] analysed the effects of constraints on 
image restoration using the Hean Squared Error techniques. 
He concluded that it is generally useful to relax the 
constraints on the starting point in any iteration and then 
Increase the number and the rigidity of the constraints, as 
the iteration approaches the final solution.

2_»2.2 Projections Onto Convex Sets ( POCS )

A set c is convex, if for any two points xl and x2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



belonging to C, the point x3 given by the Equation ( 2-1 ) 
also belongs to C. A convex set C is defined as closed if 
it has finite boundaries. In this thesis closed convex sets 
with boudaries 0 and 255 are used.

x3 s a' xl + (1 - a' ) x2   ( 2-1 )
Where

a : is an number such that 0 £ a' * 1.
*1 and x2 : elements of a convex set c.

Trussell et al. [14] - [16] have shown that a constraint 
can be expressed in the form of a projection onto a convex 
set ( p o c s } i.e., a set of all the solutions satisfying 
that constraint. Let Ci be a closed convex set satisfying 
the ith constraint. Then the final solution is the one that 
satisfies all the convex sets, ie a solution belonging to 
the intersection of all the convex sets.

Let be a projection operator which projects a
solution onto a set, ie it implements the constraint on the 
convex set C^. Then the starting point for the next 
iteration is as follows.

« (Pj)(P2) .. (Pt ) f“    ( 2-2.)
Where

n : is the order of the iteration.
_nI : is the signal estimate after,n iterations.

«a+l* : is the signal estimate after n+1 Iterations.
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t : the total number of constraints or the convex 
sets representing them.

Pi : is the projection operator for the ith 
constraint ( 1 £ i £ t ).

Trussell et al. [14] - [16] have proved that the 
above equation converges and the final solution lies in the 
intersection of all the convex sets. This analysis has an 
advantage because the rigidity of any constraint can be 
controlled ( relaxed ) at any order of iteration by merely 
controlling the projection vectors without affecting the 
overall restoration process.

All constraints like variance and mean of the residual. 
Pixel bounds, continuity etc., can be Implemented as closed 
convex set. The proof for the above statement is given in 
Appendix B.

2_. 2.3 Feasible Set

A solution for the original image is defined as any 
technically possible solution for the original image. This 
dust means that the probability that this solution might be 
the original image is not zero. A feasible solution is 
the one that satisfies all the constraints placed on it. 
This difference occurs because the probability that all the 
constraints placed on the solution are true. Is not equal to 
°ne ( for example, the constraint of continuity, rigidity
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etc., are not always true ).

Feasible set is a set containing all the feasible 
solutions. It is the Intersection of all the closed convex 
sets ci. Trussell et al. [14] have proved that the factors 
Influencing the choice of a solution from the feasible set 
include the impulse matrix, noise, the rigidity of the 
convex sets and the Initial estimate used to start the 
iteration.

2.2.4 Convergence Rate, Path and Criteria

The rate of convergence is expressed in terms of number 
of Iterative steps required to reach the final solution or 
the computational cost of the restoration. The path of 
convergence is the set of values taken by successive 
estimates.

The relations between the convergence rate and path with 
the constraints, noise and the eigenvalues of the Impulse 
*atrix were studied by Trussell [14] and [18], Sondhi [2] 
and Hunt [17]. A majority of their results are empirical, 
but they nonetheless hold for spatial domain Iterative image 
restoration. These are briefly discussed in section 2.4.

The convergence criterion is the mathematical function 
used to decide the exit from the iterations. It defines
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whether or not the final solution has been reached. It need 
not always be the feasible set, since a lot of times it is 
neccesary to exit in the vicinity of the feasible set ( for 
example, due to CPU time limit ). Generally the convergence 
criterion is a relaxed version of the feasible set as shown 
in Appendix C.

2.2.5 Eigenvalues and the Lost Information

The impulse matrix for motion blur is always singular. 
In other words there are always more variables than the 
equations a blur filter provides. Sondhi [2], Silverman et 
el. [11], Trussell et al. [14], Shim et al. [21] and Harris 
[4] have proved that the maximum rank of the impulse 
natrix is equal to the order of the degraded image. This 
proof for the case of a rigid body motion blur is given 
in Appendix D.

This loss of equations is expressed by a coefficient 
called the loss of information coefficient (Lie) defined 
as follows.

Lie = M / (rank of [ H ]) - 1 ..........  ( 2-3 )
Where

H : the total number of variables to be found,
t H ] : the impulse matrix.
The maximum rank of the Impulse matrix [ H ], is equal

to the order of the degraded image. In the case of motion
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blur, M * the order of the degraded image. ( [2], [4], [11] 
and [14] ). Thus for motion blur Lie * 0.

This is also stated by Trussell [14] and Sondhi [2] as - 
" the maximum number of non zero eigenvalues of [ H ] is 
equal to N ". In practical cases there are some non zero 
eigenvalues in the vicinity of zero, thereby increasing the 
Lie. Trussell et al. [14] - [18] empirically established the 
relationship between the number of non zero eigen values 
in the vicinity of zero and the convergence rate. This 
proof is very briefly given in Appendix D.

2.2.6 Continuity or Smoothness

This constraint, unlike non negativity is applied to 
the derivatives of the pixels. Appendix E gives the 
constraint of continuity on the higher order derivatives, it 
can be seen that non negativity and continuity involve the 
same equation, except that non negativity is implemented on 
pixel values while continuity is implemented on their 
derivatives.

2.2.7 Dynamic range

This is an abstract term used to give a rough estimate 
of the number of the types of blurs ( or degradations in 
general ), which a given technique can solve successfully

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



where
d : is the number of pixels moved by the rigid body.

In the case of an uniform motion the Impulse response 
is as follows ( see Equation ( 1-10 ) ).

{(1/d) for -d + 1 £ i s 0

0 else   ( 2-5 )

Aboutalib et al. [11] state that motion blurs can be 
restored if the non causality of the impulse response is 
solved. A non causal filter in the time domain requires a 
future output to solve for a present output. But in a 
spatial domain approach for restorating motion blurs, 
this problem exists even if data from the past is required 
for restoration. This is because an image is a snapshot 
and data beyond the screen limits on all the four sides is 
not available. Thus in a spatial domain approach for 
restoring motion blurs, LIC { given by Equation ( 2-3 ) ) 
is a more correct Indicator of the lost information than 
the non causality of the Impulse response.

Without loss of generality, denote h (i-d) as hi and 
define z* as the delay element of an arbitrary order i as 
follows.

Z1 f (x) = f(x-i)    ( 2-6a )
Thus Equation ( 2-4 ) can be written as a summation of
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as used In [2] and [14].

2.2.8 Residual Outliers

In any spatial domain, iterative restoration constraints 
are implemented after every iteration [14]. Generally, 
after any Iteration there are some pixels belonging to the 
signal estimate which does not satisfy the pixels limits 
given by Equation ( 2-1 ). These are called residual 
outliers.

2.3 A Dynamic System Model

This model was developed by Silverman et al. [11], [12] 
and [13]. It is a spatial domain technique which defines the 
Impulse response as a collection of delay elements. In this 
section a dynamic system model is used to represent an 1-D 
linear and spatially invariant rigid body motion blur along 
the x direction.

In the absence of noise, Equation ( 1-2 ) can be 
rewritten for a linear and spatially Invariant rigid body 
■otion blur as in the x direction as follows.

d-1
g (x) * L  h (i) f(x-i)

1*0 .......  ( 2-4 )
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delay elements operating on f(x).

g(x) = ( ho + hi Z 1 + + hd z"d ) f(x)
  ( 2-6b }

This is also used to define the blur filter as a tapped 
delay line operator.

if
-1 -1 -dH (Z ) = ho + hi Z + ... + hd Z

then
g(x> = H (Z-1) f(x)   ( 2-7 >

This is then represented by an equivalent single input
single output linear difference system ( Al, Bl, Cl, D1 ) as 
in Equation ( 2-8 ). This is the dynamic system model
( state-space realization ) for a linear spatially invariant 
rigid body 1-D motion blur. Linearity and spatial invariance 
directly decide the properties of the state space matrices.

C Si (x+1) ] = [ Al ] [ SI (x) ] + [ Bl ] [ f(x+d) ]
C g (x) ] = [ Cl ] [ SI (x) ] + [ D1 ] [ f (x+d) ]

  ( 2-8 )
where

SI : is the state space vector for the dynamic system 
model.

£ A1 ], [ Bl ], [ Cl ] and [ D1 ] are the state space 
®atrices given in Figure 6.
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Figure 6 gives the matrices and the state space vector 
set in terms of the elements of the impulse matrix and 
the pixels of the original signal.

This state space realization represents the blur at each 
line of the degraded image. This blur can be restored, if 
any one of the state space vectors is known. In the 
absence of noise, this would give a complete recovery of 
the original signal. This result was used in the algorithm 
Proposed in Chapter 3. The order of state space vector 
[ SI(x) ] is equal to the blur parameter.

Restoration in a noise free case can also be
accomplished by employing the recursive inverse of the 
dynamical model given in Equation ( 2-8 ), le the set of 
state space matrices ( [ A2 ], [ B2 ], [ C2 ], [ D2 ] ) 
as follows.

C S2 (X+l) ] r [ A2 ] [ 32 (X) 1 + [ B2 ] [ g (X) ]
C f(x+d) ] * [ C2 ] [ S2 (X) 1 + [ D2 ] [ g (X) ]

  ( 2-9 )
Where

[ A2 ] * [ Al ] - [ Bl ] [ Dl]-1 [ Cl ]T
[ B2 ] * [ Bl ] [ Dl f 1
[ C2 ] = - [ Dl ] 1 [ Cl ]
[ D2 ] = [ Dl J*1

t Al ], [ Bl ], [Cl ] and [ Dl ] are the state space

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



40

( Al Js (1/hO)

[ Bl ] =

[ Cl J = 

[ Dl ] =

0 -h2 
0 0 
. hO

-hd
0

hO
hO 0

hi
-hO
0

dxl

[l 0 
[ "]lxl

dxd

lxd

(Sl{x)J

hi f(x+d-l) + h2 f(x+d-2) 
-hO f (x+d-1) 
•hO f(x+d-2)

♦ .. ♦ hd f(x )

-hO f(x)

Figure. 6. The Dynaalcal Model ( State-Space
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matrices given in Figure 6. The assumption that hO is not 
equal to zero ensures the existence of an inverse.

2.4 Generation of Information from Background Pixels

Sondhi [2] proved that the blur can be removed if the
lost information is estimated, sondhi [2] and Slepaln [9]
proposed an algorithm in which this lost information is 
derived by the information about the background pixels. 
They used a priori information to decide the values of the 
back ground pixels. Sondhi [2] stated that the above
approach failed due to the Inaccuracy of the a priori
information. The algorithm proposed in the next chapter uses 
a very reliable method to find this lost information.

2.5 The Landweber Iteration

Landweber's equation is one of the most profoundly used 
aquations for Iterative applications. Trussell [14] and [18] 
applied it to blur restoration. Landweber's iteration is an 
algorithm that defines every iterative step in an iteration, 
which starts from a random starting point.

The motion blur in matrix notation ( see Equation 
( 1-3 ) ) can be rewritten as follows.

*  . /  .. " A  ■■ i

t g ] - [ h ] [ f ] * 0    ( 2-10 )
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For an arbitrary order of Iteration $ the next point 
can be found using equation ( 2-11 ). For convenience the 
matrix notations are neglected.

[ f*+1 ] = [ f* ] + [ f'4* ]
and

[ f-f J = [ L ] [ h ]t ( [ g ] - [ h J t t* J )
  ( 2-11 )

Where
[ L ] : is a matrix which alters the convergence

properties but not the final solution. This 
matrix is dependent on the Impulse matrix. The 
elements of this matrix are obtained depending 
upon how the convergence properties are to be 
altered.

[ h ]^ : is the transpose of the Impulse matrix.
[ f^ ] : is the estimate of the original signal [ f ]

after $ iterations.
[ f4>+1 ] : is the estimate of the original signal [ f ]

after $+1 iterations.
[ g ] : is the degraded signal in a matrix notation.

Trussell [18] proved that in case of blur this Iteration 
converges to a solution obtained by the technique of 
singular value decomposition of the Impulse matrix. This is 
al*o the solution obtained by using the mean squared error 
technique, in the absense of additive noise. The strength of 
the landweber's equation lies in the fact that it could be
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applied In any domain.

Trussell et al. [14] proved that for a motion blurred 
Image to be restored, the final solution has to belong to
the same feasible set. Since the feasible set is Independent
of image restoration techniques, Trussell et al. [14] proved
that the final solution of all successful image restoration
techniques belongs to the same feasible set, as long as the 
impulse matrix is not altered. The proposed algorithm uses 
the same Impulse matrix as that of the blur filter. Thus, if 
the algorithm is successful, then the final solution would 
belong to the same feasible set as all other image 
restoration techniques. The difference is that the algorithm 
skips the singular part of the impulse matrix and uses only 
the non singular part.

2.6 Some of the Important image Restoration Techniques

In this section four different image restoration 
techniques are studied. Each of these techniques has started 
a new direction in the field of image restoration. They have 
influenced all the subsequent research in this field. A 
brief outline of these techniques is done so as to provide a 
rationality to the assumptions made regarding motion blurred 
Images In this thesis.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.6.1 Minimization of the Mean squared Error ( USE )

44

The method o£ minimizing mean squared errors between two 
signals ( the original signal and the signal estimate for 
this thesis ) [1] - [9] is of a great significance because
many techniques have revolved around this approach. Slepian 
[8] - [9]/ Sondhi 12], Harris [3] - [4], Horner [5] - [6] 
and Helstrom [7] were among the first to investigate this 
approach to the problem of image restoration.

The optimum path in this iteration is defined as the 
path which optimizes the objective function ( for example, 
cost, time taken, etc. ). Optimization techniques are used 
to select the best path of iteration.

Slepan [6] - [9] and Sondhi [2] have done research 
linking the rank of the Impulse matrix and the loss of 
Information on the original image. Harris [3] - [4] and 
Horner [5] - [6] studied the effects of replacing the true 
impulse matrix with a matrix whose properties were altered 
as per the requirements of the restoration. They used an 
approximate invertible matrix, a matrix with a bad overall 
noise performance but a better noise performance in 
frequency ranges noticeable to human eye, etc. But all the 
Above researchers derived the information required to 
restore the blurred image from the additional assumptions 
■ade regarding the motion blur. Thus their approaches failed
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on blurs when these assumptions did not hold true.

2.6.2 Conditional Expectation

Helstrom [7] used the conditional expectation of the 
original signal given the noise and the degraded signal for 
restoring blurred images. This technique combines statistics 
with restoration in a unique manner. A brief outline of this 
method is given below.

Let the original signal [ f ], noise [ n ] and the 
degraded signal [ g ] be a set of random processes { f }, 
{ n > and { g }, respectively. Then an estimate of f ( f° ) 
could be obtained using mean squared error technique as in 
section 2.6.1. This estimate is obtained by minimising Ec 
as follows.

Ec = E [ ( f - f° )* ]   ( 2-12a )
Where

Ec : is the expectation over { f > and { n > 
processess.

The blurred image is restored if Ec Is known. Let e~ 
denote the error between the original signal and Its 
estimate and let Ed denote the conditional expectation of 
•"* given { g > and { n }. Then Ed Is a random variable 
whose expectation over the process { g } ensemble gives Be. 
Then Be Is minimized by minimizing Ed.
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But
Ed = E [ (f-b) */g] + E [(f-b)*/g] ........... ( 2-12b )

where
b : is the conditional expectation E [ f/g ].

So Ec is minimized if

f = b = E [ f/g ] ........... ( 2-12c )
Equation ( 2-12c ) looks very simple to implement. But 

the problem lies in the fact that computing the conditional 
expectations for any random processes ( { n > and < g > in 
this case ) is very difficult.

2.6.3 Singular Value Decomposition ( SVD )

The impulse matrix representing the motion blur filter 
is always non singular. In singular value decomposition 
»ethod, the restoration is attempted by manipulating the 
eigenvalues of the impulse matrix till it is made 
invertible, i.e., non singular ( by approximation or 
estimation ) [2], [21] and [22]. But a restoration of any 
®otion blur is extremely sensitive to the composition of the 
impulse matrix. Thus singular value decomposition Involves 
* trade off between signal quality and noise performance as 
shown in [2] and [21], The notion of separating the Impulse 
B *trlx into two parts, non singular and singular Is derived 
from the principles involved in the singular value
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decomposition method.

The singular value decomposition methods differ on the 
ways to operate on these eigenvalues. In truncated singular 
value decomposition method, eigenvalues are manipulated by 
replacing all the eigenvalues below a threshold to some 
constant [21]. In stochastic singular value decomposition 
method, eigenvalues are manipulated by replacing the 
eigenvalues with values zero ( or in the vicinity of zero ) 
with values derived from the stochastic processess { g > and 
{ n > [21].

The main drawback of these techniques is that even for a 
matrix of an order as small as 10 finding the eigenvalues is 
a computationally enormous task. This is true for impulse 
matrices of rigid body motion blurs.

2.6.4 Inverse Filtering

A convolution of two signals in the time domain 
corresponds to a multiplication of their responses in the 
frequency domain. Multiplication is invertible by division. 
Since the degraded image, in the case of a rigid body motion 
blur, is a convolution of the Impulse response and the 
original image ( see Equations ( 1-1 ) and ( 1-2 ) ), the 
original image can be obtained from Equation ( 2-13 ) and 
Equation ( 2-14 ). Here the frequency response of the
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original signal is obtained by dividing the frequency 
responses of the degraded signal and the impulse response. 
The original signal can be found by taking an IFFT of 
the frequency response of the original signal ( Equation 
( 2-14 ) } . This is the main principle behind inverse 
filtering [la] - [2]. Generally noise is assumed to be 
absent.

G(u,v) = H(u,v) F(u,v) ♦ N(u,v) ........... ( 2-13 )
Where

G(u,v) : is the frequency response of the degraded
signal.

F(u,v) : is the frequency response of the original
signal.

H(u,v) : is the frequency response of the motion
blur filter.

u and v : are the frequencies in the x and y direction 
respectively.

Thus the restored signal is given by Equation ( 2-14 ).

A
f (X,y) 8 IFFT { G(u,v)/H<u,v) >

3 f(x,y) + IFFT { N(u,v)/H(u,v) >
  ( 2-14 )

There are two main drawbacks of this technique. Since 
any rigid body motion blur, the Impulse matrix is always 

■Angular. Thus the division by these zeros is avoided by 
approximation or estimation of the lmplulse response. Since
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signals are very sensitive to small changes in the their 
frequency response, this gives rise to a non existent noise 
[2]. The second drawback relates to noise sensitivity. Noise 
generally has an uniform spectrum, while the Impulse 
response has very low values in the high frequency range. 
This acts as an noise amplifier [2].

There have been many techniques which have tried to 
overcome these drawbacks. But all of them place certain 
additional assumptions and constraints on the restoration 
process.

2.7 Data Extraction Techniques ( Blur parameter )

An accurate estimate of blur parameter is a very 
important part of restoration of motion blurs. In this 
section a brief review of some prominent techniques for 
estimating the blur parameter is presented. These are 
implemented in the three domains, namely, the frequency 
domain, the cepstrum domain and the spatial domain.

2_«7.i Frequency Domain Approach

In the absense of noise, Equation ( 2-13 ) proves that, 
the zeros of H (u,v) are the zeros of G (u,v). The loci of 
the zeros of the Impulse response are a function of the blur 
parameter. Assuming that F (u,v) has no zeros, the loci of
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the zeros of G (u,v) are used to estimate the blur parameter 
[2].

The main drawback of the data extraction techniques in 
the frequency domain is that the zeros of the Impulse matrix 
are highly noise sensitive.

2.7.2 Cepstrum Domain Approach

Cannon [31] proposed an algorithm which used an 
averaging technique in the cepstrum domain. The cepstrum of 
the degraded signal is averaged over windows of the orders 
similar to the blur parameter of the motion blur. In this 
method it is assumed that the cepstrum of the original 
signal has a zero mean. Thus this operation would then give 
a cepstrum having the characteristics of thee cepstrum of 
the impulse response.

This is a definite Improvement over the frequency domain 
techniques. But this technique still is very noise 
sensitive. This technique makes an additional assumption 
about the cepstrum of the original image having a zero mean.

2.7.3 Spatial Domain Approach

The spatial domain methods consists of finding the 
e<luation of motion. The equation of motion ( linear or non
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linear ) can then be used to obtain the blur parameter and 
thus, the Impulse matrix. The success o£ this approach 
depends upon the generation of the equation of motion from 
the blurred image. Since the blur parameter and the impulse 
matrix are obtainable from the equation of motion for any 
type of motion blur.

Broida et al. [24] used a recursive technique to get 
the equation of motion by modeling the object dynamics as a 
function of time. But a large amount of data analysis is 
involved even for a simple motion. Broida et al. [24] also 
proposed a method of Improving the performance by using an 
iterated extended Kalman filter to handle this complexity. 
This however failed to improve the performance in data 
extraction. A large amount of data analysis makes the 
spatial domain approach for data extraction extremely 
difficult.

Multiple Degradations

In this thesis a single source of blur is assumed, 
namely, a rigid body motion blur. Sometimes more than one 
source of blur causes the degradation. This results in 
multiple degradations. Though this was not a part of the 
Problem addressed in this research, it is important to study 
the prominent models for multiple blurs. Two models are 
briefly presented for such blurs.
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2.8.1 Double Convolution Model ( Cascading of blurs )

52

If the Impulse responses of the two blurs are hl(i,j) 
and h2(i,j) respetively then Equation ( 2-15 ) gives the 
double convolution model ( see [1] and [34] ).

+00 +00

g(x,y) = X  L  hi (1,j ) gm (x-i,y-j)
i s —00 is -00

such that,
+00 +00

gm(x,y) a £  £  h2 (i,j) f (x-i,y-j)
is-00 is-00   ( 2-15 )

Where
9 (x,y) : is the degraded signal.
£(x,y) : is the original signal. 

hl(l,j) : is the impulse response of the first blur.
h2(i,j) : is the impulse response of the second blur.
In nature this type of degradation occurs very rarely 

[20]. Any spatially Invariant blur and spatially variant 
blur of the same type of source does not follow cascading. 
This definition of same type of sources of blur is a 
subjective definition.

The double convolution model has a high noise creation, 
i.e., the Inversion process creates noise where none
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existed. In the absence of noise, let nl { > and n2 { > be 
the errors introduced due to deblurring by Ihl () and 
Ih2 (), respectively. Here deblurring by Ihl () and Ih2 () 
are defined as restorations used to deconvolve hl(i,j) and 
b2(i,j) respectively. It is not important how the deblurring 
is done since the effect of doing both the deblurrings 
simultaneously on the same blurred signal is being 
presented.

Since the restoration in independent of the order [20], 
blur can be removed by first inverting Ihl () and then 
Xh2 () as given in Equation ( 2-16 ).

Ihl(g) = gm
= gm + nl{g>

So,
Ih2( Ihl(g) ) = Ih2( gm ) + Ih2( nl{g> )

= f + n2{gm> + Ih2( nl{g> )
  ( 2-16 )

2_»8.2 Bilinear Model

Leahy et al. [20] proposed a bilinear model to overcome 
the difficulties In cascading two sources of blurs. A single 
output double input bilinear response was modified by Leahy 
®t al. [20] to get a suitable representation for blurs as 
follows. This is a single output single input representation
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of motion blurs with two sources.

+ M  +00

g(x: xl,x2) ■ S S q(xl,x2) f(xl) f(x2) dxl dx2
x2=-« xl=-«   ( 2-17 )

Where
q (xl,x 2 ) : is the double impulse response of the 

bilinear filter, 
f(xl) : is the original image as a function 

of co-ordinate x l . 
f(x2) : is the original image as a function 

of co-ordinate x2.
The bilinear model given by Equation ( 2-17 ) has more 

applications than the double convolution model. However a 
computer simulation and specifically a parallel hardware 
Implementation is difficult for any bilinear model.

2_. 9 Conclusions

The dynamical system model ( state-space approach ) used 
Silverman et al. [11] - [13] guarantees a complete signal 

recovery if one state-space vector is provided. It does not 
however specify any source to generate a state-space vector. 
8ondhl [2] and Sleplan [9] proposed an algorithm in which 
they generated this lost information from the back ground 
Pixels. But this method is very unreliable. The landweber 
iteration Is a very powerful tool for restoration of a
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degraded signal. The properties of convergence of spatial
domain Iterative techniques were established from this 
algorithm ( see [14] - [18] ).

Four important techniques were presented in Section
2.6. The fundamentals of image restoration established by
these techniques have been incorporated in the research 
relating to this thesis.

Data extraction methods were briefly presented in 
Section 2.7. The spatial domain method was found to be least 
useful for the purpose of blur parameter extraction. All 
the data extraction methods are shown to be very unreliable. 
The technique proposed by Cannon [31] could be used as an 
pre-restoration analysis to further improve the performance 

any blur restoration.

The conclusions of the image restoration techniques 
analysed in this chapter are used to develop a new algorithm 
in the next chapter.
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CHAPTER III 
RESTORATION BY REVERSE HAPPING

3.1 Introduction

In this chapter an algorithm for the restoration of 
images blurred by motion is presented in detail. The 
restoration is done using the non singular part of the
impulse matrix. The lost information is generated from the 
behaviour of the closed convex sets at the pixel boundaries.

In the absense of noise, Silverman et al. [11] - [13] 
established that ( for a linear model of motion blur ) the 
exact original image could be found, if the lost Information 
is available. Trussell et al. [15] and [18] proved that an 
iterative image restoration with a non singular impulse 
»atrix had a high rate of convergence. Sondhi [2] and
Slepian [9] proved that in the case of rigid body motion
blurs, the errors in estimates generated from iterative 
restoration can be expressed in terms of the lost 
Information ( i.e., the pixels out of the scope of the
camera ). The proposed algorithm Incorporates all these 
results in restorating Images degraded by rigid body motion 
blur.

The success of this algorithm has been proved for rigid 
body motion blur in x and xy direction. The performance of

-56-
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this algorithm for finding the blur parameter has also been 
tested. The algorithm yields good results in the presence 
of additive noise with SNR ( signal to noise ratio ) as low 
as 1.00. Here SNR .is defined as the ratio of the variances 
of the two signals namely the original signal and the 
additive noise.

The above algorithm is discussed in detail for 
restoration of images degraded by rigid body motion blur 
with constant velocity.

3.2 Rigid Body Uniform Linear Motion Blur

Rigid body motion blur could be in any direction 
including along the z direction. Unless specified, this 
chapter deals with motion in the x direction. Relative 
velocity between the camera and the object is assumed to be 
constant.

The blur model depends upon the assumptions made about 
the motion blur. The convolution model representing a motion 
blur filter, given by Equation ( 1-3 ) is used in this 
chapter. The Impulse matrix [ h ] is assumed to be a square 
( H x H ) matrix. This is done by extending the degraded 
signal g(x,y) by d-1 zeros along the x direction. Equation 
( 3-1 ) is the blur filter for one dimensional rigid body 
notion blur in the x direction.
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d-1
g(x,y) ■ X  (1/d) f(x+i,y) + n(x,y)

1=0
for all x and y e [1,N]   ( 3-1 )

where
d-l : is equal to the number of pixels moved. The 

value of d is assumed to be known. 
g(x,y) : is the degraded signal.
f(x,y) : is the original signal.
n(x,y) : is the additive noise.

The positive sign in the convolution is obtained by
shifting the original signal by the number of pixels moved 
[13]. Note that for d = 1, there is no motion blur, since 
the motion blur Equation ( 3-1 ) is independent of the y 
axis, the notation y will be neglected for x direction 
motion blur in this chapter.

As established earlier, in case of rigid body motion 
blur, the impulse matrix is singular [2] and [8] - [18]. 
Thus inversion in any domain is not possible without 
certain approximations or estimations.

In frequency domain the singularities are in the form of 
zeros of H(exp<jQ>). In order to avoid a division by zero 
they either have to be approximated or estimated. This 
Approximation gives rise to noise amplification, especially
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for the high frequencies. The human eye has been proved to 
be very sensitive to high frequency components of an image 
( C2], [34] and [35] ). All the image restoration
techniques implemented in the frequency domain involve such 
approximations or estimations as illustrated in [2].

In spatial domain the singularity of the impulse matrix 
means that there are more signal variables to be solved than 
the number of equations available. The number of independent 
equations in Equation ( 3-1 } is equal to the rank of [ h ] 
( N in this case ). The number of signal variables of the 
original signal ( f(x) in this case ) to be solved is equal 
to N + d - 1. This can be clearly seen in Equation ( 3-2 ), 
which calculates the number of equations required to restore 
the blurred image.

The number of equations available 
The number of variables of the original signal f(x)

The number of equations required for deblurring
Since,

H » N + d - 1    ( 3-2a )
i-e., M > n . Thus, there is a loss of information.

A loss of Information can be better given by the LIC 
( loss of information coefficient ) [25]. In this thesis 
1,Ic is defined by equation ( 3-2 ).

= N 
= H 
= M
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LIC = (M)/N - 1 = (N+d-1)/N - 1 = (d-l)/N
........... ( 3-2b )

Motion blur given by Equations ( 3-2a ) and ( 3-1 ) has 
infinite solutions. Thus for a uniform linear rigid body 
motion blur, the feasible set is not a null set. Sondhi 
[2], Trussell [14], Hunt [17], Tekalp et al. [25] and 
Oja et al. [26] have all proved that in case of a uniform 
linear rigid body motion blur, the feasible set is a null 
set only if too many constraints are placed on the image 
restoration or too many assumptions are made about the image 
degradation.

The new algorithm proposed requires the estimation of 
d-i pixels. This makes the impulse matrix non singular. The 
degraded image is then restored using the inverse of a non 
singular matrix or the dynamical systems model ( state- 
space approach ) proposed by Silverman et al. [11]. This has 
advantages, since the impulse matrix used for restoration 
has no approximations. The impulse matrix used for 
restoration represents the motion blur as in the blur model.

The estimation of d-1 pixels of the f(x) should not be 
random. Since a random estimation is highly Inaccurate. This 
would nullify the advantages of using a non singular 
Impulse matrix for Inversion.

This estimation is done by using a property of closed
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convex sets given by Equation ( 3-3 ) . Motion blurs are in 
the form of moving averages ( averaging due to motion } 
mapped onto a closed convex set ( pixel bounds ). Thus if 
any pixel of the blurred signal g(x) is equal to 0 or 255
then all pixels of the original signal f(x), contributing to
g(x) have to be 0 or 255, respectively ( in the absence of 
noise ).

Let g(xO = 255 ( or 0 ) for 0 S xO £ 255*
In the absence of noise Equation ( 3-1 ) gives,
g(xo) = (l/d) ( f(xO) + f(xO+l) + ... + f(xO+d-1) )
But f(x) satisfies Equation ( 1-5 ), thus,

0 s f(xO), f(xO+l), ..., f(xO+d-1) S 255.

Only one set of values for f(x) satisfies the above two 
conditions as shown in Equation ( 3-3 ).

f(xO) = f(xO+l) = ... = f(xO+d-1) = 255 ( or 0 )
 ........  ( 3-3 )

Equation ( 3-3 ) is true for all x e [1,N].
( for example, if g(20) = 255. Then

g(20) = (1/d) ( f (20) + f(21) + ... + f(20+d-l) ) 
and o S f(20), f(21), ..., f(20+d-l) S 255 
=> f (20) = f (21) = ... = f (20+d-l) * 255 ).

There are now N-l remaining Independent equations and 
N ~1 pixels of the original signal to be found. This Is 
always possible. The algorithm postulates that - " Even 
though finding a degraded pixel with boundary values 255 
or 0 is hard, a degraded pixel in some boundary of 255
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( or 0 ) exists ". So an estimation similar to Equation 
( 3-3 ) can be done at the location of a pixel which is 
nearest to the pixel limits given by [0,255].

This pixel belonging to the degraded set is nearest to 
the pixel bounds and is called the boundary pixel. The
boundary function used to select the location of the
boundary pixel is as follows.

B'(x) a min (g(x); 255-g(x) ) ............ ( 3-4 )
Where

B ' (x) : is a function that evaluates the shortest
distance of any pixel from the pixel bounds. 

g(x) : is the degraded signal.
B' (x) is a set of N numbers. Therefore from the maxima 

and minima theory it has a minimum. Without a loss of 
generality let it be at xo.
i.e., min (B'(x)) = B'(xo) for all x e [1,N]

Similar to Equation ( 3-3 ) assign the estimates as 
f(xo) a f (xo+1) = ... = f(xo+d-1) = g(xo) ........... ( 3-5 )

Statistically for any number a, there is a finite 
probability for the existence of at least one element of the 
degraded signal t [255-0,255] ( or [0,o] ). Thus the
estimation given by Equation ( 3-5 ) is done at the pixel 
dearest to the boundary given by [0,255]. The smaller the
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number a, the more accurate is the estimation given by 
Equation ( 3-5 ).

For random boundary limits [255-0,255], let p(o) be 
the probability that it has at least one degraded pixel and 
let q(a) be the probability that estimation given by 
Equation ( 3-5 ) is correct within limits acceptable by some 
arbitrary criteria.

Then as o -> 0, p(o) -> 0 and q(a) -> 1. Thus using 
the estimation given by Equation ( 3-5) restoration is done 
as follows.

f(xo+d) = d g(xo+l) - { f(xo-M) + . .. + f (xo+d-1) >
• • • •

f(N+d-1) = d g(N) - { f(N) + ... + f(N+d-2) }
and

f(xo-l) = d g(xo-l) - { f(xo) + ... + f(xo+d-2) >
• • • t

f(i) = d g(i) - < f(2) + ... + f(d) }
..........  ( 3-6 )

In the restoration given by Equation ( 3-6 ) noise was 
assumed to be absent. This is not true for a majority of 
notion blurs. Moreover, the pixels at the boundaries are 
nore noisy. Thus the boundary function has to be protected 
against picking up locations of noisy pixels.
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For example let a part of the degraded signal be 
xo-3 xo-2 xo-1 xo xo+1 xo+2 

{ ...... 127, 132, 129, 255, 121, 118, ...... >.

If xo is chosen as the location of the pixel used for 
estimation by Equation ( 3-6 ), the restoration will produce 
wrong results. Such failures in this estimation can be 
avoided by pre-restoration noise filtering or by redefining 
the boundary function to skip a possible noisy pixel. The 
former approach would not filter all the noisy pixels and 
would lead to a loss of the blur model ( Sondhi [2], 
Trussell et al. [18] and Slepian [9] ). A small improvement 
in the definition of B'(x) gives a very good performance as 
can be seen from the results given in Section 3.7.

This is done by introducing E(g/n) as an expectation of 
{ g > given { n >. This insures that no noisy pixels are 
selected for the estimation given by Equation ( 3-6 ). The 
boundary function is given by

B(x) = B 1 (x) ♦ a E(g/n)   ( 3-7a )
where

a : is a coefficient given by equation ( 3-7b )
B (g/n) : is an algorithm which decides whether g(x) is noisy 

or not ( a binary function using the statistical 
expectation E(g/n) ). 
a * 0 if g(x) is not noisy

= 128 if g(x) is noisy ..........  ( 3-7b )
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Sondhi [2] established that the probability of a noisy 
pixel being near 255 is not equal to the probability of a 
noisy pixel being near 0. This is incorporated in the
boundary function B(x), by giving a weighted coefficient for 
both the boundaries. This had to be done to improve
performance of the restoration in the blurred photograph of 
the robber ( see Figure 13 ). The boundary function is then 
given by Equation ( 3-8 ) .

B (x ) * min [ al g(x) ; ah ( 255-g(x) ) ]
+ a E (g/n)   ( 3-7c )

where
al and ah : are weighted coefficients used to decide the 

a white or a black boundary pixel. Unless 
specified both are equal to 1.

Let f0(x) be the initial estimate given by Equation
( 3-6 ). Let the error in this estimate f0(x) be given by
u(x). Then u(x) is given by Equation ( 3-8 ).

f(x) = f0(x) + u(x) for all x e (1,M)
............ ( 3-8 )

But both f (x) and f0(x) satisfy the blur model given by 
Bquatlon ( 3-1 ). Using Equations ( 3-1 ) and ( 3-6 ) a
relation between individual elements of u(x) is found.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



66

d-1
£  u(x+j) 
j*0

0
( 3-9a )

Thus
d-1

u(x) = u(x+d) = - £ u ( x + j )
j*l ( 3-9b )

Thus in the case of rigid body motion blur, the error in 
the initial estimate is periodic with the blur parameter. 
This property gives a strong control over the noise

summation would be a function of the standard deviation of 
noise ).

But the initial estimate does not satisfy the 
constraints. The pixel boundary limit and the continuity 
constraint is implemented on this estimate. The final result 
obtained from implementing both these constraints is the 
restored signal.

To Impose the constraint given by the pixel limits, 
define v(x) as in Equation ( 3-10 ). The function v(x) 
gives the extent by which any individual pixel estimate 
overshoots the pixel limits given by Equation ( 1-5 ).

generated. ( In the presense of additive noise this
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where
v(x) : is a function defined to Impose the pixel limit 

constraint on the estimate of f(x).
Then the next estimate is as follows.

fl(x) = f0 (x) + v(x)   ( 3-lla )
Where

fl(x) : is an estimate of the original signal
satisfying the constraint of pixel limits.

fO(x) : is an estimate of the original signal
satisfying the blur model given by Equation
( 3-1 ).

The new estimate fl(x) does not satisfy the blur model 
given by Equation ( 4-1 ). This means that fl(x) does not 
satisfy the periodicity of the error, given by Equation 
( 3-9 ).

Thus the next estimate f2(x) is found by Imposing the 
e**ror control Equation ( 3-9 ) on the estimate fl(x). This 
is done in a similar manner to the initial estimation model 
given by Equation ( 3-6 ).

Let the next estimate be given by Equation ( 3-llb ). 
Note that since u(x) is periodic with a period d, it 
suffices to find just the first d elements of ul(x). But 
£or this assumption to work the highest error in all the 
Periodic locations has to be taken into account. This is
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illustrated in an example and in Equation ( 3-12 ).

£2(x) = fl(x) + ul(x) ..........  ( 3-12a }
where

ul(x) : is given by Equation ( 3-12b ).
There are d-1 independent elements o£ ul(x). These are 

found by imposing equation ( 3-12a ) on ul'(k).

d-1
ul(k) = ul“(k) - l/(d-1) L  ul’(j)

j = 0
for 0 S k :£ d-1 and j * *   ( 3-12b )

where
ul~(k) » max [ v(k+id) ] if all v(k+id) is 0

min [ v(k+id) ] if all v(k+id) £ 0
for all 0 £ i £ int(M/d)

Note that v(x+id) has the same polarity for all values 
of i, since an underestimation of £(x) means an 
underestimation of f(x+d) and so on. This property is due 
to the periodicity of u(k) and ul(k).

The periodicity of u(x) is the main factor giving a 
solid control over the generated noise. This periodicity 
Is due to the use of the exact blur matrix. This periodicity 
Is lost by any approximation of the inverse matrix.

The estimate f2(x) given by Equation ( 3-11 ) and
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( 3-12 ) may not satisfy the pixel limits. Thus a solution 
for the original signal f(x) is found in a recursive manner.
The results of this algorithm on an image degraded due to 
motion blur are presented in section 3.7 in detail. This 
algorithm was also Implemented on motion along a direction 
at an angle of 45° with the x axis. This recursive algorithm 
could also be implemented with different constraints. This 
is a possible area for further research.

<
For example let ul~(0) = 30, ul~(2) = ... = ul~(10) = 0 
Assuming N = 128 and d = 11, ie M = 138.
From equation ( 3-12 ) on ul~(k) gives 
ul(0) + u l (2) + ... + ul(10) s 0
By using the technique used in the algorithm of equal 

distribution we have, 
ul(0) = 30
ul(l) = - 3 

= - 3 
Ul(10) * - 3 

But from Equation ( 3-9 )
10

u(ll) a - I U(0+j) a U (0)
j*l

& so on for all x c (1,M) >

But the error control sets u(x), ul(x) and v(x) are not
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signals. They are corrections in the estimates of the 
original signal. Hence the signal constraints cannot be 
implemented on them. This problem cannot be solved for 
any random motion blur. But for the case of uniform linear 
motion blur these error control sets can be expressed in 
terms of signal variables of f(x). Sondhi [2] has proved 
that for rigid body motion blur, Equation ( 3-13 ) can be 
used.

L = int ( (N-x)/d )
j = (L+l) d + x - N

g'(x) = g(x) - g(x+l) ( at x = N g'(x) * g(N) )
4>(j) has the same periodicity as u(x). *(j) denotes the 

part of the signal outside the scope of the camera. Since 
the set is a part of the original signal, all the 
constraints can also be imposed on this set. Thus for a 
uniform linear rigid body motion blur, the error sets can be 
Imposed with all the signal constraints.
{ Sondhi [2] has proved that

L
f(x) * Z  g'(x+id) + *(j)

i=0 ( 3-13 )
where

*( j) * £(H+d)
d-1

* £  f(N+jj)
JJ»1

j * d
>
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This algorithm involves a technique of reverse mapping. 
Here the pixels of the. original signal contributing to a 
degraded pixel are mapped to the pixels of the blurred image.
The pixels of the original signal are then evaluated by 
functions that depend upon the pixels of the degraded 
signals in the mappings. In the next section this algorithm 
involving reverse mapping is implemented on a general 
degradation.

The results of this algorithm in restoring linear 
spatially invariant rigid body motion blurs are presented in 
Figures 8, 9, 10, 11, 12 and 13. The success of this
algorithm in restoring motion blurred images is seen from 
these results.

3.3 General Degradation

The algorithm proposed in Section 3.2 can also be used
any given general degradation assuming that the general 

degradation is in the form of the convolution model given by 
Equation ( 1-3 ). To establish the use of this algorithm for 
any degradation, this algorithm will be conceptually applied 
to a blur with impulse matrix [ h ]. Thus only those 
properties which are independent of the impulse matrix are 
Us®d in this section.

The boundary function given by Equations ( 3-7 ) is
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independent of the degradation. Using Equations ( 3-7 ), 
a set of boundary values given by B(x,y) should be found.

Define
PI » (xl,yl)

such that
mini ( B(x,y) ) = B(xl,yl) for all x and y e [1,NJ

..........  ( 3-14 )
where

PI : is the first location selected or the first 
order selection point.

Let fli be the set of locations of the pixels of f(x,y)
contributing to the boundary pixel of g(x,y), from the ith 
order selection. This is obtained by reverse mapping through * 
[ H ]. But for a general degradation all the non zero
elements of [ H ] are not equal. Thus all the members of fli
do not have equal contribution. A criterion to decide the 
locations with more energy contribution is used. This 
criterion is called the Weighted Selection Criterion (WSC).

Let
M M

Q » L  L  h<MJc,l)
k=0 jaO .......... ( 3-15 )

where
4 : denotes the reverse mapping. This can be evaluated

from the definition of the set Al.
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Then the Weighted Selection Criterion ( WSC ) is given 
by the equation ( 3-16 ). The set fl'l is a subset of the set 
£1.

M M
WSC = (1/Q) E  £  h<t>'(k,l)

k=l j=l   ( 3-16 )
where

4>' : denotes a subset of the reverse mapping.This can 
be evaluated from the definition of the set fl'l. 

From Equations ( 3-15 ) and ( 3-16 ) it can be proved 
that 0 i WSC * 1.

4>* denotes reverse mapping through the locations of 
[ H ] corresponding to the set fl'l. The location members of 
fl'l are selected from the members of fli. This selection is 
based on the decreasing order of values of [ H ].

Thus only those pixels of the original signal 
contributing . more energy to g(xl,yl) are picked up by fl'l. 
While all the pixels contributing to g(xl,yl) are picked up 
by fli.

fl'l is defined as follows.
If

(k ',1') s fl'l and
(k,l) c fli and
(k,l) $ 6 ’1
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Then
h<t>(k, 1) i h<|>• (K* ,1*) for all h*'(k,l) e 6 1

..........  ( 3-17 )
Let V be the number of signal elements lost. Then repeat

the above process j times. This would give j locations of 
the boundary function from Equation ( 3-13 ), i.e., PI, P2,
. . . Pj . If n ,  T2,  Tj be the number of members of 6'1,
6*2, ... 6 ’j, respectively.

Then the algorithm exits after j selections, 
such that

j
v i I ri

i=l
j-i

v > I n
i=i

( Note that in the case of a rigid body motion blur in one
direction, V = (LIC) N )   ( 3-18 )

where
LIC : is the loss of information coefficient.

N : total number of pixels of the degraded image.
V : total pixels lost.

Here all the B'i sets are exclusively independent by
definition.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The Weighted Selection Criterion WSC are the criterion 
which decide the noise control. All the constraints are 
similarly Implemented on the restoration as in the one 
dimensional rigid body motion. Thus the sets S'i define the 
locations where the initial estimation given by Equation 
( 3-6 ) is done. The degraded image is then restored in a 
recursive manner.

3.4 Implementation Issues

In this section the implementation issues of the 
algorithm proposed in Section 3.2 are tackled.

3.4.1 Parallel Hardware Implementation

The computation and the production cost of any algorithm 
can be drastically reduced if the algorithm lends itself to 
parallel computations. This allows the hardware of the 
circuit to be set up with a parallel logic. Thus the 
existance of any parallel structure in an algorithm is an 
Important issue.

The error control given by Equation ( 3-9 ) and the 
correction sets u(x), ul(x) and v(x) are examples of 
parallel structured data. This feature can be Implemented on 
a parallel hardware. This saves a lot of time and gives this 
algorithm an added advantage. Figure 7 gives the parallel
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hardware implementation.

3.4.2 Noise Sensitivity

The success of any image restoration algorithm depends 
upon the sensitivity of the algorithm to the presence of 
noise. The performance of this algorithm in restoring motion 
blurred images in the presense of additive noise, with SNR 
as low as 1.00, is seen to be good. The results are provided 
in Figure 13.

The reverse mapping algorithm has a provision for 
rejecting noisy pixels. This is achieved by implementing 
the noise shield given by Equation ( 3-7 ). This had a 
fair success in restoring Images with SNR as low as 1.00. Zn 
the presence of noise, the noise control equation given 
by Equation ( 3-9 ) is modified as stated earlier.

3.4.3 Blur Parameter Estimation

The blur parameter is never available in real life 
linages blurred by motion. Data extraction techniques are 
used in finding the blur parameter. These data extraction 
techniques are highly unreliable as stated earlier. The 
reliability of the reverse mapping algorithm proposed In 
Sections 3.2 and 3.3 can be used to overcome this problem.
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Assume that an algorithm succeeds in restoring a 
degraded Image. Then the blur parameter sensitivity is 
defined - " as the maximum percentage of error in the value 
of the blur parameter, for Which this algorithm still 
succeeds in restoring the degraded image ". The algorithm 
was experimentally established to have a blur parameter 
sensitivity of 3%. This suggests that a failure ( in some 
extended form ) of this algorithm could be used to predict 
the blur parameter.

3.4.4 Constraints

In spatial domain techniques the constraints are very 
important factors in deciding the success of the image 
restoration technique ( Trussell [18], Hunt [17] and Sondhi 
[2] ). Ringing is an example of the effects of excessive 
constraints. Ringing could however be avoided by relaxing 
these constraints ( [2], [17] and [18] ) by trial and error. 
The problem of excessive constraints exists for image 
restoration techniques. This is a drawback in automating 
the relaxation of constraints, since this requires user 
interaction. The error control Equation ( 3-9 ) provides a 
good method through which the constraints could be 
controlled in an automated application of image restoration.
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3.4.5 Kalman Filtering

Aboutalib et al. [11] proposed a method in which they 
utilized a Kalman-Bucy filter to slove for complex spatially 
variant motion blurs. For a degraded image, multiple 
estimates are obtained. Then the actual estimate is found by 
taking a weighted average of all the estimates.

The capability of the Kalman-Bucy filter to handle 
computationally complex restoration is used. Such 
statistical approaches could also be used with the reverse 
napping algorithm proposed in Section 3.2. This operation 
would however lose all the parallel structures, since 
Kalman filters are complex in structure and hence generally 
cannot be implemented on a parallel hardware structure. 
Kalman filters also do not guarantee stability. Hence 
Aboutalib [11] proposed that Kalman filters be used for very 
complex blurs where all other techniques are either too 
cumbersome or have failed to restore.

3.5 Advantages and Drawbacks of Reverse Happing Algorithm

The algorithm has a lesser number of calculations 
compared to the image restoration techniques studied in this 
thesis ( for example, the image restoration techniques given 
in [2], [7], [10], [18], etc. ). The algorithm has > a very 
strong control over the generated noise, ( Equation .( 3-9 ))
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as seen in the results. This is a direct result of using the 
non singular part of the impulse matrix. The algorithm has 
an inherent parallel software. As stated earlier this allows 
the implementation of parallel hardware. This generates 
savings in terms of computation and production costs.

The use of the error control equation and the simplicity 
of this algorithm allows it to succeed in restoring motion 
blurs with LIC in the range of 50%. This is a big 
improvement as compared to other image restoration 
techniques ( for example, 12.5% in [2], 2.5% in [11], 15% in 
[26], etc. ). A good performance of this algorithm, in the 
presence of additive noise with SNR as low as 1.00, proves 
that the algorithm is robust. This algorithm makes very 
basic and few assumptions as compared to other image 
restoration techniques ( for example, [2], [7], [18], [21], 
etc. ). This makes it possible to use this algorithm in 
diverse applications.

The algorithm proposed in Sections 3.2 and 3.3 has very 
few drawbacks. These drawbacks did not have any effect on 
restoration of computer simulated blurs. But the drawbacks 
of this algorithm had an effect on the restoration of 
robber's blurred face as can be seen from Figure 13.

The algorithm utilizes a straight response to start the
' * : i

estimation process. Thus it has weak noise control for
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frequencies smaller than the blur parameter. This is because 
in the Initial estimate these values are put to zero. This 
can however be avoided by assuming a different set of 
response. Sondhi [2] has proved that such decisions rely 
on a priori information. Hence this drawback will exist in 
any kind of response used in estimation.

This algorithm is computationally very simple for motion 
blurs. The computational simplicity of this algorithm is not 
guaranteed for any general degradation. The computation cost 
of this algorithm is a function of the complexity of the 
impulse response. However this algorithm is computationally 
much simpler than the image restoration techniques discussed 
in Chapter 2.

2̂.$. cgpcins

In this chapter a reverse mappping algorithm was 
proposed for restoration of Images degraded by uniform 
linear rigid body motion blur. This algorithm preserves the 
blur model. This is a major deviation from the conventional 
image restoration techniques.

The results of these experiments are presented in the 
next section. The summary and conclusions drawn from the 
results presented in the next section are given in Chapter 
4. chapter 4 also discusses the possibilities of further
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research.

3.7 Results

All the linages used in this thesis are of the size 
128 x 128. Figures 8, 9, 10 and 11 consist of sets of
images of a chessboard, a piston, toys and a dollar bill 
respectively.

Each of the above set consists of an original image, a 
pair of motion blurred images and their respective deblurred 
images. The blurred images in Figures 8, 9, 10 and 11 were 
obtained by computer simulation of the blur filter for 
motion along x direction (image (b)) and along a direction 
making an angle of 45° with the x axis (image (c)), 
respectively. The values of the blur parameters d, for the 
images blurred by motion along x direction, in Figures 8, 
9, 10 and 11, are 50, 45, 20 and 45 respectively. The values 
of the blur parameters d, for the images blurred by motion 
along a direction making an angle of 45° with x axis, in 
Figures 8, 9, 10 and 11, are 50, 35, 30 and 35 respectively. 
These blurred images were restored by implementing the 
algorithm proposed in Section 3.2 and 3.3. Image (d) in 
Figures 8, 9, 10 and 11 consists of the deblurred image for 
blur along x direction. Image (e) in Figures 8, 9, 10 and 11 
consists of the deblurred image for blur along a direction 
making an angle of 45° with the x axis.
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Figure 12 consists of three motion blurred images of a 
dollar bill corrupted with noise and their respective 
restored images. The blurring and noise corruption was done 
by computer. Additive sand paper noise was used in Figure 
12. The value of the blur parameter d in all the three 
blurred images is 35. In Figure 12 the signal-to-noise ratio 
for the blurred images (a), (c) and (e) are 3.0, 1.0 and
0.25, respectively. The restored images for (a), (c) and (e) 
are images (b), (d) and (f), respectively. The results shown 
in the Figure 12 are obtained after relaxing the error 
control equation ( 3-9 ).

Figure 13 gives the results of implementing this
algorithm on a real life blurred robbers image (image (a)). 
The algorithm failed in the bottom half of the image due to
the failure of the linear model given by Equation ( 3-1 ).
Hence the bottom part of the restored image was substituted 
to make the restored image more recognizable (image (b)). 
The histogram of the restored image was further equalized 
(image (c)) to bring out the salient features of the 
robber's face. This image was provided by Royal Canadian 
Mounted Police, Windsor. This image has been taken from a 
robbery scene recorded in a convenience store in Windsor.

Figure 14 gives the results of Implementing this
algorithm with a wrong value of the blur parameter d. The
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image of a chess board was blurred by computer with a blur 
parameter of 30. The algorithm was then implemented with 
blur parameter values of 10 (image (a)), 20 (image (b)) and 
40 (image (c)) representing errors of -66%, -33% and +33%, 
respectively. All the above attempts failed in restoring the 
blurred images. Thus the blur parameter sensitivity of the 
algorithm from the above set of images is 1 pixel out of 30,
i.e., 3%. These results show that the algorithm is very 
sensitive to the blur parameter.

Figure 15 consists of a set of images of the face of a 
lady. This set of images consists of an original image, a 
motion blurred image and the deblurred image. The pixels of 
this original image are evenly distributed over the grey 
scale. The blurred image (image (b)) was obtained by 
computer simulation of the blur filter for motion along the

x direction. The value of the blur parameter is 40. Image
(c) is the deblurred image which was obtained by 
implementing the algorithm proposed in Section 3.2 and 3.3.
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Figure t. Set of Zaagma of • Chessboard

(a) The original image.
(b) Tha blurrad image with d * 50 and 8 * 0.
(c) Tha blurrad imaga with d * 50 and 9 * 45°.
(d) Tha dablurrad imaga obtainad by implamaating tha ravarsa

mapping algorithm on imaga (b).
(•) Tha dablurrad imaga obtainad by implamanting tha ravarsa

mapping algorithm on imaga (c).
Where d is blur parameter and 9 is tha angle between tha
direction of motion and tha x axis.
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(d>
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(e)
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(b)

rigure 9 . Sat of Images of a Piston
(a) Tha original image.
(b) The blurred image with d = 4 5  and 0 = 0.
(c) The blurred image with d = 35 and e = 45°.
(d) The deblurred image obtained by implementing the reverse 

mapping algorithm on image (b).
(e) The deblurred image obtained by implementing the reverse 

mapping algorithm on image (c).
Where d is blur parameter and e is the angle between the 
direction of motion and the x axis.
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(b)

rigurelO. Set of Images of Toys
(a) Tha original image.
(b) The blurred image with d = 20 and e * 0.
(c) The blurred image with d * 30 and e * 45°.
(d) The deblurred image obtained by implementing the reverse 

mapping algorithm on image (b).
(e) The deblurred image obtained by implementing the reverse 

mapping algorithm on image (c).
Where d is blur parameter and e is the angle between the 
direction of motion and the x axis.
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(to)
rigure 11. 9«t of Images of a Dollar Bill
(a) Tha original image.
(b) Tha blurred image with d » 45 and e * 0.
(c) The blurred image with d * 35 and e = 45°.
(d) The deblurred image obtained by implementing the reverse 

mapping algorithm on image (b).
(e) The deblurred image obtained by implementing the reverse 

mapping algorithm on image (c).
Where d is blur parameter and 6 is the angle between the 
direction of motion and the x axis.
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Figure 12. nwise Performance on a Dollar Bill
(a) The blurred image with additive noise at SNR * 3.0.
(b) The deblurred image obtained by implementing the reverse

mapping algorithm on image (a).
(c) The blurred image with additive noise at SNR » 1.0.
(d) The deblurred image obtained by implementing the reverse

mapping algorithm on image (c).
(e) The blurred image with additive noise at SNR « 0.25.
< f J The deblurred image obtained by implementing the reverse

mapping algorithm on image (e).
For all the blurred images the value of the blur parameter
is 35 and the motion is along the x direction. The original
image is an image of a dollar bill.
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(b)

rigurel3. Robber's images

(a) The original robbers inage after magnification.
(b) The deblurred robbers image.
(c) The image obtained by equalizing the histogram of

(b).
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(b)

rigure 14. Blur Parameter Sensitivity
(a) Deblurred image of the chessboard with blur parameter 

d s 10 and actual blur paramter = 30.
(b) Deblurred image of the chessboard with blur parameter 

d * 20 and actual blur paramter = 30.
(c) Deblurred image of the chessboard with blur parameter 

d « 40 and actual blur paramter * 30.
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(b)

Figure 15. Sec of Images of the face of a lady
(a) The original image.
(b) The blurred image with d * 40 and 9 • o.
(c) The deblurred image obtained by implementing the reverse 

mapping algorithm on image (b).
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CHAPTER IV 
SUMMARY AND CONCLUSIONS

This thesis addresses the problem of restoring images 
blurred by linear and spatially invariant rigid body motion 
blurs.

The first chapter defines the problem of restoring 
images blurred by linear and spatially invariant rigid body 
motion blur. The sources and types of motion blurs are 
discussed in brief. The impulse responses of these motion 
blurs are studied. A brief study of cepstrum domain is done 
in context to image restoration. A brief survey of image 
restoration techniques and their applications is done.

An analysis of three image restoration techniques is 
done in the second chapter. These three image restoration 
techniques include the dynamical model implementation 
( state-space approach ) by Silverman et al. [11] - [13], 
Sondhi's [2] method of using the background pixels and the 
landweber's iteration by Trussell et al. [14]-[18]. The 
results of these three image restoration techniques, used to 
develop the reverse mapping algorithm, are established.
Some image restoration techniques of historical significance 
are Introduced. All image restoration techniques need an 
accurate estimate of the blur parameter. A brief study of
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data extraction techniques is done in three domains, namely, 
the spatial domain, the frequency domain and the cepstrum 
domain. A model proposed by Cannon [31] to estimate the blur 
parameter in the cepstrum domain is briefly discussed. In 
the later part of the second chapter two models for multiple 
motion blurs are presented, namely, the double convolution 
model and the bilinear model.

In the third chapter a new algorithm for restoration of 
motion blurs is presented in detail. This algorithm involves 
spatial domain iterative restoration of motion blurs. The 
algorithm is implemented on Images blurred by linear and 
spatially invariant rigid body motion blur. The results are 
provided in the later part of the third chapter. The 
algorithm is then extended to a general degradation. The 
implementation Issues of this algorithm are tackled in the 
later part of the third chapter.

The robustness of the algorithm proposed in the third 
chapter can be seen from the results. The algorithm has a 
good performance in deblurring motion blurred Images with 
the loss of Information coefficient as high as 50%. The 
algorithm preserves the blur model Intact during deblurrlng.
This provides a strong control over the generated noise. The 
algorithm has a good performance In deblurrlng motion 
blurred images, corrupted with additive noise having a 
signal-to-noise ratio as low as 1.00. This performance
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establishes the ability of the algorithm to pick up noisy 
pixels.

The algorithm Is computationally simpler as compared to 
other spatial domain image restoration techniques. The 
algorithm operates on sets of periodic numbers, with a 
period equal to the blur parameter d. Thus the number of 
calculations are reduced from the order of the original 
signal M, to the blur parameter d.

This algorithm is highly successful in deblurring motion 
blurs and hence is very reliable. The reliability of this 
algorithm could be used to find the value of the blur 
parameter. The algorithm is also independent of the blur 
model. The algorithm could therefore be implemented on other 
types of motion blurs, focus blurs or multiple blurs.
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APPENDIX A

Impulse responses of different types of blurs are given 
below. In all the equations (x,y) and (u,v) denote the 
spatial coordinates and the frequency coordinates 
respectively. 6(e) stands for an unit impulse in a 
direction making an angle 6 with x axis. T is the total
time for which the object is in motion. Sondhi [2] has
proved the following results in detail.

A .1 Uniform Linear Motion in a Direction 6 (q )

Linear motion is in a random direction 6(e) with a 
variable velocity V(e,t). 6(9') is perpendicular to 6(e).

h(x,y) * 6(9') (1/V(e,t)) for 0 i x S d Cos(e)
0 S y i d Sin(9)

» 0 else ..........  ( A-la )
If V(e,t) is constant, the motion becomes an uniform 

linear motion. The frequency response is as follows.

H(u,v) * Sin (ndf) / (ndf)
a Sine (ndf)   ( A-lb )

Where
f a u Cos(e) + v Sin(9)

A.2 Uniform Linear Motion in the x Direction

-109 -
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This Is a special case of uniform linear motion. The 
Impulse response Is obtained by putting © = o in Equation 
( A-la ) and Equation ( A-lb ).

h(x,y) = 1/d for y - 0 and 0 i x s d
= 0 else

H(u,v) = Sine (ndu)   ( a -2 )

A.3 Rotational Blur around Infinite Axes

In this type of blur all the axes are parallel to each 
other. This blur involves a rigid object. The velocity at 
any Instant t is then given by its two components Vx(t) and 
Vy(t).

Vx(t) * d Cos (27iat'/T)
Vy(t) ■ d Sin (2nat/T)   ( A-3a )

Where
a : is a constant denoting the arc moved.
T : the total time in motion.

The frequency response is as follows.
H(u,v) * Jo ( 2ndVl(u*+v*) )   ( A-3b )

Where
Jo : is the zeroth order Bessel's function.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Ill

A.4 Rotational Blur around One Axis

Rotational blur about a constant axis has a spatially 
variant PSF In the cartesian coordinates. Let the constant 
angular velocity be 8. Then Equation ( A-4 ) gives the 
degraded image as a function of the original image.

g(x,y) = J  f( x-rcos(81) , y+rsin(8l) ) dl
/  dl   ( A-4 )C

Where
r : ,/(x*+y*)
81 a Tan-l(y/x) + 1/r
C : is a arc of the circle with center (0,0) and

radius r from angle 0 to 8TR.

A.5 Spatially Invariant Focus Blur

The Impulse response for spatially invariant focus blur 
is given by Equation ( A-5 ).

h(x,y) * 1/( ic R2) for r i R
* 0 else

H(u,v) * Jl(Rr) / (Rr) .......... ( A-5 )
where

J1 : Is the first order Bessel's function.
R : Is the defocus radius.
r : y(x*+y*).
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A.6 Z directional notion.
It is a blur caused by notion of the object parallel 

camera axis. This produces a focus blur.
h(x,y) = (1/K) [(Ll-z)dl + (L2-z)d2] for r S

= 0 else
.......... ( A-6 )

where
R : is the maximum defocus radius attained during 

the motion, 
r : >/(x2+yM
LI : is the maximum distance reached in the 

positive z direction.
L2 : is the naximum distance reached in the 

negative z direction.
U : the unit step function, 
dl : U (z) - U (Ll-z)
d2 : U (Z) - U (L2-Z)
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APPENDIX B

The properties of convex sets are established for
the weighted means and the mean square error bounds.

Let xl and x2 be two members of a closed convex set ♦ 
with pixel limit 0 and 255. If x3 is a weighted average of
of xl and x2 then x3 is also a member of *. Hence x3 follows
all the mathematical properties of the convex set *. The 
proof of this statement for the weighted mean and the mean 
squared error bounds is given in the following sections.

Given that if xl and x2 c *
and x3 = a xl + (1-a) x2 for 0 £ a £ 1
then x3 e ♦ .

B.l Weighted Mean

If 0 £ xl £ 255 and 0 * x2 * 255,
then
0 + (1-a) 0 £ a x 1 + (1-a) x2 £ 255 ( a + 1 - a )

s> 0 £ x3 £ 255

B .2 Mean Squared Error bounds

If || g - hxl ||* £ 6v 
|| g - hx2 ||a £ 6v

-113-
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where 6v : is the mean square error bound, 
then
II g - hx3 ||* * || g - h (axl ♦ (1-a) x2)

= > I I 9 - hx3 ||2 = || a (g - hxl) + (1-a) (g
= a2 || g - hxl ||*

+ 2a(1-a) I| g - hxl || || g 
(1-a)2 || g - hx2 ||2 

= > II g - hx3 |12 s 6v ( a2 + 2a(l-a) + (l-a)2
=> II g - hx3 ||2 i 6v

II*
- hx2) ||2 

- hx2 ||

)
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APPENDIX C

The residual during an iterative spatial domain 
technique is given by Equation ( C-l ).

mr = g - h f    ( c-l )
Where

fm : is the estimate ... th after m iteration.
r : is the residual thafter m iteration.
g : is the degraded image.
h : is the impulse response.

The constraint is then placed on this residual signal r. 
This often forms the criteria of exit from the iteration. If 
this constraint placed is r » 0, then there would be no 
solution in the real domain in the presence of noise. Sondhi 
[2] and Trussell et al. [18] suggested the use of noise 
statistics as a solution to this problem. This method is 
given below.

Let the standard deviation of noise be o. Then the 
criterion of exit from the iteration is as follows.

II r ||* <* || o ||*   ( C-2 )
where

r : is the residual given by equation ( c-l ). 
a : is the standard deviation of noise.

Equation ( c-2 ) is not the definition of feasible set.

-115-
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Trussell et al. [14] and [16] investigated these definitions 
in detail. These are different since feasible set has other 
constraints imposed on it, in addition to the constraint 
given by Equation ( C-2 ). Feasible set is an Intersection 
of all the constraints including the one given by Equation 
( c-2 ).
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APPENDIX D

Singular impulse matrix makes it neccesary to take 
precautions against the null vectors. This problem is
illustrated below.

Let p be a null eigenvector of the impulse matrix. It 
could be associated with any one of the zero eigenvalues of 
this matrix. Equation ( D-l ) proves that the contribution 
of any scalar multiple of this vector to the iteration is 
zero. This proves that there are infinite solutions to any 
degraded image if the impulse matrix is singular ( has at 
least one zero eigenvalue ). The matrix notations are
neglected for convenience.

Since p is a null eigenvector 
h p = 0

therefore,
h (f*+1 + kp) * h f* + k h p

» h f*   ( D-l )
where

f^ : is the estimate after iteration,
h : is the Impulse response.

This has to be taken into account before deciding the 
step size for an Iteration. The step size should not be a
scalar multiple of the null eigenvector.
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In the algorithm described in Chapter three, the 
eigenvalues of the nonsingular part of the impulse matrix 
[ h ] decides the rate of conversion of the iteration. H - N 
zero eigenvalues get discarded by defining the non singular 
part of the impulse matrix. Trussell et al. [14] proved that 
these remaining eigenvalues are important in deciding the 
constraints control implementation - " Small but non zero
eigenvalues were shown to be the cause slow rate of 
convergence in the class of iterative signal restoration 
methods ".
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APPENDIX E

The continuity constraints are implemented by imposing 
bounds on the derivatives of the pixels.

l 2Let 6 , 6 , 6» be arbitrary positive numbers.
Then these constraints are implemented as in Equation 
( E-l ).

|g'(x#y)| , If'(x,y)| S 61 
g''(x.y)| , |f''(x,y)1 s 62

• •

|gn(x,y) | , |fn{x,y) | <: fin   ( E-l )
where

' , ’' , ... , n give the order of the derivative.
It is apparent that even the signal bound is a 

constraint on a derivative of order 0.
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APPENDIX F

Trussell et al. [14] used the landweber's Iteration for 
restoration of blurred images. Landweber's iteration is as 
follows.

m+1 m mf = f + L h t ( g - h f )    ( F-l )
where

m : is the order of iteration,
h : is the impulse matrix ( t for transpose ).
L : is a matrix which can modify the convergence

properties but not the solution.
This iteration has a guaranteed convergence. For L * I,

and some random initial estimate fO, the estimates of the
original signal f are given Equation ( F-2 ). The matrix
notaions are neglected for convenience.

f1 = (1 - h* h) f° + ht g
f2 * (1 - h* h) f + h* g

thus,
n-1

f“ * r» f° ♦ ( I r® h* ) g
i«0   ( F-2 )

where
r * 1 - h* h.

The summation is a geometric series with known
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convergence properties. Trussell et al. [14] proved that 
this value will converge to Q ( if r s l ).
Where Q = X ♦ c f«

Then any row p of F is given as follows.

C P = 0 if h p  h = 0

s Jp if h p  h * 0

Xp - <°p if
t

hp h = 0

s 0 if h p  h * 0

fip s if h p  h s 0

s
«0' 

fp if h p  h ¥ 0
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APPENDIX G

The conditional expectation used in the algorithm In
Chapter three is a noise shield. This function checks
whether the pixel is noisy.

Let 6n be a bound on the derivative of the signal and
let o be the standard deviation of noise. Then a pixel can
be defined as noisy, if Equation ( G-l ) is true.

I S'(x,y) | S  6 + 0
.........  ( G-l )

where
g'(x,y) : is the first order derivative of the

degraded signal.
6 : is the maximum bound on the derivative,
o : is the standard deviation of noise.
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