64 research outputs found

    Decentralized Subspace Pursuit for Joint Sparsity Pattern Recovery

    Full text link
    To solve the problem of joint sparsity pattern recovery in a decen-tralized network, we propose an algorithm named decentralized and collaborative subspace pursuit (DCSP). The basic idea of DCSP is to embed collaboration among nodes and fusion strategy into each iteration of the standard subspace pursuit (SP) algorithm. In DCSP, each node collaborates with several of its neighbors by sharing high-dimensional coefficient estimates and communicates with other remote nodes by exchanging low-dimensional support set estimates. Experimental evaluations show that, compared with several existing algorithms for sparsity pattern recovery, DCSP produces satisfactory results in terms of accuracy of sparsity pattern recovery with much less communication cost.Comment: 5 pages, 3 figures, accepted by ICASSP 201

    Micro-Doppler Ambiguity Resolution Based on Short-Time Compressed Sensing

    Get PDF

    Multiple input multiple output radar three dimensional imaging technique

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    ON SOME COMMON COMPRESSIVE SENSING RECOVERY ALGORITHMS AND APPLICATIONS

    Get PDF
    Compressive Sensing, as an emerging technique in signal processing is reviewed in this paper together with its’ common applications. As an alternative to the traditional signal sampling, Compressive Sensing allows a new acquisition strategy with significantly reduced number of samples needed for accurate signal reconstruction. The basic ideas and motivation behind this approach are provided in the theoretical part of the paper. The commonly used algorithms for missing data reconstruction are presented. The Compressive Sensing applications have gained significant attention leading to an intensive growth of signal processing possibilities. Hence, some of the existing practical applications assuming different types of signals in real-world scenarios are described and analyzed as well

    Wide-Angle Multistatic Synthetic Aperture Radar: Focused Image Formation and Aliasing Artifact Mitigation

    Get PDF
    Traditional monostatic Synthetic Aperture Radar (SAR) platforms force the user to choose between two image types: larger, low resolution images or smaller, high resolution images. Switching to a Wide-Angle Multistatic Synthetic Aperture Radar (WAM-SAR) approach allows formation of large high-resolution images. Unfortunately, WAM-SAR suffers from two significant implementation problems. First, wavefront curvature effects, non-linear flight paths, and warped ground planes lead to image defocusing with traditional SAR processing methods. A new 3-D monostatic/bistatic image formation routine solves the defocusing problem, correcting for all relevant wide-angle effects. Inverse SAR (ISAR) imagery from a Radar Cross Section (RCS) chamber validates this approach. The second implementation problem stems from the large Doppler spread in the wide-angle scene, leading to severe aliasing problems. This research effort develops a new anti-aliasing technique using randomized Stepped-Frequency (SF) waveforms to form Doppler filter nulls coinciding with aliasing artifact locations. Both simulation and laboratory results demonstrate effective performance, eliminating more than 99% of the aliased energy
    corecore