
AN API FOR IPV6 MULTIHOMING

Isaías Martínez-Yelmo
Alberto García-Martínez
Marcelo Bagnulo Braun
{ imyelmo,alberto,marcelo} @it.uc3m.es
Departamento de Telemática
Universidad Carlos III de Madrid
Av. Universidad 30. 28911 Leganés
Madrid (Spain)

Abstract This paper proposes an API for Multihoming in IPv6. This API is based on the
Hash Based AddressesandCryptographically Generated Addressesapproaches,
which are being developed by the IETF multi6 Working Group. The support of
Multihoming implies several actions such as failure detection procedures, reach-
ability tests, re-homing procedures and exchange of locators. Applications can
benefit from transparent access to Multihoming services only if per host Multi-
homing parameters are defined. However, more benefits could be obtained by
applications if they will be able to configure these parameters. The proposed
Multihoming API provides different functions to applications which can mod-
ify some parameters and invoke some functions related with the Multihoming
Layer.

Keywords: API, Multihoming, IPv6

1. Introduction

Networked applications are fundamental tools in our daily lives. So, high
available connections and resiliency [Yin and Twist, 2003] are usually required
by enterprises and small-users. Providing this high availability is a difficult
task because of the fact that network failures can always happen; thus, redun-
dancy techniques such as Multihoming are needed. In IPv4, Multihoming is
based on announcing all the prefixes of a site through all the providers using
the Border Gateway Protocol (BGP). Therefore, if a connection fails, a new
path could be found with another provider. Small-users never use BGP in their
equipments because of the scalability problems of the protocol [Huston, 2001]
and its complexity. So, Multihoming cannot be supported for small-users un-
less NAT-based boxes are used [Guo et al., 2004], with all the problems that

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidad Carlos III de Madrid e-Archivo

https://core.ac.uk/display/29399359?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

272 I. Martínez, A. García, M. Bagnulo

NATs present such as need for Application Level Gateways, disruption of end-
to-end security, etc.

Some goals for Multihoming in IPv6 have been defined in [Abley et al.,
2003], these goals are fault tolerance, load sharing, transport layer survivabil-
ity and enhanced scalability for small-users. One of the proposed solutions
combines Hash Based Addresses (HBA) [Bagnulo, 2004] and Cryptographi-
cally Generated Addresses(CGA) [Aura, 2004].

This paper proposes a Multihoming API for the approach based on HBA
and CGA. It is structured as follows. In section 2, the Multihoming solution
which is being developed actually by the IETF multi6 Working Group is pre-
sented. In section 3 a Multihoming API is described; the proposed API allows
an ordered access to the Multihoming functionalities shown in the previous
section. Future work is considered in section 4. Finally, conclusions about the
presented work are exposed.

2. Multihoming in IPv6

Several roles are played by IPv4 addresses and IPv6 addresses:

Identifier: IP addresses are passed to upper layers to be used as identi-
fiers for the local and remote end points of a communication.

Locator: IP addresses reflect the topological location of a host in the
Internet

Forwarding Label: Routers forward packets taking into account their
destination IP address.

Due to this overload of roles, when a communication path suffers a fail-
ure, it is impossible to change the locator of the communication, even if this
communication could be continued using another locator, because the identi-
fier would also change and the Transport Level could not identify new packets
as belonging to the same flow [Nordmark, 2004].

The proposal of the IETF multi6 Working Group is based on a new Mul-
tihoming Layer placed between the IP routing sub-layer and the IP end-point
sublayer [Nordmark and Bagnulo, 2005]. This layer manages a set of locators
corresponding to a given identifier.

A goal started by RFC 3582 [Abley et al., 2003] is to avoid introducing
new vulnerabilities in the deployment of Multihoming. The requirement of
mapping different locators for a single identifier enables new vulnerabilities
like flooding and hijacking attacks [Nordmark and Li, 2005]. Therefore, it
is necessary to prevent these attacks, so the solution should provide a secure
mapping between identifiers and locators. The solution based on HBA and
CGA provides this secure mapping; either there is a restriction in the locators

AnAPI for IPv6 Multihoming 273

to use (HBA approach), or there is a secure way of exchanging new locators
based on signatures(CGA approach). Thus, it can be assured that the locators
are associated with the identifier which is being used in the communication.

Other functionalities are needed for the Multihoming support; for instance,
it is needed to change the actual locators of an ongoing communication, this is
called re-homing procedure. Nevertheless, a re-homing procedure should only
be needed when a failure has been happened; thus, it is necessary to check the
communication through reachability tests. There are two options:

Bidirectionally operational address pair:The locator pair used in the
communications is the same in both directions.

Unidirectionally operational address pair:The locator pair used in each
direction of the communication is different.

For each case, a reachability test is proposed in [Arkko, 2004].
Finally, if reachability tests are not successful, working locators must be

found; reachability tests with the new pairs of locators must be performed until
a pair allows a new path to establish the communication. Once a pair of valid
locators is found, a re-homing procedure can be executed for those locators.

After presenting the different functions required for Multihoming support,
we will explain the CGA and HBA approaches.

2.1 CGA (Cryptographically Based Addresses)

The CGA approach provides the secure mapping between identifier and lo-
cators through asymmetric cryptography. A CGA is an IPv6 address which can
be used as a predefined valid locator, and its interface ID [Hinden and Deering,
2003] is related to a public key. This relation is due to the fact that the inter-
face ID is a hash (SHA-1 hash algorithm [SHA-1, 1995]) of the data structure
showed in the Fig.1. The data structure is calledCGA Parameters Data Struc-
tureand contains a modifier, a subnet prefix, a public key and an optional field;
only the leftmost 64 bits of the hash of the structure forms the interface ID. Fur-
thermore, there should be a CGA per each subnet prefix owned by the host if
we want the information about the public key to be accessible from any subnet
prefix.

The establishment of a communication could be done through the DNS ser-
vice, since a CGA is a valid IPv6 address and it would be probably mapped
with a name. If new locators are to be added for its later use, an exchange
between the multihomed host and the other side of the communication must
be performed. This exchange includes the new locators, the CGA Parameters
Data Structure and a signature of the locators with the private key associated
with the public key contained in the CGA Parameters Data Structure. The se-
curity of this process relies on the fact that the other side of the communication

274 I. Martínez, A. García, M. Bagnulo

checks that the hash of the received CGA Parameters Data Structures matches
with the interface ID of the other host; this means that the public key inside
the received CGA Parameters Data Structure belongs to the other host and the
signature of the locators can be checked. Thus, if the check of the signature is
successful, it implies that the locators are valid.

Note that an attacker requires bruce force methods to obtain a new pair of
private/public keys to obtain a hash of the CGA Parameters Data Structure
equal to the interface ID of the host which is being attacked. If [Aura, 2004]
is read carefully, we can see that the complexity of the attack isO

(
259

)
and

additional security can be added to the CGA by means of the Sec parameter.
TheSecparameter is embedded in the interface ID (the 3 leftmost bits of the
ID) and requires that an adjustable size part of the leftmost 112 bits of another
hash (again a SHA-1 algorithm), named hash2, equals to zero. With this re-
quirement, the complexity of a bruce-force attack isO

(
259+16∗Sec

)
. It has to

be taken into account the fact that this extra security is not without a cost, since
hosts have to makeO

(
216∗Sec

)
hash2 operations until a CGA Data Structure

fits with the Sec parameter condition.
Nevertheless, CGA have a problem due to the fact that the computational

cost of asymmetric public operations for signing the locators with the private
key is very large.

2.2 HBA (Hash Based Addresses)

The idea of HBA [Bagnulo, 2004] is to avoid the computational cost of
CGA. This is due to the fact that HBA does not need asymmetric key cryptog-
raphy for the exchange of locators. The solution proposed in HBA is to include
in a HBA Parameters Data Structure all the known subnet prefixes by a host.
As in CGA, a hash operation is applied to the HBA Parameters Data Structure,
but in this case information about the known prefixes by the host is included.
The leftmost 64 bits are again the interface ID which will be added to the sub-
net prefix. This process must be applied to all subnet prefixes contained in the
HBA Parameters Data Structure; thus, after a HBA set of addresses is obtained,
only these addresses could be used as locators in a Multihoming environment.

The interface ID is now a container of information about the different subnet
prefixes of the host and the verification process of the HBA is similar to the
CGA case, but in this case the verified information is the subnet prefixes owned
by the host and not a public key. Due to this last fact, only prefixes of the host
are known. When a packet with an unknown source address is received, it must
be checked that the prefix belongs to the set of prefixes contained in the HBA
Parameters Data Structure, and that the locator address belongs to the HBA set
generated from the same HBA Parameters Data Structure. This means making
a hash of the HBA Parameters Data Structure with a subnet prefix equal to the

AnAPI for IPv6 Multihoming 275

Modifier
(16octets)

SubnetPrefix
(8 octets)

CollisionCount
(1 octet)

PublicKey
(Variable Length)
ExtensionFields

(Optional,Variable Length)

Figure 1. CGA Parameters Data Struc-
ture

Type Length P Reserved
Prefix[1]
Prefix[2]

...
Prefix[n]

Figure 2. Multi-Prefix extension for
CGA

received. If the leftmost 64 bits are equal to the interface ID, the new address
belongs to the HBA set and it can be accepted as a valid locator.

The bruce-force attack complexity is the same as in CGA approach and a
Sec parameter is also used to improve the security.

2.3 Solution based on HBA and CGA

The use of HBA has several advantages over CGA: public key cryptography
is not needed, so a great amount of computational complexity is avoided and
it is not needed to check any signature of the locators. However, the HBA
approach has a drawback, recalculation of the HBA set is necessary if a new
subnet prefix wants to be added. Usually, a host knows a priori the prefixes
which must be managed by it, but in some environments, such as in mobility,
prefixes are only known a posteriori.

Nevertheless, HBA and CGA can use a common format for compatibility
reasons [Bagnulo, 2004]. This can be done including each assigned Prefix/64
as an extension of the CGA Parameters Data Structure; this is done using an
extension for CGA and it is called Multi-Prefix extension (see Fig.2). The
public key field of the CGA Parameters Data Structure can be a random number
or a public key; so, if the HBA includes a public key, asymmetric cryptography
can be used for the exchange of new locators as occurs for CGA.

3. API proposal for Multihoming in IPv6

Nowadays, there are hundreds of applications running on the Internet and
it is not desirable to change them if a new network service is introduced. So,
the Multihoming Layer should be transparent to legacy applications while pro-
viding extended functions to the IPv6 API. An approach to provide the needed
transparency could be to rely on predetermined parameters for old applications

276 I. Martínez, A. García, M. Bagnulo

Applications
IPv6API MultihomingAPI

TCPLayer UDP Layer SCTPLayer
MultihomingLayer

IP Layer
MAC Layer
PHY Layer

Figure 3. Proposed Multihoming API scheme

Engine
Management

HBA

CGA

HBA + CGA

EngineExchange
Engine

Timer

exchsub()

Failure
Detection
Engine

Reachability
Re−homing

Engine

Timer
reachreq()

reachsub()

rehomreq()

rehomext()icmperror()

reachreq()

rehomsub()

reachtest()

get_pair_locators()
rehomsuc()

set_hbacga()
get_own_locators() get_end_locators()

exchsol()
failure_detected() set_pair_locators()get_hbacga()

Application Layer

IP Layer

Transport Layer

Figure 4. Multihoming API Scheme

and allow new applications to use the Multihoming API to get enhanced fea-
tures.

A scheme of the proposal is shown in Fig.3. This scheme allows new appli-
cations to make use of new features provided by the Multihoming Layer. This
approach is inspired in [Komu, 2004].

3.1 API Scheme

The API scheme proposed can be seen in Fig.4. In the figure we can see
the different HBAs, CGAs and HBAs+CGAs which are managed by the Mul-
tihoming Layer. The HBA can only manage subnet prefixes due to the fact that
the authentication is always performed doing the hash test from the extended
CGA Parameters Data Structure and comparing the result with the interface ID
of the HBA. CGAs and CGAs+HBAs can manage locators, not only prefixes

AnAPI for IPv6 Multihoming 277

as consequence of the signature used for the exchange of locators. Also there
are a Failure Detection Engine, a Reachability Engine, a Re-homing Engine
and a Exchange Engine.

The socket interface is usually used in Operative Systems to manage ongo-
ing connections; so, the Multihoming API should provide most of its features
through this socket interface.

3.2 Address Generation

First of all, it is needed the generation of HBAs and CGAs. These functions
are not related with any outgoing communication, so socket interface can not
be used and an external library must be provided. The proposed functions are:

void ∗create cga(uint64 t prefix, void ∗extfields, int extlength, uint8 t
sec,void ∗pk, int pklength) . This function creates a CGA and its input pa-
rameters are:

prefix: The subnet prefix associated with the CGA which is introduced in the
CGA Parameters Data Structure.
extfields:Optional extension fields can be passed with this parameter.
extlength:Length of the extension fields.
sec:This parameter specifies the value of the Sec parameter in the CGA which
sets the level of security against bruce force attacks for impersonating a given
interface identifier.
pk: With this parameter, public key of the CGA Parameters Data Structure is
specified. If pk is equal to zero, an asymmetric key pair must be generated.
pklength:Length in bytes of the public key.

This function selects a random number for the modifier, create the CGA Pa-
rameters Data Structure and finally generates the CGA according to the re-
quirements of the Sec parameter. So, the output parameters will be theCGA
Parameters Data Structure, theCGA itself and theprivate keyif pk was equal
to zero.

void ∗create hba(void ∗multiprefix, int multilenght, void ∗extfields, int
extlength, uint8 t sec, void∗pk, int pklength) . This function creates a set
of HBAs which are generated with the same extended CGA Parameters Data
Structure. Input parameters are:

multiprefix: It is the Multi-Prefix extension for CGA. It contains the different
subnet prefixes which will be used to generate the HBA set.
multilength:Length in bytes of the Multi-prefix extension.
extfields:Extensions fields can be included which are different from the Multi-
Prefix extension.
extlength:Length in bytes of the extension fields.
sec:Again, the level of security is selected with this parameter.
pk: The public key of the HBA if it wants to be used the functionality of
CGA+HBA.

278 I. Martínez, A. García, M. Bagnulo

pklength:Length in bytes of the public key.

The function must select a random number for the modifier and another random
number if the pk parameter is equal to zero. Finally, a set of HBAs must be
generated according to the proposed generation process in [Bagnulo, 2004]
which implies that the hash2 must apply with the Sec parameter. A subnet
prefix is not needed because a subnet prefix from the Multi-prefix-extension
is used for each HBA. The output parameters will be theset of CGAsand the
extended CGA Parameters Data Structure.

3.3 Management Engine

Applications can benefit from the identifiers and locators could be needed
for applications. The selection of an addressing model, if several are available
in a host, implies how the alternative locators are communicated to other hosts.
There are four possibilities:

CGA: Exchangeof locators protected by asymmetric key. A large com-
putational complexity is needed to perform this approach. The authen-
ticity of the public key is checked with two Hash operations. Locators
can be notified to other hosts at any time.

HBA: Exchange of locators is based on Hash operations. Only the gen-
erated set of HBA allows re-homing procedures.

HBA+CGA: HBAs Data structure is an extension of the CGA data
structure, so both functionalities can be provided at the same time.

None: The host is upgraded with Multihoming support but HBAs or
CGAs are not available. Only Multihoming functions will be performed
if the other host of the communication can manage HBAs and/or CGAs.

A mobile node should select CGA or HBA+CGA, or a web server should
select HBA because it needs to perform a lot of tasks per minute and the use
of CGA with asymmetric cryptography operations to sign the locators would
reduce its performance.

Actual IPv6 API allows to obtain the different IPv6 addresses which have
been assigned to the different interfaces in a host. Nevertheless, it is impossible
to know if an IPv6 address is a HBA or a CGA by simple inspection. The
Multihoming Layer knows this information, so the Multihoming API could
provide selection mechanisms and ways to access to the type of addresses that
is being used by a given communication. The functions which provide these
features will be:

AnAPI for IPv6 Multihoming 279

void *get hbacga(int typeaddr). This function allows applications to re-
trieve the addresses managed by the Multihoming Layer. Thetypeaddrparam-
eter indicates the type of wanted addresses (HBA, CGA or HBA + CGA). The
output will be a list of different addresses with the selected type if they exists.

It could be thought that an address selection mechanism is needed, but this
is not necessary because the IPv6 API already supports this feature with the
function bind [Stevens and Thomas, 1998].

Furthermore, it is needed to inform at the Mutlihoming Layer about the
different available HBAs and CGAs in the host which must be managed by it:

int set hbacga(void ∗hbacga, int typeaddr). This function should be used
by a superuser program to configure the HBAs and CGAs at the Multihoming
Layer. This function could be executed in the starting sequence of a host. Input
parameters are:

∗hbacga:A pointer to a list with the HBAs, CGAs or HBAs+CGAs.
typeaddr:Type of addresses in the list.

The output value will be an integer and if it equals to zero, the function will
have finished successfully.

Locators are managed by the Multihoming Layer and they are not all known
a priori; nevertheless, it could be useful to know the available locators for a
connection in some situations such as debugging, administration and manage-
ment or getting traces:

void *get own locators(int fdsocket). This function obtains the locators
that the host can manage with the socket fdsocket. This is necessary because
locators can change if the host is in a mobile environment. The input parameter
is fdsocketwhich is the file descriptor of the socket used for the communica-
tion. The output parameter will be the list of locators.

3.4 Exchange Engine

Short connections could not benefit from re-homing capabilities; for in-
stance, a request-reply communication in HTTP 1.0. Thus, a timer is defined
and when this timer expires, locators are exchanged. This exchange is neces-
sary before a failure interrupts the communication, because if locators are not
exchanged, re-homing can not be done. Nevertheless, the application could
know in advance the time which will be employed in the communication; so,
it will be interesting to force a exchange of locators if a large connection is
going to be used, or to prevent the exchange if the communication is going to
be short:

int exchsol(int fdsocket, int time)This function of the proposed Multihom-
ing API allows to force a exchange of locator. It has thetime parameter and
there are three possibilities:

280 I. Martínez, A. García, M. Bagnulo

minus than zero:The exchange is prevented.
equals to zero:The exchange of locators is done immediately.
minor than internal timer:The internal timer is set to the value of time.

Due to the fact that this engine manages the exchange of locators with the other
side of the communication, it should provide this information to upper layers:

void *get end locators(int fdsocket) This function shows the locators of
the other host in the communication and its parameters are the same as that the
getownlocatorsfunction.

3.5 Failure Detection Engine

A Failure Detection Engine is necessary for detecting failures in commu-
nications. Three mechanisms are under study in the IETF multi6 Working
Group: a failure may exists if an ICMP Destination Unreachable message is
received, packets are not received in the interval of an inactivity TCP timer or
applications notify about problems in their communications. So, it is necessary
that the Multihoming API provides a function to inform the Multihoming layer
about problems in upper layers:

int failure detected(int fdsocket). This function allows upper layers to
notify about problems in the communication and a reachability test must be
requested (reachreq()). The output parameter will be an integer and if it equals
to zero, the function will have finished successfully.

If a failure is detected, the Failure Detection Engine has to send a notifica-
tion to the Re-homing Engine (rehomreq()).

3.6 Reachability Engine

The Reachability Engine performs reachability tests. If a notification is re-
ceived, it verifies the communication with a reachability test that consists of
sending a probe packet with a particular locator pair to confirm that a path is
valid if a response is received.

int reachtest(int fdsocket, struct sockaddr myaddr, struct sockaddr
end addr, socklent addrlen). This function performs a reachability test and
its parameters are:

fdsocket:File descriptor of the socket used for the communication.
my loc: Sourcelocator.
end loc: Destinationlocator.
loclen: Length of locator.

The locators used for the reachability test aremy loc andend loc. The output
parameter will be an integer and if it equals to zero, the function will have
finished successfully.

AnAPI for IPv6 Multihoming 281

Figure 5. Reachability tests that can be
performed

Path A

set_pair_locator()

Path B

Figure 6. Rehoming of the communica-
tion between path A and B

Fig.5 shows the different paths which can be tested taking into account the
pair of locators that can be formed. Only it is needed that one path provides
connectivity.

3.7 Re-homing Engine

The Re-homing Engine manages re-homing procedures. It could be inter-
esting for applications to obtain information about the occurrence of re-homing
procedures. For instance, if an UDP application implements a slow-start algo-
rithm as TCP, it could be interesting for the application to perform a slow-start
algorithm after a re-homing procedure and try to obtain a fast adaptation to the
new bandwidth.

rehomsuc()A signal is sent to applications to inform that a re-homing pro-
cedure has been performed by the other side of the communication.

int get pairlocators(int fdsocket, struct sockaddr∗my loc, struct sock-
addr ∗end loc, socklen t ∗loclen). This function obtains the pair of locators
used in the ongoing communication. This request is solved by the Re-homing
because last pair of locators used in a communication are always known after
a re-homing procedure. Input parameters are:

fdsocket:File descriptor of the socket used for the communication.
∗my loc: Pointerwhere the source locator will be saved.
∗end loc: Pointerwhere the destination will be saved.
∗loclen: Pointer with space reserved to the locators. The function modifies its
value to the length of locators.

The output parameter will be an integer and if it equals to zero, the function
will have finished successfully.

282 I. Martínez, A. García, M. Bagnulo

Figure 7. Basic organizational chart of Multihoming Layer

int set pair locator(int fdsocket, struct sockaddr myaddr, struct sock-
addr end addr, socklent addrlen). This function sets the locators for the
ongoing communication; so, it is like a re-homing solicitation. Its structure
is the same as thereachtestfunction. If my loc and endloc are equal to zero
the locators will be selected by the Re-homing Engine. It must be noted that
a reachability test should be performed before a re-homing procedure; thus,
the Re-homing Engine has to submit a solicitation for a reachability test to
the Reachability Engine (reachreq()). This function can be used to force a re-
homing if, for example, the QoS obtained by an application is not enough; an
example could be a videoconference where many frames are dropped.

Fig.6 illustrates a rehoming procedure. After the locators have been ex-
changed and a new pair of locators has been selected after performing a reach-
ability test. Then, the communication path A can be changed to path B without
breaking the established connection.

3.8 Organizational chart of Multihoming Layer

In Fig.7 a basic organizational chart of the Multihoming Layer is shown.
The figure shows the basic functions that must be performed to obtain Multi-
homing support. First of all, it is necessary the exchange of locators. If other
locators are not known, it is impossible to find an alternative path. A rehoming
procedure can be performed if the ongoing communication has some type of

AnAPI for IPv6 Multihoming 283

problem (lost of connectivity, low quality, ...). At this point a new path must be
found, so a reachability test is used to allow us to test the connectivity between
locators of different hosts. Finally, if an alternative pair of locators is found, a
rehoming procedure can be tried.

All the proposed functions in this section are necessary to provide a en-
hanced Multihoming Service to the applications and the needed tools for ad-
ministration and management.

4. Future Work

Different tasks can be performed in the future taking into account the pro-
posal of this paper. It is necessary a deep study of the default parameters which
must be configured in the Multihoming Layer to provide reliable Multihoming
support to legacy applications. Also, it should be interesting a comparation
of the performance between legacy applications, legacy applications making
use of Multihoming in transparent mode and applications using the Multihom-
ing API. Furthermore, a large work in close relation with the multi6 Working
Group should be done until an Multihoming API can be provided in the future.

5. Conclusions

HBA and CGA provide a secure mapping between identifiers and locators.
In this way, stable identifiers are shown to the Transport Layers while the loca-
tors used in the IP datagrams can be changed without disrupting the communi-
cation. CGA has a much bigger computational complexity due to the fact that
asymmetric key operations are needed. Conversely, HBAs have a low compu-
tational cost due to the fact that they only use hash operations. Nevertheless,
in HBA the different prefixes which would be used by a host must be known
in advance because this information is included in the interface ID of IPv6
addresses through a hash operation. CGA has not this limitation because the
locator is authenticated through an asymmetric cryptographic scheme. New
locators which are not known a priori can be sent because they are signed with
the private key of the Host.

HBA and CGA have different features which can be used at the same time
by different applications. The API proposed in this paper manages the mapping
method between identifiers and locators. Because of this feature, applications
can select HBA, CGA or CGA + HBA depending on their needs.

Furthermore, other functions are added to improve the failure detection and
the re-homing procedure. With these functions, applications can inform about
failures in the communications or a re-homing procedure can be requested by
the application (for example, if the received QoS is not enough). These mech-
anisms can provide faster response if applications detect failures sooner than
lower layers. Other functionalities are also added, such as the solicitation of

284 I. Martínez, A. García, M. Bagnulo

an exchange of locators or the possibility for applications to be informed about
changes of the locators related with the ongoing communication. Legacy appli-
cations can obtain Multihoming support if there exists a default configuration
which configures the minimal needed parameters.

Acknowledgement

The authors would like to thank to Carlos J. Bernardos for the ideas pro-
vided. This work has been partly supported by the E-Next Project FP6506869
and OPTINET6 project TIC-2003-09042-C03-01.

References
Abley, J., Black, B., and Gill, V. (2003).RFC 3582: Goals for IPv6 Site-Multihoming Architec-

tures.
Arkko, J. (2004).Failure Detection and Locator Selection in Multi6. Internet Draft draft-arkko-

multi6dt-failure detection-00.txt (work in progress).
Aura, T. (2004).Cryptographically Generated Addresses (CGA). Internet Draft draft-ietf-send-

cga-06.txt (work in progress).
Bagnulo, M. (2004).Hash Based Addresses (HBA). Internet Draft draft-ietf-multi6-hba-00.txt

(work in progress).
Guo, Fanglu, Chen, Jiawu, Li, Wei, and Chiueh, Tzicker (2004). Experiences in building a

multihoming load balancing system. InIEEE INFOCOM ’04, Hong Kong, China. Volume:
2, pages 1241–1251.

Hinden, R. and Deering, S. (2003).RFC 3513: Internet Protocol Version 6 (IPv6) Addressing
Architecture.

Huston, G. (2001).RFC 3221: Commentary on Inter-Domain Routing in the Internet.
Komu, M. (2004). Application programming interfaces for the host identity protocol. Master’s

thesis, Helsinky Universitiy of Technology.
Nordmark, E. (2004).Multi6 Application Referral Issues. Internet Draft draft-nordmark-multi6dt-

refer-00.txt (work in progress).
Nordmark, E. and Bagnulo, M. (2005).Multihoming L3 Shim Approach. Internet Draft draft-

ietf-multi6-l3shim-00.txt (work in progress).
Nordmark, E. and Li, T. (2005).Threats relating to IPv6 multihoming solutions. Internet Draft

draft-ietf-multi6-multihoming-threats-03.txt (work in progress).
SHA-1 (1995).Secure Hash Standard. Federal Information Processing Standards. Publication

180-1.
Stevens, W. and Thomas, M. (1998).RFC 2292: Advanced Sockets API for IPv6.
Yin, S. and Twist, K. (2003). The coming era of absolute availability.

