270,045 research outputs found

    Can intergenerational equity be operationalized?

    Get PDF
    A long Utilitarian tradition has the ideal of equal regard for all individuals, both those now living and those yet to be born. The literature formalizes this ideal as asking for a preference relation on the space of infinite utility streams that is complete, transitive, invariant to finite permutations, and respects the Pareto ordering; an ethical preference relation, for short. This paper argues that operationalizing this ideal is problematic. Most simply, every ethical preference relation has the property that almost all (in the sense of outer measure) pairs of utility streams are indifferent. Even if we abandon completeness and respect for the Pareto ordering, every irreflexive preference relation that is invariant to finite permutations has the property that almost all pairs of utility streams are incomparable (not strictly ranked). Moreover, no ethical preference relation can be measurable. As a consequence, the existence of an ethical preference relation is independent of the axioms used in almost all of formal economics and all of classical analysis. Finally, even if an ethical preference relation exists, it cannot be "explicitly described." These results have implications for game theory, for macroeconomics, and for economic development.Intergenerational equity, infinite utility streams, long run averages, overtaking criterion, Utilitarianism

    Proposal for non-local electron-hole turnstile in the Quantum Hall regime

    Full text link
    We present a theory for a mesoscopic turnstile that produces spatially separated streams of electrons and holes along edge states in the quantum Hall regime. For a broad range of frequencies in the non-adiabatic regime the turnstile operation is found to be ideal, producing one electron and one hole per cycle. The accuracy of the turnstile operation is characterized by the fluctuations of the transferred charge per cycle. The fluctuations are found to be negligibly small in the ideal regime.Comment: 4+ pages, 2 figure

    Entanglement in Mesoscopic Structures: Role of Projection

    Full text link
    We present a theoretical analysis of the appearance of entanglement in non-interacting mesoscopic structures. Our setup involves two oppositely polarized sources injecting electrons of opposite spin into the two incoming leads. The mixing of these polarized streams in an ideal four-channel beam splitter produces two outgoing streams with particular tunable correlations. A Bell inequality test involving cross-correlated spin-currents in opposite leads signals the presence of spin-entanglement between particles propagating in different leads. We identify the role of fermionic statistics and projective measurement in the generation of these spin-entangled electrons.Comment: 5 pages, 1 figur

    Synthetic Generation of Events for Address-Event-Representation Communications

    Get PDF
    Address-Event-Representation (AER) is a communications protocol for transferring images between chips, originally developed for bio-inspired image processing systems. Such systems may consist of a complicated hierarchical structure with many chips that transmit images among them in real time, while performing some processing (for example, convolutions). In developing AER based systems it is very convenient to have available some kind of means of generating AER streams from on-computer stored images. In this paper we present a method for generating AER streams in real time from images stored in a computer’s memory. The method exploits the concept of linear feedback shift register random number generators. This method has been tested by software and compared to other possible algorithms for generating AER streams. It has been found that the proposed method yields a minimum error with respect to the ideal situation. A hardware platform that exploits this technique is currently under development

    Prospects for direct detection of circular polarization of gravitational-wave background

    Get PDF
    We discussed prospects for directly detecting circular polarization signal of gravitational wave background. We found it is generally difficult to probe the monopole mode of the signal due to broad directivity of gravitational wave detectors. But the dipole (l=1) and octupole (l=3) modes of the signal can be measured in a simple manner by combining outputs of two unaligned detectors, and we can dig them deeply under confusion and detector noises. Around f~0.1mHz LISA will provide ideal data streams to detect these anisotropic components whose magnitudes are as small as ~1 percent of the detector noise level in terms of the non-dimensional energy density \Omega_{GW}(f).Comment: 5 pages, 1 figure, PRL in pres

    From the warm magnetized atomic medium to molecular clouds

    Full text link
    {It has recently been proposed that giant molecular complexes form at the sites where streams of diffuse warm atomic gas collide at transonic velocities.} {We study the global statistics of molecular clouds formed by large scale colliding flows of warm neutral atomic interstellar gas under ideal MHD conditions. The flows deliver material as well as kinetic energy and trigger thermal instability leading eventually to gravitational collapse.} {We perform adaptive mesh refinement MHD simulations which, for the first time in this context, treat self-consistently cooling and self-gravity.} {The clouds formed in the simulations develop a highly inhomogeneous density and temperature structure, with cold dense filaments and clumps condensing from converging flows of warm atomic gas. In the clouds, the column density probability density distribution (PDF) peaks at \sim 2 \times 10^{21} \psc and decays rapidly at higher values; the magnetic intensity correlates weakly with density from n∌0.1n \sim 0.1 to 10^4 \pcc, and then varies roughly as n1/2n^{1/2} for higher densities.} {The global statistical properties of such molecular clouds are reasonably consistent with observational determinations. Our numerical simulations suggest that molecular clouds formed by the moderately supersonic collision of warm atomic gas streams.}Comment: submitted to A&
    • 

    corecore