561 research outputs found

    IPv6 Multihoming Support in the Mobile Internet

    Get PDF
    Fourth-generation mobile devices incorporate multiple interfaces with diverse access technologies. The current Mobile IPv6 protocol fails to support the enhanced fault tolerance capabilities that are enabled by the availability of multiple interfaces. In particular, established MIPv6 communications cannot be preserved through outages affecting the home address. In this article, we describe an architecture for IPv6 mobile host multihoming that enables transport layer survivability through multiple failure modes. The proposed approach relies on the cooperation between the MIPv6 and the SHIM6 protocols.Publicad

    A Survey on Handover Management in Mobility Architectures

    Full text link
    This work presents a comprehensive and structured taxonomy of available techniques for managing the handover process in mobility architectures. Representative works from the existing literature have been divided into appropriate categories, based on their ability to support horizontal handovers, vertical handovers and multihoming. We describe approaches designed to work on the current Internet (i.e. IPv4-based networks), as well as those that have been devised for the "future" Internet (e.g. IPv6-based networks and extensions). Quantitative measures and qualitative indicators are also presented and used to evaluate and compare the examined approaches. This critical review provides some valuable guidelines and suggestions for designing and developing mobility architectures, including some practical expedients (e.g. those required in the current Internet environment), aimed to cope with the presence of NAT/firewalls and to provide support to legacy systems and several communication protocols working at the application layer

    An API for IPv6 Multihoming

    Get PDF
    IFIP International Workshop on Networked Applications, Colmenarejo, Madrid/Spain, 6?8 July, 2005This paper proposes an API for Multihoming in IPv6. This API is based on the Hash Based Addresses and Cryptographically Generated Addresses approaches, which are being developed by the IETF multi6 Working Group. The support of Multihoming implies several actions such as failure detection procedures, reachability tests, re-homing procedures and exchange of locators. Applications can benefit from transparent access to Multihoming services only if per host Multihoming parameters are defined. However, more benefits could be obtained by applications if they will be able to configure these parameters. The proposed Multihoming API provides different functions to applications which can modify some parameters and invoke some functions related with the Multihoming Layer.Publicad

    Efficient security for IPv6 multihoming

    Get PDF
    In this note, we propose a security mechanism for protecting IPv6 networks from possible abuses caused by the malicious usage of a multihoming protocol. In the presented approach, each multihomed node is assigned multiple prefixes from its upstream providers, and it creates the interface identifier part of its addresses by incorporating a cryptographic one-way hash of the available prefix set. The result is that the addresses of each multihomed node form an unalterable set of intrinsically bound IPv6 addresses. This allows any node that is communicating with the multihomed node to securely verify that all the alternative addresses proposed through the multihoming protocol are associated to the address used for establishing the communication. The verification process is extremely efficient because it only involves hash operationsPublicad

    An API for IPv6 Multihoming based on HBA and CGA

    Get PDF
    EUNICE 2005. IFIP International Workshop on Networked Applications, Colmenarejo, Madrid/Spain, 6–8 July, 2005. (Proceedings of the 11th Open European Summer School EUNICE 2005: Networked Applications)This paper proposes an API for Multihoming in IPv6. This API is based on the Hash Based Addresses and Cryptographically Generated Addresses approaches, which are being developed by the IETF multi6 Working Group. The support of Multihoming implies several actions such as failure detection procedures, reachability tests, re-homing procedures and exchange of locators. Applications can benefit from transparent access to Multihoming services only if per host Multihoming parameters are defined. However, more benefits could be obtained by applications if they will be able to configure these parameters. The proposed Multihoming API provides different functions to applications which can modify some parameters and invoke some functions related with the Multihoming Layer.This work has been partly supported by the European Union under the E-Next Project FP6506869 and by OPTINET6 project TIC-2003-09042-C03-01

    Multinet : enabler for next generation enterprise wireless services

    Get PDF
    Wireless communications are currently experiencing a fast migration toward the beyond third-generation (B3G)/fourth generation (4G) era. This represents a generational change in wireless systems: new capabilities related to mobility and new services support is required and new concepts as individual-centric, user-centric or ambient-aware communications are included. One of the main restrictions associated to wireless technology is mobility management, this feature was not considered in the design phase; for this reason, a complete solution is not already found, although different solutions are proposed and are being proposed. In MULTINET project, features as mobility and multihoming are applied to wireless network to provide the necessary network and application functionality enhancements for seamless data communication mobility considering end-user scenario and preferences. The aim of this paper is to show the benefits of these functionalities from the Service Providers and final User point of view

    Seamless Infrastructure independent Multi Homed NEMO Handoff Using Effective and Timely IEEE 802.21 MIH triggers

    Full text link
    Handoff performance of NEMO BS protocol with existent improvement proposals is still not sufficient for real time and QoS-sensitive applications and further optimizations are needed. When dealing with single homed NEMO, handoff latency and packet loss become irreducible all optimizations included, so that it is impossible to meet requirements of the above applications. Then, How to combine the different Fast handoff approaches remains an open research issue and needs more investigation. In this paper, we propose a new Infrastructure independent handoff approach combining multihoming and intelligent Make-Before-Break Handoff. Based on required Handoff time estimation, L2 and L3 handoffs are initiated using effective and timely MIH triggers, reducing so the anticipation time and increasing the probability of prediction. We extend MIH services to provide tunnel establishment and switching before link break. Thus, the handoff is performed in background with no latency and no packet loss while pingpong scenario is almost avoided. In addition, our proposal saves cost and power consumption by optimizing the time of simultaneous use of multiple interfaces. We provide also NS2 simulation experiments identifying suitable parameter values used for estimation and validating the proposed mode

    Design and evaluation of dynamic policy-based flow redirection for multihomed mobile netwotks

    Get PDF
    This paper presents the design, implementation and evaluation of a solution for dynamic redirection of traffic flows for multihomed mobile networks. The solution was developed for a mobile user that disposes of a Personal Area Network (PAN) with a Personal Mobile Router (PMR), in order to achieve Always Best Connected(ABC) service by distributing flows belonging to different applications among the most appropriate access networks. Designed in a modular way for a NEMO based mobility and multihoming support, the proposed flow redirection solution can be easily coupled with and controlled by dynamic traffic policies that come from advanced network intelligence, according to the currently available network resources and user and application requirements. A prototype implementation was validated and assessed on a testbed as proof-of-concept

    Enhanced Mobility Solution In Mobile Ipv6 Network

    Get PDF
    The performance of Network Mobility (NEMO) used to manage network mobility does not provide satisfactory result in terms of delay, throughput and session continuity when dealing with multihomed mobile network. Enhanced Mobility Solution in Mobile IPv6 Network is extremely complex; the study addressed the multihoming issues of MIPV6 Networks on the basis of NEMO Basic Support, analyzes the benefits of multihoming and discusses implementation issues of all classes of multihoming possibilities. Additionally, Policy-based routing, as one of the multihoming benefits, is studied in particular. A framework based on policy based routing protocol was proposed for handling both the inbound and the outbound traffic on a mobile network, under specified policies which consider packet characteristics, current network situation and user preferences. The interface selection algorithm was based on NEMO implementation structure using a technique of mutihoming which was extended to MIPv6 concepts The outcome of this research work are: a designed policy protocol for policy messages communication between the Mobile Router and the Home Agent, the framework is simulated using Network Simulator (NS2) with an extension of mobiwan, the result shows the end to end delay, average end to end delay, overhead, optimal routing path, average inter-packet latency and throughput of the developed system. The information from the analysis of the result shows that the enhanced solution has drastically reduced average packet delay to minimum with 72.5 %( 0.040s to 0.011s), and end-end delay with 75 %( 0.020s to 0.005s) compared with NEMO solution. Overhead in the mobile network was maintained by 10bytes per nested level by keeping the session. The solution is important by enterprises in making decision to acquire internet connectivity for the purpose of connectivity redundancy and traffic load distribution optimization. This result is very important for time sensitive application that requires stable network condition
    corecore