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Summary

Because MIMO radar can form a large aperture and then obtain the 3D

image of a target, it has received much attention in recent years. In collo-

cated MIMO radar 3D imaging, the signal model equations derived in this

thesis are suitable for slant range target imaging. Under the assumption of

orthogonal coding, simple spatial Fourier transform is used to form the 3D im-

age. For real codes, there are auto- and cross-correlations between codes. In

order to mitigate sidelobes caused by code correlation, zero correlation zone

code has been proposed in this work for use in some special imaging cases,

such as for isolated target imaging. But the ZCZ codes in this thesis are

not envelope constant, which is not power efficient. The entire image for-

mation procedure combining collocated MIMO radar and ISAR processing is

also proposed. It comprises the following steps: single snapshot MIMO radar

3D imaging, 3D images alignment, translational motion compensation, rota-

tion parameters estimation, coherent combination, strong scatterers selection,

coordinate transformation and display of 3D image. In this thesis, cyclic cor-

relation is proposed to align the single snapshot 3D images in the cross-range

direction and a least-square method is used to estimate the rotation. Com-

pared to the single snapshot case, the method of combining MIMO radar and

ISAR processing can improve the SNR and increase the resolution. It should

be noted that the system complexity increases for multi-snapshot case.

The strong scatterers on the target are usually sparse compared to the

whole imaging area. This property is used to improve the imaging perfor-

mance. By introducing a sequential order one negative exponential cost func-

tion and by varying a parameter, L1 norm and L0 norm homotopy is formed.

A new L1 norm and L0 norm homotopy sparse signal recovery algorithm is
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proposed. This algorithm is suitable for complex data. The L1 L0 homotopy

method is extended to block sparse signal case. This algorithm is superior

over many sparse signal recovery algorithms such as OMP, CoSaMp, Bayesian

method with Laplace prior, L1-Ls, L1-magic and smoothed L0 norm method,

in high SNR and low sparsity case.

Applications of sparse signal recovery algorithm on collocated MIMO radar

3D imaging and distributed MIMO radar 3D imaging are discussed. In order

to use the linear equation to describe the imaging system, a very large matrix

should be used. This occupies huge memory. A multi-dimensional (tensor)

signal model which has a compact expression and occupies less memory is

derived. Multi-dimensional signal based L1 norm and L0 norm homotopy

sparse signal recovery algorithm is proposed and used in collocated MIMO

radar 3D imaging. Compared with FFT method, CS methods are generally

computational expensive.

Distributed MIMO radar observes the target from different views, from

which the detailed image of the target can be obtained. This is very useful

for imaging stealth target because stealth target will scatter electromagnetic

energy in several directions and the energy can be easily collected by a dis-

tributed radar. From the backscattered beampattern width of a patch on the

target, the criterion to decide which antennas can be regarded as being collo-

cated and the antennas that can be regarded as being distributed are obtained.

A sequential linear function which describe the scatterers’ RCS and the receive

signals are obtained.

Bistatic radar, a special case of distributed radar is also studied. For

bistatic ISAR (biISAR) imaging, the smear property of biISAR image is de-

rived and an interferometric 3D imaging method is proposed.
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Chapter 1

Introduction

Radar is an acronym for radio detection and ranging. It is an active sys-

tem that transmits a beam of electromagnetic (EM) energy in the microwave

region to detect, locate, parameter estimate, image and identify objects. It

was developed to detect hostile aircrafts in the beginning of the 20th century.

Today, radar is used, for example, in air traffic control, environmental obser-

vations, vehicle collision avoidance systems, weather forecasting and ground

penetrating applications etc.

Inverse Synthetic Aperture Radar (ISAR) imaging has received much at-

tention in the past three decades [1] [2] [3] [4] [5]. As active radar transmits

signals by itself, and electromagnetic wave in microwave band has ability to

penetrate cloud and rain, ISAR can image far distance target all day and in all

weather conditions. This property makes radar a safer device for long range

surveillance. By transmitting wideband signals and using pulse compression

technique, high resolution range profile can be obtained. After translational

motion compensation, the target can be regarded as rotating around its axis.

Scatterers on the target with different cross range positions have different

Doppler frequencies. By spectrum analysis, these scatterers can be separated
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in the cross range direction, the image of a target (plane, missile) can then be

obtained [6] [7]. Resolution in the order of meters can be achieved so far. The

property of the ISAR image is that it is a projection of the target on down

range cross range plane and the height information is lost. This is inadequate

for target identification. In order to overcome this drawback, three dimensional

imaging techniques have been proposed. By putting three receive antennas and

using interferometric technique, the absolute positions of the scatterers, then

the 3D image of the target can be obtained [8] [9] [10]. However, two antennas

in one direction can only measure one scatterer’s position. If many scatterers

have been projected on one ISAR image pixel, interferometric method fails.

In order to solve this problem, cross array based three dimensional imaging

technique was proposed in [11]. Unfortunately, cross array has high grating

lobes. The multiple scatterers in one ISAR pixel should be correctly regis-

tered. When cross array is replaced by two-dimensional sparse array, grating

lobes can be mitigated although sidelobes are still high. By exploring multiple

snapshots signals and coherent processing, the sidelobes can be mitigated [12].

Multiple Input Multiple Output (MIMO) radar transmits multiple coded

signals and receives the scattered signals using multiple receive antennas.

There are two kinds of MIMO radar configurations: distributed and collocated.

For distributed MIMO radar, the distances between antennas are comparable

with the distances between the antennas and the target. The antennas observe

the target from different directions. Diversity can thus be used to improve tar-

get detection performance [13]. For a collocated MIMO radar, the distances

between the transmit antennas and the distances between the receive antennas

are small and the signals relative to different transmit antennas (or receive an-

tennas) from one scatterer can be considered as coherent, then a large virtual

aperture is formed and fine resolution can be achieved [14]. MIMO radar is an
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CHAPTER 1. INTRODUCTION

extension of antenna array. Compared with sparse array configuration, with

the same number of antennas, MIMO radar has a larger aperture. The use

of MIMO configuration to improve radar imaging performance has not been

explored. In order to extend the use of MIMO radar to 3D imaging, the collo-

cated and distributed MIMO radar three dimensional imaging algorithm and

how the sparse property of the scatterers be used to improve the image quality

should be examined. The combination of MIMO radar and ISAR technique to

mitigate sidelobes and reduce data collection time should also be discussed.

In the following sections of Chapter one, ISAR imaging technique, cross

array based three dimensional imaging technique, sparse array based three di-

mensional imaging technique, principle of MIMO radar, sparse signal recovery

algorithm, my contributions and outline of the thesis are introduced.

In this thesis, a vector is denoted by a small bold letter or two letters with

an overhead arrow showing the start and end points, while a matrix, scatterer’s

position and coordinate system are denoted by capital letters.

1.1 Inverse Synthetic Aperture Radar Imag-

ing Principle

1.1.1 Rotation Model of ISAR Imaging

Usually, for ISAR imaging, the radar is static, while the target moves and forms

an inverse synthetic aperture. The geometry of monostatic ISAR imaging is

shown in Fig. 1. Certainly, the applications of ISAR imaging techniques are

not limited only to the case where the radar is static. ISAR technique can be

used for the case where the radar is moving, such as imaging of a target in sky

while the radar is located on a moving vehicle.
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1.1. INVERSE SYNTHETIC APERTURE RADAR IMAGING
PRINCIPLE

Figure 1.1: Geometry of Interferometric ISAR 3D Imaging.

Let n̂ denote the outwardly directed unit normal to ∂D at r
′
, where ∂D

represents a surface, r
′
is located at the surface of the target. In the far field,

the physical optics approximation can be used. The induced current J on a

conducting surface can be expressed as [15]

J(r
′
) =

 2n̂×Hinc(r
′) if r̂ · n̂ < 0

0 otherwise,
(1.1)

where Hinc is the incident magnetic field, r̂ is the radar line of sight direction

vector.

The vector potential A(r) at r (the radar observation point) due to the

presence of the electric current density J(r
′
) is [16]

A(r) =

∫∫∫
e−jk|r−r′|

4π|r− r′|
µ0J(r

′)dr′, (1.2)

and the scattered magnetic field is

H(r) = ∇×
∫∫∫

e−jk|r−r′|

4π|r− r′|
J(r′)dr′, (1.3)
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CHAPTER 1. INTRODUCTION

where k = 2π
λ
is the wave number, λ is wavelength and µ0 is the permeability of

free space. ∇ operator can be approximated as −jkr̂ in the far field. Because

r̂× (n̂×Hinc) = n̂(r̂ ·Hinc)− (r̂ · n̂)Hinc and r̂ ·Hinc = 0, we have

H(r) =
jk

2πr

∫∫
r̂·n̂<0

(r̂ · n̂)Hinc(r
′)e−jk|r−r′|dS (1.4)

=
jkH0

2πr2

∫∫
r̂·n̂<0

(r̂ · n̂)e−j2k|r−r′|dS,

where r is the distance between r and the reference point O′ on the target, H0

is the transmitted magnetic field at r.

The integration in (1.4) can be obtained by discretization of the integration

surface. Using the principle of stationary phase, the equation in (1.4) can be

approximated as [15]

H(r) =
−jkH0

2πr2

∑
m

αme
−j2k|r−r′m| + o(r−2) (1.5)

where the sum is over all points on ∂D at which r̂ · n̂ = −1, αm denotes the

contribution to the integral in (1.4) of the local neighborhood Nr′m
⊂ ∂D of

r
′
m, where the signals have approximately the same phase. αm can be regarded

as an “effective area” or the reflectivity of a strong scatterer. If the surface

near r′m is a planar patch and this planar patch is perpendicular to the radar

line of sight, αm is the geometry area. For a sphere, αm approximates to aλ
2
,

where a is the radius of the sphere. −jkH0

2πr2
is known and can be included in αm

for simplicity. For radar imaging, we need to compute the sizes and positions

of all patches. After αm has been estimated, the patch can be established.

Compared with the whole surface of the target, there are few surfaces that

satisfy n̂ · r̂ = −1. So the strong scatterers are sparse.

For monostatic radar, the transmit antenna and the receive antenna are
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1.1. INVERSE SYNTHETIC APERTURE RADAR IMAGING
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located at the same site, which can be regarded as the origin of the coordinate

system. Scatterers in range direction can be easily separated by transmitting

wide band signals. In order to separate two scatterers on the cross range

direction, the phase history differences from these two scatterers are critical.

Let O denote the reference point on the target, P denote another scatterer.

After the phase from P is compensated with the phase from O, the signal from

P can be represented as

s(t) = αpe
−j4π(rp(t)−ro(t))/λ (1.6)

where rp(t) and ro(t) are the distances from scatterers P and O to the radar.

According to Fig.1.1, after translational motion compensation, the movement

of the target is equivalent to that where the target rotates only around its

rotation axis with rotation speed of ω(t). For a short data collection duration,

the rotation axis is regarded as static. This is usually called the rotation

model of ISAR imaging. The rotation angle is θ(t) =
∫ t

0
ω(t′)dt′. Assume that

the plane perpendicular to the rotation axis is (X,Y), where O is the origin,

Y axis is the target line of sight (or the vector from the radar to scatterer

O). Denoting P = (x0, y0), we have rp(t) − ro(t) ≈ x0 sin(θ(t)) + y0 cos(θ(t)).

Assuming the total rotation angle is small, we have θ(t) ≈ 0, cos(θ(t)) ≈ 1

and sin(θ(t)) ≈ θ(t). Assuming the target’s rotation speed is a constant ω0,

then we have rp(t)− ro(t) ≈ y0+x0θ(t) = y0+x0ω0t. Then equation (1.6) can

be approximated as

s(t) = αpe
−j4πx0ω0t/λ (1.7)

where e−j4πy0/λ is absorbed into αp. It can be seen that s(t) is a complex

sinusoid function. After inverse Fourier transform, the spectrum of s(t) can
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be expressed as

S(f) =
1

T

∫ T/2

−T/2

s(t)ej2πftdt = αpsinc(T (f − 2x0ω0/λ)) (1.8)

It can be seen that the peak occurs at 2x0ω0/λ, which is proportional to

the cross range coordinate x0. Because the frequency resolution of sinc(fT )

is ∆f = 1
T
, so the cross range resolution satisfies 2∆xω0/λ = 1

T
, that is

∆x = λ
2ω0T

= λ
2∆θ

, where ∆θ is the rotation angle of the target.

In the above simplifying approximation, a simple FFT operation can sepa-

rate scatterers in the cross range direction. However, in actual situations, due

to maneuvering of the target, the rotation speed may not be uniform and the

rotation axis may be time varying. For non-uniform rotation, linear function

was used to approximate the time varying rotation [17]. Then Radon-Wigner

transform and other time frequency methods were proposed to form the range

instantaneous Doppler image [17], [18]. By using MIMO array, the required

synthetic aperture is much less than that in monostatic radar, the uniform

rotation approximation is more precise.

1.1.2 Motion Compensation

The processing step of compensation of the phase from O is called motion

compensation. An easy way to implement it is to choose an isolated scatterer

in the range profile [2]. The selection criterion includes two aspects: (1) the

powers of the candidate range units are large; (2) at the same time the vari-

ances of the cross range profile of the candidate range units are small (because

the smaller the variance, the higher probability that a range unit has only

one scatterer). But unfortunately, isolated scatterers are not common [3]. In

order to overcome this problem, a weighted minimum least square method was
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1.2. INTERFEROMETRIC 3D IMAGING TECHNIQUE

proposed [19]. In this method, several strong scatterers are selected and their

phase histories are extracted. Then the phase history of the target is estimated

by the weighted minimum least square method. The drawback of this method

is its complexity, because absolute phases need to be computed. If the transla-

tional motion has been compensated precisely, the ISAR image will has small

entropy. Based on this observation, by searching the phase history and com-

pensating it, the image with minimum entropy corresponds to the case where

the motion has been compensated precisely [20]. This method does not de-

pend on the distribution of the scatterers, however it is more computationally

expensive.

From above description, we know that ISAR image is a two dimensional

projection of a target on Range-Doppler plane. The altitude information per-

pendicular to this Range-Doppler plane is lost(scatterers with the same range

Doppler coordinate but with different altitude coordinates are projected on

the same pixel and cannot be separated). This is not suitable for target iden-

tification. In order to recover 3D information, 3D imaging algorithms were

proposed. These algorithms include monopulse antenna based method, inter-

ferometric and antenna array based methods.

1.2 Interferometric 3D Imaging Technique

Interferometric 3D imaging of SAR was first proposed in [21]. By computing

the phase difference of a scatterer relative to two different antennas with dif-

ferent height, the altitude information of the scatterer can be obtained and

three dimensional map of the terrain is carried out. In ISAR configuration,

the interferometric 3D imaging geometry is shown in Fig.1.2, where the target

is located on the Y axis, three receive antennas T0, T1 and T2 are located
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Figure 1.2: Geometry of ISAR Imaging.

on the origin, the X axis and the Z axis, respectively. Antenna T0 is also

the transmit antenna. The x coordinate of scatterer P is related to the phase

difference φ1 between signals received from antenna T0 and T1, which can be

written as [9] [22] [10]

x =
φ1λr

2πd
(1.9)

where d is the distance between antennas T0 and T1, T0 and T2, r is the

distance between the radar and the target. Similarly, the z coordinate of

scatterer P is related to the phase difference φ2 between signals received from

antenna T0 and T2, which can be expressed as

z =
φ2λr

2πd
(1.10)

Because the period of phase is 2π, in order to keep the measured cross range

distances unambiguous, the maximum cross range should satisfy

x, z ∈ [−λr
2d
,
λr

2d
] (1.11)

In the above equations, the target is assumed to be located in the broadside

of the three-antenna plane. In real case, the target may be located in a slant
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range. So the equation (1.9) and (1.10) should be revised. In addition, because

the image of ISAR is not continuous, phase unwrap technique used in SAR

imaging cannot be used. Then the unambiguous distance of interferometric

ISAR is limited. Another problem is that if multiple scatterers are projected

onto one ISAR image pixel, interferometric technique cannot separate these

scatterers. In order to overcome the multiple scatterers’ problem, cross array

based 3D imaging technique was proposed in [11].

1.3 Cross Array Based Three Dimensional Imag-

ing Technique
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Figure 1.3: Geometry of Antenna Array ISAR Imaging.

The cross array based 3D imaging geometry is shown in Fig.1.3 where the

target is also assumed to be located at the broadside of the array.

Assuming that range cell m contains only one isolated scatterer O, after

motion compensation using signals from O, the array signal of scatterer P can
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be expressed as

spx(t) = e−j4π
rp(t)−ro(t)

λ ×



1

ej2π
(xp−xo)d

λr

...

ej2π
(xp−xo)(K−1)d

λr


, (1.12)

spz(t) = e−j4π
rp(t)−ro(t)

λ ×



1

ej2π
(zp−zo)d

λr

...

ej2π
(zp−zo)(K−1)d

λr


, (1.13)

where K is the number of antennas in one axis. The spatial frequencies of the

array signal are fx = (xp−xo)d

λr
and fz =

(zp−zo)d

λr
. Therefore,

xp =
λrfx
d

+ xo, (1.14)

and

zp =
λrfz
d

+ zo. (1.15)

From equations (1.14) and (1.15), what we obtained are xp−xo and zp−zo,

which are the cross range distances of the scatterer P relative to the scatterer

O. This means that point O is the center of the obtained three dimensional

image in the cross range domain.

A question of the above method is registration of scatterers. Assume that

there are two scatterers in one ISAR pixel. The two positions in X and Z axis

are (x1, x2) and (z1, z2). Now what are the positions of the two scatterers?

(x1, z1) and (x2, z2) or (x1, z2) and (x2, z1)?. Let’s look at one simulation

example. Let the lengths of the two arrays be all 20. Let the two X direction
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discrete frequencies be 3 and 15, and the two Z direction discrete frequencies be

5 and 14. The amplitudes of the two scatterers are 1 and 2. One combination

of discrete 2D frequencies is (3, 5) and (15, 14). The 2D FFTs of the cross

array received signals from (3, 5) and (15, 14) are shown in Fig.1.4. Another

combination of discrete 2D frequencies is (3, 14) and (15, 5). The corresponding

2D FFT is shown in Fig.1.5. From the contour plots of the two 2D FFTs, there

are little differences. The dominant differences are the amplitudes of the peaks.

If the amplitudes of the two scatterers are the same, there is no difference.

So ambiguity exists in cross array 3D imaging. Amplitude and rotation axis

matched methods were proposed in [11], but the robustness needs to be verified

using real data.
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Figure 1.4: Mesh plot and contour plot of 2D FFT of the cross array received
signal from discrete frequency pairs (3, 5) and (15, 14).
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Figure 1.5: Mesh plot and contour plot of 2D FFT of the cross array received
signal from discrete frequency pairs(3, 14) and (15, 5).
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Figure 1.6: Element layout for a sparse array with 64 elements. The aperture
is equivalent to that of a 256 elements full 2D square array.

1.4 Sparse Array Based Three Dimensional Imag-

ing Technique

The ambiguity of cross array is due to its non-needle beampattern. If a full

two dimensional array is used, this problem is solved. However, the number of

antennas increases greatly with the increase of the two dimensional aperture.

In order to decrease the number of antennas while keeping the same aperture

size, as a tradeoff, sparse array can be used [12]. A two dimensional sparse

array is shown in Fig.1.6, where there are only 64 antennas but the aperture

is the same as that of 256 antennas. The beampattern is shown in Fig.1.7.

There is only one peak, but the sidelobes are also high.

If there are many scatterers in one range cell, the spatial spectrum of these

scatterers using sparse array has high sidelobes. Fig.1.8 shows one case of the

spatial spectrum where there are only 4 scatterers in one range cell [12]. It is

difficult to find the peaks of the 4 scatterers. Usually multiple snapshot signals

are received. If the rotation speed of the target is obtained, coherent processing

can be used to mitigate the sidelobes and improve the imaging performance.

Fig.1.9 shows the spatial spectrum after coherent processing. Sidelobes along
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Figure 1.7: Beam pattern of the 64 elements sparse array, the maximum side-
lobes level is -14.5dB.

Figure 1.8: Spatial spectrum of one range unit using the physical sparse array.

the direction of rotation speed w are mitigated. The high sidelobes is due to

the high sidelobes of sparse antenna array beampattern and at the same time

there are multiple scatterers. CLEAN technique was used to estimate the posi-

tion and amplitude of each scatterer [23]. Maximum likelihood estimation was

also proposed to estimate the amplitudes and positions of the scatterers and

improve the image quality [12]. However, the computational cost is increased.
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Figure 1.9: Combined spatial spectrum of the real and the synthetic aperture
of the sparse array. Because the time domain information is used, the sidelobes
in areas along the combined velocity direction is lower.

1.5 Principle of Multiple Input Multiple Out-

put Radar

MIMO radar transmits multiple independent signals from multiple transmit

antennas and receives the return signals using multiple receive antennas [24],

[13]. There are two different MIMO radar configurations: distributed MIMO

radar and collocated MIMO radar. For distributed MIMO radar, as the dis-

tances between different antennas are large, the RCS of a target relative to

different transmit-receive pairs are different [13]. Thus diversity is used to

improve the probability of target detection. For collocated MIMO radar, as

the distances between different transmit antennas and the distances between

different receive antennas are small, a target or the scatterers on a target can

be regarded as coherent relative to different transmitters and receivers. A

merit of collocated MIMO radar is that a large virtual aperture can be formed

with a small number of antennas. This increases the precision of cross range

estimation [14].

Assume that N receive antennas are uniformly located on X axis with

inter-element distance of dr and M transmit antennas are uniformly located
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on X axis with inter-element distance of dt. The signal envelopes φm(t),m =

0, · · · ,M−1 transmitted from different transmit antennas are orthogonal. The

signal received from the nth receive antenna after mixing can be expressed as

sn(t) = αk

∑M−1
m=0 φm(t− τ tm − τ rn)e−j2πf(τ tm+τrn)

≈ αke
−j2πf(τ t0+τr0 )

∑M−1
m=0 φm(t− τ t0 − τ r0 )ej2πf(

mdtcos(θk)

c
+

ndrcos(θk)

c
)

(1.16)

where the relative delays between different antennas are small compared to the

duration of codes φm(t), θk is the target’s direction of arrival(DOA), αk cor-

responds to the target’s Radar Cross Section (RCS). The correlation between

sn(t) and φm(t− τ t0 − τ r0 ) can be expressed as

s(n,m) = αke
j2πf(

mdtcos(θk)

c
+

ndrcos(θk)

c
) (1.17)

where e−j2πf(τ t0+τr0 ), as a constant phase term, is omitted. Denote s = vec(s(n,m))

where vec is the operation of stacking the columns of a matrix on top of each

other, a(n,m) = ej2πf(
mdtcos(θk)

c
+

ndrcos(θk)

c
) and a(θk) = vec(a(n,m)), we have

s = αka(θk). (1.18)

If dt and dr satisfies dt = Ndr, a(θk) has expression of

a(θk) = [1, ej2πf
(drcos(θk))

c , · · · , ej2πf(
((N−1)drcos(θk))

c
),

· · · , ej2πf(
mNdrcos(θk)

c
+

ndrcos(θk)

c
), · · · , ej2πf(

(NM−1)drcos(θk)

c
)]T .

(1.19)

It can be seen that a(θk) is the steering vector of a linear array having MN

elements with inter-element distance of dr. Although there are only M + N

elements, a length MN steering vector is obtained, which corresponds to a

MN length virtual array. Fig.1.10 shows an example of a MIMO array and
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Figure 1.10: One dimensional MIMO array and virtual aperture

the virtual aperture. This means that a higher angular resolution can be

obtained using fewer antennas.

MIMO array has been discussed in synthetic aperture radar (SAR) and

ultra wide band (UWB) radar imaging [25], [26]. For far field target imaging,

a 2D high resolution technique using narrow- and wide- band MIMO radar was

proposed in [27], [28], where only one dimensional linear array and imaging

of broadside target was discussed. The method to mitigate sidelobes was

not discussed. In Chapter 2, a 3D imaging technique using MIMO radar is

studied [29]. In this case, the target can be located in the slant range direction.

Zero correlation zone (ZCZ) code is designed to mitigate sidelobes.

In the afore-mentioned target imaging methods [27] [28] [29], only one

snapshot is used to form the image. Although it avoids motion compensation

usually needed in ISAR imaging, it requires a relatively high transmitting

energy and induces high sidelobes. Usually, a radar collects multiple snapshots

signals. Using these multiple snapshots signals can reduce transmitting power

as well as improve cross-range resolution and mitigate sidelobes. In [30] and

[31], linear MIMO array in conjunction with ISAR processing was discussed.

It is noted that, in these papers, the gaps between virtual antennas are filled

with synthetic aperture, and only a 2D image was obtained. The number of

codes in the said MIMO array is small and orthogonal property among these
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codes is assumed. The target is also assumed to be located on the broadside of

the array to show the cross-range resolution improvement. When the rotation

axis is perpendicular to the plane formed by the antenna array and the target,

the conjunction algorithms were discussed in detail in these two papers. In

reality, the rotation axis may not be perpendicular to the said plane. The

method needs discussion in detail.

In Chapter 3, two-dimensional MIMO radar and inverse synthetic aperture

technique are combined to form a 3D image. The targets can be located

in the slant range and can still be imaged. Because the number of codes

used in the two-dimensional array is larger than the number of codes used in

one dimensional array, the codes cannot be assumed to be orthogonal. One-

dimensional range profile cannot be used to align the signal as was done in [30]

and [31]. So the processing step is different from [30] and [31]. Furthermore,

a direct rotation speed estimation algorithm is proposed, whilst in [30], an

iterative algorithm was used, which is computational expensive. Obviously,

the SNR is improved with increasing number of snapshots. The most valuable

merit using multi-snapshots signals is that the cross-range sidelobes can also

be suppressed.

Collocated radar observes the target from one view point. With the de-

velopment of stealth target, the RCS of a stealth target becomes more and

more smaller. But usually, the RCS cannot be small from all view angles.

If distributed radar observes the stealth target from multiple viewing angles,

the probability of detecting the target could increase. Similarly, distributed

imaging radar can obtain more details of a target. Distributed MIMO radar

imaging has not been discussed in literature.

18



CHAPTER 1. INTRODUCTION

1.6 Sparse Signal Recovery Algorithm

Many signals in real world are sparse in the original form or sparse in some

transform domains. For radar imaging, according to the derivation of Chapter

1.1, the strong scatterers are located in the reflection faces, noncontinuous

places etc, and are sparse. Sparse signal recovery algorithm utilizes the a

prior information of sparse property of the signal [32] [33]. A linear system

with observation noise and model error can usually be expressed as

s = Ψααα+ n, (1.20)

where n is the observation noise or/and model error. When ααα is a sparse

signal, it can be solved by the following optimization criterion

α̂αα = arg min ||ααα||sp subject to ||s−Ψααα||2 < ε, (1.21)

where ||ααα||sp expresses the sparse norm of ααα. Sparse property can usually

be measured by ℓp(0 ≤ p ≤ 1) norm (||ααα||pp =
∑N

n=1 α(n)
p). ℓ0 norm is the

number of non-zero elements of ααα. Although ℓ0 norm (the number of non-zero

elements) is better in describing sparsity of noise free case, sparse learning algo-

rithms based on ℓ0 norm are computationally expensive because it needs com-

binational optimization. So algorithms based on ℓ1 norm (which is a convex

function), such as basis pursuit [34], ℓ1-ℓs [35], etc, are more popular. ℓ1-magic

program solves quadratically constrained ℓ1 minimization by reformulating it

as a second-order cone program and uses a log barrier algorithm. However, it

is computationally expensive. Hence many simpler algorithms, including the

matching pursuit (MP) [36], orthogonal matching pursuit (OMP) [37] are pro-

posed. But the performance is poor for low sparsity case. It has been shown
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that the performance using 0 < p < 1 is better than using p = 1 [38] [39] [40].

So constrained ℓp norm minimization was solved using steepest descent gra-

dient projection in [38] [39]. But because the derivative of αp approximates

to infinity when α approximates to zero, the step size should be designed

carefully.

In order to obtain an approximate ℓ0 norm solution, a pseudo norm function

Fσ(ααα) = N−
∑N

n=1 exp(−
α2
n

2σ2 ) (Gauss function) was used to replace the ℓ0 norm

in [41]. By varying σ from infinity to zero, a homotopy between ℓ2 norm and

ℓ0 norm is formed and a smoothed ℓ0 norm solution is obtained. It has been

shown that the smoothed ℓ0 norm method is two to three orders of magnitude

faster than basis pursuit (based on interior-point linear programming solvers)

and provides better estimation of the source than matching pursuit method.

A sequential order one negative exponential pseudo norm function

Gσ(ααα) = N −
N∑

n=1

exp(−|αn|/σ)

is proposed in this thesis. Compared with the smoothed ℓ0 norm method,

a homotopy between ℓ1 norm and ℓ0 norm is formed. This order one nega-

tive exponential function has some merits compared to ℓp norm and Gaussian

function.

Radar imaging is actually a scatterers positions estimation problem. For

ISAR imaging, a cross-range position corresponds to a frequency. So frequency

estimation methods can be used in ISAR imaging. MUSIC, ESPRIT and ma-

trix pencil methods transform frequency estimation to other problems, such

as eigenvalue decomposition, then to avoid griding [42] [43]. The matrix pen-

cil and ESPRIT methods need regular sampling. For irregular sampling, [44]

provides atomic norm to process a kind of continuous problems. According
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to [44], [45] transforms frequency estimation as a positive semidefinite pro-

gramming algorithm. The above methods need not to draw grid. Another

method to process off-grid problem is to draw a coarse grid and refine (or ad-

just) the grid gradually [46] [47]. The algorithms of this kind are similar to the

conventional CS algorithms. For MIMO imaging, the basis function may not

be expressed as a sinusoid. Method of [47] is more suitable for MIMO radar

imaging.

Sparse signal recovery algorithm has been used in two dimensional ISAR

imaging [48] and shows good performance. But the performance of MIMO

radar 3D imaging based on sparse signal recovery algorithm is not discussed.

This will be discussed in Chapter 5.

1.7 Objectives and Significance of the Study

According to the literature review, the research gaps for the current study of

radar (MIMO radar) imaging are summarized below:

• The beam pattern of sparse array has high sidelobes, which affect the per-

formance of 3D imaging. When maximum likelihood estimation method is

used to estimate the parameters of scatterers, the computation complexity

increases greatly.

• The current MIMO radar imaging algorithms only discuss linear MIMO

array and two dimensional imaging. MIMO radar 3D imaging using multiple

snapshots signals has not been discussed.

• The L1-Ls and ℓ1−magic sparse signal recovery algorithms are computa-

tionally expensive while the performance of greedy pursuit algorithms is

not satisfactory in some cases. Because the ℓ0 norm is transited continu-

ously from a non-sparse ℓ2 norm in smoothed ℓ0 norm method, there is a
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potential to improve the performance by replacing the non-sparse ℓ2 norm

with sparse ℓ1 norm.

• Distributed MIMO radar observes the target from different directions. This

can provide a more detailed image of the target. But the approach has not

been studied before.

The main aim of this study was to use MIMO radar configuration to carry

out 3D imaging as well as to use the a priori sparse distribution of scatterers

to design a new sparse signal recovery algorithm to improve radar imaging

performance. The specific objectives of this research were to:

• Derive a MIMO radar 3D imaging algorithm such that it can image slant

range target. Design transmitting codes such that there are lower sidelobes.

• Propose a MIMO radar 3D imaging procedure that can process multiple

snapshots signals. Analyze the performance improvement compared to using

single snapshot signal.

• Study distributed MIMO radar signal model and develop 3D imaging algo-

rithm.

• Develop ℓ1 norm and ℓ0 norm homotopy sparse signal recovery algorithm

and apply the new sparse signal recovery algorithm to MIMO radar 3D

imaging.

The results of this present study may have a significant impact on radar

applications. This result might help to develop real MIMO radar imaging sys-

tem operating in all directions. The low power requirement by using multiple

snapshots signals makes the transmitter system lighter. Distributed MIMO

radar imaging can increases the probability of imaging of stealth targets and

should improve the surveillance ability. The proposed ℓ1 norm and ℓ0 norm
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homotopy sparse signal recovery algorithm could be used in all sparse signal

recovery fields, such as image processing, communication, sonar, etc.

1.8 My Contributions

My contributions are mainly on MIMO radar 3D imaging. In collocated MIMO

radar 3D imaging, the equations derived in this thesis are suitable for slant

range target imaging. Zero correlation zone code is used to mitigate range

sidelobes. For cooperating collocated MIMO radar and ISAR processing, the

whole imaging procedure is proposed. Cross range direction cyclic correlation

is proposed to align the 3D images obtained by using one snapshot signal. A

rotation parameter estimation method is proposed and coherent summation

of all the collected data is implemented. A ℓ1 norm and ℓ0 norm homotopy

sparse signal recovery algorithm is proposed. This algorithm is suitable for

complex data, while many other algorithms are designed only for real data.

The ℓ1 norm and ℓ0 norm homotopy method is extended to block sparse signal

case and multi-dimensional linear equations case. This algorithm is superior

to many sparse signal recovery algorithms such as OMP, CoSaMp [49], L1-

Ls, ℓ1−magic, Bayesian method based on Laplace priori [50] and smoothed

ℓ0 methods in high SNR and high sparsity p. Applications of sparse signal

recovery algorithm on collocated MIMO radar 3D imaging and distributed

MIMO radar 3D imaging are discussed. For bistatic ISAR imaging, the smear

property of biISAR image has been derived and an interferometric 3D imaging

method is proposed.

MIMO radar 3D imaging is a new research field. In order to implement

imaging, the signals transmitted by different antennas should be kept coherent

and the precise position information of different antennas should be known.
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Even though these problems are also critical, they are not central to this study,

because this thesis focusses only on the discussion of imaging algorithms.

1.9 Organization of the Thesis

The thesis begins with an introduction to the developments of radar imaging

in Chapter 1. The contents on Chapter 2 to Chapter 7 are:

Chapter 2: 3D Imaging Using Colocated MIMO Radar and Single Snapshot

Data.

Chapter 3: 3D Imaging Using Colocated MIMO Radar and Multiple Snapshots

Data.

Chapter 4: ℓ1 ℓ0 Homotopy Sparse Signal Recovery Algorithm.

Chapter 5: MIMO Radar Imaging Based on ℓ1 ℓ0 Homotopy Sparse Signal

Recovery.

Chapter 6: Bistatic ISAR Imaging Incorporating Interferometric 3D Imaging

Technique.

Chapter 7: Conclusions and Future Works.
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Chapter 2

3D Imaging Using Colocated

MIMO Radar and Single

Snapshot Data

Inverse Synthetic Aperture Radar (ISAR) imaging has received significant at-

tention in the past three decades [3] [51]. The high range resolution of ISAR

is obtained by transmitting large-bandwidth signal while the cross-range res-

olution is dependent on the rotation of the target relative to the radar. ISAR

image is a projected image of the target on the range-Doppler plane. There are

a number of shortcomings in ISAR imaging: a) The projected image is two-

dimensional, thus could only deliver limited information in target recognition.

b) In order to obtain high cross-range resolution, it requires a large relative

rotation angle (or long imaging time). However, during this long imaging time,

the movement of the target may be time varying, especially for maneuvering

targets. The difficulty in motion compensation and scatterers separation of-

ten required the use of computationally expensive techniques such as the time

frequency imaging method [52] [53].
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In order to overcome the first drawback, several three-dimensional imaging

methods have been proposed recently [54] [11]. To reduce the imaging time,

a microwave radio camera technique was proposed in [5]. There, a 32-element

linear antenna array was used to form the 2D image of the target. Only

one snapshot is needed. However, in order to form a 3-D image, the one

dimensional linear array must be replaced by a 2-D array, thus a large amount

of expensive antennas and receivers are required. While sparse array technique

can reduce the number of antennas used [55] [12], the MIMO array discussed

in this Chapter can significantly reduce the number to a level not achievable

in the afore-mentioned methods.

MIMO radar transmits multiple independent signals from multiple anten-

nas and receives the return signals using multiple receive antennas. It has

been proven that MIMO array possesses many advantages over conventional

phased array [24] [13], including higher degree of freedom as well as higher

angular resolution (resulting from its large virtual array). This also means

that a high angular resolution can be obtained using fewer antennas (a wel-

comed cost saving). A 2-D high resolution imaging technique using narrow-

and wide- band MIMO radar was proposed in [27] [28]. Unfortunately, the

reconstructed cross-range location parameter of each (and every) scatterer is

reduced to one half of the real location. A 3-D imaging method using MIMO

radar was discussed in [56], where a continuous MIMO array was used to de-

rive the cross-range imaging formula and an approximate phase expression

was derived to do phase compensation. We discuss collocated MIMO radar

3D imaging in this Chapter.

In this Chapter, a direct discrete signal model is derived and the precise

phase history of a reference point is used to do phase compensation. The scale

of the reconstructed image is the same as that of the original target. Three par-
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ticular MIMO radar 3-D imaging configurations, namely; cross-array, square-

array and interferometric-array, are discussed. Because the pseudo random

transmitting codes commonly used have high auto- and cross- correlations, we

propose to transmit zero correlation zone codes to mitigate sidelobes in the

target range direction to improve the image quality.

Considering that the induced surface current generally is strongest on the

target’s shinning surface, and that specular reflections produced the strongest

radar returns, we propose to use a strong-scatterer selection criterion to miti-

gate ghost images created by sidelobes and to select strong scatterers for the

construction of the target profile.

This Chapter is organized as follows. In Section 2.1, the spatial domain

signal model of MIMO radar is derived. Three MIMO radar configurations,

coordinate transform and strong scatterers selection criterion are discussed in

Section 2.2. Code selection, transmitting strategy, comparison with IFIR radar

and some realistic radar parameters are discussed in Section 2.3. Simulation

results are shown in Section 2.4.

2.1 Signal Model of Collocated MIMO Radar

Imaging

Consider a wideband MIMO radar imaging system withM transmitters and N

receivers. We assume that the target is located in the far field and the MIMO

radar is equipped with collocated antennas. Therefore, the directions of the

target relative to the different transmit antennas and the receive antennas

are the same, and the RCS of a scatterer corresponding to different transmit-

receive antenna pairs are also the same. The MIMO radar imaging geometry

is shown in Fig.2.1.
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Figure 2.1: Geometry of MIMO radar imaging.

In order to derive clearly, we first introduce a lemma.

Lemma: O, A, P and Q are four points in space as shown in Fig.2.2 (P

and Q are two antennas, O and A are two positions on a target), PO, PA,

QO and QA are distances between P and O, P and A, Q and O, and Q and

A respectively. PO, PA, QO and QA are much longer than OA and PQ.

n0 =
−→
PO/PO is the line of sight unit vector. We have

QO − PO + PA−QA ≈ (
−→
OA−

−→
OATn0n0)T

−−→
PQ

PO
+

−→
OATn0PQ2

2PO2 . (2.1)

Proof: For expression simplification, we denote r =
−→
PO, r = PO, a =

−→
OA,
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Figure 2.2: Geometry of the 4 points in the Lemma.

d =
−→
PQ. Then

QO − PO + PA−QA

= (r−d)T (r−d)−rT r
PO+QO

+ (r+a)T (r+a)−(r+a−d)T (r+a−d)
QA+PA

= dTd−2rTd
PO+QO

+ 2(r+a)Td−dTd
QA+PA

= 2rTd(PO+QO−QA−PA)
(PO+QO)(QA+PA)

+ dTd(QA+PA−PO−QO)
(PO+QO)(QA+PA)

+ 2aTd
QA+PA

≈ −nT
0 daTn0

r
+ dTdaTn0

2r2
+ aTd

r

≈ (a−aTn0n0)Td
r

+ dTdaTn0

2r2
,

(2.2)

where we use the approximation PO + QO − QA − PA ≈ −2aTn0 , (PO +

QO)(QA+ PA) ≈ 4r2.

It can also be seen that
−−→
OO1 = (aTn0)n0,

−−→
O1A = a−(aTn0)n0 and

−−−→
O1A1 =

(a− (aTn0)n0)
Td/d. It should be noted that

−→
OA and

−→
PQ need not be located

in a plane. The formula here can be used for any radar and target position

configurations.

Let Pm, Qn denote the positions of the mth transmit antenna and the nth

receive antenna respectively, cm denote the transmit code of the mth transmit

antenna. The code can be phase modulated signal [57]. The baseband transmit
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waveform can be expressed as [24]

φm(t) =
L−1∑
l=0

cm(l)u(t− lT0), (2.3)

where u(t) =


1 if −T0/2 < t < T0/2,

0 others.

, T0 is the subpulse duration, L is

the code length. After demodulating, the received back-scattered signal from

scatterer A at receive antenna n can be expressed as

ηnA(t) = α
M−1∑
m=0

φm(t− τmA − τnA)e−jω(τmA+τnA), (2.4)

where τmA = PmA/c, τnA = QnA/c, ω is the frequency (in radian), α is the

signal amplitude, proportional to the square root of the RCS of scatterer A.

Assuming that the transmitting codes satisfy φm(t) ⊗ φn(t) = δmnδ(t), after

filtering with φm, the signal transmitted from Pm, back scattered from A and

received at Qn can be obtained as

ηmnA(t) = αδ (t− τmA − τnA) e−jω(τmA+τnA). (2.5)

ηmnA(t) can be thought of as received by a virtual antenna formed by the

mth transmit antenna and the nth receive antenna. Because τmA + τnA varies

with m and n, the signals of different virtual antennas from the scatterer are

not aligned. The ηmnA(t) for different m and n should be envelope-aligned

before coherent processing. If the range profiles at different virtual antennas

are similar, by computing the correlations between |ηmnA(t)| for different m,n,

the range profiles can be aligned. The details of envelope alignment can be

found in [58]. But if the range sidelobes are high or the SNR is low, the

performance of alignment using correlation method is poor. Denote O as the
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reference point in the target. If the target line of sight is known, τmO and τnO

can be computed according to the geometry of the antennas and the target.

The transmit instances of the transmit codes can be adjusted according to τmO

and the receive signals can be adjusted according to τnO. Then, the signals

from the target at different virtual antennas are aligned.

With O as the focusing center, the expression τmA + τnA − τmO − τnO ≈

2
−→
OATn0/c is independent of the transmit and receive antennas. Then after

range alignment, the signals ηmnA(t) from A for differentm and n are located at

the same range cell. For clarity in expression, we have omitted the δ function

in the following text. After phase compensation with signals from O (unit

amplitude), the signal from A can be expressed as

smnA = ηmnA × η∗mnO

= αexp (−jω(τmA + τnA − τmO − τnO))

= αexp (jk(PmO +QnO − PmA−QnA)) .

(2.6)

PmO +QnO − PmA−QnA can be expressed as

PmO +QnO − PmA−QnA

= (P0A− P0O +Q0O −Q0A) + (P0A− P0O + PmO − PmA)

+(QnO −QnA+Q0A−Q0O)− 2(P0A− P0O)

= −2(P0A− P0O) + (a− (aTn0)n0)
T (
−−−→
P0Q0 +

−−−→
P0Pm +

−−−→
Q0Qn)/r

+aTn0(P0Q
2
0 + P0P

2
m +Q0Q

2
n)/(2r

2),

(2.7)

after applying the lemma introduced earlier. aTn0(P0Q
2
0+P0P

2
m+Q0Q

2
n)/(2r

2)

is known and can be compensated. Generally, it is also a small value and can

be omitted. Hence smnA can be expressed as

smnA = αe−j2kaTn0ejk(a−(aTn0)n0)T (
−−−→
P0Q0+

−−−→
P0Pm+

−−−→
Q0Qn)/r. (2.8)
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2.2 MIMORadar Structures, Strong Scatterer

Selection and Coordinates Transformation

We introduce in this section three MIMO radar configurations that are suitable

to perform 3D imaging.

2.2.1 Cross-Array MIMO Radar

The cross-array MIMO radar structure is as shown in Fig.2.3, where the M

transmit antennas and the N receive antennas are uniform linear arrays par-

allel to the Y and X axis, respectively. The coordinates of Pm and Qn are

(0,mdy, 0) + P0 and (ndx, 0, 0) + Q0, where dy and dx are the inter-element

spacings of the transmit array and the receive array, P0 and Q0 are two arbi-

trary points near the origin of the Cartesian coordinate system. The target is

in the far field opposite to the 2-D virtual array. Denote ã = a−(aTn0)n0 and

ã = (x̃, ỹ, z̃). Eq. (2.8) can be expressed as (for simplicity, we have omitted

the subscript A)

smn = αexp(jk(ỹmdy + x̃ndx)/r), (2.9)

where the exponential term exp(−j2kaTn0+ jkã
T−−−→P0Q0/r) has been combined

to α. The α can be obtained easily using Discrete Fourier Transform (DFT).

Denotes the discrete frequency as [fx, fy], then we have

fx =
x̃dx
λr

, (2.10)

and

fy =
ỹdy
λr

. (2.11)

Translate the frequencies of fx and fy to coordinates x̃ and ỹ, we have

x̃ = fx
λr

dx
, (2.12)
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Figure 2.3: Geometry of cross MIMO array.

and

ỹ = fy
λr

dy
. (2.13)

Because the discrete frequency is limited to [−1
2
, 1
2
], the x̃ and ỹ should

be limited to [−r λ
2dx
, r λ

2dx
] and [−r λ

2dy
, r λ

2dy
]. This is called the unambiguous

window [11]. It is clear that while the total number of physical antennas is

M + N , the freedom to do imaging is MN , which is equivalent to a virtual

array ofMN antennas. This has greatly reduced the number of antennas. We

can see that, irrespective of the positions of the real antennas, the first virtual

antenna of the 2-D virtual array is at the origin of the coordinates system.

2.2.2 Square-Array MIMO Radar

The square-array MIMO radar is as shown in Fig.2.4, where the transmit and

receive array antennas form two uniform planar arrays. We assumeM =M1×

M2 and N = N1 ×N2. The antenna index m and n can be expressed as m =

m1 +m2M1 and n = n1 +n2N1, where 0 ≤ m1 < M1, 0 ≤ m2 < M2, 0 ≤ n1 <

N1 and 0 ≤ n2 < N2. The positions of Pm and Qn are (m1dtx,m2dty, 0) + P0

and (n1drx, n2dry, 0) + Q0. Then we have
−−−→
P0Pm = (m1dtx,m2dty, 0),

−−−→
Q0Qn =

(n1drx, n2dry, 0) and
−−−→
P0Pm +

−−−→
Q0Qn = (m1dtx +n1drx,m2dty +n2dry, 0). Eq.2.8
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Figure 2.4: Geometry of square MIMO array.

can be expressed as

smn = αejk(ỹ(m2dty+n2dry)+x̃(m1dtx+n1drx))/r. (2.14)

When N1 × drx = dtx and N2 × dry = dty, Eq. (2.14) can be expressed as

smn = αejk(ỹ(m2N2dry+n2dry)+x̃(m1N1drx+n1drx))/r

= αejk(ỹ((m2N2+n2)dry)+x̃((m1N1+n1)drx))/r.
(2.15)

Denote m̃ = m2N2 + n2, ñ = m1N1 + n1 and s̃m̃ñ = smn, we have

s̃m̃ñ = αexp(jk(ỹdrym̃+ x̃drxñ)/r). (2.16)

Similar to the cross-array configuration, the α and (x̃, ỹ) can be computed

easily using DFT.

2.2.3 Interferometric MIMO Radar

While the cross-array and square-array MIMO radar configurations have re-

duced the required number of antennas, the interferometric array configuration
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Figure 2.5: Geometry of Interferometric MIMO array.

outlined below can further reduce the required antennas, albeit at a reduced

imaging quality. Strictly speaking, the interferometric array configuration is

a special case of the square-array. The transmit array consists of only one

uniform linear array with M antennas and inter-element distance of dtx, while

the receive arrays have two parallel uniform linear arrays, each has N antennas

with inter-element distance drx, as shown in Fig.2.5. Assume that the transmit

array is parallel to the X axis, the two receive arrays are also parallel to the X

axis and they are all located on the Z = 0 plane. The Y coordinates of the first

and second receive arrays are Y0 − dry/2 and Y0 + dry/2. The transmit array

and the two receive arrays form two virtual arrays. Denote Qn and Q̃n as the

positions of the first and second receive arrays. The corresponding received

signals after phase compensation are denoted as s1mn and s2mn. We have

s1mn = αexp(jkãT (
−−−→
P0Q0 +

−−−→
P0Pm +

−−−→
Q0Qn)/r), (2.17)

and

s2mn = αexp(jkãT (
−−−→
P0Q̃0 +

−−−→
P0Pm +

−−−→
Q̃0Q̃n)/r). (2.18)

Let the transmit and receive arrays’ inter-element distances satisfy Ndrx =

dtx and denote m̃ = mN + n, s1m̃ = s1mn, s2m̃ = s2mn, we have

s1m̃ = αexp(jkãT−−−→P0Q0/r)exp(jkx̃m̃drx/r), (2.19)

and

s2m̃ = αexp(jkãT
−−−→
P0Q̃0/r)exp(jkx̃m̃drx/r). (2.20)
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The values of αexp(jkãT−−−→P0Q0/r), αexp(jkã
T
−−−→
P0Q̃0/r) and the coordinate

x̃ of the scatterer can be obtained by DFT of the s1m̃ and s2m̃. Denote s1, s2

as the DFTs of s1m̃ and s2m̃ on x̃drx
λr

and let s = s∗1s2, s can be expressed as

(omitting |α|2)

s = exp

(
jkãT

−−−→
Q0Q̃0/r

)
= exp(jkỹdry/r). (2.21)

The ỹ can be obtained by computing the phase ψ of s.

Denote ψ = kỹdry/r, we have

ỹ =
ψr

kdry
. (2.22)

2.2.4 Strong Scatterers Selection

One drawback of MIMO radar is its high range sidelobes. Let the transmit

and receive arrays be the same 8× 8 square array. The transmitting codes are

binary random codes with length of 512. A point target is located in the far

field, broadside to the arrays. The three dimensional response of this point

scatterer cannot be shown clearly in three dimensional space. A range and

cross-range slice through the peak of the response is shown in Fig.2.6. It can

be seen that there are strong range and cross-range sidelobes. The strong range

sidelobes almost cover the entire range area. The strong cross-range sidelobes

are located from -8 to 8, because there are 8 transmitting antennas in one

cross-range dimension. The peak values of the strong sidelobes are about -14

to -15 dB. This means that if another scatterer B is located in the strong

sidelobes area of scatterer A and if the power of scatterer B is 14 dB lower

than that of scatterer A, scatterer B will be submerged. On the other hand, if

we allow a high dynamic range, many sidelobes points will be regarded as false
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scatterers. We propose to mitigate this problem via the reference processing

of some strong scatterers. It is well-known in high-frequency electromagnetic

scattering theory that, the returned energy from a target mainly consists of

those back-reflected from the shinning (flat) faces of the target. According

to Born approximation, multiple bounces can be omitted. This means that

there is very likely to have only one strong scatterer in the range units with

the same cross-range unit. Denote Rp = [rp(1), rp(2), · · · , rp(N)] the range

profile of cross-range unit p. If Rp has a strong scatterer, there will be a

strong peak in Rp, otherwise, there will be many peaks with approximately

similar amplitudes (Fig.2.7). According to this phenomenon, we can use the

following procedure to select strong scatterers to form 3-D image. Let Vmax

(dB) be the maximum value of |α| (α is the reconstructed reflectivity matrix

in the entire imaging area), and the unit is dB. The expected dynamic range

of the target is δv dB, which means that scatterers with amplitude belong to

[Vmax− δv, Vmax] are candidate scatterers to form 3-D image. δζ dB is another

threshold to detect the range sidelobe area. Denote vmax as the maximum

value in Rp. If the second maximum value of another scatter in Rp is larger

than vmax − δζ, then we conclude the range profile Rp to be a sidelobe range

profile, which will not be used to form the final 3-D image. This idea is shown

in Fig.2.8. For simplicity, a one-dimensional plot in Fig.2.8 (a) is used to

replace a two-dimensional plot.

Let I = (fx, fy, τ) be the two cross-range coordinates and one range coor-

dinate. max(·) is a function computing the maximum value of a matrix and

the coordinates of the peak. The strong scatterer selection procedure can be

described in the following pseudo codes.

Initializing : Vmax, δv, δζ, loop = 1.

while loop == 1
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Figure 2.6: Cross range image of a point scatterer in different range cells.

Figure 2.7: Scatterers in different range and cross range units.
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[I, v] = max(|α|)

if v > Vmax − δv dB

Let the value of |α| in the neighbor of τ(range direction) be zero.

[τ̂ , ζ] = max(|α(fx, fy, :)|)

if v − δζ > ζ dB

record I and v (strong scatterer)

else

cross-range unit (fx, fy) is a sidelobe unit

end

Let |α(fx, fy, :)| be zero

else

loop = 0

end

end

Figure 2.8: Strong scatterer selection criterion.
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2.2.5 Position Computation and Coordinates Transfor-

mation

For cross-array, square-array and interferometric MIMO radar, the (x̃, ỹ) can

be obtained by DFT or by computing the phase difference. However, the ob-

tained (x̃, ỹ) are not the real coordinate of the scattererA, but the coordinate of

ã. According to the definition of ã = a− (aTn0)n0, we have a = ã+(aTn0)n0.

Since ãTn0 = 0, we obtain z̃ = −x̃nx−ỹny

nz
. Denote r̂ = aTn0, which can be

obtained by counting the range unit of the scatterer. We have

x = x̃+ r̂nx, (2.23)

y = ỹ + r̂ny, (2.24)

z =
−x̃nx − ỹny

nz

+ r̂nz. (2.25)

Generally speaking, the reference point O may not be located in the center

of the target due to DOA (direction of arrival) estimation error. Then the

target may be located just cover the sides of the unambiguous window. Then

phase unwrapping should be implemented.

2.3 Implementation Consideration

2.3.1 Construction of Zero Correlation Zone Codes

In Section 2.1 we have assumed that the codes are orthogonal and the matched

filtering output is a Dirac function. Actually this is impossible. For random

binary codes, the auto-correlations and cross-correlations of the codes have

high sidelobes proportional to 1/
√
L, where L is the length of the codes. For-

tunately, the targets in sky are usually sparsely distributed. We assume that
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there are no other targets near the target of interest. In this case, the codes

need only to have low sidelobes near the zero time shifts. For example, if the

range extent of the target is 50 m, the range resolution of the transmitting

signal is 1 m, the length of the code is 100, then the codes need only have low

sidelobe values in the area [−49, 49]. High level sidelobes in [-99, -50] and [50,

99] do not significantly affect the imaging results. We thus introduce the zero

correlation zone codes as follows, which have zero correlations in a zone.

Let K denote the size of the zero correlation zone, k̂ be an integer relatively

prime to K. Define code c̃ = [c̃0, c̃1, · · · , c̃K−1] as [59]

c̃k = exp

(
jk̂π(k −K/2− p)2

K

)
, k = 0, 1, · · · , K − 1, (2.26)

where p is an arbitrary integer. It has been proven that c̃k is a “periodic

orthogonal sequence”, which means that the periodic correlation Rc̃(τ) satisfies

Rc̃(τ) =

{
K τ = 0
0 1 ≤ |τ | ≤ K − 1

(2.27)

where Rc̃(τ) is defined as

Rc̃(τ) =
K−1∑
k=0

c̃kc̃
∗
k+τ mod K , 0 ≤ |τ | ≤ K − 1 (2.28)

where k+τ mod K refers to k+τ moduloK. The periodic cross correlation

is defined in a similar manner.

For K = 230, k̂ = 3, p = 0, the real and imaginary part of code c̃k are

shown in Fig.2.9.
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Figure 2.9: The real and imaginary part of a periodic orthogonal sequence for
K = 230, k̂ = 3 and p = 0.

Denote N as the number of the codes. Define N matrices

Pn =



0 0 · · · 0

...
...

...
...

c̃0 c̃1 · · · c̃K−1

...
...

...
...

0 0 · · · 0


N×K

, (2.29)

where n = 1, · · · , N . The elements in each row are zeros except for the nth

row.

Let pn = vec{Pn}. The N zero correlation zone codes {cn} with length

L = K ×N can be obtained by

cn = DFT{pn}, n = 1, · · · , N. (2.30)

It has been shown in [60] that the periodic auto-correlations of cn are zeros

in zone Ω = [−K + 1,−1]U[1, K − 1], while the periodic cross correlations

between cn and cn′ (n ̸= n
′
) are zeros in the entire area. We use the following

example to illustrate it. Let L = 16, N = 4, K = 4, k̂ = 3 and p = 0.
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Four codes are constructed using the above method. The absolute value of the

periodic auto-correlations of the first code and the periodic cross correlations

between the first code and the other codes are as shown in Fig.2.10.
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Figure 2.10: The periodic auto-correlations and cross correlations of the zero
correlation zone codes.

However, in reality, the correlations of the transmit codes with the receive

codes are aperiodic, not periodic. In order to perform periodic correlation, we

have to re-define the receive code as

ĉn = [cn,L−K+1, · · · , cn,L−1, cn,0, · · · , cn,L−1, cn,0, · · · , cn,K−2]. In receive filter-

ing, ĉn is used to match the received signal. It is clear that at the instant where

cn matches the middle part of ĉn (that is cn), and sliding through the pre-

and post- K − 1 chips, the aperiodic correlations between ĉn and cn are peri-

odic correlations between cn and cn. Therefore, the aperiodic zero correlation

window is Ω.

2.3.2 Pre-shift of Codes and the Effect of DOA Estima-

tion Error

In the sections considering ZCZ codes, the codes in the code matrix X are

aligned. For imaging slant-range target, the delay differences of the target
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relative to different transmit antennas may be much larger than the range

resolution. If the codes are transmitted simultaneously, the different transmit

codes received at each individual receive antenna are not aligned. If we were to

overcome this issue by designing codes with long zero correlations zone, then

the increase in the code length will render the codes more Doppler sensitive.

Therefore the DOA of the target should be estimated at first, and the transmit

instants of the code envelopes should be adjusted such that the signals from

different transmit antennas arrive at the target at the same time. This is

shown in Fig.2.11.

Figure 2.11: Pre-shift of the codes transmission.

The effect of DOA estimation error is analyzed as follows. Denote n1

as the measured DOA unit vector. Let P0 be the reference transmit antenna,

another transmit antenna is located at P1 = P0+d0. Relative to P0, the signal

envelope from P1 should be adjusted by
dT
0 n0

c
seconds. The real adjustment

due to the measured n1 is
dT
0 n1

c
, the adjustment error is

dT
0 (n0−n1)

c
. Assume

that the maximum allowed alignment error is 1
5
T , where T is the chip duration.
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Then n0 − n1 should satisfy

|dT
0 (n0 − n1)| ≤

1

5
cT =

2

5
δr, (2.31)

where δr is the range resolution. For a uniform linear array of aperture D,

the width of the beam pattern is about λ
D
. Let θ0 and θ1 denote the real and

estimated angles. Generally, the angle estimation error, denoted as β λ
D
, can

be much less than λ
D
. In 2-D case, let d0 = [d0, 0] and n0 = [cos θ0, sin θ0]. Eq.

(2.31) can be written as

|d0(cos θ0 − cos θ1)| ≤
2

5
δr, (2.32)

and

|d0 sin θ0δθ| = |d0 sin θ0β
λ

D
| ≤ 2

5
δr. (2.33)

For MIMO linear array, let the inter-element distances of the receive array

and the transmit array be dr and Ndr, then the maximum d0 is MNdr. Eq.

(2.33) can be expressed as

|MNdr sin θ0β
λ

D
| ≤ |βMNdrλ

D
| ≤ 2

5
δr. (2.34)

For a specific MIMO radar configuration, we should first check if Eq. (2.34) is

satisfied. If not, we should use a more precise DOA estimation method.

2.3.3 Comparison with IFIR radar

A simpler configuration of multiple-input multiple-output radar, limited to

using the same transmitting waveform, is called the Interpolated FIR (IFIR)

radar [61]. Assume that there are N receiving antennas with inter-element

distance of dr, and M transmitting antennas with inter element distance of

Ndr. For MIMO radar discussed in the previous sections, the transmitting
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codes are the rows of a matrix C, but for IFIR radar, the M transmitting

antennas transmit the same code c. Because the transmitting array of IFIR

radar is a sparse array, its beam pattern has grating lobes. But since the

nulls of the receive beam pattern coincide with the grating lobes, the grating

lobes can be canceled [61]. The aperture of the IFIR radar is the same as the

collocated MIMO radar. The two radars have the same space resolution. This

is shown in Fig.2.12. In this subsection, we compare the output SNR of these

two radars. For other comparisons, e.g. clutter and jammer power, please

refer to [61].

Figure 2.12: Beam pattern comparison of MIMO radar and IFIR radar. a)
receiving array and its beam pattern of IFIR radar. b) virtual array of MIMO
radar and it’s beam pattern. c) transmitting array and its beam pattern of
IFIR radar. d) synthetic beam pattern of transmitting and receiving arrays of
IFIR radar.

Let Ω be the imaging target area. All antennas of the MIMO array are

directional antennas with beam width wider than Ω and are steering toward

Ω. For simplicity, we consider only the orthogonal code. Denote CM×L as the

orthogonal code matrix, CCH = LI. According to Eq. (2.8), the smnA can be
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rewritten as

S =

√
PtGtαArLα

4πR2
a(θ)bT (θ)C+ Z, (2.35)

where Pt is the power of each transmitter, Gt is the transmit antenna gain, α is

the scatterer’s RCS, Ar is the effective receive antenna aperture, Lα is the hard-

ware loss, R is the distance, Z is the noise matrix. a(θ) = [1, · · · , ejkãT−−−→
Q0Qn/r, · · · ]

and b(θ) = [1, · · · , ejkãT−−−→
P0Pm/r, · · · ] can be regarded as the steering vectors

of the receive array and the transmit array. Denote P = PtGtαArLα

(4π)2R4 . After

matched filtering, the output of the signal is

α = tr(
√
Pa(θ)bT (θ)CCHb∗(θ)aH(θ)) =

√
PMNL, (2.36)

where tr(·) is the trace of a matrix. The output noise power is

σ2 = E
{
tr(ZCHb∗(θ)aH(θ))× tr∗(ZCHb∗(θ)aH(θ))

}
=MNLσ2

0.
(2.37)

The SNR is MNLP
σ2
0

.

For IFIR radar, the received signal is

s =

√
PtGtαArLα

4πR2
a(θ)McT + Z, (2.38)

The output of the signal after matched filtering is

α =
√
PMNL. (2.39)

The output noise power is

σ2 = E{tr(Zc∗aH(θ))× tr∗(Zc∗aH(θ))} = LNσ2
0 (2.40)

So the SNR using IFIR radar is M MNLP
σ2
0

.

It can be seen that the output SNR of the IFIR radar is M times that of

the collocated MIMO radar. However, the beam width of IFIR transmitting

and receiving arrays are 1
MN

and 1
N
. In order to cover all the area, the IFIR

radar should scan ( 1
N
/ 1
MN

) = M times. But for MIMO array, it only needs
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Figure 2.13: (a)Transmitting beam pattern (dash dot) and receiving beam
pattern of IFIR array, (b) Synthetic transmitting-receiving beam pattern.

transmitting one times. Thus the average SNR of the two methods are the

same. Fig.2.13 (a)(b) show an example of M = 5 and N = 3. The beam

pattern of the transmitting array is shown as dash dot line. It can be seen

that there are N = 3 grating lobes. By adjusting the phase of the receiving

weight, three receiving beam patterns are formed. Each aims at the peak of

one grating lobe.The final transmitting-receiving beam pattern is shown in

Fig.2.13 (b). We can see that it can only receive signals from three beams. In

order to receive the entire region’s signal, the transmitting array needs scan

and transmitting M = 5 times.

2.3.4 Discussion on the Realistic Choice of Radar Pa-

rameters and the Expected SNR

Imaging radar is usually used following searching and tracking radars to im-

age and identify the target. For a general target such as an airplane, a few

tens to one hundred resolution cells in each cross directions is needed to cover

the entire target. So a 10 × 10 transmit array and a 10 × 10 receive array

configuration can satisfy the requirement. Assume that the designed surveil-

lance range is from 50 km to 60 km. The carrier frequency is f0 = 35 GHz.

The unambiguous distance is 100 m, which is bigger than the entire length of

a typical airplane. The inter-element distances of the receive array and the
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transmit array are 4.2875 m and 42.875 m, respectively. The transmit and

receive antenna’s area is 0.04π. Then the beam pattern angle is about 0.0242

radian and the beam width in the surveillance range is about 1200 m, which

is more than sufficient to cover the entire target. The gain of the transmit

and receive antenna is about 43.3 dB. The power of each transmit antenna

can be less than a hundred watts. The hardware loss factor can be limited to

Lα = 0.8. Denote Kb = 1.38×10−23 J/K be the Boltzmann constant, T0 = 290

K be the environmental temperature, Fn be the noise factor. When the an-

tenna noise temperature equals the environmental temperature, the system

noise temperature is Ts = FnT0. The noise power is σ2
0 = KbTsBn, where Bn

is the receiver noise band. Since Bn ≈ Bs, where Bs is the spectral bandwidth

of the transmitted signal, according to the derivation in the last subsection,

the output SNR after MIMO processing is

SNR =
MNLPtGtαArLa

16π2R4KbFnT0Bs

. (2.41)

For the above realistic parameters, a medium SNR value can be obtained.

The MIMO radar 3D imaging process mainly consists of signal separa-

tion and cross-range FFT operations. The signal separation requires about

2KLMN complex multiplications and the cross-range processing requires K

FFT operations (length MN). The computation is easy to implement using

modern DSP technique. The whole imaging process is shown in Fig.2.14.

2.4 Simulation results

In the following simulations, we choose f0 = 35 GHz, Bs = 150 MHz. Gt =

43.3 dB, Ar = 0.04πm2, Fn = 2.5 dB, Bn = 150 MHz, Lα = 1 and R = 50 km.
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Figure 2.14: The implementation flow of 3D imaging.

2.4.1 Simulation 1: Comparison of Random Codes to

ZCZ Codes

In this simulation, we compare the results using random codes and ZCZ codes.

Ten transmit antennas each with Pt = 200 W and ten receive antennas are

arranged as two uniform linear arrays and located in a line as shown in Fig.2.15.

The inter-element spacings of the receive array and the transmit array are

4.2857 m and 42.8571 m respectively. The unambiguous distance at the target

area is 100 meters. The length of the random binary codes and the ZCZ codes

are all 300. A target with 11 scatterers is located on the broadside of the

array. Fig.2.16 shows the original image of the target on the down-range and

cross-range plane.

The square roots of the RCS of the 11 scatterers are evenly distributed

from 1 to 11 meter, then the dynamic range of the target is 21 dB. The SNR

of the weakest scatterer after imaging is 11.87 dB. Fig.2.17(a) and Fig.2.17(b)
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Figure 2.15: Geometry of the target and the MIMO array (simulation1).

show the reconstructed images (contour plot) for transmitting random code

and ZCZ codes. Fig.2.17(c) and Fig.2.17(d) are the corresponding mesh plot

images. The zero sidelobe range of the ZCZ code is from -29 to 29. It can be

seen that the image using random code has high sidelobes near the target area

and some weak scatterers are submerged under the sidelobes. But the image

using the ZCZ code is better due to its low sidelobe levels in the target zone.
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Figure 2.16: The range and cross range domain target model (simulation 1).
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Figure 2.17: Reconstructed down-range and cross-range image of the target
using the ZCZ and random code. (a) contour plot using random codes; (b)
contour plot using ZCZ codes; (c) mesh plot using random codes; (d) mesh
plot using ZCZ codes (simulation 1)

2.4.2 Simulation 2: Comparison of Using Cross Array

to Square Array

In this simulation, we compare the difference of using cross MIMO array and

square MIMO array. 64 transmit and 64 receive antennas are located on

the Z = 0 plane. For cross-array, the transmit array and the receive array

are along the X and the Y axes respectively and the inter-element distances

of the transmit and receive arrays are all 6.6964 m. For the square-array,

the inter-element distances of the transmit and receive arrays are 53.5714

m and 6.6964 m respectively. The unambiguous distance at the target area

is 64 m. The length of the transmitted random binary codes is 256. For

clarity in presentation, the scatterers are located on the broadside, have the

same z coordinate and the same RCS of 1 m2. The transmitting power of

each transmitter is 600 W. The theoretical SNR after range and cross range
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processing is 32 dB. In this case the effect of sidelobe is more pronounced.

Fig.2.18 shows the original image. Fig.2.19 (a) and Fig.2.19 (b) show the 2D

contour images of the target in this range cell using cross-array and square-

array. Fig.2.19 (c) and Fig.2.19 (d) show the corresponding mesh images.

Due to the non-orthogonal property of the codes, the image using cross-array

has high sidelobes in the transmit array direction. But in the receive array

direction, the sidelobes are mitigated due to coherent array processing of the

receive array. For square-array, there are sidelobes in both directions, but

their amplitudes are reduced as compared to the cross array case. Generally

speaking, using square-array is better than using cross-array.
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Figure 2.18: Original cross range image of the target (simulation 2).

2.4.3 Simulation 3: 3D Imaging Using Square Array

We show the 3D imaging results in this simulation. The transmit and receive

arrays are all 8 × 8 square arrays with dt = 53.5714 m, dr = 6.6964 m and

located on the XY plane. The transmit power for each transmitter is 10

W. The unambiguous distance at the target area is 64 m. The target with 11

scatterers as shown in Fig.2.20(a) is located at the n0 = [0.4402, 0.1761, 0.8805]

direction. The square roots of the RCS of the 11 scatterers are from 1 m to
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Figure 2.19: Contour plot and mesh plot of the reconstructed cross range image
using the cross and the square array.(a) for cross-array and contour plot; (b)
for square array and contour plot; (c) for cross-array and mesh plot; (d) for
square array and mesh plot (simulation 2).

11 m. The length of the binary random codes is 512. The output SNR of the

weakest scatterer is 17.3 dB after processing.

Denote Vmax as the measured RCS of the strongest scatterer, in order to

process high dynamic range target, scatterers with power larger than Vmax−32

dB are selected as strong scatterers to form the 3D image. The choice of

−32 dB is problem related. For all range units with the same cross-range

unit, we only selected one strongest unit and denote its power as ζ. If there

is other range unit having the same cross-range unit and that the power is

larger than ζ − δζ dB, then all the range units in this cross-range unit will be

regarded as sidelobes units. The reconstructed projection images on the YZ

plane for different δζ are shown in Fig.2.21. The δζ are selected as 3.52, 4.61,

5.57 and 6.02 dB respectively. If the distance from one estimated scatterer

to the real scatterer is larger than 1.5 times resolution, we will then classify
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this estimated scatterer as false alarm scatterer. The numbers of false alarm

scatterers are 142, 30, 9 and 5 for the above δζ respectively. It can be seen that

with the increase of the δζ, the number of false scatterers decrease, but the

smaller (weaker) real scatterers may also be canceled (classified as false alarm).

This is a common problem in the trade off between target detection and false

alarm in radar. The reconstructed 3D image and the projection images when

δζ = 6dB are shown in Fig.2.22. It can be seen that the 11 scatterers have

been reconstructed. The image also includes some false scatterers due to high

sidelobes and noise.
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Figure 2.20: Three different projections and 3D view of the target model
(simulation 3).

2.4.4 Simulation 4: Interferometric 3D Imaging

In this simulation, we show the 3D imaging results using an interferometric

array. The parameters of the target are the same as that in simulation 3.

Two uniform linear receive arrays with 10 elements each and one uniform
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Figure 2.21: Projection images on YZ plane for δζ = 3.5, 4.6, 5.6 and 6 dB
corresponding to (a), (b), (c) and (d). The number of false scatterers decrease
as the increase of δζ. Small scatterers have high probability be canceled with
the increase of δζ (simulation 3).
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Figure 2.22: Three different projections and 3D views of the image obtained
by the MIMO array for δζ = 6dB (simulation 3).

57



2.4. SIMULATION RESULTS

linear transmit array with 10 elements are located parallel to the Y axis on

the z = 0 plane, which is similar to Fig.2.5. The inter-element distances

of the transmit array and the receive array are 42.8571 m and 4.28571 m

respectively. The unambiguous distance is 100 m. The inter-array distance

of the two receive arrays is also 4.28571m. Ten ZCZ codes with length 600

are used as the transmit codes. The zero correlation window is from -59

to 59. The target is located in n0 = [0.4402, 0.1761, 0.8805] direction. The

projection of the target on the range and cross-range (the cross-range is the

direction of y0 − (yT
0 n0)n0 where y0 is the unit vector of Y axis) is as shown

in Fig.2.23. It is noted that the four scatterers 1, 2, 3 and 4 in Fig.2.20(a)

are projected on A and B in Fig.2.23, so the coordinates of scatterers 1, 2,

3 and 4 can not be obtained correctly using interferometric technique. The

transmit power of each transmitter is 200 W. The output SNR of the weakest

scatterer after processing is 14.88 dB. Denote ζ as the value of the strongest

scatterers, then scatterers with value larger than ζ − 27 dB are selected to

form the reconstructed 3D image, which is shown in Fig.2.24. Scatterers 1, 2,

3 and 4 have not been reconstructed correctly. The weakest scatterer also has

not been reconstructed correctly. There are many false alarm scatterers. Due

to the worst-case combination of the scatterer position and the direction of

the interferometric array, the resultant radar image has no separation ability

in X direction, the quality of the image using interferometric method thus in

general is not as good as that of using square MIMO array. But the hardware

cost of the interferometric array is low.
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Figure 2.23: Projection of the target on the range and cross-range plane (sim-
ulation 4).
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Figure 2.24: Three different projections and 3D view of the image obtained
by the MIMO interferometric array (simulation 4).
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2.5 Conclusion

The formulae for 3D imaging by collocated MIMO radar have been derived.

Three MIMO radar configurations, namely; cross-array, square-array and in-

terferometric array are discussed. For cross-array, sidelobes in the transmit ar-

ray direction are high, but the sidelobes in the receive array direction are low.

For square-array, there are moderate sidelobes in both directions, but their

values are lower than that in the cross-array case. For short random codes,

the sidelobes will be high. In this case, we made use of only the strongest

scatterer within the same cross-range unit to form the 3-D image. A strong

scatterers selection criterion is proposed. Codes with zero correlation zone can

be used to mitigate the sidelobes in a narrow window. Generally, the length

of the ZCZ code should be the multiple of the length of the narrow window

and the number of the transmit antennas. But when there is a simultaneous

requirement to image a large target area with a large number of transmit an-

tennas, then the resulting long codes will become Doppler sensitive. In this

case, ZCZ codes are more appropriate for use in interferometric array where

the number of the transmit antennas is not large.
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Chapter 3

3D Imaging Using Colocated

MIMO Radar and Multiple

Snapshots Data

3.1 Introduction

In Chapter 2, only one snapshot is used to form the 3D image. But it requires

relatively high transmitting energy and has high sidelobes.

Combining MIMO radar and inverse synthetic aperture technique can re-

duce transmitting power as well as improve cross-range resolution when com-

pared to mono-static ISAR imaging [30], [31]. In [30] and [31], the authors

used linear MIMO array in conjunction with ISAR processing. It is noted

that, in these papers, the gaps between virtual antennas are filled with syn-

thetic aperture, and only 2-D image is obtained. The number of codes in the

said MIMO array is small and orthogonal property is assumed among these

codes. The target is also assumed to be located on the broadside of the array

to show the improvement of cross-range resolution. When the rotation axis is
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perpendicular to the plane formed by the antenna array and the target, the

conjunction algorithms are discussed in detail in these two papers. In reality,

the rotation axis may not be perpendicular to the said plane. This also needs

to be discussed in detail.

In this Chapter, a two-dimensional MIMO radar and inverse synthetic aper-

ture technique are combined to form the 3D image. Because the number of

codes used in the two-dimensional array is larger than the number of codes

used in one dimensional array, the codes cannot be assumed orthogonal.In

some cases, ZCZC codes may not be suitable to mitigate sidelobes. High

sidelobes affect the image quality severely as seen in the last Chapter. Even

one-dimensional range profile cannot be used to align the signal as done in [30]

and [31]. So the MIMO radar 3D imaging processing steps in this Chapter are

different from [30] and [31]. The main work is on how to use multiple snapshots

signals to mitigate sidelobes. If the target’s rotation vector is known, multiple

snapshots signals can be coherently combined to mitigate sidelobes, and even

improve cross-range resolution. Using the position information (obtained by

MIMO radar using single snapshot signal) and the relative Doppler frequency

information (obtained by spectrum analysis of multiple snapshots signal) of

some strong scatterers, the relative rotational parameters of the entire rigid-

body target is obtained by minimum mean square error method. Compared

to the iterative algorithm used in [30], our algorithm is a direct algorithm and

computationally cheaper.

This Chapter is organized as follows. In section 3.2, signal model and

MIMO radar imaging based on multiple snapshots signal are discussed. 3D im-

ages alignment, motion compensation and coherent combination are discussed

in section 3.3. The point spread functions for different cases are analyzed in

section 3.4 . The estimation method of the rotation parameter is given in
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section 3.5. Simulation results are shown in Section 3.6.

3.2 Multiple Snapshots MIMO Radar Signal

Model

Taking the square array MIMO radar as an example, multiple snapshots

MIMO radar signal model is derived in this section. The antenna position

configuration is the same as that shown in Fig.2.4, where the transmit and

receive array antennas form two uniform planar arrays. Let Pm, Qn denote

the positions of the mth transmit antenna and the nth receive antenna respec-

tively. Let cm denote the transmit code of the mth transmit antenna. The

code is also phase-modulated signal [24]. The baseband transmit waveform

can be expressed as(same as (2.3))

φm(t
′) =

L−1∑
l=0

cm(l)u(t
′ − lT0), (3.1)

where T0 is the subpulse duration, L is the code length, t′ is the fast time.

Assume that the pre-transmitting time of the mth transmitting signal is Tm.

The transmitting signal can be expressed as
∑

k φm(t+ t
′+Tm−kT )ej2πf(t+t′),

where T is the pulse repetition duration, f is the carrier frequency, k is the

pulse index, t is the slow time. After demodulation, the received back-scattered

signal from scatterer A at receive antenna n can be expressed as

ηnA(t
′, t) = α

M−1∑
m=0

∑
k

φm(t+ t′ + Tm − kT − τmA(t)− τnA(t))

×exp(−j2πf(τmA(t) + τnA(t))), (3.2)
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where τmA(t) = |PmA(t)|/c, τnA(t) = |QnA(t)|/c, α is the signal ampli-

tude, proportional to the square root of the RCS of scatterer A. Let Tm =

−−−−−→
PmPM−1

Tn0/c ≈ τmA(t) − τM−1,A(t), and Rn =
−−−−−→
QnQN−1

Tn0/c ≈ τnA(t) −

τN−1,A(t). Like in Chapter 2, the receive sampling time are adjusted such that

the receive signal envelopes are also approximately aligned. We have

ηnA(t
′, t) =: ηnA(t

′ +Rn, t)

= α

M−1∑
m=0

∑
k

φm(t+ t′ − kT − τM−1,A(t)− τN−1,A(t))

×exp(−j2πf(τmA(t) + τnA(t))). (3.3)

Denote φ̃m(t
′) as the receive filter and it satisfies φn(t

′)⊗φ̃m(t
′) = δmnδ(t

′).

After filtering with φ̃m, the signal transmitted from Pm, back scattered from

A and received at Qn can be obtained as

smnA(t
′, t) = α

∑
k

δ (t+ t′ − kT − τA(t))× e−j2πf(τmA(t)+τnA(t)), (3.4)

where we denote τA(t) = τM−1,A(t) + τN−1,A(t) for expression simplicity.

Let Ok be the space center for phase compensation at kth pulse, the cor-

responding phase is 2πf(τmOk
+ τnOk

). After phase compensation, the phase

term is 2πf(τmOk
+ τnOk

− τmA − τnA) = 2π
λ
(PmOk + QnOk − PmA − QnA).

According to (2.7), the distance term PmOk + QnOk − PmA − QnA can be

expressed as (we omit the variable t for simplicity)

PmOk +QnOk − PmA−QnA

≈ −2(P0A− P0Ok) + (ak − (aT
kn0)n0)

T (
−−−→
P0Q0 +

−−−→
P0Pm +

−−−→
Q0Qn)/r,

(3.5)

where ak =
−−→
OkA, r = P0Ok is the distance from the radar to the reference

center.
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We assume that the MIMO configuration is square array, and M = M1 ×

M2, N = N1 × N2, N1 × drx = dtx and N2 × dry = dty. Denoting m̃ =

m2N2 + n2 and ñ = m1N1 + n1, similar to section 2.2.2, the signal after phase

compensation can be expressed as

smnA(t
′, kT )

= α
∑

k δ (t
′ − τA(kT )) e−j2πf(τmA(t)+τnA(t)−τmOk

−τnOk
)

= α
∑

k δ (t
′ − τA(kT )) e−j 4π

λ
(P0A(t)−P0Ok)ej

2π
λ
ãT
k (

−−−→
P0Q0+

−−−→
P0Pm+

−−−→
Q0Qn)/r

= α
∑

k δ (t
′ − τA(kT )) e−j 4π

λ
(P0A(t)−P0Ok)ej

2π
λ
ãT
k

−−−→
P0Q0/rej

2π
λ
(ỹkdrym̃+x̃kdrxñ)/r.

(3.6)

where ãk = ak − (aT
kn0)n0 with coordinate (x̃k, ỹk, z̃k).

Because the position of the virtual antenna is at
−−−→
P0Pm+

−−−→
Q0Qn = (ñdrx, m̃dry, 0),

where 0 ≤ ñ ≤ M1N1 and 0 ≤ m̃ ≤ M2N2, the signal smnA(t
′, kT ) can be re-

arranged and denoted as sm̃ñA(t
′, kT ), where m̃ and ñ are in ascending order.

The spatial domain two dimensional Fourier transform (on m̃, ñ) of sm̃ñA(t
′, kT )

can be expressed as

αA(fx, fy, t
′, kT )

= α
∑

k e
jπ(M1N1−1)(f̃kx−fx)ejπ(M2N2−1)(f̃ky−fy)ej

2π
λr

ãT
k

−−−→
P0Q0

× e−j 4π
λ
(P0A(kT )−P0Ok)δ (t′ − τA(kT )) sin(πM1N1(fx−f̃kx))

sin(π(fx−f̃kx))

sin(πM2N2(fy−f̃ky))

sin(π(fy−f̃ky))

=
∑

k α̃(fx, fy)e
−j 4π

λ
(P0A(t)−P0Ok)δ (t′ − τA(kT )) δ̃(fx − f̃kx, fy − f̃ky).

(3.7)
where we denote f̃kx = x̃kdrx

λr
, f̃ky =

ỹkdry
λr

, fx = n
M1N1

, fy =
m

M2N2
,

δ̃(x, y) =
sin(πM1N1x)

sin(πx)

sin(πM2N2y)

sin(πy)

and
α̃(fx, fy) = αejπ(M1N1−1)(f̃kx−fx)ejπ(M2N2−1)(f̃ky−fy)ej

2π
λr

ãT
k

−−−→
P0Q0 .

It can be seen that αA(fx, fy, t
′, kT ) is actually the three dimensional image

of the scatterer A at the kth pulse. The peak is located at ( x̃kdrx
λr

, ỹkdry
λr

, τA(kT )),

where the cross-range and down-range information of A are obtained. If

65



3.3. 3D IMAGES ALIGNMENT, MOTION COMPENSATION
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sm̃ñ(t
′, t) includes all the scatterers’ back scattered information, α(fx, fy, t

′, kT )

is then the three dimensional image of the target at slow time KT .

We will discuss how these 3D images can be coherently combined in the

following section.

3.3 3D Images Alignment, Motion Compen-

sation and Coherent Combination

The center of the three dimensional image at kth pulse is Ok and the Ok for

different k may be different, so the 3D images are not aligned. Even though

the Ok can be chosen as the same, because the target is moving during differ-

ent pulses, the 3D images are also not aligned. Correlation criterion is usually

used to align one-dimensional images in ISAR imaging. It can also be used to

align the 3D images. According to our analysis, the width of the unambiguous

window is λr
dx

(λr
dy
). In order to increase the cross-range resolution, the radar

parameters are usually designed such that the width of the unambiguous win-

dow is as small as possible. However, during the coherent processing period,

the target may move through multiple unambiguous windows. This is shown

in Fig.3.1. In this figure, the target moves towards the second unambiguous

window and has just crossed the boundary between the first and second win-

dows at the second pulse. The reference point O is located at the center of

the first unambiguous window. The image obtained in the second pulse is

cross-range wrapped. But in the range direction, there is no wrap. Based

on this observation, the correlation of the images in the cross-range direction

should be cyclic correlation, but in the range direction, the correlation is the

conventional correlation.

DenoteA = (fx, fy, t
′) the position variable of a scatterer, M̃k = (fkx, fky, τk)|Ok

the coordinates of
−−−→
O0Ok on the 3D image with O0 as the origin. At first,
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Figure 3.1: The image of the target is cross-range wrapped.

the image at kth instant should shift by M̃k, that is letting α(A, kT ) =:

α(A+M̃k, kT ), where if a pixel exceeds the cross-range unambiguous window

during the shift, it should be wrapped to the other side. After this procedure,

the 3D images have one common reference point O0. The estimated movement

parameters for kth pulse can be obtained as

max
Vk

∑
A

|α(A, 0)||α(A− Vk, kT )|, (3.8)

where the shift in the cross-range direction is cyclic shift.

In order to increase the precision of alignment, the estimated Vk should

be polynomial fitted to obtain a more precise estimation. But the cross-

range movement parameters obtained using the cyclic correlation is wrapped

to [−λr
2dx

, λr
2dx

]([−λr
2dy

, λr
2dy

]). It should be cross-range unwrapped first. Similar to

phase unwrapping, cross-range unwrapping can be used to estimate the true

cross-range position of each 3D image. It should be noted that the unwrapping

process here only unwraps the wrapped cross range distance of the target rela-

tive to the first 3D image. If the first 3D image is wrapped, we should unwrap

the first image at first or unwrap it after the above cross-range unwrapping

procedure. This is easy to implement in image domain. Fig.3.12 shows one

example of the wrapped cross-range and unwrapped cross-range distances.
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3.3. 3D IMAGES ALIGNMENT, MOTION COMPENSATION
AND COHERENT COMBINATION

After alignment, the 3D images should be coherently combined to increase

the SNR and mitigate the cross-range sidelobes. Generally, as the Pulse Rep-

etition Frequency (PRF) is low, the Doppler frequencies (2P0A′(kT )
λ

) of the

scatterers are wrapped. They must be unwrapped before coherent combina-

tion. Furthermore, if wavefront disorder exists, there is phase noise which

should also be compensated. This is called motion compensation in ISAR. We

consider the case that there is an isolated scatterer. Denote O as an isolated

scatterer on the target, the phase of s̃A can be compensated using the phase of

scatterer O. Denote αA(fx, fy, t
′, kT ) the image at kth pulse after alignment.

The image after alignment and motion compensation is (omit α̃(fx, fy) for

simplicity):

αA(fx, fy, t
′, kT )× ej 4π

λ
(P0O(kT )−P0Ok)

= e−j 4π
λ
(P0A(kT )−P0O(kT ))δ (t′ − τA(0)) δ̃(fx − f̃0x, fy − f̃0y)

= e−j 4π
λ
|nT

0

−→
OA(kT )|δ (t′ − τA(0)) δ̃(fx − f̃0x, fy − f̃0y)

= e−j 4π
λ
(wT−→

OAkT )δ (t′ − τA(0)) δ̃(fx − f̃0x, fy − f̃0y)

= e−j 4π
λ
(wT ãkT )δ (t′ − τA(0)) δ̃(fx − f̃0x, fy − f̃0y),

(3.9)

where w = (v − nT
0 vn0)/r − Ωω̂n0, Ω is the rotation speed of the target

around its self axis, ω̂ is a skew symmetric matrix [62] [12], v is the speed of

the target, ã =
−→
OA − (

−→
OATn0)n0. It should be noted that the f̃0x, f̃0y and

τA(0) are now time independent or O0 can be thought of as the origin of the

3D images. The candidate isolated scatterer O can be chosen as the scatterer

with a high amplitude and low variance. Generally, the PRF is high enough

to avoid frequency alias after motion compensation.

From (3.9) it can be seen that the 3D images in different instants can be

combined coherently if the w is known. After coherent combination, the 3D

image can be expressed as (3.10). The (3.10) is also the point spread function
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of point A.

αA(fx, fy, t
′) =

∑
k α̃(fx, fy)e

−j 4π
λ
(wT (ã−a)kT )δ (t′ − τA(0)) δ̃(fx − f̃0x, fy − f̃0y)

= α̃(fx, fy)δ (t
′ − τA) δ̃(fx − f̃0x, fy − f̃0y)

sin( 2π
λ
wT (ã−a)KT )

sin( 2π
λ
wT (ã−a)T )

.

(3.10)

3.4 Point Spread Function Analysis

In this section we analyze the point spread function of combined MIMO array

and ISAR processing. We assume that the scatterer is located on the center

of the coordinate system.

Case 1: The MIMO array is a uniform linear array and located on the X

axis. The target is located on the broadside direction. The direction of w is

along the linear array. In this case we have w = [wx, 0, 0] and

αA(x, y, t
′) = α̃(x, y)δ (t′ − τA)

sin(πM1N1x/L)

sin(πx/L)

sin(2π
λ
wxxKT )

sin(2π
λ
wxxT )

, (3.11)

where L = λr
drx

is the unambiguous distance. When λ
2wxKT

= L, sin(πx/L) =

sin(2π
λ
wxxKT ), which means the grating lobes of sin(πM1N1x/L)

sin(πx/L)
are canceled by

the nulling points of
sin( 2π

λ
wxxKT )

sin( 2π
λ
wxxT )

. The grating lobes of
sin( 2π

λ
wxxKT )

sin( 2π
λ
wxxT )

occurs at

x = λ
2wxKT

K = K△x, where △x is the cross range resolution of ISAR. Gener-

ally, K△x can be designed larger than the physical aperture of each antenna,

such that the grating lobes of
sin( 2π

λ
wxxKT )

sin( 2π
λ
wxxT )

are mitigated by the low sidelobes

of the beam pattern of each physical antenna. For L = 200m, M1N1 = 6

and △x = L, the beam patterns of MIMO array, inverse synthetic aperture

and MIMO combined with ISAR processing are shown in Fig.3.2. It can be

seen that the MIMO combined ISAR beam pattern has narrower main lobe

compared with ISAR beam pattern and has no grating lobes compared with

MIMO beam pattern. 2
λ
wxKT = 1

L
means rwxKT = 1

2
drx. That is the ISAR
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Figure 3.2: Beam pattern of linear MIMO array, ISAR and combined MIMO
array and ISAR.

synthetic aperture is only half of drx. This can be explained as the synthetic

aperture is due to round traveling propagation of the microwave. The total

aperture is shown in Fig.3.3. This case 1 has been discussed by [30] and [31].

It should be noted that there is no separation capability in the Y direction.

Figure 3.3: Synthetic aperture and linear MIMO array for a w along the linear
array.

Case 2: The array is the same as case 1 and the target is located on

the broadside direction. w is an arbitrary vector. Because w⊥n0, we can

denote w as w = [wx, wy, 0]. The beam pattern due to ISAR processing

can be expressed as
sin( 2π

λ
(wxx+wyy)KT )

sin( 2π
λ
(wxx+wyy)T )

. The zero points are located on lines

2
λ
(wxx + wyy)KT = p, where p is an integer. The zero lines do not coincide

with the grating lobes lines of the MIMO beam pattern, so the grating lobes

along the X direction cannot be canceled. For L = 200m, M1N1 = 5, w is
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along [1,−1, 0] direction and 2
λ
|w|KT =

√
2

200
, the beam pattern of MIMO array,

inverse synthetic aperture and the combined MIMO and ISAR processing are

show in Fig.3.4. From Fig.3.4 (c) we can see that although there are grating

lobes in the X direction, the grating lobes are along the main lobe of the ISAR

beam pattern. At the same time, the combined beam pattern has separation

capability in the Y direction. This can be explained by the corresponding

synthetic and physical array distribution as shown in Fig.3.5. The synthetic

and physical array forms a two dimensional array. Because the two dimensional

array is not a regular array and the synthetic aperture does not fill all the gaps

between the MIMO array’s inter-elements, there are grating lobes and the line

along grating lobes are not perpendicular to the X axis.

(a) (b)

(c)

Figure 3.4: Beam pattern of (a) uniform linear MIMO array, (b) ISAR with
w along [1,−1, 0] direction, and (c) combined MIMO array and ISAR.

Case 3: The MIMO array is a rectangular array and the target is located on
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Figure 3.5: Synthetic aperture and MIMO array for an arbitrary rotation
speed perpendicular to n0.

the broadside direction. We assume the unambiguous distance is 200m. There

are 10 virtual antennas on each direction. The w is along [1, 0, 0] direction and

the cross range resolution of ISAR is 100m ( in this case, the ISAR synthetic

aperture fill in the gap of MIMO array aperture in X direction). Fig.3.6 shows

the MIMO array beam pattern, ISAR beam pattern and combined MIMO

array and ISAR beam pattern. It can be seen that the MIMO array beam

pattern has grating lobes. The ISAR beam pattern has wide mainlobe and

has no separation capability in Y direction. The combined array has narrower

main lobe compared with ISAR beampattern and only has grating lobes in

Y direction. An important fact is that the combined beam pattern has lower

sidelobes along the X direction as compared with MIMO array beam pattern.

In these figures, we only show beampatterns above -40 dB.

Case 4: The MIMO array is a rectangular array and the target is located on

a slant direction. The array configuration is the same as case 3. The target line

of sight is n0 = [1,−1, 1]/
√
3, thew is alongw = [1,−1.2,−2.2] direction. The

ISAR cross range resolution is 100m. Because the combined beam patterns on

the planes which are perpendicular to the n0 are the same, we only show the

beam pattern on one such plane. Because the projections of X axis and Y axis

on this plane are not orthogonal, we establish another new coordinate system
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(a) (b)

(c)

Figure 3.6: Beam pattern of (a) uniform square MIMO array, (b) ISAR with
w along [1, 0, 0] direction, and (c) combined MIMO array and ISAR.

on this plane. Denote w as one axis, [w, η,n0] form an orthogonal coordinate

system. The beam patterns of MIMO array and combined MIMO and ISAR

are shown in Fig.3.7. The performance is similar to case 3. For combined

beam pattern, the grating lobes are only shown in η direction, the sidelobes

in w direction are lower than that of MIMO array only beam pattern. In

the derivation of (3.10) we uses the assumption of φn(t
′)⊗ φ̃m(t

′) = δmnδ(t
′).

Unfortunately, in reality, this condition is difficult to satisfy. It can be written

as φn(t
′)⊗φ̃m(t

′) = δmnδ(t
′)+ξmn(t

′), where ξmn(t
′) is random sidelobes, which

cannot be mitigated using windowing technique. But the terms in (3.10) which

influence cross-range property is δ̃(fx − f̃0x, fy − f̃0y) and
sin( 2π

λ
wT (ã0−a)KT )

sin( 2π
λ
wT (ã0−a)T )

.

sin( 2π
λ
wT (ã0−a)KT )

sin( 2π
λ
wT (ã0−a)T )

is a sinc function with amplitude of K, it can increase the

SNR at ã0 by 10log10(K) dB, at the same time it mitigates the sidelobes in

the cross-range direction (w direction).

73



3.5. COMPUTATION OF EFFECTIVE ROTATION VECTOR

(a) (b)

Figure 3.7: Beam pattern of (a) uniform square MIMO array and (b) combined
MIMO array and ISAR with w along [1,−1.2,−2.2] direction.

3.5 Computation of Effective Rotation Vector

According to (3.9),wT ã0 can be obtained by Fourier transform of αA(f̃0x, f̃0y, τA(0), kT )

on k variable and denoted as fd. At the same time, ã0 can be obtained accord-

ing to the information contained in (f̃0x, f̃0y, τA(0)). It should be noted that ã0

in wT ã0 is relative to O (ISAR focusing point), (f̃0x,f̃0y, τA(0)) is relative to

O0. O and O0 may not be same. So in order to obtain ã0, we should shift the

3D images such that O is the origin. We use ã to replace ã0 for simplicity in

the following derivation. Then w can be estimated by minimum mean square

error method:

minw E |fd + 2wT ã
λ
|2

s.t. wTn0 = 0
(3.12)

The solution is

w = −λ
2
R−1

(
rfdã −

rTfdãR
−1n0

nT
0R

−1n0

n0

)
, (3.13)

where R = E(ããT ), rfdã = E(fdã), E is the expectation operator.

If isolated scatterer does not exist, some other motion compensation meth-
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ods such as Rank One Phase Estimation (ROPE) algorithm, entropy minimiza-

tion method and subspace method can be used [20]. But the phase obtained

by ROPE and entropy minimization method is the estimation of the phase

of one scatterer plus a linear phase term. A linear phase term changes the

position of the image in cross-range direction, although it does not change the

entropy of the image. The above w estimation method cannot be used in this

case (without using isolated scatterer to do motion compensation). It should

be revised as the following optimization procedure, where f̃ is the unknown

frequency shift.

minw,f̃ E|fd − f̃ + 2wT ã
λ
|2

s.t. wTn0 = 0.
(3.14)

Let g(w, f̃ , µ) = E|fd − f̃ + 2wT ã
λ
|2 + µwTn0, then

g(w, f̃ , µ) = 4
λ2w

TE(ããT )w + 4
λ
wTE

(
ã(fd − f̃)

)
−2E(fdf̃) + E(f 2

d ) + f̃ 2 + µwTn0.
(3.15)

Let ∂g
∂w

= 0, we have

8

λ2
E(ããT )w +

4

λ
E
(
ã(fd − f̃)

)
+ µn0 = 0. (3.16)

Let ∂g

∂f̃
= 0, we have

f̃ = E(fd) +
2

λ
wTE(ã). (3.17)

Substitute (3.17) into (3.16), we have

8

λ2
E(ããT )w − 4

λ
E(ã)

(
E(fd) +

2

λ
E(ã)Tw

)
+

4

λ
E(ãfd) + µn0 = 0. (3.18)
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Denote R̄ = E(ããT )− E(ã)E(ã)T , ā = E(ã), f̄d = E(fd), we have

w = −λ
2
R̄−1(rfdã − āf̄d +

λ

4
µn0). (3.19)

Using nT
0w = 0, we have

µ =
4nT

0 R̄
−1
(
āf̄d − rfdã

)
λnT

0 R̄
−1n0

. (3.20)

Assume that we have obtained the positions and Doppler frequencies of K̄

scatterers from the 3D images of different pulses. Denote 1 = [1, 1, . . . , 1]T ,

fd = [fd1, fd2, · · · , fdK̄ ]T and D = [ã1, · · · , ãK̄ ]. The expectation operators can

be replaced by the mean of samples. That is E(ããT ) =: DDT/K̄, E(ã) =:

D× 1/K̄, E(ãfd) =: D× fd/K̄, E(ã) =: D× 1/K̄, and E(fd) = fTd 1/K̄.

After w is obtained, the multiple 3D images can be coherently combined.

Then similar to Chapter 2, strong scatterers are selected. After coordinate

transform, the coordinates of these scatterers are obtained and then the 3D

image is obtained.

According to the description in last few sections, the MIMO radar 3D

imaging technique can be described using the procedure in Fig.3.8.

3.6 Simulation Results

This section uses numerical examples to demonstrate the problems occurred

in MIMO radar imaging using multiple snapshots and the merits obtained

after using the methods proposed in this Chapter. The carrier frequency is

35G Hz. The transmitting code is random Binary Phase Shift Keying (BPSK)

modulated signal with length L = 512 and bandwidth Bs = 150M Hz.
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Figure 3.8: The total procedure of MIMO radar 3D imaging.

3.6.1 Simulation 1: Cross-Range Sidelobes Mitigation

Using multiple-snapshot signals, the 3D images can be coherently combined,

resulting in increased SNR and lower sidelobes in the cross-range domain. In

order to show clearly, the MIMO radar in this simulation contains M = 10

uniform linear transmitting antennas with inter-element distance of 85.7143 m

and N = 20 uniform linear receiving antennas with inter-element distance of

4.2857 m. The unambiguous distance at R = 50 km is 100 m. The antennas

are located along the X axis. The target with 8 scatterers is located 50 km away

with line of sight [-0.8,1]. The speed of the target is [198.8,159] m/s. The time

duration to collect the data is 0.16 s. During this time, the target moves about

40.7 m. The PRF is 300 and the number of discrete snapshot is 48. Because

the virtual array is a one-dimensional array, the image obtained is a two-

dimensional image. The transmit power of each antenna is Pt = 4000 w and

the gain of each antenna is Gt = 43.3 dB. The effective area of each transmit

and receive antenna is Ar = 0.04π m2. The receiver noise temperature is
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T0 = 290 K, the noise figure is Fn = 2.5 dB. The RCS of each scatterer

is α = 1 m2. The SNR of each scatterer after array processing is 30 dB

(does not consider time domain processing and the output SNR after only

MIMO processing is SNR = MNLPtGtαAr

16π2R4KbFnT0Bs
, where Kb = 1.38 × 10−23 J/K

is the Boltzmann constant, L is the length of the codes). Fig.3.9 (a) shows
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Figure 3.9: (a) Original 2D image of the target, (b)Reconstructed 2D image
using one snapshot signals and (c) Reconstructed 2D image using multiple
snapshots signals (simulation 1).

the original two-dimensional image of the target. Fig.3.9 (b) and (c) show the

reconstructed images using one snapshot and multiple snapshots signals. From

these two figures, we see that the reconstructed images reflect the distribution

of the original scatterers. The cross-range sidelobes in Fig.3.9 (c) are lower

than that in Fig.3.9 (b) due to time domain coherent processing. In order to

show the results clearly, two-dimensional contour plot is also shown in Fig.3.10.
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Figure 3.10: Contour plot of reconstructed 2D image using single and multiple
snapshots signals (simulation 1).

3.6.2 Simulation 2: 3D Imaging of MIMO Radar Using

Multiple Snapshots Signal

In this example, the MIMO radar under consideration contains a 8× 8 square

transmitting array with inter-element spacing of 107.1429 m and a 8×8 square

receiving array with inter-element spacing of 13.3929 m. The target with 11

scatterers is located in the n0 = [0.4402, 0.1761, 0.8805] direction and is 100

km from the radar. It moves uniformly in the X axis direction with speed

[133.9286, 0, 0] m/s. The unambiguous distance at 100 km is 64 m. The

square roots of the RCS of the 11 scatterers are 1, 2, 3, ... , and 11 m. Fig.3.11

shows the original 3D image of the target (same as simulation 3 in Chapter

2). The antenna parameters are the same as that of simulation 1 except that

the transmit power is 50 W. The SNR of the weakest scatterer after array

processing is 12.2 dB (does not consider time domain processing). The PRF is

30 Hz and the coherent processing time is T = 0.8 s. During this period, the

target moves 47 m along the direction of n0 and moves 96.2 m in the direction

perpendicular to n0. The (v−(vTn0)n0)×T = [86.3787,−8.3056,−41.5282] m.

The target moves across the unambiguous window, therefore the 3D images

of some snapshots are cross-range wrapped. Fig.3.12 shows the real cross-

range position (r(t) − (r(t)Tn0)n0) of the target, the measured cross-range

wrapped position and the cross range unwrapped position with time, where
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r(t) expresses the position of the target and we let the target be located in the

n0 direction at time 0. It can be seen that the unwrapped position coincide

with that of the real position.

The real w = (v − (vTn0)n0)/r is [1.0797,−0.1038,−0.5191] × 10−3m/s.

We choose δv = 32 dB and δζ = 6 dB. The estimated ŵ using our method

is [1.0704, −0.1225, −0.5093]× 10−3m/s. The relative error |w − ŵ|/|w| is

0.0192. This is a small value. Fig.3.13 shows the reconstructed 3D image using

one snapshot signal. Due to high cross-range sidelobes, some scatterers have

not been constructed. Fig.3.14 shows the reconstructed 3D image using time

domain information (estimated ŵ). It can be seen that the quality of the 3D

image in Fig.3.14 is better than that of Fig.3.13 although there are some false

scatterers.
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Figure 3.11: Three different projections and 3D view of the target model
(simulation 2).
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Figure 3.12: Wrapped, unwrapped and real cross distance. (a) along the X
axis, (b) along the Y axis (simulation 2)
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Figure 3.13: Three different projections and 3D views of the image obtained
by one snapshot MIMO array for δv=32 dB and δζ = 6dB (simulation 2).
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Figure 3.14: Three different projections and 3D views of the image obtained
by multiple snapshots MIMO array for δv=32 dB and δζ = 6dB (simulation
2).

3.6.3 Simulation3: 3D imaging of a Complex Target

In this example, we consider 3D imaging of a complex target. The tar-

get is comprises of 69 strong scatterers and is shown in Fig.3.15. The an-

tenna parameters are the same as that of simulation 2. The target is lo-

cated in the n0 = [0.4082, 0.4082, 0.8165] direction and is 100 km from the

radar. It moves uniformly in the [0.6917, 0.6917,0.2075] direction with speed

[109.1629, 109.1629, 32.7489]m/s. The SNR of the weakest scatterer after ar-

ray processing is 12.2 dB (does not consider time domain processing). The

PRF is 30 Hz and the coherent processing time is T = 1 s. The real w =

(v − (vTn0)n0)/r is [0.6186, 0.6186,−0.6186] × 10−3m/s. We choose δv =

26 dB and δζ = 9.5 dB when selecting strong scatterers to estimate the

speed. These threshold values are set to ensure that we have higher prob-

ability in selecting the correct scatterers to further guarantee that the ro-
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tation speed is estimated correctly. The estimated ŵ using our method is

[0.6116, 0.6095,−0.6105]× 10−3m/s. The relative error |w− ŵ|/|w| is 0.0131.

This is a small value. We also choose δv = 32 dB and δζ = 6 dB when select-

ing strong scatterers to form the 3D image. Fig.3.16 shows the reconstructed

3D image using one snapshot signal. Due to high cross-range sidelobes, some

scatterers have not been reconstructed. Fig.3.17 shows the reconstructed 3D

image using time domain information (estimated ŵ). Similar to simulation 2,

it can be seen that the quality of the 3D image in Fig.3.17 is better than that

of Fig.3.16.
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Figure 3.15: Three different projections and 3D view of the target model
(simulation 3).

3.7 Conclusions

Compared with MIMO radar 3D imaging using single snapshot signal, using

multiple snapshots can improve output SNR and mitigate cross-range side-

lobes, resulting in improved image quality. For a faraway target, the cross-
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Figure 3.16: Three different projections and 3D views of the image obtained by
MIMO array using one snapshot signal (δv=32 dB and δζ = 6dB, simulation
3).
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Figure 3.17: Three different projections and 3D views of the image obtained
by MIMO array using multiple snapshots signals (δv=32 dB and δζ = 6dB,
simulation 3).
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range distance of the target traveled may exceed the unambiguous window and

therefore the 3D images may be wrapped in the cross-range domain. Cyclic

correlation method is proposed to align the 3D images in cross-range direction.

The three dimensional rotation speed is estimated using minimum mean square

error criterion. The 3D images obtained in different snapshots are coherently

combined to obtain an improved 3D image.

For multiple snapshots case, the computation load will increase. If the tar-

get does not move in a smooth manner, the approximation precision using one

order polynomial function approximation will be affected. If there is no iso-

lated scatterer, a more complex motion compensation method should be used.

Non-smooth movement will also affect the precision of motion compensation.
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Chapter 4

ℓ1 ℓ0 Norms Homotopy Sparse

Signal Recovery Algorithms

4.1 Introduction

A target usually has only a few strong scatterers. These strong scatterers

are often sparsely distributed. Sparse signal recovery algorithms can thus be

used to improve image quality. This has been shown in two dimensional ISAR

imaging [48]. So this Chapter discusses sparse signal recovery algorithm and

the next chapter discusses its application on MIMO radar imaging.

Sparse signal recovery utilizes the a prior information of sparse property

of the signal [32] [33]. A linear system can be expressed as

s = Ψααα+ n, (4.1)

where n is the observation noise or/and model error. The dimension of Ψ is

M × N . When M < N , Eq.(4.1) is an under-determined system. When ααα is

a sparse signal, it can be solved by the following optimization criterion

α̂αα = arg min ||ααα||sp subject to ||s−Ψααα||2 < ε, (4.2)
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where ||ααα||sp expresses sparse norm of ααα, ε is related with the variance of

noise n. Sparse property usually can be measured by ℓp(0 ≤ p ≤ 1) norm.

Although ℓ0 norm is better in describing sparsity of noise free case, sparse

learning algorithms based on ℓ0 norm are computationally complex, because

it needs combinational optimization. So algorithms based on ℓ1 norm, such as

basis pursuit [34], ℓ1-ℓs [35], etc, are more popular, because ℓ1 norm is a convex

function and minimization of a convex function on a convex set has unique

solution. ℓ1-magic program solves quadratically constrained ℓ1 minimization

by reformulating it as a second-order cone program and uses a log barrier

algorithm [63]. However, it is computationally expensive. Hence many simpler

algorithms, including the matching pursuit (MP) [36], orthogonal matching

pursuit (OMP) [37] are proposed. It has also been shown that the performance

using 0 < p < 1 is better than using p = 1 [38] [39] [40]. So constrained ℓp

norm minimization problem is another hot research topic, which is usually

solved by steepest descent gradient projection (SDGP) [38] [39]. But because

the derivative of αp approximates to infinity when α approximates to zero, the

step size should be designed carefully.

In order to obtain an approximate ℓ0 norm solution, a smoothed pseudo

norm function Fσ(ααα) = N −
∑N

n=1 exp(−
α2
n

2σ2 ) was used to replace the ℓ0 norm

in [41]. By letting σ varies from infinity to zero, a homotopy between ℓ2

norm and ℓ0 norm is formed and a smoothed ℓ0 norm solution is obtained. It

has been shown that the smoothed ℓ0 norm method (simplified as SL0 in the

followings) is two to three orders of magnitude faster than basis pursuit (based

on interior-point linear programming solvers) and provides better estimation

of the source than matching pursuit methods.

In this Chapter we propose a sequential order one negative exponential

(SOONE) pseudo norm function Gσ(ααα) = N −
∑N

n=1 exp(−|αi|/σ), where

87



4.1. INTRODUCTION

when σ approaches infinity, Gσ(ααα) approximates to ℓ1 norm (with difference

of a ratio), and when σ approaches 0, Gσ(ααα) approximates to ℓ0 norm. So

a homotopy between ℓ1 norm and ℓ0 norm is formed (called ℓ1 ℓ0 homotopy).

Comparison among choosing Fσ(ααα), Gσ(ααα) and ℓp will be discussed in the next

section.

In solving our optimization problem, the inverse of matrix ΨΨH needs to

be computed. In general, if the Ψ matrix is random, ΨΨH usually will be

well-conditioned. In real cases, such as MIMO radar 3D imaging discussed

in this thesis, this matrix may be ill conditioned and the condition number

may be as high as 1018, and the original algorithm losses its robustness with

increasing condition number. We propose using diagonal loading and singular

value decomposition (SVD) to improve the robustness of this algorithm.

Some sparse signal recover algorithms are designed for real signal. In radar

imaging, complex signals are used. In order to use these algorithms, a complex

equation should be transformed to a real equation. In this case, if traditional

algorithm is used directly, performance lose will be produced. ℓ1 ℓ0 homotopy

method is also be extended to process complex signal and block sparse signals.

This Chapter is organized as follows. Section 4.2 introduces the ℓ1 ℓ0 norms

homotopy sparse signal recovery algorithm. Comparison with iterative shrink-

age threshold method is discussed in section 4.3. Robust implementation is

discussed in section 4.4. Simulation results are presented in section 4.5. Fi-

nally, section 4.6 concludes this chapter.
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4.2 ℓ1 ℓ0 Norms Homotopy Sparse Signal Re-

cover Algorithm

4.2.1 Fundamental of Sparse Signal Recovery

The sparsity of a vector can be characterized by the ℓp norm of the vec-

tor (where ℓp norm is defined as
∑N

n=1 |αn|p (0 ≤ p ≤ 1), it is actually the

power p of conventional ℓp norm. In order for simplification, literature denotes∑N
n=1 |αn|p as ℓp norm ). For p = 0, ℓ0 is the number of the non-zero element.

ℓp is a convex function for p >= 1, while for 0 < p < 1, it is not a convex

function. Fig.4.1 shows the mesh plot and contour plot of ℓ1/2 norm for two

dimension case. It can be seen that the ℓ1/2 norm has smaller value at the

origin and two axes. It can also be seen that the ℓp norm is concave in one

quadrant. It is the concave property of ℓp norm (0 < p < 1) in one quadrant

that makes it more suitable to measure sparsity. The smaller the p, the deeper

the channels in the two axes gets. The minimum points are more likely to be

located on the axes. So, generally speaking, the smaller the value of p, the

better the performance.
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Figure 4.1: (a) Mesh plot and (b) contour plot of two dimensional ℓ1/2 norm .

It is well know that if any M × M submatrix of Ψ is inverse, and the

sparsity (number of non zero elements) of ααα is not more than ⌊M/2⌋, then the
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most sparse solution of a linear equation is unique.

In order to implement sparse signal recovery using ℓ0 norm criterion, it

requires combinational optimization, which is of non-deterministic polynomial

time (NP) hard and computationally expensive. For p = 1, because |ααα|p is

a convex function and convex optimization has matured algorithms, norm

1 based algorithms are popular. Many theory results on ℓ1 norm based al-

gorithms have relation with the Restricted Isometry Property (RIP) of the

matrix Ψ.

Definition 4.1: The restricted isometry constant (RIC) δk of a matrix

Ψ ∈ CM×N is the smallest number δk such that

(1− δk)||ααα||22 ≤ ||Ψααα||22 ≤ (1 + δk)||ααα||22 (4.3)

for all ||ααα||0 ≤ k.

If 0 < δk < 1, matrix Ψ is said to satisfy the restricted isometry property

condition. RIP means that the linear transform Ψ approximately preserves

the lengths of k-sparse vectors, that is k-sparse vectors cannot be the null-

space of Ψ. The above restricted isometry property plays a fundamental role

in the study of the recovery properties of compressive sensing.

Candès et al have shown that ifΨ satisfies the RIP with a RIC δ2k <
√
2−1,

then the solution ααα of equation (4.2) for p = 1 obeys [64]

||ααα−ααα∗|| ≤ C2 ε+
C1√
k
||ααα−αααk||1 (4.4)

where αααk is the restriction of ααα to its k largest entries, C1 = 2((1 + (
√
2 −

1)δ2k)/(1− (
√
2 + 1)δ2k)) and C2 = (4

√
1 + δ2k)/(1− (

√
2 + 1)δ2k).

This result implies that the reconstruction error by ℓ1 minimization is finite.

It is bounded by two terms. The first is the observation noise. With a decrease
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of the noise, the reconstruction error becomes small. The second term is

determined by the sparsity of the signal. If the sparsity of ααα is less than or

equal to k, the second term is zero, which means that the ℓ1 minimization

solution for noise free case can obtain the true solution.

However, the requirement of δ2k <
√
2 − 1 restricts k to be a small value.

The mathematic result is the most pessimistic. Usually, simulations provide

realistic results.

Rick Chartrand pointed out that the performance based on ℓp (0 < p < 1)

norm is better than that based on ℓ1 norm [38]. But due to its non-convex

property, ℓp norm (0 < p < 1) is described in the literature as intractable [38].

Even so, Rick Chartrand used a simple steepest descent gradient projection

method to find the local minimizer. But the derivation of αp(p < 1) is pαp−1

and approaches infinity when α approaches 0. So the gradient projection

method should be designed carefully.

A function that has similar property with ℓp norm is the order one negative

exponential function Gσ(ααα) = N−
∑N

n=1 exp(−|αn|/σ), where σ is an auxiliary

variable. The mesh plot and contour plot of G1(ααα) for two dimensional case

are shown in Fig.4.2. It can be seen that they are similar to Fig.4.1.
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Figure 4.2: (a) Mesh plot and (b) contour plot of two dimensional function
2− e−|x| − e−|y|.

Another similar negative exponential function defined by [41] is fσ(α) =
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1 − e−α2/2σ2
(smoothed ℓ0 norm method). Now let’s compare the difference

between choosing fσ(α) and choosing gσ(α) = 1 − exp(− |α|
σ
). When σ → ∞,

fσ(α) → α2/(2σ2), so function Fσ(ααα) =
∑N

n=1 fσ(αn) degenerates to ℓ2 norm

(with difference of a ratio); but gσ(α) → |α|/σ, therefore, Gσ(ααα) degenerates

to ℓ1 norm. So for large σ, the method based on the new cost function has

higher probability to find sparse solution than that based on Fσ(ααα). From

this discussion we have confident that the new method will be better than the

smoothed ℓ0 norm method.

The merit of this Gσ(ααα) function compared with ℓp norm is that the deriva-

tion of −e−α/σ (= 1
σ
e−α/σ) does not approach infinity when α approaches 0. So

it is easier to design gradient projection algorithm. On the other hand, for real

signal with a few large values and many small values (not exactly 0), ℓ0 norm

is not a proper measure to describe the sparsity. By controlling the auxiliary

variable σ, a suitable cost function can be built to improve the flexibility of

the algorithm.

Therefore sparse signal recovery algorithm based on Gσ(ααα) function mini-

mization can be described as:

α̂αα = lim
σ→σmin

arg minGσ(ααα) subject to ||s−Ψααα||2 < ε. (4.5)

Many ℓ1 based sparse signal recover methods assume that the vector and

matrix are all real number. Denote s = sr + jsi, Ψ = Ψr + jΨi, ααα = αααr + jαααi,

n = nr + jni, s2 = [sTr , s
T
i ]

T , Ψ2 =

 Ψr, −Ψi

Ψi, Ψr

, ααα2 = [αααT
r ,ααα

T
i ]

T and

n2 = [nT
r ,n

T
i ]

T . Eq. (4.1) can be expressed as

s2 = Ψ2ααα2 + n2. (4.6)

92



CHAPTER 4. ℓ1 ℓ0 NORMS HOMOTOPY SPARSE SIGNAL
RECOVERY ALGORITHMS

For symbol simplicity, we use s, Ψ, ααα and n to express s2, Ψ2, ααα2 and n2 in

the following discussion and there should be no confusion.

4.2.2 Steepest Descent Gradient Projection Method

Steepest descent gradient method is usually used for finding local minimum

point of non-constrained problem. For every searching step, the algorithm

finds the steepest descent gradient direction and moves a small step. For

constrained optimization problem, the new point along the steepest descent

gradient direction may not belong to the feasible set, so the new iteration

position should be projected into the feasible set. Gradient projection principle

has been used in [41] and [38]. In this chapter we also use gradient projection

method to solve Eq.(4.5). The entire algorithm consists of two loop layers. In

the outer loop, σ is varied from a larger value to a smaller value. Gradient

projection step is carried out in the inner loop. The algorithm structure can

be described as follows [41] [65]:

• Initialization:

1) define J , L, L0, L1.

2) Let α̂αα0 be equal to the minimum ℓ2 norm solution of s = Ψααα, obtained

by α̂αα0 = Ψ†s, where Ψ† is the pseudo inverse of Ψ.

3) Choose a suitable decreasing sequence for {σ}, [σ1, · · · , σJ ].

• for j = 1, · · · , J :

1) Minimize the function Gσj
(ααα) on the feasible set ααα = {ααα : |Ψααα − s|2 <

ε} using L iterations of the revised steepest descent gradient algorithm

(followed by projection onto the feasible set):

- Initialization: ααα = α̂ααj−1
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- For ℓ = 1, · · · , L (loop L times):

a) Let δδδ be gradient of Gσj
(ααα) and µ = min(max(|ααα|)/L0, σj/L1).

b) For every element ofααα, let α(n)← α(n)− α(n)
|α(n)|×min(|α(n)|, |µσjδ(n)|).

c) If |Ψααα − s|2 > ε, project ααα back into the feasible set ααα: ααα ←

ααα+ΨH(ΨΨH)−1(s−Ψααα)

2) Set α̂ααj = ααα

• Final answer is α̂αα = α̂ααJ

When computing the gradient of Gσ(ααα), we take ∂gσ(α)
∂α

= 0 at α = 0. The

above algorithm is also called gradient projection based on sequential order

one negative exponential (GP-SOONE) function algorithm [65].

The above procedure is the same as [41], except for two points. The first is

that the µ in [41] is a constant while µ here is varying with σ andmax(|ααα|). The

second is by choosing the movement step as α(n)
|α(n)| ×min(|α(n)|, |µσδ(n)|), it

ensures that step α(n)← α(n)− α(n)
|α(n)|×min(|α(n)|, |µσδ(n)|) does not change

the sign of α(n) for real data and does not move over length of α(n) for complex

data. In [41], µ is a constant, and by choosing µ 6 1, α ← α − µαe−
α2

2σ2 also

does not change the sign of α.

The key of the above algorithm is steepest descent gradient searching plus

projection on feasible set. A natural question is: is the above algorithm a

descent algorithm in the feasible set? To answer this, we prove that if the

steepest descent gradient search is the conventional method, that is ααα ←

ααα − µσδδδ, the algorithm is a descent algorithm in the feasible set. According
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to the algorithm, the projection of ααα− µσδδδ onto the feasible set is

ααα− µσδδδ +ΨH(ΨΨH)−1(s−Ψ(ααα− µσδδδ))

= ααα− µσ[I−ΨH(ΨΨH)−1Ψ]δδδ

= ααα− µσδδδn, (4.7)

where δδδn = [I−ΨH(ΨΨH)−1Ψ]δδδ is the projection of δδδ onto the null subspace

of matrix Ψ and we use s = Ψααα.

Denote UDV as the Singular Value Decomposition (SVD) of Ψ, where

U,V =
[ V1

V2

]
are the left and right singular vector matrices ofΨ,D = [D1,0]

is the singular value matrix, D1 is the non-zero part of D, and V1 corresponds

to D1. We have

δδδHδδδn = δδδHδδδ − δδδHVHDHUH(UD−2
1 UH)UDVδδδ (4.8)

= δδδHδδδ − δδδHVH
( I, 0

0, 0

)
Vδδδ

= δδδHδδδ −
(
V1δδδ

)H(
V1δδδ

)
≥ 0.

Because for any multi-variable function f , the directional derivative of f

along any direction v is Dvf = ∇f · v, and δδδHδδδn ≥ 0, so Gσ(ααα) decreases

along −δδδn. Then we see that the above algorithm is a descent direction search

algorithm on feasible set. For the algorithm in this Chapter, when α(n) ̸= 0,

µ takes a very small value, such that min(|α(n)|, |µσδ(n)|) = µσ|δ(n)|. In

this case, the revised algorithm is still a descent direction search algorithm on

feasible set.
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The projection step can also be explained as follows. After steepest descent

search, we obtain an estimate ααα of the true value ααα0 and s−Ψααα = Ψ(ααα0−ααα).

Because ΨH(ΨΨH)−1 is the pseudo inverse of Ψ, so ΨH(ΨΨH)−1(s−Ψααα) is

the minimum ℓ2 norm estimate of ααα0 − ααα. After adding ααα, we obtain a more

precise estimation of ααα0.

Next we discuss the choice of certain parameters. Denote α̂αα0 = Ψ†s as the

minimum ℓ2 norm solution. In [41], σ1 is chosen as σ1 > 4maxn |α̂0(n)|, then

exp(−α̂0(n)
2/2σ2

1) > 0.96 ≈ 1 for all 1 ≤ n ≤ N , such that the shape of cost

function Gσ1(ααα) near α̂αα0 is similar to that of σ1 →∞. In this thesis, because

we choose gσ(α) = 1 − exp(−|α|
σ

), σ1 is chosen as σ1 > 16maxn |α̂0(n)|, then

exp(−|α̂0(n)|/σ1) > 0.93 ≈ 1.

The choice of σJ is also important. When σJ → 0, the cost function Gσ(ααα)

approximates to ℓ0 norm. ℓ0 norm is not suitable to describe the sparsity of

a vector with many small elements. For imaging application, there are many

small scatterers. So we chose a σJ which is not too small. In our algorithm,

σJ is chosen to be larger than E(max(|Ψ†nnn|)), where E expresses expectation.

The reason of choosing this σJ can be explained as follows. The feasible set

{ααα : ||s −Ψααα||2 < ε} is not a subspace. In gradient projection algorithm, we

project ααα to subspace {ααα : s = Ψααα}. For noise case, because ααα0 +Ψ†nnn is the

solution of s = Ψααα (where ααα0 is the true sparse solution), ααα0+Ψ†nnn belongs to

the feasible set and Ψ†nnn has many small value elements. We assume ααα0+Ψ†nnn

be one approximate solution and a searching point. When σJ is much less

than the element value of |Ψ†nnn|, the searching vector exp(−|ααα0 + Ψ†nnn|/σJ)

approaches zero. The gradient projection algorithm will be locked in this

solution. So σJ need not be too small, it should be larger than E(max(|Ψ†nnn)).

Now let’s consider the step size. Generally speaking, if the inner iterative

number L is large enough, the step size can be small. In order to reduce the
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computation load, L is usually chosen as a small number (in [41], L is chosen

as 3). Actually, obtaining a precise solution in inner loop is not necessary.

The aim of an inner loop is to provide an initial value for the next inner

loop with smaller σ. For smooth convex optimization function, the gradient

vector decreases gradually as the search variables approach local minimum

point and equals to zero at the local minimum point. So the value of the

gradient vector decides the speed towards the local minimum point. But for

the local non-convex optimization function considered in this Chapter, at the

local minimum point, the gradient may not exist. The derivative of gσ(α) near

the axes exists with a quantity of 1/σ. When σ → 0, it increases to ∞. So in

our algorithm, the step size includes σ, which cancels the 1/σ in the gradient.

At the same time, we choose µ = min(max(|ααα|)/L0, σ/L1). With the decrease

of σ, the σ/L1 term also decreases. The max(|ααα|)/L0 term adjusts the step

size to match the amplitude of ααα and avoid a big step size especially in the

first few outer iterations where σ is much larger than ααα. L0 and L1 are two

large numbers to control the step size. According to d
dα
e−

α
σ = − 1

σ
e−

α
σ , with

the increase of |α|, the absolute derivative value decreases. So the elements

that converge quickly are the zero elements (or small value elements). With

the decrease of σ, the large value elements converge more slowly. So the

inner loop should guarantee the convergence of the bigger amplitude signals

to avoid situations where the gradient values become small while the bigger

elements have not converged. Certainly, there is no algorithm that guarantees

the convergence in any case.

4.2.3 Block ℓ1 ℓ0 Homotopy Algorithm

In some applications such as distributed MIMO radar parameters estimation,

the sparse signal is block sparse with constant block size and regular positions.
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Denote vector ααα = [α1, . . . , αL, αL+1, · · · , α2L, · · · , αN ], where L is the block

size, N = PL is the multiple of L, P is an integer. For block sparse signal,

[αpL+1, · · · , α(p+1)L] forms a block, which is a zero vector or not a zero vector

(all of [αpL+1, · · · , α(p+1)L] are not zeros). The price function can be defined

as

Gσ(ααα) = P −
P−1∑
p=0

exp

−
√∑L

ℓ=1 |αpL+ℓ|2

σ

 . (4.9)

Gradient projection can be used for the above price function.

The ℓ1 ℓ0 homotopy method can process complex data equations and real

data equations. If a real version algorithm is used to process complex data

equation, the complex equation should be transformed to a real equation.

Actually, the transformed real signal is a block signal because with high prob-

ability the real and imaginary number pair of a complex number takes on large

value or small value at the same time. In the below steps we prove that the

real version block ℓ1 ℓ0 homotopy algorithm with block size of 2 is equivalent

to complex version non-block algorithm.

For block size of 2 sparse signal α, the order one negative exponential

function can be defined as gσ(αr, αi) = 1− exp
(
−
√

α2
r+α2

i

σ

)
, where αr and αi

forms a block. A complex order one negative exponential function is defined as

gσ(α) = 1−exp
(
−
√

α2
r+α2

i

σ

)
, where α = αr+jαi. Then the smoothed ℓ0 norm

of vector ααα for block and complex cases are all the same as Eq.(4.9). The sparse

signal recovery algorithm structures for all three cases (real no block, block

size of 2, complex no block) are same. The only difference is the computation

of gradient of Gσ(ααα). For block signal ααα, the derivative for component αr

is ∂G
∂αr

= 1
σ

αr√
α2
r+α2

i

exp(−
√

α2
r+α2

i

σ
). For a complex number α, we compute the

derivative of G to the real part and imaginary part of α, then combine them

to form a complex number, thus we have ∂G
∂α

= ∂G
∂αr

+ j ∂G
∂αi

= 1
σ

α
|α|exp(−

|α|
σ
), it

98



CHAPTER 4. ℓ1 ℓ0 NORMS HOMOTOPY SPARSE SIGNAL
RECOVERY ALGORITHMS

has the same form when α is a real number. The parameter µ for two cases

are also same if max(|ααα|) is computed with block by block case.

We prove below that the above algorithms for real block signal with block

size of 2 and complex signal are equivalent.

Lemma 1 : Let A = Ar + jAi and x = xr + jxi be a complex matrix

and a complex vector respectively. Define Ā =

 Ar −Ai

Ai Ar

 and x̄ =

 xr

xi


be the real equivalent matrix of A and equivalent vector of x. Then Ax is

equivalent to Āx̄.

Proof: Because Ax = (Ar + jAi)(xr + jxi) = Arxr−Aixi+ j(Arxi+Aixr)

and Āx̄ =

 Arxr − Aixi

Aixr + Arxi

 , so the lemma holds.

Lemma 2 : The product of complex vectorsA = Ar+jAi andB = Br+jBi

is equivalent to ĀB̄.

Lemma 3 : (Ar + jAi)
H is equivalent to ĀT .

Lemma 4 : The inverse of a block matrix

 A B

C D

 is expressed as

 A B

C D


−1

=

 (A−BD−1C)−1, −A−1B(D − CA−1B)−1

−D−1C(A−BD−1C)−1, (D − CA−1B)−1


(4.10)

where we assume that the inverses exist.
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Lemma 5 : The inverse of

 C −D

D C

 can be expressed as

 C −D

D C


−1

=

 (C +DC−1D)−1, C−1D(C +DC−1D)−1

−C−1D(C +DC−1D)−1, (C +DC−1D)−1


(4.11)

According to Lemma 4, it is easy to prove Lemma 5.

Lemma 6 : The inverse of C + jD is

(C + jD)−1 = (C +DC−1D)−1 − jC−1D(C +DC−1D)−1. (4.12)

Proof: because (C + jD)(C + jD)−1(C +DC−1D) = C +DC−1D, and

(C + jD)((C +DC−1D)−1 − jC−1D(C +DC−1D)−1)(C +DC−1D)

= (C + jD)(I − jC−1D)

= C +DC−1D,

so lemma 6 hold.

Lemma 7 : (C + jD)−1 is equivalent to

 C −D

D C


−1

Theory : LetΨ, s and ααα be complex matrix and vectors, Ψ̄, s̄ and ᾱαα be the

extended equivalent real matrix and vectors. Then ααα+ΨH(ΨΨH)−1(s−Ψααα)

is equivalent to ᾱαα + Ψ̄T (Ψ̄Ψ̄T )−1(s̄ − Ψ̄ᾱαα). This means that the ℓ1 ℓ0 algo-

rithms for real block signal with block size of 2 and no-block complex signal

are equivalent.

Proof: According to Lemma 1, s−Ψααα is equivalent to s̄−Ψ̄ᾱαα. According to

Lemma 3 and Lemma 2, ΨH is equivalent to Ψ̄T andΨΨH is equivalent Ψ̄Ψ̄T .
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According to Lemma 7, (ΨΨH)−1 is equivalent to (Ψ̄Ψ̄T )−1. So we have that

ααα + ΨH(ΨΨH)−1(s − Ψααα) is equivalent to ᾱαα + Ψ̄H(Ψ̄Ψ̄H)−1(s̄ − Ψ̄ᾱαα). In

addition to the real and complex version of steps a) and b) in the algorithm

being equivalent, we have shown that the algorithm of real version with block

size of 2 and complex version are equivalent.

For block sparse signal, no matter the block size is fixed or irregular,

denote {αi,j} the block signal, where i expresses block index, j expresses

the element index in each block, we can define the smoothed ℓ0 norm as

Gσ(ααα) =
∑

i

(
1− exp

(
−
√∑

j α
2
i,j

σ

))
. Block ℓ0 norm ℓ1 norm homotopy

method can be built easily.

4.3 Comparison with Iterative Shrinkage Thresh-

old Method

Iterative shrinkage threshold (IST) method is a kind of sparse signal recovery

algorithms. The general procedure can be expressed as [66]

αααi+1 = ηti(αααi + κΨHri); ri = s−Ψαααi. (4.13)

Here κ is a relaxation parameter (0 < κ < 1), ηti denotes a scalar nonlinearity

shrinkage operator; for soft thresholding ηSt (α) = sign(α)(|α|− t)+. The selec-

tion of K maximum value elements in OMP and CoSaMp algorithms can be

regarded as a special shrinkage operation. The ℓ1 ℓ0 algorithm can also be re-

garded as a special form of IST method, where the ΨHri in iterative shrinkage

method is replaced byΨH(ΨΨH)−1ri in ℓ1 ℓ0 algorithm. The increased compu-

tation to compute (ΨΨH)−1ri is only O(M
2), but αααi+1 = αααi +ΨH(ΨΨH)−1ri

satisfies Ψαααi+1 = s, however αααi + κΨHri can only be regarded as one step

101



4.4. ROBUST IMPLEMENTATION

of steepest descend method to obtain the solution of Ψαααi+1 = s. The step

α(n) ← α(n) − α(n)
|α(n)| × min(|α(n)|, |µσδ(n)|) in ℓ1 ℓ0 algorithm is a shrink-

age operation (For real case, α(n)
|α(n)| ×min(|α(n)|, |µσδ(n)|) has the same sign

with α(n) but with absolute value not larger than |α(n)|; for complex case,

α(n)
|α(n)| ×min(|α(n)|, |µσδ(n)|) has the same phase with α(n) but with absolute

value not larger than α(n)). The function of ηSt (α), shrinkage in CoSaMp

(OMP) and shrinkage in ℓ1 ℓ0 are expressed in Fig.4.3. In ηSt (α), the threshold

t is chosen as 1. For CoSaMp (OMP), we assume that the K largest elements

are larger than 1. For ℓ1 ℓ0, two σ cases are shown. We assume the maximum

value of the signal is 3. In Fig.4.3(c), σ = 2, µ = σ/2. In Fig.4.3(d), σ = 1,

µ = σ/2. The solid curves express the quantity after shrinkage, while the dash

curves express original quantity. It can be seen that the shrinkage quantities

of ℓ1 ℓ0 method are different for different α, at the same time with the decrease

of σ, the shrinkage quantity decrease. With the proceeding of the iterations,

if the estimate solution converges to the true solution, the shrinkage quan-

tity should be decreased. It can be seen that the shrinkage character of ℓ1 ℓ0

method fits the above heuristic requirement.

4.4 Robust Implementation

In real cases, the matrix ΨΨH may be ill conditioned although its inverse does

exist in theory. The condition number of ΨΨH can be as high as over 1018.

So finding of (ΨΨH)−1 directly will lead to no-convergence.

There are two methods to solve the ill condition problem. One is diagonal

loading method and another is singular value decomposition method. For

diagonal loading, a diagonal matrix ρI is added to ΨΨH , and (ΨΨH)−1 is

replaced by (ΨΨH + ρI)−1. It is known that the larger the ρ, the more robust
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Figure 4.3: Shrinkage function for (a)CoSaMp, (b) Soft shrinkage (t∗ = 1), (c)
ℓ1 ℓ0 (σ = 2, µ = σ/2), (d) ℓ1 ℓ0 (σ = 1, µ = σ/2).

the algorithm, but the solution of the “modified” system also deviates further

from the true solution. There is no good answer on how to choose the value

of ρ. One suggested way is to compute the largest eigenvalue λ1 of ΨΨH and

then to choose λ1 × 10−4 < ρ < λ1 × 10−3.

Singular value decomposition is another method to improve the robustness

of the original algorithm. Denote Ψ = UDV, where U, V and D are the left

singular matrix, the right singular matrix and the singular values matrix of

Ψ. Denote U = (U1U2), D =

 D1 0 0

0 D2 0

 and V =

 V1

V2

, where

D1 includes the larger singular values, D2 includes the smaller singular values,

U1 and V1 correspond to the larger singular values. Denote Ψ1 = U1D1V1,

then the new robust algorithm is to replace (ΨΨH)−1 with U1D
−2
1 UH

1 .

We analyze the SVD-based algorithm below. In the SVD-based algorithm,

the initial estimate of ααα is
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α̂αα0 = ΨH(U1D
−2
1 UH

1 )s (4.14)

= (VH
1 V

H
2 )

 D1 0
0 D2

0 0

( UH
1

UH
2

)
(U1D

−2
1 UH

1 )s

= (VH
1 V

H
2 )

(
D−1

1

0

)
UH

1 s

= VH
1 D

−1
1 UH

1 s.

We have

Ψα̂αα0 = (U1U2)

(
D1 0 0
0 D2 0

)(
V1

V2

)
VH

1 D
−1
1 UH

1 s (4.15)

= U1U
H
1 s,

and

Ψ1α̂αα0 = U1D1V1V
H
1 D

−1
1 UH

1 s = U1U
H
1 s, (4.16)

which means that α̂αα0 is one solution of s0 = Ψ1ααα, where s0 = U1U
H
1 s is the

projection of s on the span of U1.

Now we prove that the new projection ααα← ααα+ΨH(U1D
−2
1 UH

1 )(s−Ψααα)

projects ααα in the revised feasible set {ααα : Ψ1ααα = s0}. Denote βββ = ααα +

ΨH(U1D
−2
1 UH

1 )(s−Ψααα). Because

Ψ1Ψ
H(U1D

−2
1 UH

1 ) (4.17)

= U1D1V1(V
H
1 ,V

H
2 )

 D1

D2

0 0

( UH
1

UH
2

)
(U1D

−2
1 UH

1 )

= U1U
H
1 ,
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we have

Ψ1βββ (4.18)

= Ψ1ααα−U1U
H
1 (U1,U2)

(
D1 0 0
0 D2 0

)(
V1

V2

)
ααα+U1U

H
1 s

= Ψ1ααα−U1D1V1ααα+ s0

= s0.

4.5 Simulation Results

4.5.1 Simulation 1: One Dimensional General Sparse

Random Spikes Signals

In the first experiment, we compare ℓ1 ℓ0 homotopy algorithm with OMP,

smoothed ℓ0 norm based method, Bayesian compressive sensing using Laplace

prior, CoSaMp, ℓ1-magic and ℓ1-ℓs algorithms. The signal model is s =

Ψααα0 + n. The dimension (M × N) of Ψ is 100 × 200. Each elements of

Ψ is Gaussian distributed. The norm of each column of Ψ is normalized to 1.

ααα0 is a sparse signal, whose nonzero coefficients are uniform ±1 random spikes

signal (Because ℓ1 magic and ℓ1-ℓs program can only process real signal, in or-

der to compare with them, real signal is used). The sparsity p = K/M , where

K is the nonzero coefficient number of ααα0, are from 0.1 to 0.4. n is indepen-

dent Gaussian random vector with standard variance σn. The SNR is defined

as 20log10(1/σn). Four SNR cases (SNR=20, 25, 30, 35dB) are implemented.

For OMP, Bayesian, ℓ1-ℓs, ℓ1-magic and CoSaMp methods, the simulation

programs are downloaded from http://www.see.ed.ac.uk/tblumens/sparsify/,

http://ivpl.eecs.northwestern.edu, http:// www.stanford.edu/boyd /l1-ls, http:

// users. ece. gatech.edu/ justin/l1magic/ and http:// www. mathworks.

com /matlabcentral/ fileexchange/32402- cosamp- and- omp- for- sparse- re-

covery/content/ CoSaMP.m, respectively. To evaluate the estimation quality,

the mean absolute error (MAE) is used. The MAE is defined as 1
N
||ααα0 − α̂αα||1,
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where ααα0 is the true solution and α̂αα is the estimate. This MAE computes the

average error for every element. Another evaluation criterion is correct posi-

tion estimation frequency, because after the positions of the nonzero compo-

nents are known, the amplitudes of the nonzero components can be estimated

by minimum least square criterion. So, after α̂αα has been obtained, triple-

value decision will be made (if α̂αα(m) < −0.5, let α̃αα(m) = −1, if α̂αα(m) > 0.5,

let α̃αα(m) = +1, else, let α̃αα(m) = 0). If ααα0 = α̃αα, we say that the po-

sition estimation is correct, otherwise, it is not correct. For ℓ1-ℓs method,

minααα ||Ψααα − s||2+λ||s||1 is solved. For situations of (SNR=20dB, p = 0.15),

(SNR=25dB, p = 0.275), (SNR=30dB, p = 0.35) and (SNR=35dB, p = 0.35),

optimal λ is computed by taking minimum MAE, then this obtained λ is ap-

plied to other sparsity p cases. The reason we choose p = 0.15(0.275, 0.35) is

that the correction rate is about 0.8 to 0.9 (if we choose a small correction rate,

the “optimal” result may be meaningless). For CoSaMp method [49], we as-

sume that the sparsity parameter K is known; the optimal “addK” parameter

(the number of new entries to add each time) for minimum MAE for different

SNR and “K” are shown in TABLE 4.1. For smoothed ℓ0 method, J = 25,

L = 40 and ε =
√
0.8Mσn, σJ = E(max(|Ψ†n|))/

√
2. For ℓ1 ℓ0, J = 25,

L = 40, L0 = 25, L1 = 8 and ε =
√
0.8Mσn, σJ = E(max(|Ψ†n|)). The

experiment was repeated 500 times (with the same parameters, but for dif-

ferent randomly generated sources and coefficient matrices), the computation

times, values of MAE and correct position estimation frequencies are aver-

aged. Fig.4.4 shows the average computation times using different methods

for 20dB SNR case. For other SNR cases, the computation times are similar to

this case and are not shown. From this figure, we can see that the computation

costs of OMP, CoSaMp, smoothed ℓ0 norm based method and ℓ1 ℓ0 are less

than Bayesian with Laplace prior, ℓ1-magic and ℓ1-ℓs methods. The MAEs
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Table 4.1: The optimal addK parameter in CoSaMp algorithm of simulation
one

SNR K=10 13 15 18 20 23 25 28 30 33
20dB 1 4 10 20 35 32 61 59 58 31
25dB 1 1 1 17 24 60 63 63 63 59
30dB 1 1 1 10 23 63 64 64 63 59
35dB 1 1 1 15 14 59 64 64 63 60

and correct position estimation frequencies for different methods, different p

and different SNRs are shown in Fig.4.5 and Fig.4.6. We can see that with

the increase of SNR, the performance of ℓ1-ℓs and ℓ1-magic methods improve

faster than OMP, CoSaMp, smoothed ℓ0 and Bayesian methods. CoSaMp

method has good performance when p is small especially when SNR is low.

The original CoSaMp program limits p < 1
3
, so p > 1

3
cases are not shown.

The performance of ℓ1 ℓ0 method is competitive with other methods especially

when SNR is high and p is large.
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Figure 4.4: Computation costs of different methods.

4.5.2 Simulation 2: Comparison of Real Version and

Complex Version ℓ1 ℓ0 Algorithms

For a complex linear system, compared with real version algorithm, because

the direct complex version ℓ1 algorithm utilizes the block property of the signal,
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Figure 4.5: Minimum mean absolute value errors for different methods, dif-
ferent p = K/M and different SNRs, (a) SNR=20dB, (b) SNR=25dB, (c)
SNR=30dB, (d) SNR=35dB (simulation 1) .
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Figure 4.6: Correct position estimation frequencies for different methods, dif-
ferent p = K/M and different SNRs, (a) SNR=20dB, (b) SNR=25dB, (c)
SNR=30dB, (d) SNR=35dB (simulation 1).
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it could have superior performance to real version algorithm. This simulation

verifies this deduction.

The signal model is s = Ψααα0 + n. The dimension of Ψ (M × N) is

100× 200. Each element of Ψ is complex Gaussian distributed and the norm

of each column of Ψ is normalized to 1. The sparse signal ααα0 is a complex

random spike signal, where the real and imaginary parts of non-zero elements

are 1 or −1 randomly. n is independent complex Gaussian random vector,

and it’s real and imaginary parts have standard variance σn. Four SNR cases

(SNR=20dB, 25dB, 30dB and 35dB) are considered. The sparsity p takes

values from 0.1 to 0.4 with step size of 0.025. For each p and SNR, 1000 times

experiments are implemented. The parameters in the algorithm are chosen as

ε =
√
M2σ2 × 1.3, outer loop and inner loop iteration times J and L are all

chosen as 25, L1 = L0 = 20, σJ is the maximum value of Ψ†n for 100 times

tests. The simulation results are shown in Fig.4.7 and Fig.4.8. It can be seen

that the complex version algorithm is better than the real version algorithm.

4.5.3 Simulation 3: Recovery of One Dimensional Ran-

dom Regular Block Sparse Spikes Signals

In this experiment, we compare ℓ1 ℓ0 block sparse signal recovery algorithm

(called BL1L0) with Block OMP (BOMP), Block CoSaMp (BCoSaMp) and

block smoothed ℓ0 norm method (called BSL0). The signal model is s =

Ψααα0 + n, where all variables are real numbers. The dimension of Ψ is 80 ×

160. Each elements of Ψ is Gaussian distributed and the norm of each column

of Ψ is normalized to 1. ααα0 is a block sparse signal with block size of 8, whose

nonzero block coefficients are uniform ±1 random spikes signal (the size of

matrix and block are the same as [67]). n is independent Gaussian random

vector with standard variance σn. The number of blocks is from 4 to 9. Four
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Figure 4.7: Minimum mean absolute value errors for different SNRs and p
for real version and complex version ℓ1 ℓ0 algorithms, (a) SNR=20dB, (b)
SNR=25dB, (c) SNR=30dB, (d) SNR=35dB (simulation 2).
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Figure 4.8: Correct position estimation frequencies for different SNRs for real
version and complex version ℓ1 ℓ0 algorithms, (a) SNR=20dB, (b) SNR=25dB,
(c) SNR=30dB, (d) SNR=35dB (simulation 2).
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SNR cases (SNR=20dB, 30dB, 40dB, 100dB) are implemented. For BOMP,

and Block CoSaMp methods, the simulation programs are downloaded from

http://www.codebus.net/d-E05O.html and http://dsp.rice.edu/software/model-

based-compressive-sensing-toolbox-v11, respectively. For block smoothed ℓ0

norm method and block ℓ1 ℓ0 method, J = 25, L = 20, L0 = 20, L1 = 20,

ε =
√
0.8Mσn and σJ = 0.1. The oracle results, that the supports of the

block sparse signals are known, are also computed. The experiment was re-

peated 1000 times, the computation times, values of MAE and correct position

estimation frequencies are averaged. Fig.4.9 shows the average computation

times using different methods for 20dB SNR case. For other SNR cases, the

computation times are similar to this case and are not shown. We can see

that the BCoSaMp method has the highest computation requirement, while

BOMP method requires the least computation. For ISAR applications, the

data size has the same quantity order as Ψ in this subchapter. The com-

putation load of CS methods is not heavy. The MAEs and correct position

estimation frequencies for different methods, different block sparsity and dif-

ferent SNRs are shown in Fig.4.10 and Fig.4.11. The performance from high to

low are BL1L0, BSL0, BCoSaMp and BOMP respectively. With the increase

of SNR, the performance of BL1L0 approaches the Oracle case.
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Figure 4.9: Computation costs of different methods (simulation 3).
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Figure 4.10: Minimum mean absolute value errors for different methods, dif-
ferent block sparsity and different SNRs, (a) SNR=20dB, (b) SNR=30dB, (c)
SNR=40dB, (d) SNR=100dB (simulation 3).
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Figure 4.11: Correct position estimation frequencies for different methods,
different block sparsity and different SNRs, (a) SNR=20dB, (b) SNR=30dB,
(c) SNR=40dB, (d) SNR=100dB (simulation 3).
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4.6 Conclusion

A new sequential order one negative exponential function which can describe

the sparsity is proposed. Steepest descent gradient projection method is widely

used in finding minimum point of optimization problem. It is faster than some

popular sparse signal recovery algorithms. Similar to smoothed ℓ0 method, a

complex domain ℓ1 ℓ0 norms homotopy method using sequential order one

negative exponential function as cost function was proposed. It has been

proven that this complex domain algorithm is equivalent to a real domain block

size of 2 algorithm, so its performance is better than non-block real domain

algorithm. This ℓ1 norm ℓ0 norm homotopy method has been extended to

block sparse signal case easily. From the simulation results, it can be seen

that the performance of block ℓ1 norm ℓ0 norm homotopy method is better

than block OMP, block CoSaMp and block smoothed ℓ0 norm method.

In real applications, the coefficient matrix may be ill conditioned. Con-

ventional ℓ1-magic and smoothed ℓ0 norm methods have not considered this

problem. By employing either singular value decomposition and choosing the

signal subspace corresponds to the larger singular values; or diagonal load-

ing with the algorithm revised in this Chapter, the algorithm is more robust

compared with the traditional algorithm.
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Chapter 5

MIMO Radar Imaging Based on

ℓ1 ℓ0 Norms Homotopy Sparse

Signal Recovery Algorithm

5.1 Introduction

In Chapter 2 and Chapter 3, collocated MIMO radar 3D imaging using

conventional method was discussed. Due to non-orthogonality of the codes,

high sidelobes are shown. Using time domain information can only suppress

sidelobes in one direction. In Chapter 4, sparse signal recovery algorithms were

discussed and a ℓ1 ℓ0 homotopy algorithm was proposed. By using sparse signal

recovery algorithms, sparse signal can be recovered with good performance.

Fortunately, the strong scatterers of air targets are usually sparse. So in this

Chapter, MIMO radar 3D imaging using sparse signal recovery algorithms are

discussed.

MIMO radar includes both collocated MIMO radar and distributed MIMO

radar. In section 5.2, collocated MIMO radar 3D imaging is discussed. Some

targets may have large flat surfaces facing the radar. The area of these flat

surfaces may be larger than a few sampling units (the imaging volume is

divided as sampling units). In this case, a single “strong” scattered signal
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from the entire flat surface could be considered as equivalent to be coming

from a block of many scatterers each from a “sampling unit” on the surface.

Then the scatterers forming a flat surface could be classified as block scatterers

with similar amplitudes and the gradient of the reflectivity has high values

at the edge of the surface. Total-variation (TV) (the sum of gradient) is

usually used in 2D image processing (image de-noising, image de-blurring and

image reconstruction) without de-blurring edges [68] [69]. In this Chapter, we

also use the sequential order one negative exponential function to define the

TV function (conventional TV is based on ℓ1 or ℓ2 norm) and Combine the

Amplitude and TV volumes as another optimization cost function (denoted as

CATV) to process the block scatterers.

In order to express the collocated MIMO radar 3D imaging with linear

equation as done in section 5.2, the dimension of the coefficient matrix is

large, which needs huge memory. In section 5.3, we discuss multi-dimensional

linear equation (matrix equation) expression, which needs less memory. ℓ1 ℓ0

homotopy sparse signal recovery algorithm based on multi-dimensional linear

equation expression is also obtained.

In subsection 5.4, distributed MIMO radar 3D imaging is discussed. For

distributed MIMO radar, the distances between the transmit antennas and the

distances between the receive antennas are comparable with the distance be-

tween the target and the radar, it is difficult to maintain the coherent property

of one target (or one scatterer) relative to different transmitters and different

receivers. That is because the RCSs of a target (or a scatterer) correspond-

ing to different transmit-receiver pairs are different. So coherent processing

algorithms cannot be used to combine distributed MIMO radar data. On the

other hand, diversity of the different transmitter-receiver pairs can be used

to improve target detection [13]. Distributed MIMO radar has been used for
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moving target detection [70] and parameters estimation [71]. But radar imag-

ing using distributed MIMO radar has not been discussed. In this Chapter,

a distributed MIMO radar configuration is proposed: a cluster of transmit

antennas and a cluster of receive antennas form collocated arrays. In this case

the RCSs of a strong scatterer corresponding to one particular collocated array

are the same and thus virtual aperture can be formed to separate the strong

scatterers. Different clusters of antennas are distributed.

The characteristics of distributed MIMO array for target parameters esti-

mation and for target imaging are different. The RCSs of a target correspond-

ing to different transmitter-receiver pairs is called a RCS vector below. For

target parameters (positions, Dopplers) estimation, the elements of an RCS

vector are different (independent). When linear equation (describing the rela-

tion between the received signal and the RCS) is formed, the RCSs of a target

corresponding to different transmitter-receiver pairs are packed together and

the whole vector describing the whole distribution of RCS of the estimation

area are block sparse. For target imaging, the strong scatterers occur at the

reflection, the dehidral, the trihidral, etc., which are sparse compared with the

whole imaging volume. The positions of strong scatterers are dependent on

the relative position of the viewing antenna and the target. A strong scatterer

corresponding to one viewing antenna may not be a strong scatterer corre-

sponding to another viewing antenna (the RCS vector of one scatterer may

be a sparse vector). So when linear equation is formed, though the RCSs of

a scatterer corresponding to different transmitter-receiver pairs are packed to-

gether, the vector describing the whole distribution of RCSs of the imaging

area are not block sparse. The function of distributed MIMO radar imaging

is to form different images of one target from different views, and to synthesis

an image with abundance shape information.
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5.2 Collocated MIMO Radar 3D Imaging Us-

ing Linear Equation ℓ1 ℓ0 Homotopy Algo-

rithm

5.2.1 Collocated MIMO Radar Signal Model

In Chapter 2 and Chapter 3, MIMO radar signal model of single snapshot

and multiple snapshots are given, where the signals corresponding to different

transmitting codes are separated by correlating the received signal with the

transmitting codes. Because it is impossible to build orthogonal codes, high

sidelobes of the codes decrease the image quality. In this Chapter, the signals

corresponding to different transmitters need not be separated firstly. A linear

equation for the received signal and the scatterers’ RCSs is built, then sparse

signal recovery algorithms can be used to solve the RCSs.

Let Pm, Qn denote the positions of the mth transmit antenna and the

nth receive antenna respectively. Similar to Chapter 2 and Chapter 3, after

demodulation, the received back-scattered signal at receive antenna n from

scatterer A can be expressed as

s̃n(t) = αA

M−1∑
m=0

φm(t− Tm− τPmA− τQnA)× exp(−j2πf(τPmA + τQnA)), (5.1)

where τPmA = |PmA|/c, τQnA = |QnA|/c. Tm is the pre-transmitting time of

the mth transmitting code.

Like in Chapter 2 and Chapter 3, after adjusting the transmit code en-
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velopes and the recording time, the receive signal can be expressed as

sn(t) = s̃n(t− Tn)

= αA

M−1∑
m=0

φm(t− Tm − Tn − τPmA − τQnA)× exp(−j2πf(τPmA + τQnA))

= αA

M−1∑
m=0

φm(t− τP0A − τQ0A)× exp(−j2πf(τPmA + τQnA)). (5.2)

The above equation can be rewritten as a simple matrix form:

s(t) = αAab
TΦ(t− τA), (5.3)

where τA = τP0A+τQ0A, s(t) = [s0(t), s1(t), · · · , sN−1(t)]
T , a = [e−j2πfτQ0A , e−j2πfτQ1A ,

..., e−j2πfτQN−1A ]T , b = [e−j2πfτP0A , e−j2πfτP1A , ..., e−j2πfτPM−1A ]T and

Φ(t) =


φ0(t)

...

φM−1(t)

 . (5.4)

After time domain discrete sampling, the received signal can be expressed

as a matrix S. Let s = vec(S), aA = vec(abTΦ(t − τA)), we have s = aAαA.

The imaging areas are divided as grids. Basis matrix Ψ = [aA, · · · ] and scat-

terer amplitudes vector ααα = [αA, · · · ]T are formed for all grids. If a strong

scatterer is located in a grid, the amplitude of signal back-scattered from that

scatterer is not zero. The received discrete signal s can be expressed as

s = Ψααα+ n, (5.5)

where n expresses noise and errors induced by discretization.
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5.2.2 Imaging Based on ℓ2 Norm Minimization

The aim of imaging is to obtain the ααα. Assume the size of Ψ is M1 × N1.

M1 is about N × (P + △), where △ is the width of the delay of the target

(we assume the fast time sampling period is the subpulse duration T0), P is

the code length, N is the number of receive antennas. N1 is the number of

discrete grid points in the imaging volume. IfM1 < N1, (this may occurs when

there are fine grids on the imaging field or super resolution), and the rank of

Ψ is M1, then there are infinite vectors ααα that satisfy the equation s = Ψααα,

where the noise term n is omitted. The image of the target can be obtained

by solving the following optimization problem

min ||ααα||2 s.t. s = Ψααα. (5.6)

The solution is

α̂αα = Ψ†s, (5.7)

where Ψ† = ΨH(ΨΨH)−1 is the pseudo inverse of Ψ [41]. If Ψ† is replaced by

ΨH , it becomes to the conventional correlation method discussed in Chapter

2.

5.2.3 Imaging Based on Combined Amplitude and Total

variation Sparse Signal Recovery Algorithm

According to (1.5), strong scatterers occur at r̂·n̂ = −1 for monostatic radar or

monostatic collocated MIMO radar. Positions satisfying the above condition

are sparse compared with the whole imaging volume. So the sparse signal

recovery algorithm can be used to recover the image. The ℓ1 ℓ0 homotopy
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based method can be described as

α̂αα = lim
σ→σmin

arg minGσ(ααα) s.t. ||s−Ψααα||2 < ε. (5.8)

If a larger planer patch is oriented perpendicular to the radar, all positions

on this patch satisfy r̂ · n̂ = −1. If the sampling unit is much less than

the area of this patch, this patch should be considered as composed of many

point scatterers with equal amplitudes. If we just use minimization of norm

of amplitude as conventional radar signal processing does, this property is not

utilized to our advantage. The characteristic of large planer patch is that high

gradient value occurs only on the edge of the patch. So, gradient values are

also sparse. In image processing, total-variation is used to describe the sum of

gradients. For expression simplicity, ααα is also used to express a two dimensional

image. Denote Di,jααα =

 αi+1,j − αi,j

αi,j+1 − αi,j

, then the ℓ2-based isotropic TV and

ℓ1-based anisotropic TV are defined as [68]

TViso(ααα) = ΣiΣj

√
(αi+1,j − αi,j)2 + (αi,j+1 − αi,j)2, (5.9)

and
TVaniso(ααα) = ΣiΣj(|αi+1,j − αi,j|+ |αi,j+1 − αi,j|), (5.10)

respectively.

According to our definition of Gσ(ααα), we can define a new total-variation

as

TVσ(ααα) = −ΣiΣj(e
−|αi+1,j−αi,j |/σ + e−|αi,j+1−αi,j |/σ). (5.11)

Then (5.8) can be revised as

α̂αα = lim
σ→σmin

arg min{(1− ζ)Gσ(ααα) + ζTVσ(ααα)} (5.12)

subject to ||s−Ψααα||2 < ε,
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where ζ is a tradeoff factor. A bigger ζ emphasizes the edges, and a smaller

ζ emphasizes the isolated scatterers. For radar imaging, because a broadside

patch has the same range unit, TV (·) operator is done on same range unit

data.

5.2.4 Linear Equation Based Simulation Results

In simulation 1, simulation 2 and simulation 3, the center frequency is f0 =

10G Hz. Random BPSK modulated codes with code length 100 are chosen

as the transmitting codes. The bandwidth is 150M Hz, which corresponds to

range resolution of 1 m.

Simulation 1: Two Dimensional Imaging of a Target with Scatterers

on the Grid Points

In many publications, the scatterers are chosen as located on the grid points.

In this case, there is no model error. In this simulation, we also assume that

the scatterers are ideal, isolated and located on the grid points.

Eight transmit and eight receive antennas are evenly located on X axis

with inter-element distances of 187.5 m and 23.4375 m, respectively. This

means that we consider imaging in two-dimension. The target is located in

[0, 1] direction, the distance between the target and the radar is 50 km. The

target is composed of 20 discrete point scatterers with amplitudes from 0.5 to

10. The amplitudes and positions of the original target is shown in Fig.5.1(a).

The output SNR is defined as SNR = 10log10(
α2MNP

σ2
n

), where P is the length of

the code. The output SNR of the smallest scatterer is 30dB. According to the

MIMO radar parameters, the range and cross-range resolutions at the target

position using conventional method are all 1 m. In our imaging algorithm,

the distance between sampling grid points at X and Y axes are all 0.25 m.

121



5.2. COLLOCATED MIMO RADAR 3D IMAGING USING
LINEAR EQUATION ℓ1 ℓ0 HOMOTOPY ALGORITHM

The scan range is [−1, 21.75] m × [−1, 21.75] m. So the dimensions of the

complex coefficient matrix Ψ and real matrix Ψ2 are 984 × 8464 and 1968 ×

16928 respectively. The condition number output of Ψ2Ψ
H
2 using Matlab is

infinite. Diagonal loading of ρ = 100 is used in methods needed to compute

(Ψ2Ψ2
H)−1. For ℓ1-ℓs method, cases of λ = 1, 2, · · · , 20 are implemented.

The performance for λ = 10, 11, · · · , 20 are similar and better than that of

λ = 1, 2, · · · , 9. For CoSaMp method, non-zero element number K is chosen

as K = 16, 17, · · · , 26, addK is chosen as K and 2K. The best results occurs

at K = 20 and addK = K. When a smaller K is chosen, weak scatterers

may not be imaged. When a larger K is chosen, more sidelobes appear. For

smoothed ℓ0 method, σmin = 0.05, J = 40, L = 25 and ε =
√
0.8M1σn.

For ℓ1 ℓ0 method, σmin = 0.2, J = 40, L = 25, L0 = 20, L1 = 20 and ε =
√
0.8M1σn. Images using ℓ1-magic, OMP, CoSaMp (k = 20, addK = k), ℓ1-ℓs

(λ = 20), Bayesian method with Laplace prior, smoothed ℓ0 and ℓ1 ℓ0 methods

are shown in Fig.5.1(b),(c), (d), (e), (f), (g) and (h). Because the coefficient

matrix Ψ2Ψ
H
2 is nearly singular, the ℓ1-magic algorithm ends with “matrix ill-

conditioned” and the image performance is poor. The performance of OMP

is also not satisfactory. CoSaMp, ℓ1-ℓs, Bayesian, Smoothed ℓ0 norm and ℓ1 ℓ0

methods are better. The Matlab computation times are 2.95s (Bayesian), 20s

(CoSaMp), 92s (Smoothed ℓ0), 102s (ℓ1 ℓ0), 177s (OMP), 555.7s (ℓ1-ℓs) and

720s (ℓ1-magic). Because these programs are not optimized and subfunctions

and multiple-loops in Matlab affect the computation time, these computation

times are not absolute quantities to judge the computation complexity of each

algorithm. They are just a useful reference.

The scatterers in this example are not block scatterers, TV term should not

be used. But because this information is not known a prior, we check how TV

term would affect the imaging quality. Using σJ= 0.05, 0.1, 0.2 and 0.5, ζ=
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Figure 5.1: (a) Original image of the target. Reconstructed image using (b)ℓ1-
magic; (c) OMP algorithm; (d) CoSaMp (k = 21, addK = k); (e) ℓ1 − ℓs
(λ = 20); (f) Bayesian method with Laplace prior; (g) Smoothed ℓ0 algorithm
and (h) GP-SOONE(ℓ1 ℓ0).

0.1, 0.2, 0.3, and 0.4, the images using diagonal loading ℓ1 ℓ0-CATV method

(J = 40, L = 25, L0 = 25, L1 = 8, ρ = 100) are shown in Fig.5.2. We can

see that with increasing of σJ , there are less noise sparks, but scatterers with

smaller amplitudes may be omitted because the importance of small scatterers

decreases in the cost function with the increase of σJ . Because there are no

block scatterers, increasing ζ means redundantly loading the cost function and

resulting in degraded performance. Some scatterers show flat top phenomenon

which is expected by using TV constrained.

Simulation 2: Two Dimensional Imaging of a Target with Scatterers

not Located on the Grid Points

In this simulation, some scatterers of the target are not located on the grid

points. We use this as a much more realistic situation to demonstrate the per-

formance of sparse signal recovery algorithm. The parameters of the radar are
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Figure 5.2: Reconstructed image using SOONE-CATV cost function
and diagonal loading gradient projection optimization method for ζ =
0.1, 0.2, 0.3 and 0.4 (from top to bottom) and σJ = 0.05, 0.1, 0.2 and 0.5 (from
left to right).
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the same as that of simulation 1. The target composed of 14 scatterers with

amplitudes all equal to 1 are shown in Fig.5.3. The target is located in [1,1]

direction and the distance between the target and the radar is 50 km. The

relative positions of the scatterers are (0,0), (4,0), (2.5,2.5), (6.5,2.5), (0.5,5),

(4.5,5), (2,6.5), (6,6.5), (9,1.25), (12,1.25), (9.25,5), (12.25,5), (9.25,8.25) and

(12.25,8.25)(m,m). The sampling distance between grid points at two dimen-

sions are all 1 m. The size of the matrix Ψ2 is 2192×2738, and the condition

number of Ψ2Ψ
H
2 is 4.33×1012. ρ = 100 is chosen as the diagonal loading

factor. The SNR is 30dB. For ℓ1-ℓs method, λ from 1 to 10 with step 1, from

10 to 100 with step 10, from 100 to 3000 with step 100 are implemented. The

performance for λ from 2000 to 3000 are similar and better than other cases,

thus the image of λ = 2000 is shown. For CoSaMp method, number of nonzero

elements K from 9 to 33 with step 1, addK = K and addK = 2K are imple-

mented, where the performance for K from 17 to 33 are similar, thus image

when K = 20, addK = K is shown. For smoothed ℓ0 method, the parameters

are J = 40, L = 25, σmin = 0.05. In ℓ1 ℓ0 method, we use ζ = 0 (no TV

term) and the other parameters are J = 40, L = 25, L0 = 20 and L1 = 20,

σmin = 0.06. ε for smoothed ℓ0 method and ℓ1 ℓ0 are all chosen as σn
√
3M1 (a

little larger ε is chosen because model error increases the observation error).

The contour plots and mesh plots of the reconstructed images using different

methods are shown in Fig.5.4. It can be seen that the performance using

minimum ℓ2 norm, OMP, ℓ1-magic and Bayesian with Laplace prior methods

are poor. For ℓ1-magic, it may be due to the ill condition matrix. Smoothed

ℓ0, ℓ1-ℓs, ℓ1 ℓ0 and CoSaMp are better. It can also be seen that the scatter-

ers with small distances from the sampling grids have better reconstruction

performance.
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Figure 5.3: The original image of the target in simulation 2

Simulation 3: Three Dimensional Imaging Case

In the above simulations, similar to many papers found in the literature, scat-

terers are all assumed to be ideal and isolated. In order to show the superior-

ity of our algorithm, we carry out imaging process on no ideal point objects,

namely, 4 thin metal plates with dimension 1× 1 m2 as shown in Fig.5.5(a).

The imaging radar consists of a 4 × 4 transmit square antenna array and

a 4 × 4 receive square antenna array located near the origin and on the XZ

plane. The target is 50 km away from the radar and on the Y axis. The faces

of the four plates are perpendicular to the Y axis. The distances between the

adjacent transmit antennas and the adjacent receive antennas are 375 m and

93.75 m, respectively. The unambiguous distance is then 16 meters and the

cross-range resolution for conventional radar with the same aperture of this

MIMO radar is 1 meter. The sampling distance in X, Y and Z directions are

all 0.25 m. The imaging range in X, Y and Z directions are 8.5, 7.5 and 7.5

m respectively. Then the discrete sampling point in X, Y and Z directions are

34, 31 and 30 respectively and the dimension of Ψ2 is 3936×63240.

The SNR is 30 dB, then the noise variance is σn = 0.0807. Only strong

scatterers are selected to form the 3D image. For strong scatterers selection,

δv = 32dB, δζ = 6dB are chosen. For ℓ1-ℓs method, cases of λ from 1 to 81 step
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Figure 5.4: Mesh plot and contour plot of reconstructed images using (a1, a2)
ℓ2 norm minimization, (b1, b2) OMP, (c1, c2) ℓ1-magic, (d1, d2) Bayesian
method with Laplace prior, (e1, e2) Smoothed ℓ0 algorithm (σmin = 0.05, J =
40, L = 25), (f1,f2) ℓ1-ℓs (λ = 2000), (g1,g2) ℓ1 ℓ0 (GP-SOONE) (σmin = 0.06,
J = 40, L = 25, L0 = 20 and L1 = 20) and (h1,h2) CoSaMp (K = 20,
addK = 1K) (simulation 2).
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10, from 100 to 1000 step 100 are implemented and case of λ = 81 is the best.

For CoSaMp method, cases of K = 32, 36, · · · , 84 step 4, addK = 2K and K

are implemented and the performance of these cases are not good and K = 40,

addK = 2K case is the best and shown. ℓ1-magic method exits with “matrix

must be positive definite” and no result output. For smoothed ℓ0 norm method

and ℓ1 ℓ0 method (ζ = 0), σJ is chosen as 0.004, outer loop number and inner

loop number are 25 and 40 respectively, ε = σn
√
2N(P +△) = 5.06 (N=16,

P +△ = 123 is the time domain length of the signal). For ℓ1 ℓ0, L0 = 25 and

L1 = 8. SVD is used to improve the robustness and 1053 large eigenvectors

are used to compute the pseudo inverse of Ψ2Ψ2
H . The images reconstructed

using these methods are shown in Fig.5.5.

It can be seen that the minimum ℓ2 norm and OMP methods have high

sidelobes. The reconstructed patches using minimum ℓ2 norm method are

small due to the solution are minimum in ℓ2 norm. The images using smoothed

ℓ0 norm, Bayesian, CoSaMp and ℓ1 ℓ0 methods have low sidelobes, but the

shapes of the 4 square patches changed slightly. The performance using ℓ1-ℓs

method is best with optimal parameter λ chosen.

The results of ℓ1 ℓ0 of Fig.5.5(f) could be improved by incorporating CATV.

Fig.5.6 shows the reconstructed images where amplitude and total variation

are used as cost function. The trade-off parameter ζ is chosen as 0.1, 0.2, 0.3

and 0.4, and the σJ is chosen as 0.001, 0.002, 0.004 and 0.006 respectively.

Other simulation conditions are the same as the above that without total

variation term. It can be seen that with the increase of ζ, the four square

patches keep their shapes better. With the increase of σJ , there are fewer

sidelobes, but small scatterers may be omitted though this does not appear

in Fig.5.6, because there are no small scatterers in this simulation. In a wide

range of ζ the performance using CATV objective function is better than that
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using only amplitude objective function.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.5: (a) Original image of the target. Reconstructed images using (b)
ℓ2 norm minimization, (c) Bayesian method with Laplace prior, (d) OMP, (e)
Smoothed ℓ0 algorithm (σJ = 0.004, J = 25, L = 40), (f) ℓ1 ℓ0 (GP-SOONE)
(ζ = 0, σJ = 0.004, J = 25, L = 40, L0 = 25, L1 = 8 ), (g) CoSaMp (k=40,
addK=2k) and (h) ℓ1-ℓs (λ = 81) (simulation 3).

Simulation 4: Experiment of ISAR Imaging Using Real Data

In this section, a set of real data of the Yak-42 aircraft is used to demon-

strate the performance of sparse signal recovery algorithms. The detailed

target and data descriptions are provided in [48] and the references therein.

Some related radar parameters are listed as follows: the carrier frequency is 10

GHz with signal bandwidth of 400 MHz, corresponding to a range resolution of

0.375 m. The pulse repetition frequency is 100 Hz, i.e., 64 pulses within dwell

time [-0.32, 0.32]s are used in this experiment. For every range cell, the signal

in Doppler domain is sparse. So sparse signal recovery algorithms are used in

every range cell (the coefficient matrix Ψ is a discrete complex sine matrix,

and ΨΨH is not singular). Same as [48], the noise level is estimated from

the range profile, that is using range cells from 1 to 25 to estimate the noise
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Figure 5.6: Reconstructed images using combined amplitude and total vari-
ation objective function with SOONE form and gradient projection opti-
mization method for ζ = 0.1, 0.2, 0.3 and 0.4 (from top to bottom ) and
σJ = 0.001, 0.002, 0.004 and 0.006 (from left to right)(simulation 3).
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variance. Two cases of 32-snapshot and 64-snapshot are implemented. For

CoSaMp method, cases that the expected sparsity K chosen from 3 to 8 and

the addK parameter chosen as K and 2K are implemented and the best re-

sults occurs at K = 5 and addK = K. Performance of K = 3 and addK = 2K

case is similar. For ℓ1-ℓs method, λ is chosen as 0.008, 0.009, 0.01, 0.02, 0.03.

The ISAR images are similar but case of λ = 0.03 is best. ISAR images using

FFT, Bayesian, Smoothed ℓ0 (σJ = 200, J=25, L=40, ε = σn
√
2N , N = 32, 64

), OMP, ℓ1-ℓs (λ = 0.03), CoSaMp (K = 5, addK = K) , ℓ1-magic and ℓ1 ℓ0

(σJ = 565, J=25, L=40, L0 = 25, L1 = 8, ε = σn
√
2N , N = 32, 64 ) methods

are shown in Fig.5.7. From these images, we can see that the resolution of

ISAR image using FFT method is coarse due to less signal length, and has

high sidelobes (windowing can reduce sidelobes but the cost is a coarser reso-

lution). All images using sparse signal recovery methods are better than FFT

method. For CoSaMp method, it is dependent on the choice of sparsity K

and addK. For 32 snapshots case, more sidelobes appear. Images using OMP

method have a little high sidelobes. ℓ1 ℓ0 method has competitive performance.

The time of 32 snapshots is only one eighth of the original 256 snapshots ac-

quirement time. So using sparse signal recovery algorithms, it is possible to

image maneuvering target in a short time duration, then the approximation

of uniform rotation is adequate.
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Figure 5.7: Reconstructed images using 32 and 64 snapshots, (a1,a2)FFT
method, (b1,b2) CoSaMp (k = 5, addK = k), (c1,c2)ℓ1-ℓs, λ = 0.03, (d1,d2)ℓ1-
magic, (e1,e2) Bayesian method with Laplace prior, (f1,f2) OMP, (g1,g2)
Smoothed ℓ0 algorithm, and (h1,h2) ℓ1 ℓ0 (GP-SOONE)(ζ = 0) (simulation
4).
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5.3 Collocated MIMO Radar 3D Imaging Us-

ing Multi-Dimensional Linear Equation ℓ1 ℓ0

Homotopy Algorithm

Conventional sparse signal recovery algorithms solve a linear equation. For

MIMO radar imaging, as shown in Eq.(5.5), the dimension of the coefficient

matrix isM1×N1, whereM1 is the product between the number of the receive

antenna and the time domain signal length, N1 is the number of discrete

sampling points of the imaging area. For a three dimensional imaging volume,

the dimension of the coefficient matrix is huge. This occupies great memory

and costs huge computation. In this section, the signal is expressed as a multi-

dimensional equation form, the memory and the computation are saved.

According to Eq.(5.3), the signal received can be expressed as

s(t) = αAab
TΦΦΦ(t− τA), (5.13)

where
a = [e−j2πfτQ0A , e−j2πfτQ1A , ..., e−j2πfτQN−1A ]T

and
b = [e−j2πfτP0A , e−j2πfτP1A , ..., e−j2πfτPM−1A ]T .

Denote
a0 = [e−j2πfτQ0O , e−j2πfτQ1O , ..., e−j2πfτQN−1O ]T

and

b0 = [e−j2πfτP0O , e−j2πfτP1O , ..., e−j2πfτPM−1O ]T ,

where O is the reference point. After phase compensation using a0, we also

use s(t) to express s(t)⊙ a∗
0 for symbol simplicity, where ⊙ expresses element
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wise product, the received signal can be expressed as

s(t) = αA(a⊙ a∗
0)(b⊙ b∗

0)
T (b0 ⊙ΦΦΦ(t− τA)), (5.14)

If the transmit codes are phase compensated before transmitting, that is the

transmitting codes are b∗
0 ⊙ΦΦΦ(t), the above equation can be expressed as

s(t) = αAâb̂
TΦΦΦ(t− τA). (5.15)

According to Eq.(2.8),the nth element of â can be expressed as ej2πã
T−−−→
Q0Qn/rλ,

the mth element of b̂ can be expressed as exp(j2πãT−−−→P0Pm/rλ). It is possible

to express s(t) as a separable function form. In details, three MIMO radar

configurations are discussed as followings.

5.3.1 One Dimensional MIMO Radar 2D Imaging

The geometry of a linear MIMO radar is shown in Fig.5.8, where M transmit

antennas and N receive antennas are evenly deployed on the X axis. Y is the

range axis. The inter-element distances between transmit antennas and be-

tween receive antennas are dt and dr respectively. Note that the unambiguous

distances in X axis is L = λ
dr
r. Denote x̃ the coordinate of ã on X axis. The

receive signal from scatterer A is now a two dimensional matrix. The receive

signal at the nth receive antenna can be expressed as

sn(t) = αAe
j 2πx̃ndr

λr ×
∑
m

ej
2πx̃mdt

λr φφφm(t− τA). (5.16)

We assume that the inter-element distance of transmit antennas is larger than

the inter-element distance of receive antennas and dt = Pdr. Then e
j
2πx̃mdt

λr =

ej
2πx̃mP

L . In [0, L), ej
2πx̃mP

L is a period function for x̃ with period of L/P . Define
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cx̃(t) =:
∑

m e
j
2πx̃mdt

λr φφφm(t), then cx̃(t) is also a period function on x̃. Function

cx̃(t) can be regarded as a synthetic code at x̃.

Figure 5.8: Imaging field division for One Dimensional MIMO array radar.

In Fig.5.8, the unambiguous window [0, L) is divided as P parts, where we

assume that P = N = 3. Usually, P is not larger than N , otherwise grating

lobes will appear. In each part (iL
P
, (i + 1)L

P
), we assume that it is divided

as M1 strips, where M1 is larger than or equal to M . Then there are PM1

strips in the imaging region. The value of M1 is decided by the cross-range

resolution of the image expected by the designer. In Fig.5.8 M1 is chosen

as 4. So there are M1 independent synthetic codes. Denote △ the sampling

distance in X axis, m1 is an integer, we have x̃ = m1△ and L = PM1△.

The imaging region can also be divided as M1 sets corresponding to different

synthetic code. Denote Ωm1 the index set of the mth
1 set which is defined as

Ωm1 = {(pM1 +m1) : p = 0, 1, · · · , P − 1,m1 ∈ [0,M1 − 1]}. For every Ωm1 ,

there is only one synthetic code cm1(t) =
∑

m e
j
2πm1m

M1 φm(t).

From now, the imaging region has been divided as M1 sets {Ωm1 ,m1 =

0, 1, · · · ,M1 − 1}. Denote am = [1, e
j 2πm
PM1 , · · · , ej

2πm(N−1)
PM1 ]T , cm,τ = cm(t − τ),

then the signal received from the scatterer located at (m△, τ) can be expressed

as

sm,τ (t) = αamcm,τ . (5.17)
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Note that am is a column vector while cm,τ is a function. The charac-

ter of the above expression is that am is only related with the cross range

index m and has no relation with delay τ . cm,τ in set Ωm mod M1 is only re-

lated with τ and has no relation with cross range index. Denote Am1 =

[am1 , am1+M1 , · · · , am1+(P−1)M1 ], cm1(k) the discrete sampling of cm1(t), and

Cm1 =



cm1(1) cm1(2) · · · cm1(K) 0 0 0

0 cm1(1) cm1(2) · · · cm1(K) 0 0

...
...

...
...

...
...

...

0 · · · 0 cm1(1) cm1(2) · · · cm1(K)


, (5.18)

where K is the length of code cm1 , the length of the rows of Cm1 is the

number of range units of the region Ωm1 . Then the two dimensional discrete

signal received from region Ωm1 can be expressed as

Sm1 = Am1αααm1Cm1 , (5.19)

where αααm1 is the scatterer reflection matrix on region Ωm1 . Then the signal

received from the entire imaging region can be expressed as

S =

M1−1∑
m1=0

Am1αααm1Cm1 . (5.20)

DenoteA = [A1,A2, · · · ,AM1 ], ααα = diag(ααα1, · · · ,αααM1) andC =
[
CT

0 ,C
T
1 , · · · ,CT

M1

]T
,

then S can be expressed as

S = AαααC. (5.21)

In the above expression, the matrix A is not the conventional Fourier

matrix. By adjusting the orders of the columns of matrix A, A can be the

conventional Fourier matrix. Then FFT can be used in computing of ααα.
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Denote Ā = [a0, a1, · · · , aPM1−1] the conventional Fourier matrix, where

am =
[
1, e

j 2πm
PM1 , · · · , ej

2πm(N−1)
PM1

]T
.

The natural order reflection coefficient matrix ααα is

ααα =



α1,1 α1,2 · · ·

α2,1 α2,2 · · ·

α3,1 α3,2 · · ·

α4,1 α4,2 · · ·

α5,1 α5,2 · · ·

α6,1 α6,2 · · ·

α7,1 α7,2 · · ·

α8,1 α8,2 · · ·
...

...
...



, (5.22)

where row expresses cross range, column expresses down range. According

to the parameters of the MIMO radar shown in Fig. 5.8, a new matrix ᾱαα is

defined as

ᾱαα =



α1,1 0 0 0 α1,2 0 0 0 · · ·

0 α2,1 0 0 0 α2,2 0 0 · · ·

0 0 α3,1 0 0 0 α3,2 0 · · ·

0 0 0 α4,1 0 0 0 α4,2 · · ·

α5,1 0 0 0 α5,2 0 0 0 · · ·

0 α6,1 0 0 0 α6,2 0 0 · · ·

0 0 α7,1 0 0 0 α7,2 0 · · ·

0 0 0 α8,1 0 0 0 α8,2 · · ·
...

...
...

...
...

...
...

...



, (5.23)
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and a new code matrix is defined as:

C̄ =



c0(1) c0(2) · · · c0(K) 0 0 0

c1(1) c1(2) · · · c1(K) 0 0 0

c2(1) c2(2) · · · c2(K) 0 0 0

c3(1) c3(2) · · · c3(K) 0 0 0

0 c0(1) c0(2) · · · c0(K) 0 0

0 c1(1) c1(2) · · · c1(K) 0 0

0 c2(1) c2(2) · · · c2(K) 0 0

0 c3(1) c3(2) · · · c3(K) 0 0

· · · · · · · · · · · · · · · · · · · · ·



. (5.24)

Then we have

S = ĀᾱααC̄. (5.25)

Eq.(5.21) and Eq.(5.25) are multi-dimensional linear equations (tensor equa-

tions).

5.3.2 Cross-Array MIMO Radar 3D Imaging

The geometry of cross-array MIMO radar is shown in Fig.2.3. Note that the

unambiguous distances in X and Y axes are Lx = λ
dx
r and Ly = λ

dy
r respec-

tively. Denote x̃, ỹ the coordinates of ã on XY coordinate system. According

to Eq.(5.16), the signal s(t) can be expressed as

s(t) = αA



1

ej2πx̃dx/(λr)

...

ej2πx̃(N−1)dx/(λr)





1

ej2πỹdy/(λr)

...

ej2πỹ(M−1)dy/(λr)



T

ΦΦΦ(t− τA). (5.26)
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We assume that Lx and Ly are divided into Ñ and M̃ divisions. (x̃, ỹ) =:

(ñLx

Ñ
, m̃Ly

M̃
). Then s(t) can be expressed as

s(t) = αA



1

ej2π
ñ
Ñ

...

ej2π(N−1) ñ
Ñ





1

ej2π
m̃
M̃

...

ej2π(M−1) m̃
M̃



T

ΦΦΦ(t− τA). (5.27)

Denote cm̃(t) = [1, ej2π
m̃
M̃ , · · · , ej2π(M−1) m̃

M̃ ]ΦΦΦ(t), we can see that scatterers

with the same coordinate m̃ (on Y axis) have the same synthetic code cm̃(t).

So the imaging volume can be divided as M̃ parts along the Y direction. This

is shown in Fig.5.9.

Figure 5.9: Imaging field division for cross array MIMO radar.

We assume that there are L range units. Denoteαααm̃ = {αn,l} the scatterers’

reflectivity matrix at m̃th region(Y axis), where n and l express the index in

X and range directions. Denote

A =



1 1 1 1

1 ej2π
1
Ñ · · · ej2π

Ñ−1
Ñ

...
...

...
...

1 ej2π(N−1) 1
Ñ · · · ej2π(N−1) Ñ−1

Ñ


. (5.28)
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For simplicity, let cm̃ express the discrete version of cm̃(t). Demote

Cm̃ =



cm̃(1) cm̃(2) · · · cm̃(K) 0 0 0

0 cm̃(1) cm̃(2) · · · cm̃(K) 0 0

...
...

...
...

...
...

...

0 · · · 0 cm̃(1) cm̃(2) · · · cm̃(K)


. (5.29)

The discrete receive signal can be expressed as

S =
M̃∑

m̃=1

Aαααm̃Cm̃. (5.30)

Denote ᾱαα = [ααα1,ααα2, · · · ,αααM̃ ], C̄ = [CT
1 ,C

T
2 , · · · ,CT

M̃
]T , S can be expressed as

S = AᾱααC̄. (5.31)

5.3.3 Square-Array MIMO Radar 3D Imaging

The geometry of square-array MIMO radar is shown in Fig.2.4. The dimen-

sions of 2D transmit array and receive array are M1 ×M2 and N1 ×N2. Note

that the unambiguous distances in X and Y axes are Lx = λ
drx
r and Ly =

λ
dry
r

respectively. The receive signal is now a three dimensional matrix and denoted

as S(t). The S(t) received at the (n1, n2)th receive antenna can be expressed

as

Sn1,n2(t) = αAe
j2π(x̃n1drx+ỹn2dry)/λr ×

∑
m1,m2

ej2π(x̃m1dtx+ỹm2dty)/λrφφφm1,m2(t− τA).

(5.32)

We assume that the inter-element distance of transmit array is larger than

the inter-element distance of receive array and dtx = Pdrx, dty = Qdry, P ≤ N1

and Q ≤ N2. Then ej2π(x̃m1dtx+ỹm2dty)/λr = ej2π(x̃m1P/Lx+ỹm2Q/Ly), which is a
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period function in X and Y directions with periods of Lx/P and Ly/Q. Then∑
m1,m2

ej2π(x̃m1dtx+ỹm2dty)/λrφφφm1,m2(t) is also a period function which is shown

in Fig.5.10.

Figure 5.10: Imaging field division for Square array MIMO radar.

In this figure, we assume that P = 3 and Q = 2. It can be seen that

the imaging region is divided as 6 parts. There are P and Q divisions in

the X and Y directions. Generally, we assume that a sub-square is divided

as Mx and My parts in the X and Y directions. So the imaging region is

also divided as Mx × My parts Ωmx,my = {(pMx + mx, qMy + my) : p =

0, 1, · · · , P − 1, q = 0, 1, · · · , Q − 1,mx ∈ [0,Mx − 1],my ∈ [0,My − 1]},

where (mx,my) is the index of the sub-square. For every Ωmx,my , there is

only one synthetic code cmx,my(t) =
∑

m1,m2
ej2π(mxm1/Mx+mym2/My)φφφm1,m2(t).

In Fig.5.10, Mx =My = 3, there are 9 synthetic codes.

From now, the imaging region has been divided as Mx×My parts Ωmx,my .

For simplicity, if mx (my) is larger than Mx (My), in expression of Ωmx,my ,

Ωmx,my is equivalent to Ωmx Mod Mx,my Mod My .

Denote

ax,mx = [1, ej2πmx/(PMx), · · · , ej2πmx(N1−1)/(PMx)]T ,

ay,my = [1, ej2πmy/(QMy), · · · , ej2πmy(N2−1)/(QMy)]T ,
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where mx ∈ [0,MxP ),my ∈ [0,MyQ). Then the three dimensional signal

received from the scatterer located at (mx,my, τ) can be expressed as

Smx,my ,τ (t) = αax,mx ⊗ ay,my ⊗ cmx,my(t− τ). (5.33)

The character of the above expression is that amx is only related with mx, amy

is only related with my. In region Ωmx,my , cmx,my(t − τ) is only related with

τ . Denote

Ax,mx = [ax,mx , ax,mx+Mx , · · · , ax,mx+(P−1)Mx ],Ay,my = [ay,my , ay,my+My , · · · , ay,my+(Q−1)My ],

cmx,my(k) the discrete version of cmx,my(t),

Cmx,my =



cmx,my(1) cmx,my(2) · · · cmx,my(K) 0 0 0

0 cmx,my(1) cmx,my(2) · · · cmx,my(K) 0 0

...
...

...
...

...
...

...

0 · · · 0 cmx,my(1) cmx,my(2) · · · cmx,my(K)


.

(5.34)

Signal received from region Ωmx,my can be expressed as

Smx,my = αααmx,my ×1 Ax,mx ×2 Ay,my ×3 Cmx,my , (5.35)

where αααmx,my is the reflectivity matrix, ×i expresses product in the ith dimen-

sion. Signal received from all region can be expressed as

S =
Mx−1∑
mx=0

My−1∑
my=0

αααmx,my ×1 Ax,mx ×2 Ay,my ×3 Cmx,my . (5.36)

In order to express S as a single multi-dimensional linear equation, αααmx,my

can be rearranged as shown in Fig.5.11

That is αααmx,my is pushed to rear and keep the cross range coordinate static.
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Figure 5.11: Rearrangement of reflectivity matrix.

One αααmx,my occupies only one segment and the new ααα occupies Mx×My ×L2

range length, where L2 is the range length of the imaging region.

Denote Ax = [Ax,0,Ax,1, · · · ,Ax,Mx−1], Ay = [Ay,0,Ay,1, · · · ,Ay,My−1]

and

C =



c0,0

c0,1
...

cMx−1,My−1


. (5.37)

where the order of cmx,my are the same as that of αααmx,my , then S can be

expressed as

S = ααα×1 Ax ×2 Ay ×3 C (5.38)

If linear equation is used to express the imaging system, the dimension of

the coefficient matrix is N1N2(K+L2)×PMxQMYL2, whereK is the length of

the code. However the dimensions of Ax, Ay and C are N1×PMx, N2×QMy

and MxMyL2 × (L2 + K). It can be seen that the memory needs by tensor

equation is great less than that of linear system.
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5.3.4 Multi-Dimensional Linear Equation ℓ1 ℓ0 Norms

Homotopy Sparse Signal Recover Algorithm

Similar to ℓ1 ℓ0 norms homotopy algorithm for linear equations, ℓ1 ℓ0 norms

homotopy algorithm for multi-dimensional linear equations (MD ℓ1 ℓ0) can

be designed. Define Gσ(ααα) =
∑

m

∑
n

∑
k gσ(α(m,n, k)). The sparse signal

recovery criterion can be described as:

α̂αα = lim
σ→σmin

arg minGσ(ααα) subject to ||S−ααα×1Ax×2Ay×3C||F < ε. (5.39)

where || · ||F is the Frobenius norm of a tensor. The MD ℓ1 ℓ0 algorithm can

be expressed as:

Multi-Dimensional Linear Equations ℓ1 ℓ0 Norms Homotopy (MD ℓ1 ℓ0) Algo-

rithm

• Initialization:

1) Define L0, L1.

2) Let α̂αα0 be equal to the minimum Frobenius norm solution of (5.38),

obtained by α̂αα0 = S×1 A
†
x ×2 A

†
y ×3 C

†.

3) Choose a suitable decreasing sequence for {σ}, [σ1, · · · , σJ ].

• for j = 1, · · · , J :

1) Minimize the function Gσj
(ααα) on the feasible set {ααα : ||S − ααα ×1 Ax ×2

Ay×3C||F < ε} using L iterations of the revised steepest descent gradient

algorithm (followed by projection onto the feasible set):

144



CHAPTER 5. MIMO RADAR IMAGING BASED ON ℓ1 ℓ0
NORMS HOMOTOPY SPARSE SIGNAL RECOVERY

ALGORITHM

- Initialization: ααα = α̂ααj−1

- For ℓ = 1, · · · , L (loop L times):

a) Let δδδ be gradient of Gσj
(ααα) and µ = min(max(|ααα|)/L0, σj/L1).

b) For every element of ααα, let

α(m,n, k)← α(m,n, k)− α(m,n,k)
|α(m,n,k)|×min(|α(m,n, k)|, |µσjδ(m,n, k)|).

c) For ααα such as in Eq.(5.23) and Fig.5.11, we let the ααα satisfy the

structure of Eq.(5.23) and Fig.5.11.

d) If ||S−ααα×1 Ax×2 Ay ×3 C||F > ε, project ααα back into the feasible

set:

ααα← ααα+ (S−ααα×1 Ax ×2 Ay ×3 C)×1 A
†
x ×2 A

†
y ×3 C

†

2) Set α̂ααj = ααα

• Final answer is α̂αα = α̂ααJ

5.3.5 Multi-Dimensional Linear Equations Based Sim-

ulation Results

Simulation 1: 2D Imaging Using One Dimensional MIMO Array

In this simulation, the simulation conditions are the same as that of simulation

1 of section 5.2.4 except that the distance between the sampling grid points

at X and Y axes are all 0.5 m. The dimension of A and C are 8 × 128 and

736× 124. (For the sampling distance of 0.25, same as simulation 1 of section

5.2.4, the dimension of A and C are 8× 256 and 2944× 124). The dimension

is less than 984 × 8464 in simulation 1 of section 5.2.4. The image obtained

is shown in Fig.5.12. It can be seen that the performance is similar to that of

simulation 1 of section 5.2.4, where linear equation model is used.

145



5.3. COLLOCATED MIMO RADAR 3D IMAGING USING
MULTI-DIMENSIONAL LINEAR EQUATION ℓ1 ℓ0 HOMOTOPY
ALGORITHM

10 20 30 40
20

40
0

5

10

MD L1L0

Figure 5.12: Reconstructed image using multi-dimensional linear equations
signal model(simulation 1).

Simulation 2: 3D Imaging Using Two Dimensional Cross MIMO

Array

The simulation conditions are the same as that of simulation 3 of section 5.2.4

except that the MIMO array is a 16× 16 cross array, while in simulation 3 of

section 5.2.4 the transmit MIMO array and receive MIMO array are all 4× 4

square array. The total number of transmit antennas and receive antennas for

two cases are the same. The inter-element distances of the transmit array and

the receive array are all 93.75 m. The unambiguous distance are divided as 64

divisions. The dimensions of the coefficient matrices ofA and C̄ are 16×64 and

3200×125, which are less than the dimension 1968×31620 of Ψ in simulation

3 of section 5.2.4. Parameters in the multi-dimensional linear equations ℓ1 ℓ0

homotopy algorithm are ε2 = 0, σJ = 0.003, J = 25, L = 40, L0 = 20, L1 = 20.

The images using minimum ℓ2 norm criterion and using MD ℓ1 ℓ0 homotopy

algorithm are shown in Fig.5.13 It can be seen that the image using mini-

mum ℓ2 norm criterion has high sidelobes and the performance using multi-

dimensional linear equations is similar to that of using linear equations as

shown in Fig.5.5(f).
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(a) (b)

Figure 5.13: Reconstructed images using cross array MIMO radar multi-
dimensional linear equations signal model. (a) minimum ℓ2 norm method,
(b) MD ℓ1 ℓ0 homotopy algorithm, ε2 = 0, σJ = 0.003, J = 25, L = 40, L0 =
20, L1 = 20.

5.4 Distributed MIMO Radar 3D Imaging Us-

ing Sparse Signal Recovery Algorithm

In the last section, collocated MIMO radar signal model fitting to sparse signal

recovery algorithm was derived. In the following subsection, distributed MIMO

radar signal model is derived.

5.4.1 Distributed MIMO Radar Signal Model

The distributed MIMO radar imaging geometry is shown in Fig.5.14.

Figure 5.14: Geometry of distributed MIMO radar.

Let H0 denote the magnetic field from one transmitter, r′ denote one point

147



5.4. DISTRIBUTED MIMO RADAR 3D IMAGING USING
SPARSE SIGNAL RECOVERY ALGORITHM

on the surface ∂D of a target, where the outwardly directed unit normal to

∂D at r′ is denoted as n̂. The incident magnetic field at r′ is then Hinc =

H0exp(−j2πr1/λ)/r1, where r1 is the distance from the transmitter to r′. In

the far field, using physical optics approximation, the induced current J on a

conducing surface can be approximately expressed as [15]

J(r
′
) =

 2n̂×Hinc(r
′) if r̂1 · n̂ < 0

0 otherwise,
(5.40)

where r̂1 is the transmitter line of sight unit vector.

Let the receive antenna be located at r. The distance between r and r′

is r2. The vector potential A(r) due to the presence of the electric current

density J(r
′
) is [16]

A(r) =

∫∫∫
e−j2πr2/λ

4πr2
µ0J(r

′)dr′, (5.41)

where µ0 is the permeability of free space. The scattered magnetic field at r
is

H(r) = ∇×
∫∫∫

e−j2πr2/λ

4πr2
J(r′)dr′. (5.42)

Denote r̂2 as the receiver to the target line of sight unit vector. ∇ operator

can be approximated as −j 2π
λ
r̂2 in the far field. The scattered magnetic field

can then be simplified as

H(r) = ξ

∫∫
Ω

r̂2 × (n̂× Ĥ0)e
−j2π(r1+r2)

λ dS (5.43)

where Ω is the integration area, Ω = {∂D, r̂1 · n̂ < 0, r̂2 · n̂ < 0}, ξ = −jH0

λr1r2
is a

constant, Ĥ0 =
H0

||H0|| . The equation in (5.43) is a bistatic radar signal model.

Denote m̂ the polarization unit vector of the receive antenna, the received

signal at m̂ direction is then H(r) = H(r) · m̂. H(r) can be approximated

using the principle of stationary phase, then we have
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H(r) =
−jH0

λr̃1r̃2

∑
m

αme
−

j2π(r1,m+r2,m)

λ + o(r̃−1
1 r̃−1

2 ), (5.44)

where the sum is over all points r
′
m on ∂D, and r

′
m is the tangential point

between ∂D and an ellipse with the transmitter and the receiver be two focuses.

r1,m and r2,m are the distances between the transmitter and r
′
m, the distance

between the receiver and r
′
m, respectively. r̃1 and r̃2 are the distances between

the transmitter, the receiver and the target center respectively. αm denotes

the contribution to the integral in (5.43) of the local neighborhood Nr
′
m
⊂ ∂D

of r
′
m, where the signals have approximately the same phase.

For the special case of a monostatic radar, because r̂2 × (n̂× Ĥ0) = n̂(r̂2 ·

Ĥ0) − (r̂2 · n̂)Ĥ0, m̂ = Ĥ0 and r̂2 · Ĥ0 = 0, we have m̂ ·
(
r̂2 × (n̂× Ĥ0)

)
=

−(r̂2 · n̂). At point r
′
m, (r̂2 · n̂) = −1. If the surface near r′m is a planar patch,

αm is the geometric area of this patch. So, αm can be regarded as an “effective

area”.

But for the bistatic radar case, usually m̂ ·
(
r̂2 × (n̂× Ĥ0)

)
will be less

than 1. Even for a planar patch, αm will also be less than the geometric

area. −jH0/(λr̃1r̃2) is a constant and can be combined into αm to simplify

the expression. After αm has been estimated, the patch can be established.

In the above derivation, we assume a bistatic radar working at a single

frequency. Now we derive the signal model of a distributed wideband MIMO

radar imaging system. Let L be the one dimensional size of a patch on the

surface of the target. If the patch is regarded as an antenna, its beam width

in this dimension is about λ
L
. Let the distance between two antennas in this

dimension be d, if r λ
L
< d, the signal amplitudes received by these two an-

tennas from this patch can be regarded as different. If r λ
L
>> d, the signal

amplitudes received by these two antennas from this patch can be regarded as
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the same, and these two antennas can be regarded as collocated and belong to

one antenna cluster. We assume that there are MT transmitter clusters and

NR receiver clusters. The antennas in each cluster are collocated. For the ith

transmitter cluster, there are Mi transmitting antennas. For the jth receiver

cluster, there are Nj receiving antennas.

Let wi,i′ be the transmitting code envelope function at i′th transmitter of

ith cluster, τ ti,i′ be the delay from (i, i′)th transmitter to kth scatterer, τ rj,j′ be

the delay from kth scatterer to (j, j′)th receiver. We first consider that there

is only one scatterer k. In order to express the equations in a concise form,

we omit the relation with k when there is no confusion. After mixing, the

received back-scattered signal at (j, j′)th receiver can be expressed as

sj,j′ =

MT∑
i=1

αi,j

Mi∑
i′=1

wi,i′(t− τ ti,i′ − τ rj,j′)e
−j2πf(τ t

i,i′+τr
j,j′ ) (5.45)

where αi,j is the reflection coefficient between transmitter cluster i, scatterer

k and receiver cluster j (note that αi,j is independent of i
′
and j

′
). Define

φφφi,j,j′ =

Mi∑
i′=1

wi,i′(t− τ ti,i′ − τ rj,j′)e
−j2πf(τ t

i,i′+τr
j,j′ ), (5.46)

we have

sj,j′ =

MT∑
i=1

αi,jφφφi,j,j′ . (5.47)

Define Φj,j′ = [φφφ1,j,j′ , · · · ,φφφMT ,j,j′ ], ααα
k
j = [α1,j, · · · , αMT ,j]

T , then sj,j′ can

be simply expressed as

sj,j′ = Φj,j′ααα
k
j . (5.48)

Define sj = [sTj,1, · · · , sTj,Nj
]T , Φk

j = [Φj,1
T , · · · ,Φj,Nj

T ]T , we have

sj = Φk
jααα

k
j . (5.49)

Here we use a superscript k to emphasize that Φk
j and αααk

j are related to
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scatterer k. Assume that the imaging area is divided into K grids. Define

Φj = [Φ1
j , · · · ,ΦK

j ], αααj = [ααα1
j
T
, · · · ,αααK

j
T
]T , the total signal model is

sj = Φjαααj + n, j = 1, · · · , NR, (5.50)

where n is the noise and modeling error. The dimensions of sj, Φj and αααj are

LNj × 1, LNj ×MTK and MTK × 1, respectively, where L is the length of

signal collected in fast time.

So far we have obtained NR linear equations. Because αααj is only related

to sj, and independent of si, i ̸= j, there is no need to stack sj and αααj to

form a bigger s and a bigger ααα. It means that one receiver cluster and all

transmitter clusters form an imaging system, another receiver cluster and all

transmitter clusters form another imaging system. All of the αααj obtained are

combined to form the image of the target. From the definition of αi,j, we see

that for one scatterer there areMT×NR amplitudes corresponding toMT×NR

transmitter-receiver cluster pairs. So after the {αi,j} has been obtained, the

maximum value of {αi,j} can be selected to form the image of the target. Eq.

(5.50) can also be solved by ℓ1 ℓ0 homotopy method.

5.4.2 Antennas Configuration and Signal Property

According to the analysis of high frequency signal model in section 5.4.1, the

strong scatterers are mainly coming from the reflection surface (relative to the

transmitter and the receiver) of the target. So the distribution of transmitters

and receivers should be such that the reflection patches are covered as much as

possible. Now we consider two special imaging geometries: (a) two distributed

antennas operate as receivers and a collocated array as transmitter; (b) two

distributed antennas operate as transmitters and a collocated array as receiver.
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The number of antennas in the above two cases are the same. According to

section 5.4.1, the signal model of (a) for two receivers are

sa1 =

(
M1∑
i′=1

wi′(t− τ ti′ − τ r1 )e−j2πf(τ t
i′+τr1 )

)
αa,1,1 (5.51)

and

sa2 =

(
M1∑
i′=1

wi′(t− τ ti′ − τ r2 )e−j2πf(τ t
i′+τr2 )

)
αa,1,2, (5.52)

here we assume that there is only one scatterer, αa,1,1 and αa,1,2 are the reflec-

tion coefficients of this scatterer for different transmitter-receiver pairs, where

the first subscript expresses transmitter and the second subscript expresses

receiver. The signal model of (b) for two transmitters can be expressed as:

sb =


w1(t− τ t1 − τ r1 )e−j2πf(τ t1+τr1 ) , w2(t− τ t2 − τ r1 )e−j2πf(τ t2+τr1 )

... ,
...

w1(t− τ t1 − τ rN1
)e−j2πf(τ t1+τrN1

) , w2(t− τ t2 − τ rN1
)e−j2πf(τ t2+τrN1

)


 αb,1,1

αb,2,1


(5.53)

where sb =
[
sT1 , · · · , sTN1

]T
, αb,1,1 and αb,2,1 are the reflection coefficients of this

scatterer for different transmitter-receiver pairs.

Because Eq. (5.51), (5.52) are two independent equations, the solution

of αa,1,1 does not affect αa,1,2, which means that the solutions of this kind

of system are easier to be obtained. However, from equation (5.53), it shows

that αb,1,1 and αb,2,1 are coupled, which means that the solution of αb,1,1 affects

αb,2,1. It is relatively difficult to solve this system compared with case (a). The

dimensions of sa1 and sa2 are only L, but the dimension of sb is as long as LN1,

where L is the length of signal in time domain, N1 is the number of antennas

of the receive array (N1 =M1).

The property of the coefficient matrix is very important in imaging system

configuration and algorithm design. For MIMO radar configuration, it is diffi-
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cult to derive an analytic expression of the point spread function (correlation

between columns of coefficient matrix Φj). But numerical solution can be ob-

tained by simulations. Let the carrier frequency be 2 GHz, 18-element linear

transmitter array with inter-element distance of 300 m, is located at (0,-200)

km along the X axis. One receiver is located at (200,0) km. Eighteen random

BPSK codes with length of 100 are transmitted. The range resolution is one

meter. Fig.5.15 shows the point spread function for a limited range when the

origin is the center point of the point spread function. It can be seen that

though there is only one receiver, but because 18 transmitters transmit inde-

pendent codes, a nail shape point spread function is also obtained. Because

the phase centers of the transmitters and the receiver are located at (0,-200)

km and (200,0) km, the cross-range direction is along the 45o direction, as seen

from Fig. 5.15. High sidelobes are also produced due to the small number of

transmitters.

For case (b), we need to consider point spread function for one transmitter-

receiver-array pair and the cross-correlation between different transmitter-

receiver-array pairs. When a transmitter is located at (200, 0) m, the receiver

array is at (0,-200) km and along the X direction, the point spread function at

origin is shown in Fig.5.16. Because the dimension of the basis vector of case

(b) is longer than that of case (a), the sidelobes of case (b) is lower than case

(a). The second transmitter is located at (−153209.8,−128556.5427) m. The

basis function of first transmitter-receiver-array pair is chosen as come from

the origin. The cross correlation between the first and second transmitter-

receiver-array pairs near the origin is shown in Fig.5.17. It can be seen that

the cross correlations have small values compared with the auto-correlation at

the origin.

If there is only one receiver at case (a) and there is only one transmitter
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Figure 5.15: The point spread function of case (a) where a linear transmitting
antenna array is located at (0, -200)km and along the x axis, a receiver is
located at (200,0)km.

Figure 5.16: The point spread function of one transmitter-receiver pair of case
(b) where a linear receiving antenna array is located at (0, -200)km and along
the x axis, a transmitter is located at (200,0)km.

in case (b), the performance of (b) will be better than case (a), because the

dimension of the coefficient matrix of case (b) is longer than that of case (a)

and the sidelobes of case (b) is lower than case (a).

However, with the increase of number of receivers in case (a) and trans-

mitters in case (b) simultaneously , the dimension of the coefficient matrix of

case (a) does not change, but the number of columns of coefficient matrix of

case (b) increases linearly with the increase of transmitters while the number

of rows keep to a constant. This means the interference between different

transmitter-receiver pairs increase.

So for limited number of antennas, the number of transmitters and receivers
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Figure 5.17: The cross correlation of case (b) where a linear receiving antenna
array is located at (0, -200)km and along the x axis, the two transmitters
are located at (200,0)km and (−153209.8,−128556.5427) m, respectively. The
signal corresponding to transmitter one at (200,0)km is come from the ori-
gin. The signal corresponding to the second transmitter varies with different
positions.

should be balanced bearing in mind that one transmitter-receiver-array pair

is sufficient to obtain the desired resolution.

5.4.3 Simulation of Imaging of a Two Dimensional Cir-

cle

In this subsection, we present a simulation of two dimensional imaging results

using distributed MIMO radar. The carrier frequency is 1 GHz, and the sig-

nal bandwidth is 300M Hz. The target is a metal plate with radius of 5 m

and located at the center of XY plane. Three transmit antenna arrays, each

with 8 antennas with inter-element-distance of 750 m and arranged in an arc

shape facing toward the origin, are located at (20 km, 200o), (20 km, 270o) and

(20 km, 350o). Two receive antenna arrays, each with 8 antennas with inter-

element-distance of 93.75 m, are located at (20 km, 230o) and (20 km, 320o).

Twenty four BPSK signals with length of 100 are used as transmitting codes.

When generating data, the circle is divided with step size of λ/10. The imag-

ing sampling grid intervals in X and Y directions are all chosen as 0.06 m. The
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image using conventional correlation method is shown in Fig.5.18. It can be

seen that high sidelobes occurs. Fig.5.19 shows the reconstructed images using

three transmitter arrays and only one receiver array. The images are obtained

by ℓ1 ℓ0 method with parameters σJ = 0.005, ε2 = 3, J = 25, L = 25, L1 = 20

and L0 = 20. Fig.5.19(a) is the image using the first receiver, Fig.5.19(b) is the

image using the second receiver. It can be seen that different antennas observe

the target from different views and obtain different images. If there is only

one transmitter array, the receiver can only observe a narrower scene. Fig.5.20

shows the reconstructed images using OMP method with assumed number

of nonzero element of K = 4, 6, 7, 9. The matlab program of OMP is down-

loaded from http://www.mathworks.com/matlabcentral/fileexchange/authors

/30530 contributed by Dr. Stephen Becker. For smoothed ℓ0 and ℓ1 ℓ0 meth-

ods, we choose J = 25, L = 25. Parameters of L0 and L1 in ℓ1 ℓ0 method

are all chosen as 20. For smoothed ℓ0 norm method, cases of σJ = 0.0001,

0.0002, 0.0005, and 0.001, ε2 = 3 are imaged and shown in Fig.5.21. For ℓ1 ℓ0

method, cases of σJ = 0.001, 0.002, 0.005, and 0.01, ε2 = 3 are imaged and

shown in Fig.5.22. From these simulations we can see that using distributed

MIMO radar, more shape information of the target can be obtained. For OMP

method, with the increase of the assumed sparsity, more shape information are

observed, however more noises are appeared. For SL0 and ℓ1 ℓ0 methods, with

the decrease of σJ , more noises are observed. Compared with OMP, SL0 and

ℓ1 ℓ0 with other parameters, ℓ1 ℓ0 method for σJ = 0.005 has best performance.

5.5 Conclusion

Because the strong scatterers are sparse, a ℓ1 ℓ0 homotopy sparse signal recov-

ery algorithm is used to improve the image quality. For a target with large
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Figure 5.18: Target’s image using conventional correlation method.
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Figure 5.19: Reconstructed images using distributed MIMO radar with only
one collocated antenna array receiver configuration and complex ℓ1 ℓ0 homo-
topy sparse signal recovery algorithm. σJ = 0.005, ε2 = 3. (a) First receiver,
(b) Second receiver.

patches towards the radar, the total variations of the reflections are large value

at the edge of the patches, a combined amplitude and total variation objective

function is proposed.

The dimension of the coefficient matrix of the linear system for MIMO

radar imaging is large. It requires huge memory. In order to save memory,

multi-dimensional linear equations based signal model is derived. ℓ1 ℓ0 homo-

topy sparse signal recovery algorithm for multi-dimensional linear equations

signal model is also presented.

Conventional mono-static radar observes the target from one view direction

and can only obtain part information of a target. Distributed radar observes

the target from multiple view directions, more information of the target can
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Figure 5.20: Reconstructed images using distributed MIMO radar and OMP
method assuming sparsity of (a)K=4, (b) K=6, (c) K=7, (d) K=9.
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Figure 5.21: Reconstructed image using distributed MIMO radar and complex
smoothed ℓ0 norm method. ε2 = 3, (a) σJ = 0.0001, (b) σJ = 0.0002,(c)
σJ = 0.0005, (d) σJ = 0.001.

158



CHAPTER 5. MIMO RADAR IMAGING BASED ON ℓ1 ℓ0
NORMS HOMOTOPY SPARSE SIGNAL RECOVERY

ALGORITHM

−5 0 5
−6

−4

−2

0

2

4

6

x

y

(a)

−5 0 5
−6

−4

−2

0

2

4

6

x

y

(b)

−5 0 5
−6

−4

−2

0

2

4

6

x

y

(c)

−5 0 5
−6

−4

−2

0

2

4

6

x

y

(d)

Figure 5.22: Reconstructed image using distributed MIMO radar and complex
ℓ1 ℓ0 norms homotopy method. ε2 = 3, (a) σJ = 0.001, (b) σJ = 0.002,(c)
σJ = 0.005, (d) σJ = 0.01.

thus be obtained. The distributed MIMO radar imaging signal model is de-

rived in this Chapter. The conditions that antennas can be regarded as a clus-

ter of antennas and coherent property be preserved are discussed. Due to the

sparsity of strong scatterers, the image can be obtained by sparse signal recov-

ery algorithms. Because every point is observed from all transmitter-receiver

pairs, there are many images for one point of the target. The maximum value

is chosen to form the image.

Simulation results show that the image quality has been improved using

sparse signal recovery algorithms and the proposed ℓ1 ℓ0 homotopy method has

competitive performance.
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Chapter 6

Bistatic ISAR Imaging

Incorporating Interferometric

3D Imaging Technique

6.1 Introduction

For collocated ISAR, the transmitter and receiver are located on the same

place. The transmitter transmit high power microwave energy, which can

be easily detected and the radar is easy be destroyed. For bistatic radar,

the transmitter and the receiver are located on two different positions, the

transmitter can be far away from the enemy field to avoid being attacked. In

addition, the bistatic receiver is passive and thus electromagnetically invisible

to the third party and can be near the target. On the other hand, the bistatic

receiver observe the target from different directions. The scattering mechanism

is different from monostatic radar. So the bistatic ISAR image is different from

the monostatic ISAR image [72]. BiISAR provides complementary information

of the target. Because of these advantages, BiISAR has been studied by many
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researchers recently [73] [74]. The major processing steps of BiISAR are similar

to the ISAR. It includes range compression, motion compensation and cross-

range Fourier transform. Because of the similarity, some researchers surmise

that from signal processing aspect the bistatic radar can be replaced by a

monostatic equivalent radar [73] . For applications of ranging and range-speed

estimation, this simplification is sufficient and adequate. However, for general

BiISAR imaging, this simplification is neither sufficient nor adequate, because

the information used in BiISAR to image the target in the cross-range direction

is the difference in Doppler frequencies, and not the Doppler frequency itself.

For BiISAR, the gradient of iso-Doppler frequency planes characterizes this

difference in Doppler frequencies. For a moving target, generally, the gradient

direction of the iso-Doppler planes is not perpendicular to the range direction.

This fact is different from monostatic ISAR.

In ISAR and BiISAR imagings, the ISAR and BiISAR images are the

projections of the target on a plane with the direction of range and direction

of gradient of Doppler frequencies as the two axes. Because the two axes

are not perpendicular in BiISAR case, the BiISAR image is sheared. This

distortion has not been analyzed before, although distortion of point spread

function (PSF) had been discussed in [75] and the simulations of [76] had

showed the shear of BiISAR image.

The shear of the BiISAR image makes it difficult for use in target identifi-

cation application. In order to correct the shear of BiISAR image, we propose

using interferometric techniques. Interferometric techniques have been widely

used in interferometric SAR and interferometric ISAR 3D imaging [9], [77].

For interferometric ISAR, three antennas are usually used to measure the two

cross-range coordinates of a scatterer. In addition to the range information,

3D image can be obtained. But because the range directions of monostatic
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ISAR and BiISAR are different, the coordinate transformation of interfero-

metric BiISAR is different from that of monostatic interferometric ISAR. The

coordinate transformation formula of BiISAR is given in this Chapter.

This Chapter is organized as follows. In section 6.2, the bistatic radar

signal model and BiISAR imaging algorithm are discussed. Interferometric

3D imaging is discussed in section 6.3. Simulation results are demonstrated in

section 6.4 and we conclude our works in section 6.5.

6.2 The Bistatic Radar Signal Model and Bi-

ISAR Imaging Algorithm

The geometry of the bistatic ISAR imaging and the bistatic interferometric

3D imaging is shown in Fig.6.1, where T is the transmitter, R, R1 and R2 are

three receivers. The origin of the global coordinate system is R. R1 and R2 are

located on X axis and Y axis respectively. |RR1| = |RR2| = d. The target is

located in the far field. A local coordinate system (O,X, Y, Z) parallel to the

global coordinate system is used to describe the positions of the scatterers on

the target at time 0. Scatterer Ai located at (xi, yi, zi) is expressed as
−−→
OAi.

The target moves with speed v and rotates with speed Ω around its rotation

axis ω. The line between T and R is called baseline. The angle ∠OTR and

∠ORT are denoted as α and γ. The bistatic angle ∠TOR is denoted as β. E

is the intersection between the bistatic bisector line and TR.

Let t and t′ express “slow” and “fast” time. Fast time is sampled at the

ADC rate of the receiver, and slow time is sampled at the pulse repetition

frequency (PRF) of the system. The transmitted signal from antenna T be

u(t+ t′−nT̃ ) exp(j2πf(t+ t′)), where u(t) is 1 for |t| < T0/2 and 0 for others.

T0 is the pulse width. Because pulse compression of BiISAR is the same as
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Figure 6.1: Geometry of the bistatic radar and the target.

that in ISAR, we do not discuss pulse compression. Hence we assume u(t)

be a short pulse or u(t) can be regarded as the pulse after pulse compression.

T̃ is the pulse repetition interval, f is the carrier frequency. Denote {Ai} as

the scatterers on the target. As the aim of this Chapter is to demonstrate

and mitigate the shearing of BISAR image, we also assume that the reflection

coefficient of each individual scatterer equals to one for expression simplicity.

The demodulated backscattered (or side scattered) signals from the target

received at antenna R is

sR(t
′, t) =

∑
i u(t+ t′ − nT̃ − τTAi

(t)− τAiR(t)) (6.1)

×exp (−j2πf(τTAi
(t) + τAiR(t))) ,

where τTAi
(t) and τAiR(t) are the delays from T to Ai and from Ai to R.

|sR(t′, nT̃ )| is the one-dimensional range profile of the target in slow time

t = nT̃ .

The techniques of range alignment in bistatic ISAR are similar to that of

monostatic ISAR imaging. After range alignment, the signal received can be
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expressed as

sR(t
′, t) =

∑
i

u(t′ − τTAi
(0)− τAiR(0))exp (−j2πf(τTAi

(t) + τAiR(t))) . (6.2)

The scatterers in the range direction have been separated. In order to sep-

arate the scatterers in the cross-range direction, the phase information should

be used. Similar to monostatic ISAR motion compensation, the motion of

the target which is common for all scatterers should be compensated, because

the useful information are the difference in Doppler frequencies, and not the

Doppler frequencies themselves. All the motion compensation methods used

in monostatic ISAR can be used in BiISAR.

We assume that the target moves uniformly with velocity v and rotates

uniformly around axis ω = [ωx, ωy, ωz] with rotation speed Ω. Let O also

denote the rotation center of the target. The instantaneous velocity of scatterer

Ai due to rotation of the target is Ω
⊗−−→

OAi where
⊗

expresses cross-product.

Define a skew symmetric matrix

ω̂ =


0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 , (6.3)

then the rotation matrix can be denoted as R(t) = I + sin(Ωt)ω̂ + (1 −

cos(Ωt))ω̂2 [62], where I is the identity matrix. The position of vector
−−→
OAi

at time t is R(t)
−−→
OAi. Let O be the focusing center. After the phase of O has

been compensated, the received signal can be expressed as

sR(t
′, t) =

∑
i

u(t′ − τTAi
(0)− τAiR(0))e

−j2πf(τTAi
(t)+τAiR

(t)−τTO(t)−τOR(t)) (6.4)
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where

(τTAi
(t)− τTO(t))c

= ||r0 + vt+R(t)
−−→
OAi|| − ||r0 + vt||

≈ TAi − TO + ((v − nT
0 vn0)/r0 − Ωω̂n0)

T−−→OAit

= TAi − TO +w0
T−−→OAit, (6.5)

where r0 =
−→
TO(0), r0 = |r0|, TAi = |−−→TAi(0)|, TO = r0, n0 = r0/|r0| =

(n0x, n0y, n0z) is the transmit antenna line of sight unit vector, w0 = (v −

nT
0 vn0)/r0−Ωω̂n0 is the synthetic vector which represents the effects induced

by the target’s translational and rotational motions. w0 is perpendicular to

n0. For the detailed derivation, please refer to [12].

Similarly, we have

(τAiR(t)− τOR(t))c

= ||r1 + vt+R(t)
−−→
OAi|| − ||r1 + vt||

≈ AiR−OR + ((v − nT
1 vn1)/r1 − Ωω̂n1)

T−−→OAit

= AiR−OR +w1
T−−→OAit, (6.6)

where r1 =
−→
RO(0), r1 = |r1| = OR, AiR = |

−−→
AiR(0)|, n1 = r1/r1 = (n1x, n1y, n1z)

is the receive antenna line of sight unit vector, w1 = (v− nT
1 vn1)/r1−Ωω̂n1.

Substitute (6.5) and (6.6) into (6.4), we have

sR(t
′, t) ≈

∑
i

u(t′ − τAi
(0))e−j2π

TAi+AiR−TO−OR

λ e−j 2π
λ
(w0+w1)T

−−→
OAit, (6.7)

where τAi
(0) = τTAi

(0) + τRAi
(0). From Eq.(6.7) we can see that the fre-

quency of scatterer Ai is proportional to the projection of
−−→
OAi on vector
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w0 + w1, scatterers on the w0 + w1 direction can be separated by Fourier

transform of sR(t
′, t) on variable t. Denote Tp as the time duration of sig-

nal for Fourier transform and w = w0 + w1. In order to show the image in

cross-range clearly, we define another orthogonal coordinate system (h,q,n01),

where n01 =
n0+n1

|n0+n1| , h is perpendicular to n01 and located on plane expanded

by n01 and w, q = n01

⊗
h. In this coordinate system, w = w1h + w3n01

(Generally, w is not perpendicular to n01, so w3 ̸= 0).
−−→
OAi can be expressed

as
−−→
OAi = aihh+ aiqq+ ain01n01. The Fourier transform of sR(t

′, t) on variable

t can be expressed as

SR(t
′, f) =

∫ Tp/2

−Tp/2
sR(t

′, t)e−j2πftdt

= Tp
∑

i u(t
′ − τAi

(0))e−j2π
TAi+AiR−TO−OR

λ sinc

((
f + wT−−→

OAi

λ

)
Tp

)

= Tp
∑

i u(t
′ − τAi

(0))e−j2π
TAi+AiR−TO−OR

λ sinc

((
f +

w1aih+w3ain01

λ

)
Tp

)
.

(6.8)

Some researchers surmise that the bistatic ISAR imaging system is equiv-

alent to a monostatic ISAR imaging system with the transmitter and receiver

all located at E (Fig.6.1) [73]. The followings will show that this simplification

is inadequate in BiISAR imaging. We compare the ISAR and BiISAR images

as follows. After envelope alignment and motion compensation, the signal re-

ceived from the so called “equivalent” monostatic radar E can be expressed

as

sE(t
′, t) =

∑
i

u(t′ − τEAi
(0))e−j2π(τEAi

(t)−τEO(t))

≈ α
∑
i

u(t′ − τEAi
(0))e

−j 4π
λ
(
v−vT n01n01

r01
−Ωω̂n01)T

−−→
OAit, (6.9)

where r01 = EO, and α = exp(−j 4π
λ
(EAi(0) − EO(0))) is a useless initial

166



CHAPTER 6. BISTATIC ISAR IMAGING INCORPORATING
INTERFEROMETRIC 3D IMAGING TECHNIQUE

phase term and can be omitted. Define wE = 2(v−vTn01n01

r01
− Ωω̂n01). It is

easy to prove that wE is perpendicular to n01. Generally, w ̸= wE and we have

expression wE = we1h+we2q. The Fourier transform of sE(t
′, t) on variable t

can be expressed as

SE(t
′, f) =

∫ Tp/2

−Tp/2

sE(t
′, t)e−j2πftdt

≈ Tp
∑
i

u(t′ − τEAi
(0))sinc

((
f +

wT
E

−−→
OAi

λ

)
Tp

)
(6.10)

= Tp
∑
i

u(t′ − τEAi
(0))sinc

((
f +

we1aih + we2aiq
λ

)
Tp

)
.

We first compare the ISAR and BiISAR images in range resolution. Let O be

the reference point. The relative delay between Ai and O in BiISAR is

τAi
(0)− τO(0)

= τTAi
(0)− τTO(0) + τAiR(0)− τOR(0)

≈
−−→
OAi

Tn0

c
+

−−→
OAi

Tn1

c

=
|n0 + n1|

c

−−→
OAi

Tn01

=
2ain01

c
cos(

β

2
) (6.11)

where cos(β
2
) = |n0+n1|

2
.

The relative delay between Ai and O in ISAR is

τEAi
(0)− τEO(0) ≈

2
−−→
OAi

Tn01

c
=

2ain01

c
. (6.12)

From (6.11) and (6.12) we can see that the relative delay in BiISAR is

cos(β
2
) times that of the relative delay in monostatic ISAR. For the two imaging

systems, the delay resolutions are all T0. So the range resolutions of BiISAR
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and ISAR are

δrBi =
cT0
2

1

cos(β/2)
, (6.13)

and

δrMo =
cT0
2
. (6.14)

So the range resolution of BiISAR is 1/ cos(β
2
) times as that of ISAR.

Now we analyze the image in cross-range direction. According to (6.8), in

the cross range direction, the scatterer Ai is located on f = −w1aih+w3ain01

λ
.

Denote τ = τAi
(0)− τO(0), we have

 f

τ


BiISAR

=

 −w1

λ
−w3

λ

0 2 cos(β/2)
c


 aih

ain01

 . (6.15)

We can see that the above coordinate transformation means a shear pro-

portional to the ain01 coordinate. This is shown in Fig.6.2. The ⃝, △ and +

in Fig.6.2(a) express the scatterers on the target. (n01,h) expresses the range

and horizontal axes. The BiISAR image (shown in range-Doppler plane) is as

shown in Fig.6.2(b). Obviously, the bistatic ISAR image is a sheared version

of the target.

The shear character can also be explained as follows. Because the BiISAR

image is the projection of the scatterers on axes of n01 and w, but the n01

and w are not perpendicular. Hence, when we show the BiISAR image using

two orthogonal axes (stretching the n01 and w such that they are orthogonal),

shear of the original shape occurs.

But for monostatic ISAR, in the cross-range direction, the scatterer is
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located on f = −we1aih+we2aiq
λ

. Denote τ = τEAi
(0)− τEO(0), we have

 f

τ


ISAR

=

 −we1

λ
−we2

λ
0

0 0 2
c




aih

aiq

ain01

 . (6.16)

It can be seen that the cross range coordinate is independent on the range

coordinate. The ISAR image is a scaling of the shape of the target on (wE,n01)

plane.

From (6.8) and (6.10) we can see that the iso-Doppler plane is perpendicular

to w(wE). If the n01 and the w are perpendicular, the iso-Doppler planes

and the iso-range planes are perpendicular. In other words, for monostatic

ISAR, the iso-Doppler planes and the iso-range planes are perpendicular. But

for bistatic ISAR, the iso-Doppler planes and the iso-range planes are not

perpendicular in general.

6.2.1 Special Case

If there is no translational motion, that is to say the target only rotates around

it’s axis, then w = −2Ωω̂n01 cos(β/2), wE = −2Ωω̂n01. We can see that

w = cos(β/2)wE. So the bistatic ISAR image is the same as the monostatic

ISAR image except there is a range and cross range scaling of cos(β/2).

6.2.2 Range Migration

It is well known that the range migration of the target is severe on the side

of the cross-range direction for monostatic ISAR imaging. For bistatic ISAR,

according to (6.5) and (6.6),
d((τTAi

(t)−τTO(t)+τAiR
(t)−τOR(t))c)

dt
≈ wT−−→OAi means

that the range migration is severe on the two tips of the target along w direc-
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Figure 6.2: The bistatic ISAR image of a target ( (a) is the target, (b) is the
image).

tion. But due to the shear property of the BiISAR image, the range migration

degradation also shows up at the two sides of the cross-range direction of the

BiISAR image. In order to mitigate range migration, the following equation

must be satisfied:

|w|OAMTp < δrBi/2 (6.17)

where OAM is the maximum distance of the target along the w direction from

the focusing center.

6.3 Interferometric 3D imaging

Through comparing the phase difference of a scatterer between two antennas,

the cross-range position of the scatterer along the baseline of the two antennas

can be obtained. By placing three receive antennas as a triangle, the two cross-

range positions of scatterers can be obtained and can form a 3D image of the

target (combined with pulse compression technique) [9] [77]. Similarly, three-

antenna configuration can also be used in bistatic radar to form 3D image. The

three-antenna configuration is shown in Fig.6.1, where R, R1 and R2 are three

receive antennas. We denote R as the origin of the coordinate, and the R1 and

R2 are located on the X and Y axis respectively. The distances between R
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and R1, R and R2 are d. After range alignment of sR1(t
′, t) itself and aligning

sR1(t
′, t) with sR(t

′, t), the received signal of R1 can be expressed as

sR1(t
′, t) =

∑
i

u(t′ − τTAi
(0)− τAiR(0))e

−j2πf(τTAi
(t)+τAiR1

(t)). (6.18)

Similar to signal of sR(t
′, t), the phase of O point is also used to do motion

compensation. After motion compensation, sR1(t
′, t) can be expressed as

sR1(t
′, t) =

∑
i u(t

′ − τTAi
(0)− τAiR(0))e

−j2πf(τTAi
(t)+τAiR1

(t)−τTO(t)−τOR1
(t))

≈
∑

i u(t
′ − τAi

(0))e−j2π
TAi+AiR1−TO−OR1

λ e−j 2π
λ
(w0+w1)T

−−→
OAit.

(6.19)

The ISAR image of antenna R1 can be expressed as

SR1(t
′, f) =

∫ Tp/2

−Tp/2
sR1(t

′, t)e−j2πftdt

= Tp
∑

i u(t
′ − τAi

(0))e−j2π
TAi+AiR1−TO−OR1

λ sinc
((
f + wT−−→

OAi

λ

)
Tp

)
.

(6.20)

It can be seen that the ISAR images SR(t
′, f) and SR1(t

′, f) are aligned in

range and cross-range directions. The difference is the phase of each scatterer.

For scatterer A, we can compute the phase difference between SR and SR1

to obtain the cross-range position of A. Denote a =
−→
OA = (x, y, z) on the

(O,X, Y, Z) coordinate system (the position of a general scatterer), and d1 =

−−→
RR1, we have

SR1(A)× SR(A)
∗

= exp
(
j2π

AR− AR1 +OR1 −OR
λ

)
≈ exp

(
j2π

(a− nT
1 an1)

Td1

λr1

)
= exp

(
j2π

ãTd1

λr1

)
= exp

(
j2π

x̃d

λr1

)
, (6.21)
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where ã = a− nT
1 an1 = (x̃, ỹ, z̃). Similarly, we can obtain the BiISAR image

on antenna R2 and compute

SR2(A)× SR(A)
∗

= exp
(
j2π

AR− AR2 +OR2 −OR
λ

)
≈ exp

(
j2π

(a− nT
1 an1)

Td2

λr1

)
= exp

(
j2π

ãTd2

λr1

)
= exp

(
j2π

ỹd

λr1

)
. (6.22)

For the approximation in (6.21) and (6.22), please refer to the lemma of

section 2.1. Define φ1 and φ2 the phases of SR1(A) × SR(A)
∗ and SR2(A) ×

SR(A)
∗ respectively, then we have

x̃ =
λφ1r1
2πd

, (6.23)

ỹ =
λφ2r1
2πd

. (6.24)

Denote rn01 = aTn01 as the range projection of a on the range direction,

where n01 = (n01x, n01y, n01z). We have the following equations


a− (aTn1)n1|x = ã|x = x̃

a− (aTn1)n1|y = ã|y = ỹ

aTn01 = rn01 .

(6.25)

There are three unknown variables in a = (x, y, z) and three equations. So

we can determine a by solving the above linear equations simultaneously. The
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above equations can also be expressed as


1− n2

1x, −n1xn1y, −n1xn1z

−n1xn1y, 1− n2
1y, −n1yn1z

n01x, n01y, n01z




x

y

z

 =


x̃

ỹ

rn01

 . (6.26)

For special coordinate system, the above equation can be further simplified.

For example, if we choose to have the target locates on the XZ plane of the

coordinate system, then n1y = 0, n01y = 0 and y = ỹ hold. Equation (6.26)

can then be simplified as

 1− n2
1x, −n1xn1z

n01x, n01z


 x

z

 =

 x̃

rn01

 . (6.27)

6.4 Simulation results

In this section, we use simulations to verify the correctness of our analysis on

shear of BiISAR image and the performance of the proposed interferometric

3D imaging algorithm. The transmitted signal is a linear chirp signal with

bandwidth of 150 MHz and carrier frequency of 35 GHz. The sampling rate

is 1.2 GHz. The chirp pulse duration is 1 microsecond and the chirp rate

is 1.5 × 1014 Hz2. The transmitter T and three receivers R, R1 and R2 are

located at [−50, 0, 0]× 103 m, [50, 0, 0]× 103 m, [50, 0, 0]× 103+[d, 0, 0] m and

[50, 0, 0] × 103 + [0, d, 0] m respectively, where d = 11.4998 m in simulation 1

and d = 9.9683 m in simulation 3. The Pulse Repetition Frequency (PRF) is

128 Hz and the coherent processing time Tp is 1 second. The discrete Fourier

transform point in the cross range is 512.
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Figure 6.3: Target model (simulation 1).

6.4.1 Simulation 1: Distortion of BiISAR Image

In this simulation, we show the distortion of BiISAR image due to bistatic

radar geometry and the movement of the target. The so called monostatic

equivalent antenna is located at [7.8835, 0, 0] × 103 m. The target is located

at [20, 0, 60] × 103 m. In this case, α = 40.6◦, γ = 63.43◦ and bistatic angle

β = 75.96◦. 1/ cos(β/2) = 1.2687. The target moves uniformly with speed

[335.35, 0, 335.35] m/s. The target is composed of 13 scatterers. All the scat-

terers are located on the XZ plane. Fig.6.3 shows the original target model (in

order to show the shear clearly, we choose a regular shape target). The target

forms a rectangle in h and n01 coordinate system. Fig.6.4 and Fig.6.5 show

the monostatic radar ISAR image and the bistatic radar BiISAR image. It can

be seen that the ISAR image keeps the shape of the target but the BiISAR

image shears proportional to the range. The ISAR and BiISAR images are

different. The range resolutions of BiISAR image is worse than that of ISAR

image. These concur with our analysis. Because the w is along the positive h

axis direction, the relative Doppler on the right part of the target is negative,

so the ISAR image on the cross-range direction is a reverse version of the tar-

get model. Fig.6.6 shows the projection of the reconstructed 3D image on the

(h,n01) plane. It can be seen that it is similar to the original target model.

174



CHAPTER 6. BISTATIC ISAR IMAGING INCORPORATING
INTERFEROMETRIC 3D IMAGING TECHNIQUE

Doppler

R
an

ge

50 60 70 80
1000

1050

1100

1150

1200

1250

Figure 6.4: ISAR image of monostatic radar on the so called equivalent position
(simulation 1).
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Figure 6.5: BiISAR image using bistatic radar (simulation 1).
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Figure 6.6: Reconstructed projection image on XZ plane using interferometric
technique (simulation 1).
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Figure 6.7: ISAR image of monostatic radar on the so called equivalent position
(simulation 2).

6.4.2 Simulation 2: BiISAR Image with Only Rotation

Movement

In this simulation, we show the ISAR and BiISAR images when the target

rotates around its axis and does not move. According to the analysis, the

shape of ISAR and BiISAR are similar but with different resolutions in range

and cross-range. The target model is the same as that in simulation 1 but

the target rotates an angle such that the target is also a rectangle in the new

(h,n01) coordinate. The target is located at [55, 0, 60] × 103 m. Then the

bistatic angle is different from simulation 1. The target rotates around axis

[1, 1, 1] and with rotation speed 0.0043 rad/s. The duration to collect data is

1 second and then the cross-range resolution of ISAR is 1 m. The geometry

of the bistatic radar is the same as that of simulation 1. Fig.6.7 and Fig.6.8

show the ISAR and BiISAR images. Again concurring with our analysis, the

ISAR and BiISAR images are similar. The range and cross-range resolutions

of BiISAR image are worse than that of ISAR image.
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Figure 6.8: BiISAR image of the bistatic radar (simulation 2).

6.4.3 Simulation 3: 3D Imaging using Interferometric

Technique

In this simulation, we show the 3D image of interferometric bistatic radar.

The coordinates of the transmitter and the receivers are the same as that

in simulation 1. The target is located at [−55, 0, 50] × 103 m. In this case,

α = 95.71◦, γ = 25.46◦ and bistatic angle β = 58.83◦. The target is com-

posed of 13 strong scatterers. During 1 second data collection time, the target

moves uniformly with speed [384.48,−256.32,−640.80] m/s and rotates uni-

formly around axis [0.1,−1, 0] with speed 8.57 × 10−4 rad/s. Fig.6.9 shows

the target model on three projected planes and the whole 3D model. Fig.6.10

and Fig.6.11 show the ISAR image and the BiISAR image. It can be seen

that due to the translational motion as well as rotational motion, the differ-

ence between these two images are not as severe as that shown in simulation

1, where only translational motion exists. At the same time, the similarity

between these two images are not as high as that in simulation 2, where only

rotational motion exists. Fig.6.12 shows the three projected image and the

3D image reconstructed using interferometric bistatic radar. It is close to the

original target model.
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Figure 6.9: Three different projected views and the 3-D model of the target
(simulation 3).
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Figure 6.10: ISAR image of monostatic radar on the so called equivalent po-
sition (simulation 3).
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Figure 6.11: BiISAR image of the bistatic radar (simulation 3).
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Figure 6.12: Three different projected views and the 3-D image of the target
using interferometric bistatic radar (simulation 3).

6.5 Conclusions

Monostatic ISAR image explores the back scattering character of a target. For

bistatic radar, the transmitter and the receiver observe the target from dif-

ferent views. So BiISAR image is complementary to ISAR image. The range

resolution and Doppler resolution of bistatic radar are a ratio of that of mono-

static radar. Although bistatic radar and monostatic radar share common

signal processing procedures, we show that bistatic radar could not be simply

replaced by a monostatic radar from the standpoint of radar imaging. Our

analysis shows that the BiISAR image is the projection of the target on range

and Doppler-gradient axes. Because the range direction and the Doppler-

gradient direction are not perpendicular, the BiISAR image is a sheared ver-

sion of the target when projected on the range and cross-range plane. Thus

bistatic ISAR cannot be equivalent to any monostatic radar system in general.

Three-antenna receiver interferometric configuration is proposed to correct this
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shear and to obtain 3D image of a target. Simulation results have validated

our analysis and shown the viability of the proposed 3D imaging algorithm.
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Chapter 7

Conclusions and Future Works

7.1 Research Purposes and Results

The aims of this study were to develop MIMO radar three dimensional imag-

ing algorithms and to improve image quality using sparse signal recovery al-

gorithms. In Chapter 2, an algorithm of MIMO radar 3D imaging using one

snapshot signals was developed. Under the assumption of orthogonal cod-

ing, after signal separation, phase compensation and signal order arrangement

processes, a large virtual aperture was formed, which improved the spatial

resolution using fewer number of antennas. An equation describing the signals

from a slant range target was obtained. Based on this equation, a slant range

target could be imaged, while conventional interferometric method proposed

assumes that the target is located at the broadside of the three-antenna re-

ceivers. In reality, the codes are not orthogonal. If the length of the codes is

short, high sidelobes occur, and this affects the image quality. So zero cor-

relation zone codes were proposed to overcome the high sidelobes problem

for isolated target. In Chapter 3, an algorithm of MIMO radar 3D imaging

using multiple snapshots signals was discussed. The space time mathematic
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equation fit for slant range target has been derived and the total 3D imaging

procedure has been proposed. In order to improve the SNR and increase the

separation ability by coherently combine the space-time signals, a method to

extract the effective rotation vector has been proposed.

The scatterers of a target are usually distributed sparsely on the target’s

surface. This information was used to improve the image quality. An ℓ1

norm and ℓ0 norm homotopy was built by proposing a sequential order one

negative exponential function. By varying a parameter from infinity to zero,

a near ℓ0 norm criterion could be obtained. Compared with other sparse

signal recovery algorithms such as, OMP, CoSaMp, Bayesian method with

Laplace priori, ℓ1 magic, L1-Ls, and smoothed ℓ0 norm, our algorithm has

superior performance for high SNR and low sparsity signals. Furthermore, our

method is easily extended to block sparse and complex signal cases. Because

when a complex linear equation is transformed to a real linear equation, the

conventional complex sparse signal becomes block size of 2 real sparse signal.

The equivalence between block size of 2 real sparse signal recovery and complex

sparse signal recovery using our ℓ1 ℓ0 norms homotopy method has been proven.

This means that complex signal based algorithm is better than real signal based

algorithm (not using block property) using our method. These results were

reported in Chapter 4.

The collocated MIMO radar 3D imaging signal model can be described

as a (one-dimensional) linear equation or a multi-dimensional linear equation.

Application of linear equation based ℓ1 ℓ0 homotopy sparse signal recovery al-

gorithm on collocated MIMO radar 3D imaging was discussed in the first part

of Chapter 5. Although it can improve the image quality compared with con-

ventional correlation method, it needs huge memory. Multi-dimensional linear

equation based method has compact expression, occupies less memory and
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has similar performance compared to linear equation based method. A dis-

tributed MIMO radar 3D imaging technique was also discussed. By analysis,

the distributed MIMO radar system is divided into a few subimaging systems.

All the transmitting arrays and one collocated receiving array constitute a

subimaging system. After the images have been obtained by all subimaging

systems, they are combined to form the final image. Sparse signal recovery

algorithms were also used to improve the image quality.

In Chapter 6, bistatic ISAR imaging technique was discussed. We proved

that the bistatic ISAR image is a sheared version of the projection image of

the target on range-Doppler plane. This phenomenon limits the application of

bistatic ISAR image on target identification. In order to solve this problem, a

three receive antennas interferometric 3D imaging technique was proposed to

obtain the non-sheared 3D image of the target. Our results rectified the errors

of some researchers that the bistatic image is equivalent to the monostatic

ISAR image obtained by an equivalent antenna located on bisector angle.

7.2 Significance, Limitations and FutureWorks

Our results extend the availability of 3D imaging to slant range target. The

space-time equation derived provides a basis for any future imaging methods

development. The ℓ1 ℓ0 homotopy sparse signal recovery algorithm has po-

tentially important applications on image processing, communication signal

processing, etc. For one snapshot case, in order to obtain high cross-range

resolution, the distances between different antennas should be large enough.

This may cause problems on synchronization between different antennas. The

way to solve this problem is beyond the scope of this thesis. The whole beam-

pattern is the product of the standard beampattern of one antenna and the
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array beam pattern. Because the size of each antenna is small, which corre-

sponds to a large width beam pattern, if the unambiguous window is less than

the one antenna beampattern width, grating lobes occur. If there is only one

target in the beam, the MIMO radar structure discussed in this thesis can

work. However, if multiple targets are located in the beam of one antenna and

cover one unambiguous window of the MIMO array, ambiguity occurs when

only one snapshot signal is used to form the image. Multiple targets imaging

should be a research topic in the future.

Sparse signal recovery on multiple snapshots MIMO radar 3D imaging has

not been discussed in this study due to the limited time duration. Combining

advanced sparse signal recovery algorithm with multiple snapshots signal could

improve the image quality. Theoretic analysis of our proposed ℓ1 ℓ0 homotopy

method has not been discussed. The conditions under which our algorithm

converges to the ℓ0 norm solution is also not known. This is a future research

topic.

Conventional CS imaging methods divide the imaging field as grids. The

scatterers may not be just located on the grids. Gridless method is another

future research topic.
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