2,751 research outputs found

    Early aspects: aspect-oriented requirements engineering and architecture design

    Get PDF
    This paper reports on the third Early Aspects: Aspect-Oriented Requirements Engineering and Architecture Design Workshop, which has been held in Lancaster, UK, on March 21, 2004. The workshop included a presentation session and working sessions in which the particular topics on early aspects were discussed. The primary goal of the workshop was to focus on challenges to defining methodical software development processes for aspects from early on in the software life cycle and explore the potential of proposed methods and techniques to scale up to industrial applications

    Crosscutting, what is and what is not? A Formal definition based on a Crosscutting Pattern

    Get PDF
    Crosscutting is usually described in terms of scattering and tangling. However, the distinction between these concepts is vague, which could lead to ambiguous statements. Sometimes, precise definitions are required, e.g. for the formal identification of crosscutting concerns. We propose a conceptual framework for formalizing these concepts based on a crosscutting pattern that shows the mapping between elements at two levels, e.g. concerns and representations of concerns. The definitions of the concepts are formalized in terms of linear algebra, and visualized with matrices and matrix operations. In this way, crosscutting can be clearly distinguished from scattering and tangling. Using linear algebra, we demonstrate that our definition generalizes other definitions of crosscutting as described by Masuhara & Kiczales [21] and Tonella and Ceccato [28]. The framework can be applied across several refinement levels assuring traceability of crosscutting concerns. Usability of the framework is illustrated by means of applying it to several areas such as change impact analysis, identification of crosscutting at early phases of software development and in the area of model driven software development

    Aspect-oriented analysis for software product lines requirements engineering

    Get PDF
    SAC '11 Proceedings of the 2011 ACM 26th Symposium on Applied ComputingRequirements analysis and modeling for Software Product Lines demands the use of feature models, but also requires additional models to help identifying, describing, and specifying features. Traditional approaches usually perform this manually and, in general, the identification and modularization of crosscutting features is ignored, or not handled systematically. This hinders requirements change. We propose an aspect-oriented approach for SPL enriched to automatically derive feature models where crosscutting features are identified and modularized using aspect-oriented concepts and techniques. This is achieved by adapting and extending the AORA (Aspect-Oriented Requirements Analysis) approach. AORA provides templates to specify and organize requirements based on concerns and responsibilities. A set of heuristics is defined to help identifying features and their dependencies in a product line. A tool was developed to automatically generate the feature model from AORA templates

    Expressing aspectual interactions in requirements engineering: Experiences, problems and solutions

    Get PDF
    AbstractAspect Oriented Requirements Engineering (AORE) provides support for modularizing crosscutting requirements. In the context of an industrial project in the domain of Slot Machines we needed to perform AORE, with a special emphasis on dependencies and interactions among concerns. We were however unable to find any report of large-scale industrial applications of AORE approaches that treat dependencies and interactions. We therefore evaluated two AORE approaches: Theme/Doc and MDSOCRE, to establish their applicability in our setting. In this paper we report on the limitations of both approaches we encountered and propose extensions that allow them to cope with concern interactions. We also show how these extensions provide the needed expressiveness by applying them to our industrial case study

    Expressing aspectual interactions in requirements engineering: Experiences, problems and solutions

    Get PDF
    Aspect Oriented Requirements Engineering (AORE) provides support for modularizing crosscutting requirements. In the context of an industrial project in the domain of Slot Machines we needed to perform AORE, with a special emphasis on dependencies and interactions among concerns. We were however unable to find any report of large-scale industrial applications of AORE approaches that treat dependencies and interactions. We therefore evaluated two AORE approaches: Theme/Doc and MDSOCRE, to establish their applicability in our setting. In this paper we report on the limitations of both approaches we encountered and propose extensions that allow them to cope with concern interactions. We also show how these extensions provide the needed expressiveness by applying them to our industrial case study.Laboratorio de Investigación y Formación en Informática Avanzad

    TOOL SUPPORT FOR CAPTURING THE ESSENCE OF A CONCERN IN SOURCE CODE

    Get PDF
    Software evolves constantly to adapt to changing user needs. As it evolves, it becomes progressively harder to understand due to accumulation of code changes, increasing code size, and the introduction of complex code dependencies. As a result, it becomes harder to maintain, exposing the software to potential bugs and degradation of code quality. High maintenance costs and diminished opportunities for software reusability and portability lead to reduced return on investment, increasing the likelihood of the software product being discarded or replaced. Nevertheless, we believe that there is value in legacy software due to the amount of intellectual efforts that have been invested in it. To extend its value, we utilize the common practice of identifying the pieces of code relevant to a given concern. Identifying relevant code is a manual process and relies on domain and code expertise. This makes it difficult to scale to large and complex code. In this thesis, we propose several automated approaches for capturing the essential code that represents a concern of interest. We utilize dynamic program analysis of execution traces to identify a relevant code subset. Information retrieval techniques are then utilized to improve the accuracy of the capture, refine the process, and verify the results

    A Framework for Evaluating Model-Driven Self-adaptive Software Systems

    Get PDF
    In the last few years, Model Driven Development (MDD), Component-based Software Development (CBSD), and context-oriented software have become interesting alternatives for the design and construction of self-adaptive software systems. In general, the ultimate goal of these technologies is to be able to reduce development costs and effort, while improving the modularity, flexibility, adaptability, and reliability of software systems. An analysis of these technologies shows them all to include the principle of the separation of concerns, and their further integration is a key factor to obtaining high-quality and self-adaptable software systems. Each technology identifies different concerns and deals with them separately in order to specify the design of the self-adaptive applications, and, at the same time, support software with adaptability and context-awareness. This research studies the development methodologies that employ the principles of model-driven development in building self-adaptive software systems. To this aim, this article proposes an evaluation framework for analysing and evaluating the features of model-driven approaches and their ability to support software with self-adaptability and dependability in highly dynamic contextual environment. Such evaluation framework can facilitate the software developers on selecting a development methodology that suits their software requirements and reduces the development effort of building self-adaptive software systems. This study highlights the major drawbacks of the propped model-driven approaches in the related works, and emphasise on considering the volatile aspects of self-adaptive software in the analysis, design and implementation phases of the development methodologies. In addition, we argue that the development methodologies should leave the selection of modelling languages and modelling tools to the software developers.Comment: model-driven architecture, COP, AOP, component composition, self-adaptive application, context oriented software developmen

    Tool-supported identification of functional concerns in object-oriented code

    Get PDF
    Concern identification aims to find the implementation of a functional concern in existing source code. In this work, concerns are described, using the Hierarchic Concern Model, as gray-boxes containing subconcerns, inputs, and outputs. The inputs and outputs are used as concern seeds to identify data-oriented abstractions of concern implementations, called concern skeletons. The identification approach is based on context free language reachability and supported by a tool, called CoDEx
    corecore