26 research outputs found

    Composite control Lyapunov functions for robust stabilization of constrained uncertain dynamical systems

    Get PDF
    This work presents innovative scientific results on the robust stabilization of constrained uncertain dynamical systems via Lyapunov-based state feedback control. Given two control Lyapunov functions, a novel class of smooth composite control Lyapunov functions is presented. This class, which is based on the R-functions theory, is universal for the stabilizability of linear differential inclusions and has the following property. Once a desired controlled invariant set is fixed, the shape of the inner level sets can be made arbitrary close to any given ones, in a smooth and non-homothetic way. This procedure is an example of ``merging'' two control Lyapunov functions. In general, a merging function consists in a control Lyapunov function whose gradient is a continuous combination of the gradients of the two parents control Lyapunov functions. The problem of merging two control Lyapunov functions, for instance a global control Lyapunov function with a large controlled domain of attraction and a local one with a guaranteed local performance, is considered important for several control applications. The main reason is that when simultaneously concerning constraints, robustness and optimality, a single Lyapunov function is usually suitable for just one of these goals, but ineffective for the others. For nonlinear control-affine systems, both equations and inclusions, some equivalence properties are shown between the control-sharing property, namely the existence of a single control law which makes simultaneously negative the Lyapunov derivatives of the two given control Lyapunov functions, and the existence of merging control Lyapunov functions. Even for linear systems, the control-sharing property does not always hold, with the remarkable exception of planar systems. For the class of linear differential inclusions, linear programs and linear matrix inequalities conditions are given for the the control-sharing property to hold. The proposed Lyapunov-based control laws are illustrated and simulated on benchmark case studies, with positive numerical results

    Robust controllers design for unknown error and exosystem: a hybid optimization and output regulation approach

    Get PDF
    This thesis addresses the problem of robustness in control in two main topics: linear output regulation when no knowledge is assumed of the modes of the exosystem, and hybrid gradient-free optimization. A framework is presented for the solution of the first problem, in which asymptotic regulation is achieved in case of a persistence of excitation condition. The stability properties of the closed-loop system are proved under a small-gain argument with no minimum phase assumption. The second part of the thesis addresses, and proposes, a solution to the gradientfree optimization problem, solved by a discrete-time direct search algorithm. The algorithm is shown to convergence to the set of minima of a particular class of non convex functions. It is, then, applied considering it coupled with a continuous-time dynamical system. A hybrid controller is developed in order to guarantee convergence to the set of minima and stability of the interconnection of the two systems. Almost global asymptotic is proven for the proposed hybrid controller. Shown to not be robust to any bounded measurement noise, a robust solution is also proposed. The aim of this thesis is to lay the ground for a solution of the output regulation problem in case the error is unknown, but a proxy optimization function is available. A controller embedding the characteristics of the two proposed approaches, as a main solution to the aforementioned problem, will be the focus of future studies

    State Estimation of Timed Discrete Event Systems and Its Applications

    Get PDF
    Many industrial control systems can be described as discrete event systems (DES), whose state space is a discrete set where event occurrences cause transitions from one state to another. Timing introduces an additional dimension to DES modeling and control. This dissertation provides two models of timed DES endowed with a single clock, namely timed finite automata (TFA) and generalized timed finite automata (GTFA). In addition, a timing function is defined to associate each transition with a time interval specifying at which clock values it may occur. While the clock of a TFA is reset to zero after each event occurs and the time semantics constrain the dwell time at each discrete state, there is an additional clock resetting function associated with a GTFA to denote whether the clock is reset to a value in a given closed time interval. We assume that the logical and time structure of a partially observable TFA/GTFA is known. The main results are summarized as follows. 1. The notion of a zone automaton is introduced as a finite automaton providing a purely discrete event description of the behaviour of a TFA/GTFA of interest. Each state of a zone automaton contains a discrete state of the timed DES and a zone that is a time interval denoting a range of possible clock values. We investigate the dynamics of a zone automaton and show that one can reduce the problem of investigating the reachability of a given timed DES to the reachability analysis of a zone automaton. 2. We present a formal approach that allows one to construct offline an observer for TFA/GTFA, i.e., a finite structure that describes the state estimation for all possible evolutions. During the online phase to estimate the current discrete state according to each measurement of an observable event, one can determine which is the state of the observer reached by the current observation and check to which interval (among a finite number of time intervals) the time elapsed since the last observed event occurrence belongs. We prove that the discrete states consistent with a timed observation and the range of clock values associated with each estimated discrete state can be inferred following a certain number of runs in the zone automaton. In particular, the state estimation of timed DES under multiple clocks can be investigated in the framework of GTFA. We model such a system as a GTFA with multiple clocks, which generalizes the timing function and the clock resetting function to multiple clocks. 3. As an application of the state estimation approach for TFA, we assume that a given TFA may be affected by a set of faults described using timed transitions and aim at diagnosing a fault behaviour based on a timed observation. The problem of fault diagnosis is solved by constructing a zone automaton of the TFA with faults and a fault recognizer as the parallel composition of the zone automaton and a fault monitor that recognizes the occurrence of faults. We conclude that the occurrence of faults can be analyzed by exploring runs in the fault recognizer that are consistent with a given timed observation. 4. We also study the problem of attack detection in the context of DESs, assuming that a system may be subject to multiple types of attacks, each described by its own attack dictionary. Furthermore, we distinguish between constant attacks, which corrupt observations using only one of the attack dictionaries, and switching attacks, which may use different attack dictionaries at different steps. The problem we address is detecting whether a system has been attacked and, if so, which attack dictionaries have been used. To solve it in the framework of untimed DES, we construct a new structure that describes the observations generated by a system under attack. We show that the attack detection problem can be transformed into a classical state estimation/diagnosis problem for these new structures

    Robust Nonlinear Output Regulation by Identification Tools

    Get PDF
    The present thesis focuses on the problem of robust output regulation for minimum phase nonlinear systems by means of identification techniques. Given a controlled plant and an exosystem (an autonomous system that generates eventual references or disturbances), the control goal is to design a proper regulator able to process the only measure available, i.e the error/output variable, in order to make it asymptotically vanishing. In this context, such a regulator can be designed following the well known “internal model principle” that states how it is possible to achieve the regulation objective by embedding a replica of the exosystem model in the controller structure. The main problem shows up when the exosystem model is affected by parametric or structural uncertainties, in this case, it is not possible to reproduce the exact behavior of the exogenous system in the regulator and then, it is not possible to achieve the control goal. In this work, the idea is to find a solution to the problem trying to develop a general framework in which coexist both a standard regulator and an estimator able to guarantee (when possible) the best estimate of all uncertainties present in the exosystem in order to give “robustness” to the overall control loop

    Haptic Control of Mobile Manipulators Interacting with the Environment

    Get PDF
    In the modern society the haptic control of robotic manipulators plays a central role in many industrial fields because of the improvement of human capabilities and the prevention of many hazards that it can provide. Many different studies are focusing on the improvement of the operator experience, aiming at simplifying the control interface and increasing the level of intuitiveness that the system can provide to a non-trained user. This work focus on the control of mobile manipulator platforms, that are gaining popularity in the industrial world because of their capability to merge the manipulation of the environment with a potentially infinite workspace. In particular three different aspects concerning the haptic shared control of mobile manipulators will be studied. Initially the manipulation of liquid container is analyzed and a new feed-forward filtering technique able to guarantee a slosh free motion without any a priori knowledge of the imposed trajectory is proposed. Then the trajectory planning for a mobile base in an unstructured environment is considered. A new planner based on the properties of B-spline curves is studied and tested for both the haptic and the autonomous case. Eventually the control of a mobile manipulator by means of a single commercial haptic device is addressed. A new mapping technique able to provide an intuitive interface for the control for the human operator is presented. The effectiveness of the proposed works is confirmed viaseveral experimental tests

    Coordination of multi-agent systems: stability via nonlinear Perron-Frobenius theory and consensus for desynchronization and dynamic estimation.

    Get PDF
    This thesis addresses a variety of problems that arise in the study of complex networks composed by multiple interacting agents, usually called multi-agent systems (MASs). Each agent is modeled as a dynamical system whose dynamics is fully described by a state-space representation. In the first part the focus is on the application to MASs of recent results that deal with the extensions of Perron-Frobenius theory to nonlinear maps. In the shift from the linear to the nonlinear framework, Perron-Frobenius theory considers maps being order-preserving instead of matrices being nonnegative. The main contribution is threefold. First of all, a convergence analysis of the iterative behavior of two novel classes of order-preserving nonlinear maps is carried out, thus establishing sufficient conditions which guarantee convergence toward a fixed point of the map: nonnegative row-stochastic matrices turns out to be a special case. Secondly, these results are applied to MASs, both in discrete and continuous-time: local properties of the agents' dynamics have been identified so that the global interconnected system falls into one of the above mentioned classes, thus guaranteeing its global stability. Lastly, a sufficient condition on the connectivity of the communication network is provided to restrict the set of equilibrium points of the system to the consensus points, thus ensuring the agents to achieve consensus. These results do not rely on standard tools (e.g., Lyapunov theory) and thus they constitute a novel approach to the analysis and control of multi-agent dynamical systems. In the second part the focus is on the design of dynamic estimation algorithms in large networks which enable to solve specific problems. The first problem consists in breaking synchronization in networks of diffusively coupled harmonic oscillators. The design of a local state feedback that achieves desynchronization in connected networks with arbitrary undirected interactions is provided. The proposed control law is obtained via a novel protocol for the distributed estimation of the Fiedler vector of the Laplacian matrix. The second problem consists in the estimation of the number of active agents in networks wherein agents are allowed to join or leave. The adopted strategy consists in the distributed and dynamic estimation of the maximum among numbers locally generated by the active agents and the subsequent inference of the number of the agents that took part in the experiment. Two protocols are proposed and characterized to solve the consensus problem on the time-varying max value. The third problem consists in the average state estimation of a large network of agents where only a few agents' states are accessible to a centralized observer. The proposed strategy projects the dynamics of the original system into a lower dimensional state space, which is useful when dealing with large-scale systems. Necessary and sufficient conditions for the existence of a linear and a sliding mode observers are derived, along with a characterization of their design and convergence properties

    Supervisory Control and Analysis of Partially-observed Discrete Event Systems

    Get PDF
    Nowadays, a variety of real-world systems fall into discrete event systems (DES). In practical scenarios, due to facts like limited sensor technique, sensor failure, unstable network and even the intrusion of malicious agents, it might occur that some events are unobservable, multiple events are indistinguishable in observations, and observations of some events are nondeterministic. By considering various practical scenarios, increasing attention in the DES community has been paid to partially-observed DES, which in this thesis refer broadly to those DES with partial and/or unreliable observations. In this thesis, we focus on two topics of partially-observed DES, namely, supervisory control and analysis. The first topic includes two research directions in terms of system models. One is the supervisory control of DES with both unobservable and uncontrollable events, focusing on the forbidden state problem; the other is the supervisory control of DES vulnerable to sensor-reading disguising attacks (SD-attacks), which is also interpreted as DES with nondeterministic observations, addressing both the forbidden state problem and the liveness-enforcing problem. Petri nets (PN) are used as a reference formalism in this topic. First, we study the forbidden state problem in the framework of PN with both unobservable and uncontrollable transitions, assuming that unobservable transitions are uncontrollable. For ordinary PN subject to an admissible Generalized Mutual Exclusion Constraint (GMEC), an optimal on-line control policy with polynomial complexity is proposed provided that a particular subnet, called observation subnet, satisfies certain conditions in structure. It is then discussed how to obtain an optimal on-line control policy for PN subject to an arbitrary GMEC. Next, we still consider the forbidden state problem but in PN vulnerable to SD-attacks. Assuming the control specification in terms of a GMEC, we propose three methods to derive on-line control policies. The first two lead to an optimal policy but are computationally inefficient for large-size systems, while the third method computes a policy with timely response even for large-size systems but at the expense of optimality. Finally, we investigate the liveness-enforcing problem still assuming that the system is vulnerable to SD-attacks. In this problem, the plant is modelled as a bounded PN, which allows us to off-line compute a supervisor starting from constructing the reachability graph of the PN. Then, based on repeatedly computing a more restrictive liveness-enforcing supervisor under no attack and constructing a basic supervisor, an off-line method that synthesizes a liveness-enforcing supervisor tolerant to an SD-attack is proposed. In the second topic, we care about the verification of properties related to system security. Two properties are considered, i.e., fault-predictability and event-based opacity. The former is a property in the literature, characterizing the situation that the occurrence of any fault in a system is predictable, while the latter is a newly proposed property in the thesis, which describes the fact that secret events of a system cannot be revealed to an external observer within their critical horizons. In the case of fault-predictability, DES are modeled by labeled PN. A necessary and sufficient condition for fault-predictability is derived by characterizing the structure of the Predictor Graph. Furthermore, two rules are proposed to reduce the size of a PN, which allow us to analyze the fault-predictability of the original net by verifying that of the reduced net. When studying event-based opacity, we use deterministic finite-state automata as the reference formalism. Considering different scenarios, we propose four notions, namely, K-observation event-opacity, infinite-observation event-opacity, event-opacity and combinational event-opacity. Moreover, verifiers are proposed to analyze these properties

    Advanced Computational-Effective Control and Observation Schemes for Constrained Nonlinear Systems

    Get PDF
    Constraints are one of the most common challenges that must be faced in control systems design. The sources of constraints in engineering applications are several, ranging from actuator saturations to safety restrictions, from imposed operating conditions to trajectory limitations. Their presence cannot be avoided, and their importance grows even more in high performance or hazardous applications. As a consequence, a common strategy to mitigate their negative effect is to oversize the components. This conservative choice could be largely avoided if the controller was designed taking all limitations into account. Similarly, neglecting the constraints in system estimation often leads to suboptimal solutions, which in turn may negatively affect the control effectiveness. Therefore, with the idea of taking a step further towards reliable and sustainable engineering solutions, based on more conscious use of the plants' dynamics, we decide to address in this thesis two fundamental challenges related to constrained control and observation. In the first part of this work, we consider the control of uncertain nonlinear systems with input and state constraints, for which a general approach remains elusive. In this context, we propose a novel closed-form solution based on Explicit Reference Governors and Barrier Lyapunov Functions. Notably, it is shown that adaptive strategies can be embedded in the constrained controller design, thus handling parametric uncertainties that often hinder the resulting performance of constraint-aware techniques. The second part of the thesis deals with the global observation of dynamical systems subject to topological constraints, such as those evolving on Lie groups or homogeneous spaces. Here, general observability analysis tools are overviewed, and the problem of sensorless control of permanent magnets electrical machines is presented as a case of study. Through simulation and experimental results, we demonstrate that the proposed formalism leads to high control performance and simple implementation in embedded digital controllers

    VERIFICATION AND APPLICATION OF DETECTABILITY BASED ON PETRI NETS

    Get PDF
    In many real-world systems, due to limitations of sensors or constraints of the environment, the system dynamics is usually not perfectly known. However, the state information of the system is usually crucial for the purpose of decision making. The state of the system needs to be determined in many applications. Due to its importance, the state estimation problem has received considerable attention in the discrete event system (DES) community. Recently, the state estimation problem has been studied systematically in the framework of detectability. The detectability properties characterize the possibility to determine the current and the subsequent states of a system after the observation of a finite number of events generated by the system. To model and analyze practical systems, powerful DES models are needed to describe the different observation behaviors of the system. Secondly, due to the state explosion problem, analysis methods that rely on exhaustively enumerating all possible states are not applicable for practical systems. It is necessary to develop more efficient and achievable verification methods for detectability. Furthermore, in this thesis, efficient detectability verification methods using Petri nets are investigated, then detectability is extended to a more general definition (C-detectability) that only requires that a given set of crucial states can be distinguished from other states. Formal definitions and efficient verification methods for C-detectability properties are proposed. Finally, C-detectability is applied to the railway signal system to verify the feasibility of this property: 1. Four types of detectability are extended from finite automata to labeled Petri nets. In particular, strong detectability, weak detectability, periodically strong detectability, and periodically weak detectability are formally defined in labeled Petri nets. 2. Based on the notion of basis reachability graph (BRG), a practically efficient approach (the BRG-observer method) to verify the four detectability properties in bounded labeled Petri nets is proposed. Using basis markings, there is no need to enumerate all the markings that are consistent with an observation. It has been shown by other researchers that the size of the BRG is usually much smaller than the size of the reachability graph (RG). Thus, the method improves the analysis efficiency and avoids the state space explosion problem. 3. Three novel approaches for the verification of the strong detectability and periodically strong detectability are proposed, which use three different structures whose construction has a polynomial complexity. Moreover, rather than computing all cycles of the structure at hand, which is NP-hard, it is shown that strong detectability can be verified looking at the strongly connected components whose computation also has a polynomial complexity. As a result, they have lower computational complexity than other methods in the literature. 4. Detectability could be too restrictive in real applications. Thus, detectability is extended to C-detectability that only requires that a given set of crucial states can be distinguished from other states. Four types of C-detectability are defined in the framework of labeled Petri nets. Moreover, efficient approaches are proposed to verify such properties in the case of bounded labeled Petri net systems based on the BRG. 5. Finally, a general modeling framework of railway systems is presented for the states estimation using labeled Petri nets. Then, C-detectability is applied to railway signal systems to verify its feasibility in the real-world system. Taking the RBC handover procedure in the Chinese train control system level 3 (CTCS-3) as an example, the RBC handover procedure is modeled using labeled Petri nets. Then based on the proposed approaches, it is shown that that the RBC handover procedure satisfies strongly C-detectability

    Consensus Algorithms for Estimation and Discrete Averaging in Networked Control Systems

    Get PDF
    In this thesis several topics on consensus and gossip algorithms for multi-agent systems are addressed. An agent is a dynamical system that can be fully described by a state-space representation of its dynamics. A multi-agent system is a network of agents whose pattern of interactions or couplings is described by a graph. Consensus problems in multi-agent systems consist in the study of local interaction rules between the agents such that as global emergent behavior the network converges to the so called "consensus" or "agreement" state where the value of each agent's state is the same and it is possibly a function of the initial network state, for instance the average. A consensus algorithm is thus a set of local interaction rules that solve the consensus problem under some assumptions on the network topology. A gossip algorithm is a set of local state update rules between the agents that, disregarding their objective, are supposed to be implemented in a totally asynchronous way between pairs of neighboring agents, thus resembling the act of "gossiping" in a crowd of people. In this thesis several algorithms based on gossip that solve the consensus and other related problems are presented. In the �first part, several solutions to the consensus problem based on gossip under different sets of assumptions are proposed. In the fi�rst case, it is assumed that the state of the agents is discretized and represents a collection of tasks of different size. In the second case, under the same discretization assumptions of the �rst case, it is assumed that the network is represented by a Hamiltonian graph and it is shown how under this assumption the convergence speed can be improved. In the third case, a solution for the consensus problem for networks represented by arbitrary strongly connected directed graphs is proposed, assuming that the state of the agents is a real number. In the fourth case, a coordinate-free consensus algorithm based on gossip is designed and applied to a network of vehicles able to sense the relative distance between each other but with no access to absolute position information or to a common coordinate system. The proposed algorithm is then used to build in a decentralized way a common reference frame for the network of vehicles. In the second part, a novel local interaction rule based on the consensus equation is proposed together with an algorithm to estimate in a decentralized way the spectrum of the Laplacian matrix that encodes the network topology. As emergent behavior, each agent's state oscillates only at frequencies corresponding to the eigenvalues of the Laplacian matrix thus mapping the spectrum estimation problem into a signal processing problem solvable using the Fourier Transform. It is further shown that the constant component of the emergent behavior in the frequency domain solves the consensus on the average problem. The spectrum estimation algorithm is then applied to leader-follower networks of mobile vehicles to infer in a decentralized way properties such as controllability, osservability and other topological features of the network such as its topology. Finally, a fault detection and recovery technique for sensor networks based on the so called motion-probes is presented to address the inherent lack of robustness against outlier agents in networks implementing consensus algorithms to solve the distributed averaging problem
    corecore