7 research outputs found

    Frost monitoring cyber-physical system: a survey on prediction and active protection methods

    Full text link
    Frost damage in broadacre cropping and horticulture (including viticulture) results in substantial economic losses to producers and may also disrupt associated product value chains. Frost risk windows are changing in timing, frequency, and duration. Faced with the increasing cost of mitigation infrastructure and competition for resources (e.g., water and energy), multiperil insurance, and the need for supply chain certainty, producers are under pressure to innovate in order to manage and mitigate risk. Frost protection systems are cyber-physical systems (CPSs) consisting of sensors (event detection), intelligence (prediction), and actuators (active protection methods). The Internet-of-Things communication protocols joining the CPS components are also evaluated. In this context, this article introduces and reviews existing methods of frost management. This article focuses on active protection methods because of their potential for real-time deployment during frost events. For integrated frost prediction and active protection systems, prediction method, sensor types, and integration architecture are assessed, research gaps are identified and future research directions proposed

    Development of artificial neural network-based object detection algorithms for low-cost hardware devices

    Get PDF
    Finally, the fourth work was published in the “WCCI” conference in 2020 and consisted of an individuals' position estimation algorithm based on a novel neural network model for environments with forbidden regions, named “Forbidden Regions Growing Neural Gas”.The human brain is the most complex, powerful and versatile learning machine ever known. Consequently, many scientists of various disciplines are fascinated by its structures and information processing methods. Due to the quality and quantity of the information extracted from the sense of sight, image is one of the main information channels used by humans. However, the massive amount of video footage generated nowadays makes it difficult to process those data fast enough manually. Thus, computer vision systems represent a fundamental tool in the extraction of information from digital images, as well as a major challenge for scientists and engineers. This thesis' primary objective is automatic foreground object detection and classification through digital image analysis, using artificial neural network-based techniques, specifically designed and optimised to be deployed in low-cost hardware devices. This objective will be complemented by developing individuals' movement estimation methods by using unsupervised learning and artificial neural network-based models. The cited objectives have been addressed through a research work illustrated in four publications supporting this thesis. The first one was published in the “ICAE” journal in 2018 and consists of a neural network-based movement detection system for Pan-Tilt-Zoom (PTZ) cameras deployed in a Raspberry Pi board. The second one was published in the “WCCI” conference in 2018 and consists of a deep learning-based automatic video surveillance system for PTZ cameras deployed in low-cost hardware. The third one was published in the “ICAE” journal in 2020 and consists of an anomalous foreground object detection and classification system for panoramic cameras, based on deep learning and supported by low-cost hardware

    Brain-imaging based methodology for OPM sensor placement

    Get PDF
    ABSTRACT: Optically-pumped magnetometers (OPMs) have reached sensitivity levels that make them viable portable alternatives to traditional superconducting technology for magnetoencephalography. OPMs do not require cryogenic cooling, and can therefore be placed directly on the scalp surface. Unlike cryogenic systems based on a well characterised xed arrays essentially linear in applied ux, or electroencephalography sensors that do not need to account for sensors orientation; OPM sensors are no longer rigidly arranged with a scanner system. Therefore, uncertainty in their locations and orientations with respect to the brain, and with respect to one another, must be accounted for. In this thesis dissertation, we propose a methodology to estimate the true sensor geometry of a disturbed array. We use parametric Bayesian inversion methods to perform neural source reconstruction and score among disturbed geometries with Free Energy as a cost function. This geometry disturbance is non-linear, causing local sub-optimal values on Free Energy that we tackle with a Metropolis search. Looking for a robust solution to this sensor placement problem, we develop a Multiple Kernel Learning (MKL) approach to extract the predominant complex dynamics hidden in the data. To do this, a weighted mixture of Gaussian kernels is used to highlight the data relationships, enhancing the data-driven covariance estimation and leading to a more reliable neural source reconstruction. When tested over disturbed OPM geometries, the MKL based solvers turned the Free Energy into a monotonic function, allowing the use of gradient descent optimisation. As a result, we estimate the true geometry of disturbed OPM arrays with a similar error than Metropolis search, but with 90% fewer iterations and allowing a larger search space. Our proposal suggests that a exible and scalable design for sensor placement can be used to harness the potential of OPMs

    Modelling a conversational agent (Botocrates) for promoting critical thinking and argumentation skills

    Get PDF
    Students in higher education institutions are often advised to think critically, yet without being guided to do so. The study investigated the use of a conversational agent (Botocrates) for supporting critical thinking and academic argumentation skills. The overarching research questions were: can a conversational agent support critical thinking and academic argumentation skills? If so, how? The study was carried out in two stages: modelling and evaluating Botocrates' prototype. The prototype was a Wizard-of-Oz system where a human plays Botocrates' role by following a set of instructions and knowledge-base to guide generation of responses. Both stages were conducted at the School of Education at the University of Leeds. In the first stage, the study analysed 13 logs of online seminars in order to define the tasks and dialogue strategies needed to be performed by Botocrates. The study identified two main tasks of Botocrates: providing answers to students' enquiries and engaging students in the argumentation process. Botocrates’ dialogue strategies and contents were built to achieve these two tasks. The novel theoretical framework of the ‘challenge to explain’ process and the notion of the ‘constructive expansion of exchange structure’ were produced during this stage and incorporated into Botocrates’ prototype. The aim of the ‘challenge to explain’ process is to engage users in repeated and constant cycles of reflective thinking processes. The ‘constructive expansion of exchange structure’ is the practical application of the ‘challenge to explain’ process. In the second stage, the study used the Wizard-of-Oz (WOZ) experiments and interviews to evaluate Botocrates’ prototype. 7 students participated in the evaluation stage and each participant was immediately interviewed after chatting with Botocrates. The analysis of the data gathered from the WOZ and interviews showed encouraging results in terms of students’ engagement in the process of argumentation. As a result of the role of ‘critic’ played by Botocrates during the interactions, users actively and positively adopted the roles of explainer, clarifier, and evaluator. However, the results also showed negative experiences that occurred to users during the interaction. Improving Botocrates’ performance and training users could decrease users’ unsuccessful and negative experiences. The study identified the critical success and failure factors related to achieving the tasks of Botocrates
    corecore