567 research outputs found

    Anomaly detection and automatic labeling for solar cell quality inspection based on Generative Adversarial Network

    Get PDF
    Quality inspection applications in industry are required to move towards a zero-defect manufacturing scenario, withnon-destructive inspection and traceability of 100 % of produced parts. Developing robust fault detection and classification modelsfrom the start-up of the lines is challenging due to the difficulty in getting enough representative samples of the faulty patternsand the need to manually label them. This work presents a methodology to develop a robust inspection system, targeting thesepeculiarities, in the context of solar cell manufacturing. The methodology is divided into two phases: In the first phase, an anomalydetection model based on a Generative Adversarial Network (GAN) is employed. This model enables the detection and localizationof anomalous patterns within the solar cells from the beginning, using only non-defective samples for training and without anymanual labeling involved. In a second stage, as defective samples arise, the detected anomalies will be used as automaticallygenerated annotations for the supervised training of a Fully Convolutional Network that is capable of detecting multiple types offaults. The experimental results using 1873 EL images of monocrystalline cells show that (a) the anomaly detection scheme can beused to start detecting features with very little available data, (b) the anomaly detection may serve as automatic labeling in order totrain a supervised model, and (c) segmentation and classification results of supervised models trained with automatic labels arecomparable to the ones obtained from the models trained with manual labels.Comment: 20 pages, 10 figures, 6 tables. This article is part of the special issue "Condition Monitoring, Field Inspection and Fault Diagnostic Methods for Photovoltaic Systems" Published in MDPI - Sensors: see https://www.mdpi.com/journal/sensors/special_issues/Condition_Monitoring_Field_Inspection_and_Fault_Diagnostic_Methods_for_Photovoltaic_System

    Applications in Electronics Pervading Industry, Environment and Society

    Get PDF
    This book features the manuscripts accepted for the Special Issue “Applications in Electronics Pervading Industry, Environment and Society—Sensing Systems and Pervasive Intelligence” of the MDPI journal Sensors. Most of the papers come from a selection of the best papers of the 2019 edition of the “Applications in Electronics Pervading Industry, Environment and Society” (APPLEPIES) Conference, which was held in November 2019. All these papers have been significantly enhanced with novel experimental results. The papers give an overview of the trends in research and development activities concerning the pervasive application of electronics in industry, the environment, and society. The focus of these papers is on cyber physical systems (CPS), with research proposals for new sensor acquisition and ADC (analog to digital converter) methods, high-speed communication systems, cybersecurity, big data management, and data processing including emerging machine learning techniques. Physical implementation aspects are discussed as well as the trade-off found between functional performance and hardware/system costs

    Security and Privacy in Mobile Computing: Challenges and Solutions

    Get PDF
    abstract: Mobile devices are penetrating everyday life. According to a recent Cisco report [10], the number of mobile connected devices such as smartphones, tablets, laptops, eReaders, and Machine-to-Machine (M2M) modules will hit 11.6 billion by 2021, exceeding the world's projected population at that time (7.8 billion). The rapid development of mobile devices has brought a number of emerging security and privacy issues in mobile computing. This dissertation aims to address a number of challenging security and privacy issues in mobile computing. This dissertation makes fivefold contributions. The first and second parts study the security and privacy issues in Device-to-Device communications. Specifically, the first part develops a novel scheme to enable a new way of trust relationship called spatiotemporal matching in a privacy-preserving and efficient fashion. To enhance the secure communication among mobile users, the second part proposes a game-theoretical framework to stimulate the cooperative shared secret key generation among mobile users. The third and fourth parts investigate the security and privacy issues in mobile crowdsourcing. In particular, the third part presents a secure and privacy-preserving mobile crowdsourcing system which strikes a good balance among object security, user privacy, and system efficiency. The fourth part demonstrates a differentially private distributed stream monitoring system via mobile crowdsourcing. Finally, the fifth part proposes VISIBLE, a novel video-assisted keystroke inference framework that allows an attacker to infer a tablet user's typed inputs on the touchscreen by recording and analyzing the video of the tablet backside during the user's input process. Besides, some potential countermeasures to this attack are also discussed. This dissertation sheds the light on the state-of-the-art security and privacy issues in mobile computing.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Pattern Formation and Organization of Epithelial Tissues

    Full text link
    Developmental biology is a study of how elaborate patterns, shapes, and functions emerge as an organism grows and develops its body plan. From the physics point of view this is very much a self-organization process. The genetic blueprint contained in the DNA does not explicitly encode shapes and patterns an animal ought to make as it develops from an embryo. Instead, the DNA encodes various proteins which, among other roles, specify how different cells function and interact with each other. Epithelial tissues, from which many organs are sculpted, serve as experimentally- and analytically-tractable systems to study patterning mechanisms in animal development. Despite extensive studies in the past decade, the mechanisms that shape epithelial tissues into functioning organs remain incompletely understood. This thesis summarizes various studies we have done on epithelial organization and patterning, both in abstract theory and in close contact with experiments. A novel mechanism to establish cellular left-right asymmetry based on planar polarity instabilities is discussed. Tissue chirality is often assumed to originate from handedness of biological molecules. Here we propose an alternative where it results from spontaneous symmetry breaking of planar polarity mechanisms. We show that planar cell polarity (PCP), a class of well-studied mechanisms that allows epithelia to spontaneously break rotational symmetry, is also generically capable of spontaneously breaking reflection symmetry. Our results provide a clear interpretation of many mutant phenotypes, especially those that result in incomplete inversion. To bridge theory and experiments, we develop quantitative methods to analyze fluorescence microscopy images. Included in this thesis are algorithms to selectively project intensities from a surface in z-stack images, analysis of cells forming short chain fragments, analysis of thick fluorescent bands using steerable ridge detector, and analysis of cell recoil in laser ablation experiments. These techniques, though developed in the context of zebrafish retina mosaic, are general and can be adapted to other systems. Finally we explore correlated noise in morphogenesis of fly pupa notum. Here we report unexpected correlation of noise in cell movements between left and right halves of developing notum, suggesting that feedback or other mechanisms might be present to counteract stochastic noise and maintain left-right symmetry.PHDPhysicsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/138800/1/hjeremy_1.pd

    Learning Equivariant Representations

    Get PDF
    State-of-the-art deep learning systems often require large amounts of data and computation. For this reason, leveraging known or unknown structure of the data is paramount. Convolutional neural networks (CNNs) are successful examples of this principle, their defining characteristic being the shift-equivariance. By sliding a filter over the input, when the input shifts, the response shifts by the same amount, exploiting the structure of natural images where semantic content is independent of absolute pixel positions. This property is essential to the success of CNNs in audio, image and video recognition tasks. In this thesis, we extend equivariance to other kinds of transformations, such as rotation and scaling. We propose equivariant models for different transformations defined by groups of symmetries. The main contributions are (i) polar transformer networks, achieving equivariance to the group of similarities on the plane, (ii) equivariant multi-view networks, achieving equivariance to the group of symmetries of the icosahedron, (iii) spherical CNNs, achieving equivariance to the continuous 3D rotation group, (iv) cross-domain image embeddings, achieving equivariance to 3D rotations for 2D inputs, and (v) spin-weighted spherical CNNs, generalizing the spherical CNNs and achieving equivariance to 3D rotations for spherical vector fields. Applications include image classification, 3D shape classification and retrieval, panoramic image classification and segmentation, shape alignment and pose estimation. What these models have in common is that they leverage symmetries in the data to reduce sample and model complexity and improve generalization performance. The advantages are more significant on (but not limited to) challenging tasks where data is limited or input perturbations such as arbitrary rotations are present

    Pattern Recognition

    Get PDF
    Pattern recognition is a very wide research field. It involves factors as diverse as sensors, feature extraction, pattern classification, decision fusion, applications and others. The signals processed are commonly one, two or three dimensional, the processing is done in real- time or takes hours and days, some systems look for one narrow object class, others search huge databases for entries with at least a small amount of similarity. No single person can claim expertise across the whole field, which develops rapidly, updates its paradigms and comprehends several philosophical approaches. This book reflects this diversity by presenting a selection of recent developments within the area of pattern recognition and related fields. It covers theoretical advances in classification and feature extraction as well as application-oriented works. Authors of these 25 works present and advocate recent achievements of their research related to the field of pattern recognition

    Artificial Intelligence for Science in Quantum, Atomistic, and Continuum Systems

    Full text link
    Advances in artificial intelligence (AI) are fueling a new paradigm of discoveries in natural sciences. Today, AI has started to advance natural sciences by improving, accelerating, and enabling our understanding of natural phenomena at a wide range of spatial and temporal scales, giving rise to a new area of research known as AI for science (AI4Science). Being an emerging research paradigm, AI4Science is unique in that it is an enormous and highly interdisciplinary area. Thus, a unified and technical treatment of this field is needed yet challenging. This work aims to provide a technically thorough account of a subarea of AI4Science; namely, AI for quantum, atomistic, and continuum systems. These areas aim at understanding the physical world from the subatomic (wavefunctions and electron density), atomic (molecules, proteins, materials, and interactions), to macro (fluids, climate, and subsurface) scales and form an important subarea of AI4Science. A unique advantage of focusing on these areas is that they largely share a common set of challenges, thereby allowing a unified and foundational treatment. A key common challenge is how to capture physics first principles, especially symmetries, in natural systems by deep learning methods. We provide an in-depth yet intuitive account of techniques to achieve equivariance to symmetry transformations. We also discuss other common technical challenges, including explainability, out-of-distribution generalization, knowledge transfer with foundation and large language models, and uncertainty quantification. To facilitate learning and education, we provide categorized lists of resources that we found to be useful. We strive to be thorough and unified and hope this initial effort may trigger more community interests and efforts to further advance AI4Science

    Evolutionary robotics in high altitude wind energy applications

    Get PDF
    Recent years have seen the development of wind energy conversion systems that can exploit the superior wind resource that exists at altitudes above current wind turbine technology. One class of these systems incorporates a flying wing tethered to the ground which drives a winch at ground level. The wings often resemble sports kites, being composed of a combination of fabric and stiffening elements. Such wings are subject to load dependent deformation which makes them particularly difficult to model and control. Here we apply the techniques of evolutionary robotics i.e. evolution of neural network controllers using genetic algorithms, to the task of controlling a steerable kite. We introduce a multibody kite simulation that is used in an evolutionary process in which the kite is subject to deformation. We demonstrate how discrete time recurrent neural networks that are evolved to maximise line tension fly the kite in repeated looping trajectories similar to those seen using other methods. We show that these controllers are robust to limited environmental variation but show poor generalisation and occasional failure even after extended evolution. We show that continuous time recurrent neural networks (CTRNNs) can be evolved that are capable of flying appropriate repeated trajectories even when the length of the flying lines are changing. We also show that CTRNNs can be evolved that stabilise kites with a wide range of physical attributes at a given position in the sky, and systematically add noise to the simulated task in order to maximise the transferability of the behaviour to a real world system. We demonstrate how the difficulty of the task must be increased during the evolutionary process to deal with this extreme variability in small increments. We describe the development of a real world testing platform on which the evolved neurocontrollers can be tested

    New Approaches in Automation and Robotics

    Get PDF
    The book New Approaches in Automation and Robotics offers in 22 chapters a collection of recent developments in automation, robotics as well as control theory. It is dedicated to researchers in science and industry, students, and practicing engineers, who wish to update and enhance their knowledge on modern methods and innovative applications. The authors and editor of this book wish to motivate people, especially under-graduate students, to get involved with the interesting field of robotics and mechatronics. We hope that the ideas and concepts presented in this book are useful for your own work and could contribute to problem solving in similar applications as well. It is clear, however, that the wide area of automation and robotics can only be highlighted at several spots but not completely covered by a single book

    Neuromagnetic investigations of mechanisms and effects of STN-DBS and medication in Parkinson's disease

    Get PDF
    Parkinson’s disease (PD) is a neurodegenerative disorder cardinally marked by motor symptoms, but also sensory symptoms and several other non-motor symptoms. PD patients are typically treated with dopaminergic medication for several years. Many patients eventually experience bouts of periods where medication might not be able to effectively control symptoms as well as experience side-effects of long-term dopaminergic treatments. Deep brain stimulation (DBS) is an option as the next therapeutic recourse for such patients. DBS treatment essentially involves placement of stimulating electrodes in the subthalamic nucleus (STN) or the globus pallidus internum (GPi) along with an implanted pulse generator (IPG) in the sub-clavicular space. STN-DBS alleviates motor symptoms and leads to substantial improvements in quality of life for PD patients. Although DBS is known to improve several classes of symptoms, the effect mechanism of DBS is still not clear. While there is a lack of electrophysiological investigation of sensory processing and the effects of treatments in PD altogether, the electrophysiological studies of the cortical dynamics during motor tasks and at rest lack consensus.We recorded magnetoencephalography (MEG) and electromyography (EMG) from PD patients in three studies: (i) at rest, (ii) during median nerve stimulation, and (iii) while performing phasic contractions (hand gripping). The three studies focused on cortical oscillatory dynamics at rest, during somatosensory processing and during movement, respectively. The measurements were conducted in DBS-treated, untreated (DBS washout) and dopaminergic-medicated states. While both treatments (DBS and dopaminergic medication) ameliorated motor symptoms similarly in all studies, they showed differentiated effects on: (i) increased sensorimotor cortical low-gamma spectral power (31-45 Hz) (but no changes in beta power (13-30 Hz)) at rest only during DBS, (ii) somatosensory processing with higher gamma augmentation (31-45 Hz, 20-60 ms) in the dopaminergic-medicated state compared to DBS-treated and untreated states, and (iii) hand gripping with increased motor-related beta corticomuscular coherence (CMC, 13-30 Hz) during dopaminergic medication in contrast to increased gamma power (31-45 Hz) during DBS.Firstly, we infer from the three studies that DBS and dopaminergic medication employ partially different anatomo-functional pathways and functional strategies when improving PD symptoms. Secondly, we suggest that treatments act on pathological oscillatory dynamics differently at cortical and sub-cortical levels and may do so through more sophisticated mechanisms than mere suppression of the pathological spectral power in a particular band. And thirdly, we urge exploring effect mechanisms of PD treatments beyond the motor system. The effects of dopaminergic medication on early somatosensory processing has opened the door for exploring the effects of treatments and studying their mechanisms using electrophysiology, especially in higher order sensory deficits. Integration of such research findings into a holistic view on mechanisms of treatments could pave way for better disease management paradigms. 
    • …
    corecore