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Abstract

This thesis addresses the problem of robustness in control in two main topics:
linear output regulation when no knowledge is assumed of the modes of the ex-
osystem, and hybrid gradient-free optimization. A framework is presented for the
solution of the first problem, in which asymptotic regulation is achieved in case of a
persistence of excitation condition. The stability properties of the closed-loop sys-
tem are proved under a small-gain argument with no minimum phase assumption.
The second part of the thesis addresses, and proposes, a solution to the gradient-
free optimization problem, solved by a discrete-time direct search algorithm. The
algorithm is shown to convergence to the set of minima of a particular class of non
convex functions. It is, then, applied considering it coupled with a continuous-time
dynamical system. A hybrid controller is developed in order to guarantee conver-
gence to the set of minima and stability of the interconnection of the two systems.
Almost global asymptotic is proven for the proposed hybrid controller. Shown to
not be robust to any bounded measurement noise, a robust solution is also proposed.
The aim of this thesis is to lay the ground for a solution of the output regulation
problem in case the error is unknown, but a proxy optimization function is avail-
able. A controller embedding the characteristics of the two proposed approaches, as
a main solution to the aforementioned problem, will be the focus of future studies.
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Sommario

Il seguente lavoro di tesi studia il problema della robustezza sotto due princi-
pali punti di vista: regolazione dell’uscita di un sistema lineare nel caso in cui le
dinamiche dell’esosistema siano sconosciute, e ottimizzazione ibrida in assenza di
informazioni sul gradiente e sulla funzione di costo. Un framework viene presentato
per la soluzione del primo problema, in cui regolazione asintotica viene raggiunta
nel caso in cui sia verificata una condizione di persistenza delle eccitazioni. La
stabilità del sistema in catena chiusa viene dimostrata grazie ad una condizione di
piccolo guadagno, senza alcuna assunzione di fase minima. La seconda parte della
tesi tratta, e propone, una soluzione al problema di ottimizzazione senza l’utilizzo
del gradiente o informazioni sulla funzione di costo. La soluzione proposta adotta
un algoritmo a ricerca diretta a tempo discreto. Convergenza per una classe di fun-
zioni non convesse è dimostrata. L’algoritmo proposto è poi applicato ad un sistema
dinamico a tempo continuo. A tal proposito, un regolatore ibrido viene sviluppato
per l’interconnesione dei due sistemi, dimostrando stabilità asintotica quasi globale
del sistema in catena chiusa. Tuttavia, dimostrato non robusto, un trade-off tra
stabilità asintotica e robustezza viene reso evidente, ed una soluzione robusta viene
proposta. L’obiettivo di questo lavoro di tesi è di gettare le basi per una solutione
al problema di regolazione dell’uscita nel caso in cui l’errore non sia misurabile, ma
un suo proxy, sottoforma di funzione da ottimizzare, sia disponibile. Un controllore
che unifichi gli approcci studiati in questi tesi sarà la soluzione principale studiata
nell’immediato futuro a tale problema.
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Notation

R set of real numbers
R+ set of non negative real numbers
R∗+ set of strictly positive real numbers
N set of natural numbers zero included
N∗ set of natural numbers zero excluded
C set of complex numbers
Z set of integer numbers
Q set of rational numbers
∈ belongs to
⊂ subset
⊃ superset
:= defined as
∀ for all
∃ there exists
A ∩B intersection of sets
A ∪B union of sets
A \B difference of sets
A±B set {a± b : a ∈ A, b ∈ B}
αA with a ∈ R, set {αa, a ∈ A}
∅ the empty set

xi



A×B Cartesian product of sets
An n-fold product of the set A
Ā closure of A
∂A boundary A
diam(A) sup{d(x, y) | x, y ∈ A}
|S| when S is a set, |S| := sups∈S |s|
B open ball of radius 1
αB open ball of radius α > 0
B̄ closed ball of radius 1
αB̄ closed ball of radius α > 0
En×m set of matrices with n rows and m columns and

coefficients in E
| · | vector or matrix induced norm
| · |A infa∈A | · −a|, distancefromtheset A
MT transpose matrix
M−1 inverse matrix
M † Moore-Penrose generalized inverse matrix
M−T (M−1)T

M ≥ 0 positive semi-definite matrix
M > 0 positive definite matrix
detM determinant of M
rankM rank of M
σ(M) spectrum of M , the set of its eigenvalues
A⊗B Kronecker product of matrices
ImA image of M
KerA kernel of M
0n×m matrix of dimension n×m whose entries are all zeros

When n = m we write 0n and when the dimension is clear from
the context the subscript is omitted and we write simply 0.

In n-dimensional identity matrix.
When the dimension is clear from the context the subscript
is omitted and we write simply I

diag(A1, . . . , An) block-diagonal matrix block diagonal elements the square
matrices A1, . . . , An



col(A1, . . . , An) column concatenation of the elements Ai
col(A : A ∈ A) column concatenation of the elements A ∈ A.

If A is indexed by the set N we also write col(An : n ∈ N)
Hurwitz matrix matrix with all eigenvalues having strictly negative real part

than 1
simply stable
matrix

matrix with all eigenvalues with zero real part and algebraic
multiplicity 1

HC(n) subset of Rn of all the coefficients (c1, . . . , cn) of a Hurwitz
monic polynomial of dimension n, i.e. such that p(λ) := λn +
cnλ

n−1 + · · · + c2λ + c1 has only roots with strictly negative
real part

f : A→ B a function from A to B
f |C with f : A→ B and C ⊂ A, f |C is the restriction of f to C
f : A⇒ B a set-valued function from A to B
domF the domain of F
ranF the range of F
suppF the support of F
f ∈ K f is a class-K function, i.e. f : [0, a)→ R+ (a ∈ R∗+) is

continuous, strictly increasing and f(0) = 0
f ∈ K∞ f is a class-K∞ function, i.e. f ∈ K and f(x)→x→a ∞ is
f ∈ L f is a class-L function, i.e. f : R+ → R+ is continuous,

strictly decreasing and f(x)→x→∞= 0
β ∈ KL β is a class-KL function, i.e. β(·, t) ∈ K for each t and

β(s, ·) ∈ L for each s
Cn the set of n-time continuously differentiable functions

(C0 is the set of continuous functions)
β ∈ KL β is a class-KL function, i.e. β(·, t) ∈ K for each t and

β(s, ·) ∈ L for each s
|x|t1,t2 when x(·) is a locally essentially bounded function defined

on R, for t1, t2 ∈ R we let |x|t1,t2 := ess.supt∈[t1,t2]|x(t)|
|x|∞ when x(·) is a locally essentially bounded function defined

on R, we let |x|t1,t2 := ess.supt∈R|x(t)|
x[i,j] when i, j ∈ N, i ≤ j and x ∈ Rn, n ≥ j, we let x[i,j] :=

(xi, xi+1, . . . , xj)



x(i,j) when i, j ∈ N, i ≤ j, and x is a j-differentiable function
on R, we let x(i,j) := x(i), x(i+1), . . . , x(j)

(xn)bn=a sequence xa, . . . , xb
(xn)n a sequence of elements xn indexed by n ∈ N
(xn)→ x short for limn→∞ xn = x

lim sup x if x : R→ Rn, short for lim supn→∞ x(t)



Introduction

It’s human nature to stretch, to go, to see, to understand. Exploration is not a
choice, really; it’s an imperative. — Michael Collins.

The astronaut Michael Collins, one of the first men on the Moon, would see
exploration as the key to the human understanding of the world. Exploration, and
study and observation, of the surrounding environment has been the drive that
pushed the development of humankind, since the first men that discovered fire by
observing a tree struck by a lightning, to Newton theorizing gravity from a falling
apple.

In particular, exploration and observation have always been the tools to make
up for the lack of knowledge in the scientific fields. No less it is in the control theory
field, where lack of knowledge of system parameters or of important not measurable
quantities, is often compensated via identification techniques, based on elaborating
observed variables or adaptive strategies, often using “exploratory” moves.

Those same approaches have started to take root also in the field of output regu-
lation when, recently, the strong assumption of perfect knowledge of the exosystem
dynamics has started to be discarded, moving toward a more robust setting. We
find, for example, in this scenario the works Marino and Tomei (2003) and Marino
and Santosuosso (2007), where adaptive observers have been used to asymptotically
estimate the internal model’s parameters, or Bin et al. (2019b), where, instead,
discrete-time identification schemes are proposed in an adaptive design for multi-
variable linear systems. The problem, however, is far from being solved. As such,
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in the first part of this thesis we will tackle the problem of linear output regula-
tion for continuous-time dynamical systems when no knowledge of the exosystem is
assumed, proposing a solution based on estimating the parameters of the internal
model unit through a continuous-time least-squares identifier. As preliminaries we
will first recall the standard results on linear output regulation theory, to then dwell
upon the framework for a system theoretic study of continuous-time identifiers, as
highlighted in Bin (2019).

In a journey toward a robust output regulation framework, driven by the idea of
gaining robustness through exploration, we propose a study on the class of gradient-
free optimization techniques denoted Direct Search methods. The main character-
istic of these algorithms, and the reason for their study, is that they do not require
gradient information, or the expression of the objective function to be minimized,
but only the measurements of the function values, taken by iteratively comput-
ing exploratory moves. Moreover, being based on exploratory steps along a set of
vectors spanning the search space, their implementation is computationally very ef-
ficient. We study these class of algorithms, inherently discrete-time, interconnected
to a continuous-time dynamical system. As such we propose, in Section 6, a hybrid
controller implementing a particular direct search algorithm developed in Section 5,
and study its robustness properties, showing that without additional assumptions
related to the knowledge of the objective function, other than the classic assump-
tions of Direct Search algorithms, a trade-off between robustness and asymptotic
convergence to the minimum is inevitable. The novelty of the algorithm proposed
is that it guarantees convergence of the whole sequence of iterates even for a, par-
ticular class of, non convex functions. Moreover, contrary to the standard results
on Direct Search algorithms, convergence is achieved without resorting to a full
exploration of all the possible directions at each iterations (see Kolda et al. (2003)),
but simply continuing the exploration along any direction providing (sufficient) de-
crease of the cost function. This aspect is fundamental from an implementation
point of view, speeding up considerably the convergence.

The reason to study these algorithms stems from the idea of both providing
alternative identifier schemes for the solution of the problem of adaptive output
regulation, both to propose a solution to the output regulation problem when the
regulated error is not available for measurements, but, instead, a “proxy” of the
error can be measured. In particular, we want to lay the ground for the scenario in
which the proxy is an objective function, measurable but possibly unknown, whose



minimum is coincident with the reference signal to be tracked. As such, as for this
scenario the regulated error is not locally observable at the minimum, we believe,
and this will be the matter of future studies, that the proposed hybrid controller can
be a valid solution, interconnected with a properly designed regulator, to tackle the
output regulation problem under the hypothesis of not measurability of the error.
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Part I

Adaptive Output Regulation for
Linear Systems
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1
Output Regulation for Linear Systems

The branch of control theory denoted Output Regulation addresses the prob-
lem of steering some regulated outputs in order to, possibly exactly, follow some
externally generated reference signals, while the dynamics are affected by exoge-
nous perturbations. For linear systems, the output regulation problem was firstly
addressed by Francis, Wonham and Davison in the 70s (see e.g. Francis and Won-
ham (1975), Francis and Wonham (1976) and Davison (1976)), where the so-called
internal model principle was introduced. In a nutshell it states that in order to
perfectly track a reference signal and completely reject an exogenous disturbance a
“copy” of the dynamic model generating the reference signal and the disturbance,
or better the modes generating those signals, should be embedded in the regulator.
It is thus intuitive as, from a theoretical point of view, the reference signals and
the exogenous disturbances can be treated in the same way, namely considered to
be both generated by a unified dynamical system, denoted exosystem. Based on
this idea, the regulator design proposed by Davison is based on extending the plant
with an internal model unit, able to replicate the modes of the exosystem, and sta-
bilizing the cascade given by the internal model unit and the plant. We stress as in
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the classic framework developed by Davison, Francis and Wonham, and contrary to
the design developed in Chapter 3, the dynamics of the exosystem are assumed to
be known, as they are used in the design of the internal model unit. Nonetheless,
even if perfect knowledge of the exosystem is assumed, and actually required, for
the regulator design, the remarkable property of the regulator solving the linear
output regulation problem is its robustness to parametric uncertainties in the plant
dynamics, often referred to as structural stability.

In the following sections we will review the basic ingredient of the output regu-
lation framework for linear systems. Firstly introducing the concept of steady-state
and then reporting the classic design of the regulator as proposed by Davison in
Davison (1976).

1.1 The Steady State
As central to the output regulation framework, we recall in this section the concept
of steady state for linear systems.

Consider the following linear system

ẇ = Sw

ż = Fz +Gw,
(1.1)

where w ∈ Rnw , z ∈ Rnz , and S ∈ Rnw×nw , F ∈ Rnz×nz and G ∈ Rnz×nw .
The following theorem characterizes the steady state behavior of (1.1).

Theorem 1.1 (Steady state behaviour of multivariable linear systems). Assume
σ(S) ∩ σ(F ) = ∅, then there exists a unique Π ∈ Rnz×nw , that solves the Sylvester
equation

ΠS = FΠ +G, (1.2)

such that the subspace {(w, z) ∈ Rnw×Rnz : (w, z) = (w,Πw)} is forward invariant.
Moreover, if F is Hurwitz, then

lim
t→∞

z(t)− Πw(t) = 0. (1.3)

Proof. Existence and uniqueness of Π solving the Sylvester equation (1.2) follows
from the empty intersection of the spectra of F and S.

Now, by Theorem 2.4 in Basile and Marro (1992), a subspace L ⊂ Rn is forward
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invariant for the trajectories of the linear system ẋ = Ax, with x ∈ Rn, if and only
it is A-invariant, namely Ax ∈ L for all x ∈ L. Thus {(w, z) ∈ Rnw ×Rnz : (w, z) =
(w,Πw)} is forward invariant if and only if

S 0
G F

Inw
Π

 ⊂ Im
Inw

Π

 .
The first result follows from (1.2) by noticing that

S 0
G F

Inw
Π

 =
 S

G+ FΠ

 =
 S

ΠS

 =
Inw

Π

Sw.
Assuming F Hurwitz, define z̃ = z − Πw. Then, by (1.2),

˙̃z = Fz +Gw − ΠSw = F (z̃ + Πw) +Gw − ΠSw = F z̃,

and since F is Hurwitz, it follows that limt→∞ z(t)− Πw(t) = 0. �

In the output regulation framework the matrix S is, in general, assumed to be
simply stable, i.e. with all eigenvalues on the imaginary axis, and F to be Hurwitz,
thus σ(S)∩ σ(F ) = ∅. In this framework, the above theorem states that a Hurwitz
linear system, driven by, possibly oscillating, exogenous signals, will asymptotically
converge to a subspace of its state space where it evolves as a linear combination
of the exogenous signals.

The condition σ(S) ∩ σ(F ) = ∅ can also be interpreted as a non-resonance
condition for the cascade interconnection of the w and x subsystems, guaranteeing
forward invariance of the set {(w, z) ∈ Rnw ×Rnz : (w, z) = (w,Πw)} by preventing
the existence of solutions that would leave this set due to a resonant behaviour
between the two subsystems.

1.2 The Linear Output Regulation Problem
Consider a linear system of the form

ẇ = Sw (1.4)
ẋ = Ax+Bu+ Pw (1.5)
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ym = Cmx+Qmw (1.6)
e = Cex+Qew, (1.7)

with w ∈ Rnw an exogenous input, x ∈ Rnx the state, u ∈ Rnu the control
input, e ∈ Rne the regulation error, ym ∈ Rnm additional measurements and
nw, nx, nu, ne, nm ∈ N such that nu ≥ ne. The signal w(t) models exogenous dis-
turbances, to be rejected, and reference signals, to be tracked, whose modes are
defined by the matrix S, that we suppose to be simply stable.

In this framework, the linear output regulation problem reads as follows: design
a linear regulator of the form

µ̇ = Arµ+Bry (1.8)
u = Krµ+Kyy, (1.9)

with µ ∈ Rnr , for some nr ∈ N, y := col(ym, e), and Ar, Br, Kr and Ky matrices of
proper dimension, such for the closed-loop system given by (1.4)-(1.7) (1.8):

• the origin is an asymptotically stable equilibrium point when the exosystem
is disconnected, i.e. when w(t) ≡ 0;

• for any initial condition, limt→∞ e(t) = 0.

The closed-loop system (1.4),(1.5),(1.8) can be compactly rewritten in the form

ẇ = Sw (1.10)
ż = Fz + Σw, (1.11)

where z := (x, µ) and

F :=
A+BKyC BKr

BrC Ar

 Σ :=
P +BKyQ

BrQ

 ,
with C := [Cm Ce] and Q := [Qm Qe].

Notice that (1.10) has the same structure of (1.1) hence, by Theorem 1.1, if
σ(S) ∩ σ(F ) 6= ∅ and F is Hurwitz, (1.10) will converge to a steady state of the
form (w, z) = (w,Πzw) for some Πz ∈ Rnz × Rnw , with nz := nx + nr. The goal is
thus to build a regulator such that F is Hurwitz and at steady-state the error (1.7)
is null.

10



The closed-loop system should thus satisfy at steady-state the following equa-
tions

ΠxS = (A+BKyC)Πx +BKrΠr + P +BKyQ

ΠrS = BrCΠx + ArΠr +BrQ

CeΠx +Qe = 0.

The first and last equations are usually called the regulator, or Francis, equations.
Davison in Davison (1976) proposed a design for such a regulator. The structure

he devised, following the internal model principle of Francis and Wonham, is based
on extending (1.4)-(1.7) with an internal model unit, and then designing a state
feedback able to stabilize the cascade interconnection of the plant and the internal
model unit. On a more general scenario, we consider the stabilizing feedback to be
a dynamical system.

On the wake of the results of Davison, we extend the considered plant with the
following dynamical system

η̇ = Φη +Ge, (1.12)

with η ∈ Rnη , nη := nenw, and

Φ :=



0 Ine 0 0 · · · 0
0 0 Ine · · · 0
... . . . ...
0 0 · · · Ine

−c0Ine −c1Ine · · · −cnw−1Ine


G :=



0
0
...
0
Ine


,

where c0, ..., cnw−1 are the coefficients of the characteristic polynomial of S, defined
as

pS(λ) = λnw + cnw−1λ
nw−1 + · · ·+ c1λ+ c0. (1.13)

As such, the internal model unit embeds ne copies of the dynamics of the exosystem,
thus the name internal model unit.

The following controller should be defined in order to stabilize the cascade given
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by the plant and the internal model unit.

ξ̇ = Aξξ +Bηη +Byy

u = Kξξ +Kηη +Kyy.
(1.14)

As such, to guarantee that a controller of the form (1.14) exists, i.e. to guarantee
stabilizability of the cascade interconnection given by the plant and the internal
model unit, the following non-resonance condition should be satisfied.

rank
A− λI B

Ce 0

 = nx + ne ∀λ ∈ σ(S), (1.15)

where (1.15) is expressed with respect to the spectrum of S, since the spectrum of
Φ is given, by construction, by ne copies of the spectrum of S. Hence, the condition
is satisfied for Φ if only if it so for S.

We are now ready to state the sufficient and necessary conditions under which
the linear output regulation problem is solved.

Theorem 1.2. Let (A,B) be stabilizable, (A,C) be detectable, and (1.15) be satisfied.
Then the regulator (1.12), (1.14) solves the linear output regulation problem for the
system (1.4)-(1.7).

Proof. Consider the closed-loop matrix given by the plant, the internal model unit
and the stabilizer

F :=


A+BKyC BKη BKξ

GCe Φ 0nη×nξ
ByC Bη Aξ

 , (1.16)

and notice that, by (1.15), we can design the stabilizer (1.14) to make it Hurwitz. As
a consequence, the cascade given by the exosystem, and the plant, the internal model
unit and the stabilizer has the same structure as (1.1), and thus, again, by Theorem
1.1, since F is Hurwitz and S is simply stable, by assumption, there exists Π ∈
R(nx+nη+nξ)×nw such that the set {(w, x, η, ξ) : (w, x, η, ξ) = (w,Πxw,Πηw,Πξw)},
with Π = col(Πx,Πη,Πξ), is forward invariant for (w, x, η, ξ). From Theorem 1.1,
considering the dynamics of the internal model unit, we conclude that at steady-
state

ΠηS = ΦΠη +G(CeΠx +Qe).

From the structure of the matrix Φ and considering Φη = col(Πηη1
,Πη2 , ...,Πηnw ), it
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follows that

ΠηiS = Πηi+1 ∀i = 1, 2, ..., nw − 1

ΠηnwS =
nw∑
i=1

ci−1Πηi +G(CeΠx +Qe).

Hence
Πηi = Πη1S

i−1, ∀i = 2, . . . , nw,

that implies

Πη1S
nw = ΠηnwS =

nw∑
i=1

ci−1Πη1S
i−1 +G(CeΠx +Qe) =

= Πη1

(
nw∑
i=1

ci−1S
i−1
)

+G(CeΠx +Qe).

From the expression of the characteristic polynomial of S in (1.13) and the Cayley-
Hamilton Theorem, we readily conclude that G(CeΠx + Qe) = 0 and thus e = 0.
�

We conclude this section with some remarks regarding the properties of the
presented linear regulator.

As the matrices P,Q and Π play no role in the regulator design, and neither do
A,B and C, if not for the stabilizer design, the above regulator is structurally robust
to any variation of the matrices P,Q, and also A,B and C as long as stability is
preserved.

Nonetheless, as already anticipated, knowledge of the exosystem modes is nec-
essary in order to properly construct the internal model unit.
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2
Continuous-time Least-Squares

Identifier

Ljung, in the introduction of Ljung (1999), defines the system identification
field as “dealing with the problem of building mathematical models of dynamical
systems based on observed data from the systems”. The main reason to resort to
identification techniques is to cope with missing knowledge of some, or all, parts
of the system dynamics. The interaction between identification and control stems,
indeed, from the need to robustly control plants in these scenarios (see for example
Gevers (1996)). Along those lines, the main idea of the next chapter is to build a
robust regulator for with an internal model unit that is adapted online thanks to
an identifier. The framework presented in this chapter (reporting the results of Bin
et al. (2019a) and Bin (2019) for the continuous-time case), casts the identification
problem as an optimization problem.

In particular we will treat continuous-time identifiers, with a focus on least-
squares identifiers, from a system theoretic point of view by defining the identifiers
as dynamical systems to which it is associated a cost functional to be minimized,
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determining in a user-defined way a criteria upon which base the selection of the
parameters of the model.

2.1 Identification framework

Let α?(t) ∈ Ra and β?(t) ∈ Rb, with a, b ∈ N, be two continuous-time signals. We
want to find a model relating α and β, namely a function φ : Ra → Rb such that
φ(α?(t)) = β?(t) for all t ∈ R≥0. As in the classic system identification literature
Ljung (1999), Ljung and Soderstrom (1985), we consider, for the identification
problem, the class of models to be parameterized by a variable θ ∈ Rd, with d ∈
N denoted the order of the model, usually defined by a priori knowledge on the
identification problem. We denote byM this class of models, and as Φ : Rd×Ra →
Rb the function associating to each element of Rd a model inM.

Without loss of generality, we assume the signals α? and β? to be the output
of an autonomous system ẇ = S(w) with state w ∈ W , with W ⊂ Rnw compact
and nw ∈ N, and S : W → W . With slight abuse of notation, we will refer without
distinction to α?(t), β?(t) and α?(w), β?(w).

Moreover, as it will be instrumental for the analysis in the next chapter, where
the equivalent of the real signals α? and β? will not be available, but in their stead
we will work with an estimate of their values, we define a “corrupted” version of
the signals α? and β? as

α(t) = α?(t) + δα

β(t) = β?(t) + δβ,

with δ := (δα, δβ) a bounded signal.
Once M and d are chosen by the user, the goal of the identifier is to find the

best θ ∈ Rd fitting the values of α and β through Φ(θ, α?) = β?. This problem is
equivalent to the minimization of the prediction error

ε(w, θ) := β?(w)− Φ(θ, α?(w)). (2.1)

We define the identifier as a continuous-time dynamical system of the form

ż = fid(z, α, β)
θ = hid(z),

(2.2)

16



with z ∈ Rnz , f : Rnz ×Ra ×Rb → Rnz and h : Rnz → Rd, to which it is associated
a cost functional

J(θ)(t) :=
∫ t

0
c(ε(w(s), θ))ds+ ω(θ), (2.3)

with c : Rb → R≥0 positive definite and such that c(0) = 0, and ω : Rd → R a
regularization term.

The minimization of the cost functional J defines an optimization problem based
on the history of the prediction error. The design of the identifier should be done so
that its output (θ) minimizes (2.3), namely to achieve θ asymptotically converging
to the, possibly set-valued, map

θ◦(t) := arg inf
θ∈Rd

J(θ)(t). (2.4)

Denote as z? the ideal steady state of the identifier (2.2), then the following prop-
erties should be satisfied.

Property 2.1 (Identifier requirements). Bin et al. (2019a)

1. Optimality: The output θ? = h(z?) is such that

θ?(t) ∈ θ◦(t) ∀t ≥ 0

2. Stability: Define z̃ := z − z?. There exist functions βz̃ ∈ KL and ρ ∈ K such
that

‖z̃(t)‖ ≤ βz̃(‖z̃(0)‖, t) + αz̃‖δ‖[0, t) ∀t ≥ 0

3. Regularity: There exist T ≥ 0, κ ∈ K, and ε(z(t)?) > 0 such that, for all
t ≥ T and ‖z(t)− z(t)?‖ < ε(z(t)?),

‖h(z(t))− h(z?(t))‖ ≤ κ(‖z(t)− z?(t)‖)

In order, the first point asks that the ideal steady state of the identifier is (one
of) the solution(s) to the optimization problem defined by the functional (2.3).
The second point requires an input-to-state-stability property of the identifier with
respect to the ideal steady state with respect to the perturbation δ. The last point,
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denoted regularity requirement, can be interpreted, with the addition of requirement
1., as a detectability property of θ − θ? from z − z?.

2.2 Continuous-time Least-squares Identifier
As a particular case of the identification problem formulated in the previous section,
we consider the class of continuous-time least-squares identifiers. We consider the
class of models, M, to be the class of functions linearly parameterized in θ. The
function Φ will thus assume the form

Φ(θ, α) = θTγ(α),

with γ : Ra → Rd locally Lipschitz. As a consequence, we modify the cost func-
tional, as in the classic least-squares framework, as to weight, with a forgetting
factor defined by λ > 0, the history of the squared prediction errors, namely

J(θ)(t) = λ
∫ t

0
e−λ(t−s)‖β?(w(t)− θTγ(α?(w(t)))‖2ds+ θTΣθ, (2.5)

with Σ ∈ Rd×d symmetric positive semi-definite.
We define the continuous-time least-squares identifier as the dynamical system

defined on the partitioned state space Z := Rd×d × Rd, with partitioned state
z = (R, v), with R ∈ Rd×d symmetric positive semi-definite and v ∈ Rd with the
following dynamics

Ṙ = −λR + λγ(α)γ(α)T

v̇ = −λv + λγ(α)β
θ = (R + Σ)†v,

(2.6)

where λ is the same as in (2.5) and ·† denotes the Moore-Penrose pseudoinverse.
We equip Z with the norm |z| = |(R, v)| :=

√
|R|2 + |v|2. In order to ob-

tain the differentiability of the map t 7→ (R(t) + Σ)†v(t), and in order to have
uniqueness of solutions to the minimization problem (2.5), we define the following
persistence of excitation (PE) property for η.

Definition 2.1. With ε, T > 0, the signal η is said to have the (ε, T )-persistency of
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exctitation property if for all t ≥ T

det
(∫ t

0
e−λ(t−s)γ(α(s))γ(α(s))Tds+ Σ

)
≥ ε. (2.7)

We observe that, by continuity, the PE condition (2.7) can be checked online
simply by looking at det(R(t) + Σ). As a matter of fact as will be shown in proof
of the following proposition, for any initial condition R(0), the difference between
R(t) + Σ and the matrix appearing in (2.7) is asymptotically small for small δα.
Thus the persistency of excitation can be translated as a property of the exosystem.

We also observe that if (2.7) is satisfied with ε1 and T1, then it is satisfied with
ε2 and T2 for any ε2 < ε1 and T2 > T1.

Denote as E ⊂ W × Z the subset of the state space for which the (ε, T )-PE
property is satisfied.

The next proposition shows how the least-squares identifier thus defined satisfies
the identifier requirements.

Proposition 2.1. Suppose W compact and pick (ε, T ) such that the (ε, T )-persistence
of excitation is satisfied. Then the identifier (2.6) satisfies the identifier require-
ments with restriction to the set E.

Proof. Consider δ = 0, namely α(t) = α?(t) and β(t) = β?, and define z?(t) ∈ Z as
z? = (R?, v?), where

R?(t) :=λ
∫ t

0
e−λ(t−s)γ(α?(s))γ(α?(s))Tds

v?(t) :=λ
∫ t

0
e−λ(t−s)γ(α?(s))β?(s)ds.

Then z?(t) is solution of (2.6) for z(0) = 0 and (α, β) = (α?, β?).
To prove point 1., we notice that by differentiating (2.5) with α = α? with

respect to θ, we get

∇θ(J (θ))(t) =

= −2λ
∫ t

0
e−λ(t−s)(γ(α?(s))ε(s, θ))ds+ 2Σθ =

= 2(R?(t) + Σ)θ − v?(t)).

Since the set of minimizers of (2.5) for α = α? is given by {θ ∈ Rd : ∇θ(J (θ))(t) =
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0}, it follows that

θ?(t) = (R?(t) + Σ)†v?(t).

minimizes (2.5), thus requirement 1. is satisfied.
Define z̃ := z − z? and

Γ(α?(t), δ(t)) := σ(α?(t) + δα(t))σ(α?(t) + δα(t))T

I(β?(t), α?(t), δ(t)) := σ(α?(t) + δα(t))(β?(t) + δβ(t)).

Then

‖R(t)−R?(t)‖ ≤ e−λt ‖R(0)−R?(0)‖+ λ
∫ t

0
e−λ(t−s)‖Γ(α?(s), δ(s))− Γ(α?, 0)‖ds ≤

≤ e−λt ‖R(0)−R?(0)‖+ λ
∫ t

0
e−λ(t−s)LΓ‖δ(s)‖ds ≤

≤ e−λt ‖R(0)−R?(0)‖+ λ
∫ t

0
e−λ(t−s)LΓ‖δ‖[0,t]ds =

= e−λt ‖R(0)−R?(0)‖ − LΓ‖δ‖[0,t] + e−λtLΓ‖δ‖[0,t] ≤

≤ e−λt ‖R(0)−R?(0)‖+ LΓ‖δ‖[0,t],

where LΓ is the Lipschitz constant of Γ.
The same reasoning applies to v(t)− v?(t). Denote as LI the Lipschitz constant

of I. Then we see that

‖z̃(t)‖ ≤ e−λt(‖R̃(0)‖+‖ṽ(0)‖)+(LΓ +LI)‖δ‖[0,t)] = e−λt‖z̃(0)‖+(LΓ +LI)‖δ‖[0,t)].

(2.8)
Point 2. is readily satisfied for βz̃(|z̃(0)|, t) := e−λt‖z̃(0)‖ and αz̃(‖δ‖[0,t)) := (LΓ +
LI)‖δ‖[0,t)].

Now notice that if the (ε, T )-persistency of excitation condition is satisfied, then
det(R(t) + Σ) ≥ ε for all t ≥ T . As such, (R(t) + Σ) is invertible for all t ≥ T , and
thus (R(t) + Σ)†v(t) is smooth in z = (R, v). As a consequence, (R(t) + Σ)†v(t) is
locally Lipschitz in (R, v) for all t ≥ T , proving requirement 3.

�

20



3
Adaptive Linear Output Regulation
for Multivariable Linear Systems via

Slow Identifiers

In the classic linear output regulation framework, as asymptotic regulation is
inexorably lost whenever the exosystem is not perfectly known, the linear regulator
is not robust with respect to any, although arbitrarily small, perturbation of the
exosystem.

The general problem of designing a regulator for a linear system ensuring asymp-
totic regulation in the presence of uncertainties in the exosystem is still open, even
though in the last decades many papers have been written on the topic. In Marino
and Tomei (2003) and Marino and Santosuosso (2007) adaptive observers have been
used to asymptotically estimate the internal model’s parameters in the single-input
single-output (SISO) case. In both papers, perfect knowledge of the plant is as-
sumed, sacrificing robustness with respect to plant’s perturbations for robustness
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to uncertainties in the exosystem. Multivariable linear systems have been con-
sidered in Mizumoto and Iwai (2007), under a strong minimum-phase assumption,
and in Bando and Ichikawa (2006), where only state-feedback tracking is addressed.
Further approaches can be found in the context of nonlinear SISO minimum-phase
normal forms. In Serrani et al. (2001) an estimation law based on Lyapunov-like
arguments is proposed to deal with linear uncertain exosystems. Instead of adap-
tation, immersion arguments have been used in Ding (2003), Marino and Tomei
(2008), Isidori et al. (2012), Forte et al. (2013) and Bin et al. (2016) for linear and
some classes of nonlinear exosystems. More recently, a different approach based on
identification techniques has been proposed in Forte et al. (2017) for SISO normal
forms, while in Marino and Tomei (2017) a hybrid adaptive observer is designed for
SISO stable plants ,and an adaptive design for multivariable linear systems, based
on discrete-time identification schemes, has been proposed in Bin et al. (2019b).

This chapter contains the results in Melis et al. (2019). Here we consider the
output regulation problem for general multivariable linear systems, with the ref-
erence signals and the disturbances that are generated by an unknown exosystem.
On the heels of Bin et al. (2019b), we augment a canonical linear regulator with
an identifier that adapts the internal model on the basis of the measurable data.
Differently from Bin et al. (2019b), the identifier is continuous-time, and the asymp-
totic properties of the regulator are obtained thanks to a time-scale separation of
the two units. The identifier is designed to solve a least-squares optimization prob-
lem defined by the available measurements. Linearity and persistency of excitation
ensure the existence of a unique semiglobal solution matching the parameters of the
exosystem, despite possibly large deviations of the plant’s state from the ideal error-
zeroing steady state. The design of the stabilization and the adaptation laws turns
out to be decoupled, making thus possible to handle general linear non-minimum
phase systems.

3.1 Problem Formulation
We consider linear systems of the form

ẇ = Sw (3.1)
ẋ = Ax+Bu+ Pw (3.2)
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ym = Cmx+Qmw (3.3)
e = Cex+Qew, (3.4)

with w ∈ Rnw an exogenous input, x ∈ Rnx the state, u ∈ Rnu the control
input, e ∈ Rne the regulation error, ym ∈ Rnm additional measurements and
nw, nx, nu, ne, nm ∈ N such that nu ≥ ne. The exogenous signal w(t) represents
disturbances and reference signals acting on the system, whose modes are defined
by the matrix S, that we do not assume to be known but we suppose to be neutrally
stable.

We consider the problem of output regulation for the system (3.1)-(3.4), that is,
we aim to design an output feedback regulator of the form

µ̇ = fc(µ, y) (3.5)
u = γ(µ, y), (3.6)

where y := col(ym, e) and µ ∈ Ξ, with Ξ an Euclidean space, such that the trajec-
tories solution of (3.1)-(3.5) are bounded and

lim
t→∞

e(t) = 0. (3.7)

In the rest of the chapter we make the following standing assumptions1

Assumption 3.1. (A,B) is stabilizable, (C,A), with C := [Cm Ce], is detectable and
rankB ≥ rankCe.

Assumption 3.2. S is neutrally stable and the initial conditions of (3.1) range in a
compact invariant set W ⊂ Rnw .

3.2 The Regulator Structure
The regulator is composed of three different subsystems: the internal model unit,
the identifier and the stabiliser. The internal model unit, based on the design
proposed by Davison and recalled in chapter 1, is an error-driven dynamical system
that, ideally, incorporates the modes of the exosystem. In this section, the identifier
is a continuous-time system whose objective is to adapt the internal model unit to

1We observe that Assumptions 1 is also necessary for the solvability of the problem at hand.

23



asymptotically match the actual exosystem’s parameters. If the exosystem were
known, the internal model could be designed as a linear system in normal form with
the same characteristic polynomial of S, Davison (1976). As we do not assume to
know S, we still retain a similar structure, with the parameters defining the internal
model’s dynamics that are decided at runtime by the identifier. The stabiliser
is a subsystem that, for each fixed value of the identifier, stabilizes the cascade
interconnection of the plant and internal model unit. We detail the three subsystems
in the rest of the section.

3.2.1 The Internal Model

The internal model unit is designed as the following dynamical system

η̇ = Φ(η, z) +Ge, (3.8)

with η ∈ Rne(nw+1), z ∈ Z, with Z an Eucliean space that will be defined in the
next subsection, the state of the identifier that will adapt the internal model and

Φ(η, z) :=



η2

η3
...

ηnw+1

Ψ(η, z)


G :=



0ne
0ne
...

0ne
Ine


(3.9)

with ηi ∈ Rne , i = 1, 2, ..., nw + 1, such that η = col(η1, η2, ..., ηnw+1), and Ψ :
Rne(nw+1) × Rnw × Z → Rne to be fixed. If the closed-loop system is stable, it
reaches a steady-state in which all the variables oscillate with the same modes of
the exosystem. As the dimension of η is nw + 1, the Cayley-Hamilton Theorem
implies that, at such steady state, η must satisfy a regression of the kind

ηnw+1 = (θ◦T ⊗ Ine)η[1,nw], (3.10)

with θ◦ ∈ Rnw matching the coefficients of the characteristic polynomial of S (mod-
ulo a change of sign). The intuition behind the proposed approach is to look at
(3.10) as a prediction error model, asymptotically relating the state η of the internal
model (measured) with the sought unknown characteristic polynomial of S.
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The design of the identifier z to find θ◦ in (3.10), based on the continuous-time
least-squares identifier studied in Section 2.2, is postponed to the next section, while
for the moment we assume that we have a guess of θ◦ given by

θ = ω(z),

with ω : Z → Rnw , to be defined later.
The design of the internal model is completed by letting

Ψ(η, z) := (pE(ω(z))T ⊗ Ine)η[2,nw+1] + ρ̄(η, z), (3.11)

with pE : Rnw → E the projection operator onto a compact convex set E ⊂ Rnw to
be fixed, and with ρ̄ : Rne(nw+1) × Z → Rne a bounded function to be chosen later
according to the identifier’s structure.

With the choice (3.11), and for a suitable choice of ρ̄ such that ρ̄(η, z) vanishes
whenever θ equals its “ideal” value θ◦, the system (3.8) with θ = θ◦ is able to
reproduce all the modes of the exosystem, and it thus candidates as a proper internal
model.

To fix the set E in (3.11), we first define the set

Q :=
θ ∈ Rnw : rank

A− µI B

Ce 0

 < nx + ne, µ ∈ σ

0nenw×ne Inenw

0ne×ne θT ⊗ Ine


which represents the set of θ ∈ Rnw for which the non − resonance condition is
not satisfied, i.e. for which the cascade (3.2), (3.8) is not stabilizable. We thus fix
the set E as any compact convex set such that E ∩ Q = ∅. The existence of such a
set, when the transfer function of the plant has a finite number of zeros, has been
proved in Bin et al. (2019b).

3.2.2 The Identifier

We approach the design of the identifier z by looking at (3.10) as a linear regression
relating the steady state values of the state η, and by casting the estimation problem
of the exact parameters θ◦ as a recursive least-squares problem in the variables ηnw+1

and η[1,nw]. More precisely, relating to the framework in Section 2.2, we define the
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prediction error

ε(t, θ) := ηnw+1(t)− (θT ⊗ Ine)η[1,nw](t), (3.12)

and we associate to each signal η(t) the cost functional

(Jη(θ))(t) = λ
∫ t

0
e−λ(t−s)|ε(s, θ)|2ds, (3.13)

with λ > 0. Notice that here we assumed no regularization term, Σ = 0, as we aim
at perfectly computing θ◦. The parameter θ is decided by the identifier so as to
minimize (3.13).

Referring to the structure in Section 2.2, we define the identifier on Z :=
Rnw×nw×Rnw and with state partitioned as z := (R, v), , with R ∈ Rnw×nw symmet-
ric positive semi-definite and v ∈ Rnw , whose evolution is described by the following
equations

Ṙ = −λR + λγ(η[1,nw])γ(η[1,nw])T

v̇ = −λv + λγ(η[1,nw])ηnw+1 (3.14)
θ = R†v,

where λ is the same as in (3.13), and γ : Rnenw → Rnw×ne is defined as

γ(η[1,nw]) := col(ηT1 ηT2 · · · ηTnw).

We highlight that the use of the pseudoinverse operator is mandatory, even for R
square, since no conditions preventing it from being singular have been stated.

We restate the persistence of excitation (PE) property for η.

Definition 3.1. With ε, T > 0, the signal η is said to have the (ε, T )-persistency of
excitation property if for all t ≥ T

det
∫ t

0
e−λ(t−s)γ(η[1,nw](s))γ(η[1,nw](s))Tds ≥ ε. (3.15)

As, with respect to Definition 2.1, Σ = 0, we observe that the PE condition
(3.15) can be checked online simply by looking at det(R(t)).
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For future readability we rewrite (3.14) in compact form

ż = λl(z, η)
θ = ω(z),

(3.16)

with l : Z × Rne(nw+1) → Z and ω : Z → Rnw defined as

l(z, η) :=
−R + γ(η[1,nw])γ(η[1,nw])T

−v + γ(η[1,nw])ηnw+1


ω(z) := R†v.

We conclude the design of the internal model unit by letting ρ̄(η, z) in (3.11) be
defined as

ρ̄(η, z) := λsat
(
∂∆(η[1,nw], z)

∂z
l(z, η)

)
, (3.17)

with sat(·) any properly defined smooth saturation function and

∆(η[1,nw], z) := (ω(z)T ⊗ Ine)η[1,nw].

3.2.3 The Stabilizer

The stabilizer is a linear output feedback controller parametrized by θ, and smooth
in pE(θ), of the form

χ̇ = Hχ(pE(θ))χ+Hy(pE(θ))y +Hη(pE(θ))η
u = Kχ(pE(θ))χ+Ky(pE(θ))y +Kη(pE(θ))η,

(3.18)

with χ ∈ Rnχ , and it is designed in order to make the matrix

F (θ) :=


A+BKy(pE(θ))C BKη(pE(θ)) BKχ(pE(θ))

GηCe Φη(θ) 0
Hy(pE(θ))C Hη(pE(θ)) Hχ(pE(θ))

 (3.19)

Hurwitz for all θ ∈ Rnw , where:

Φη(θ) =
0nenw×ne Inenw

0ne×ne pE(θ)T ⊗ Ine

 , Gη =
0nenw×ne

Ine

 (3.20)
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Under Assumption 3.1, and by construction of E , a stabilizer of the form (3.18)
making F (θ) Hurwitz always exists. An example of synthesis can be found in
Stilwell and Rugh (2000).

3.3 Asymptotic Properties of the Closed-Loop System
The closed-loop system reads as

ż = λl(z, ξ) (3.21)
ẇ = Sw (3.22)
ξ̇ = F (z)ξ + Pξw + λρξ(η, z), (3.23)

where ξ := (x, η, χ), F (z), for θ = R†v is as in (3.19), Pξ := col(P, 0(nw+1+nχ)×nw)
and

ρξ(η, z) := col
(

0nx×1,
1
λ
ρ̄(η, z), 0nχ×1

)
,

The following proposition characterizes the asymptotic properties of the regula-
tor.

Proposition 3.1. Suppose Assumptions 3.1 and 3.2 are satisfied, and that the trans-
fer function of the plant has a finite number of zeros. Then, for any compact set
Z ×W × Ξ ⊂ Z × Rnw × Rnx+ne(nw+1)+nχ, there exists λ?1 > 0 such that, for all
λ ∈ (0, λ?1], the trajectories of the closed loop (3.21)-(3.23) are bounded. If in addi-
tion there exists θ◦ ∈ E such that

−
nw∑
i=1

θ◦i s
i−1 + snw = pS(s),

then for any ε > 0 there exists λ?2 ∈ (0, λ?1] such that, if λ ∈ (0, λ?2], any solution of
the closed-loop system (3.21)-(3.23) such that, for some T > 0, η has the (ε, T ) −
persistency of excitation property, also satisfies

lim
t→∞

e(t) = 0.

Proof.
1) Boundedness of trajectories of the closed loop system
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Consider the closed loop system (3.21), (3.22) and (3.23) under the change of
coordinates ξ 7→ ξ̃ = ξ − Π(θ)w, with Π(θ) the unique solution to the Sylvester
equation Π(θ)S−F (θ)Π(θ) = Pξ. The matrix Φ(θ) is smooth in pE(θ) since F (θ) is
smooth in pE(θ) and, from Section 4.3 in Horn and Johnson (1994), the solution to
the Sylvester equation is smooth in the elements of F (θ). In the new coordinates
the closed-loop system reads as

ż = λl(z, η) (3.24)
ẇ = Sw (3.25)
˙̃ξ = F (θ)ξ̃ + λρξ̃(η̃, w, θ, z), (3.26)

where:

ρξ̃(η̃, w, θ, z) =

= 1
λ
ρ̄(η̃ + Πη(θ)w, z)−

∂Π(θ)
∂θ

w
∂ω(z)
∂z

l(z, η̃ + Πη(θ)w). (3.27)

We proceed to study the stability of (3.24)(3.25)(3.26) as proposed in Teel et al.
(2003) for systems in two time− scale averaging form. In particular, considering
separately the stability of the boundary layer system for λ = 0, and averaged reduced
system, and show that for appropriate choice of λ, semiglobal practical stability of
the closed-loop system (3.24)(3.25)(3.26) is achieved.

To study the boundary layer system, we impose λ = 0. As a consequence,
system (3.24)(3.25)(3.26) is reduced to

żbl = 0
ẇbl = Swbl (3.28)
˙̃ξbl = F (θ)ξ̃bl.

Since for the boundary layer system θ is constant, and F (θ) is Hurwitz for all
θ ∈ Rnw , from the design of the stabilizer in Section 3.2.3, it directly follows that

|ξ̃bl(t)| ≤ βbl(|ξ̃bl(0)|, t), (3.29)

29



with

βbl(|ξ̃bl(0)|, t) = eF (θ)tξ̃bl(0). (3.30)

As a consequence, Assumption 3 of Teel et al. (2003) is satisfied.
We now study the reduced system, referring to Remark 17 of Teel et al. (2003)

to compute an admissible average of the reduced system. Namely, consider the
dynamical system

żav = Fav(zav), (3.31)

with

Fav(zav) = lim
T→∞,λ→0+

1
T

∫ T

0
l(zav,Πη(ω(zav))w(t))dt, (3.32)

where the input η̄ has been considered at its equilibrium Πη(ω(z))w(t) and depen-
dency on time t has been considered only for the “fast” state variables, i.e. ξ and
z.

By periodicity in t of Πη(θ)w(t), Lipschitz continuity in θ (due to smoothness
of Πη(θ) and boundedness of the same since we are considering the projection of θ
on the compact set E) and considering the expression of l(·, ·) in (3.14), it follows
from Lemma 4.6.4 in Sanders et al. (2007) that the integral in (3.32) exists and the
limit is uniform in z on compact sets Γ ⊂ Z. In particular, system (3.31) can be
rewritten as

żav = −zav + ūav(zav) (3.33)

where ūav(θ) is the average over t of
col(γ(Πη[1,d](ω(zav))w(t))γ(Πη[1,d](ω(zav))w(t))T , γ(Πη[1,d](ω(zav))w(t))Πηd+1(ω(zav))w(t)).

The state variable z converges exponentially to

z?av(t) :=
∫ t

0
e−(t−s)ūav(ω(zav(s)))ds. (3.34)

By denoting as z̃av(t) = zav(t)− z?av(t), Assumption 4 in Teel et al. (2003) is readily
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satisfied, since

|z̃av(t)| ≤ βav(|z̃av(0)|, λt), (3.35)

with

βav(|z̃av(0)|, λt) = e−λt|z̃av(0)|. (3.36)

It can be easily shown that for any compact set of initial conditions Z ×W × Ξ ⊂
Z × Rnw × Rnx+ne(nw+1)+nχ , Assumptions 7-8 in Teel et al. (2003) are satisfied as
well.
From Proposition 2 in Teel et al. (2003), Theorem 1 in Teel et al. (2003) follows.
We report it next.

Theorem 3.1. For each δ > 0 there exists λ?1 such that, for all λ ∈ (0, λ?1] and all
initial conditions in Z × W × Ξ ⊂ Z × Rnw × Rnx+ne(nw+1)+nχ, the solutions to
(3.21)(3.22)(3.23) exist and satisfy for all t ≥ 0

|z(t)− z?av(t)| ≤ βav(|z(0)− zav(0)|, λt) + δ (3.37)
|ξ̃| ≤ βbl(|ξ̃(0)|, t) + δ (3.38)

Boundedness of the trajectories of (3.21)(3.22)(3.23) follows by noticing that
Π(θ)w(t), the equilibrium for the state variable ξ, is bounded for all θ ∈ Rnw .
Moreover, boundedness of Π(θ)w(t), implies that z?av is bounded as well, and as a
consequence z(t) is bounded.

2) Semiglobal asymptotic stability

Define z?(t) ∈ Z as

z?(t) := λ
∫ t

0
e−λ(t−s)ū(η?)ds, (3.39)

with η? ∈ Rne(nw+1) and ū(η?) := col(γ(η?[1,d])γ(η?[1,d])T , γ(η?[1,d])η?d+1). Then z?(t) is
solution of (3.14) to z(0) = 0 and η = η?.
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By differentiation of (3.13) with respect to θ, for fixed t ∈ R≥0, we notice that

∇θ(Jη?(θ))(t) = (3.40)

= −2λ
∫ t

0
e−λ(t−s)(γ(η?[1,d](s))ε(s, θ))ds = (3.41)

= 2(R?(t)θ − v?(t)) (3.42)

Since the set of minimizers of (3.13) for η = η? is given by {θ ∈ Rnθ : ∇θ(Jη?(θ))(t) =
0}, it follows that

θ?(t) = (R?(t))†v?(t) (3.43)

For every δ ∈ Rne(nw+1), define now η = η? + δ. It is possible to show, by Lipschitz
continuity of ū(·) in η (following from boundedness of trajectories), that

|z(t)− z?(t)| ≤ e−λt|z(0)− z?(0)|+ Lū‖δt‖∞ (3.44)

with Lū the Lipschitz constant of ū(·).
From η = Πη(θ)w, the definition of Π(θ) gives

Πηi(θ)S = Πηi+1(θ), i = 1, ..., nw
Πηi(θ) = Πη1(θ)Si−1 i = 1, ..., nw + 1, (3.45)

By letting ci, i = 0, ..., nw − 1, be the coefficients of the characteristic polynomial
of S and by the Cayley-Hamilton Theorem, we have

Πηnw+1(θ) = Πη1(θ)Snw = −Πη1(θ)
nw−1∑
i=0

ciS
i =

= −
nw−1∑
i=0

ciΠη1(θ)Si = −
nw−1∑
i=0

ciΠηi+1(θ),

The prediction error (3.12) would read in this case as

ε(t, θ) = −
nw−1∑
i=0

ciΠηi+1(θ)w(t)− (θT ⊗ Ine)Πη[1,nw ](θ)w(t) = (3.46)

−
nw−1∑
i=0

ciΠηi+1(θ)w(t)−
nw−1∑
i=0

θi+1Πηi+1(θ)w(t).
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It follows that (3.13) has a global solution given by

θ◦ = − col(c0, ..., cnw−1).

Under persistency of excitation, θ◦ is also the unique solution to (3.13).
Suppose now that θ◦ ∈ E . By choosing z? in (3.44) such that θ◦ = ω(z?), it

follows that (3.14), in the coordinates z − z?, is ISS with respect to η − η?, with
η? = Πη(θ◦)w.

From boundedness of the trajectories of (ξ, z), it follows that the term ρξ̃(·)
in (3.26) is bounded. Moreover, noticing that for z = z?, ρξ̃(·) = 0, there exists a
constant ā > 0 such that |ρξ̃(·)| ≤ ā ‖z − z?‖ uniformly in ξ̃?, where ξ̃? = ξ−Π(θ◦)w.

Denoting z̃? = z − z?, we can write the bounds

|ξ̃?(t)| ≤ βξ̃?(|ξ̃?(0)|, t) + αξ̃?(‖z̃?t ‖∞) (3.47)
|z̃?(t)| ≤ βz̃?(|z̃?(0)|, t) + αz̃?(‖ξ̃?t ‖∞), (3.48)

where

βξ̃?(|ξ̃?(0)|, t) := e−F (θ)t|ξ̃?(0)| (3.49)

αξ̃?(‖z̃?‖∞) := λā
∫ ∞

0
‖eF (θ)s‖ds‖z̃?t ‖∞ (3.50)

βz̃?(|z̃?(0)|, t) := e−λt|z̃?(0)| (3.51)
αz̃?(‖ξ̃?‖∞) := Lū‖ξ̃?t ‖∞. (3.52)

From Proposition 4.1 in Jiang et al. (1994) it follows that for sufficiently small λā
the interconnection (3.21)(3.23) is semiglobally (due to the boundedness analysis
based on Teel et al. (2003)) asymptotically stable.

Since λ is a design parameter, the above condition can always be fulfilled. We
can thus define as λ?2 := min (λ?1, λsm), with λsm > 0 the minimum λ > 0 satisfying
the small-gain condition.

Then, by the definition of Π(θ), the structure of the identifier, and by using
(3.45), we obtatin that, for θ = θ◦, the quantity Πe(θ) := CeΠx(θ) +Qe fulfils

Πe(θ◦) = Πηnw+1(θ◦)S −
nw∑
i=1

θ◦iΠηi+1(θ◦) =
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= −
nw∑
i=1

(ci−1 + θ◦i )Πηi(θ◦)S = 0,

hence e→ 0, proving the claim of Proposition 3.1.
�

Proposition 3.1 states that, in order to obtain asymptotic regulation along the
persistently exciting solutions, the dynamics of the identifier have to be slow enough
compared to the rest of the control system. In this respect it is worth comparing
this result with the approach of Bin et al. (2019b), where the time-separation of the
adaptation dynamics is obtained by means of a discrete-time identifier working on
time instants that must be separated, on average, by a sufficiently large amoung of
time.

We also observe that the convergence of e to zero is uniform only inside the set
of the solutions for which the signals η(t) satisfy Definition 3.1 with the same ε and
T .

3.4 An Example
As an example of application we will consider a linear system of the form (3.2)
defined by the following matrices

A =


0 −1 1
0 3 1
2 1 0

 , B =


3 −1
0 0
2 1

 ,

Ce =
1 0 0

0 0 1

 , P =


1 1 0 0 1
0 0 1 0 1
1 0 0 0 1

 ,

Qe =
0 0 0 0 −1

0 0 −1 0 0

 ,
The exosystem matrix S is defined as S = blkdiag(S1, S2, S3), with:

S1 = γ1

 0 1
−1 0

 , S2 = γ2

 0 1
−1 0

 , S3 = 0,
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and where γ1, γ2 > 0 are unknown parameters. The errors to be regulated are thus
defined as

e1 := x1 − w5, e2 := x3 − w3.

We observe that the system considered here is not minimum-phase with respect to
the input u and the output e, and relative to the ideal error-zeroing steady state
given by the graph of Π, where Π is such that, for some Γ ∈ Rnm×nw , (Π,Γ) is the
unique solution of the regulator equations

ΠS = AΠ +BΓ + P, CeΠ +Qe = 0.

As a matter of fact, changing coordinates as x 7→ x̃ = x − Πw, and letting e = 0,
yields

˙̃x2 = 3x̃2.

For simplicity, we will assume Cm := col(0, 1, 0)T and Qm := 01×5, and define the
output of the considered system as y := col(e1, x2, e2). The set E was chosen, after
experimental tests on the non-resonance of the extended system (3.2)-(3.8), as E =
[−3, 7]×[−12,−3]×[−6, 3]×[−20,−7]×[−7, 2]. The stabilizer can thus be designed
as the static feedback regulator u = K(θ) col(y, η), with K(θ) := col(Ky(θ), Kη(θ))
a gain scheduling controller. For simplicity, in this example, K(θ) = K̄, with K̄

constant, and θ(0) ∈ E . Figure 3.1 shows the results of the simulation of the
control system obtained with λ = 0.01, γ1 = 3, γ2 = 1, w(0) = col(1,−1, 0,−1, 7)
and x(0) = (10,−2, 3).
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Figure 3.1: Plots of the trajectories of x(t), e(t), θ(t) resulting from the simulation. In
the fourth plot, the black dashed lines represent the values of the coefficients of ϕS(s).
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Concluding Remarks

This first part of the thesis was aimed at the development of an adaptive out-
put regulation controller to tackle the regulation problem when no knowledge of
an exogenous system, whose signals may represent both the reference trajectory,
both disturbances, is assumed. To lay the groundwork for the development in the
following sections, we recalled in Section 1 the basic ingredients of the theory of
output regulation for linear systems, restating, in particular, the concept of steady
state for a linear system driven by an exogenous input, and the design of the con-
troller solving the output regulation problem, when knowledge of the modes of the
exosystem is assumed, proposed in Davison (1976).

On the wake of the results in Bin et al. (2017), we propose to solve the afore-
mentioned output regulation problem by employing a continuous time identifier, in
the form of least-squares, to estimate online the parameters of an internal model
unit to be adapted. As a consequence, we review in Section 2 the identification
framework proposed in Bin et al. (2019a), and applying it to continuous time least
squares identifiers. In Section 3, at last, we develop the stated adaptive controller.
In particular, by designing the identifier dynamics to depend linearly on a tunable
parameter λ, we can exploit a small gain condition between the identifier and the
extended plant in order to, by two-time scales separation, design the stabilizer and
the identifier separately and conclude boundedness of the closed loop trajectories.
Moreover, if the true model parameters belong to the restriction of considered pa-
rameter space, under a persistence of excitation condition, semiglobal asymptotic
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regulation to the error zeroing subspace is achieved. We highlight that the de-
sign proposed does not make any minimum-phase assumption, as evident from the
reported numerical example.

The solution proposed in this thesis is just a small step towards a more general
approach for robust output regulation. Even if works addressing the same problem,
for both the linear and nonlinear case, with similar ideas (see e.g.Bin et al. (2019a)
and Bin et al. (2017)) are recently being published, the problem is far from solved.
In particular, the main future research directions that we will investigate are two-
fold. One one hand, investigating new identifier schemes, in a pursuit of better and
more general solutions. One candidate is the Direct Search algorithm developed in
the next part of the thesis. In this case, on the wake of Bin et al. (2017), a hybrid
implementation would be necessary. On the other hand, still relaying on the results
developed in the next sections, if we consider the error to not be measurable, and,
in its stead, to be able to measure a proxy function, whose minimum position corre-
sponds to the error zeroing subspace, an interconnection of the adaptive regulator
developed in the previous sections and the hybrid controller developed in the next
ones, might candidate as possible solution to solve this problem.
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Part II

Robust Direct Search Hybrid
Optimization
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4
Direct Search Methods

As already mentioned in the introduction to this thesis, we aim at developing a
robust control framework in which the least amount of knowledge is assumed to be
available. As such, we introduce in section the class of algorithms denoted Direct
Search algorithms.

The main advantage of Direct Search algorithms is that they do make not use,
or try to estimate, any derivative information of the objective function. Moreover
no knowledge of the cost function has to be a priori assumed, apart from some
structural properties. As consequence they lend themselves as a nice candidate to
tackle the problem of output regulation when no knowledge of the error is available,
but only a proxy function, not known, and whose minimum is the desired steady
state, is available for measurement.

Not assuming any knowledge of the cost function to be optimized, Direct Search
algorithm are based on exploratory moves. Namely, given a set of vectors spanning
the search space, they iteratively compute steps along these directions, continuing
the exploration in a direction only if the cost function value has decreased (or
increased).
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On one hand, not assuming or estimating derivative information, affects the
speed of convergence of these algorithms, but on the other hand, as we will see
in Chapter 6, grants clear robustness bounds to measurement noise affecting the
objective function, as well as gives an opening to their application to non-smooth
optimization problems (see for example Popovic and Teel (2004)). Moreover, due
to the inherent simplicity of the Direct Search algorithms, their implementation is
straightforward and computationally very efficient.

In the next sections we will first define direct search algorithms and their dis-
tinguishing features, to then introduce a broad subclass of direct search algorithms
denote Generating Set Search (GSS) algorithms. The following section treats a di-
rect search algorithm based on conjugate directions, whose interesting property is
that it converges to the minimum of a convex quadratic function in a finite number
of line minimizations. At last we design a GSS algorithm, exploiting the property of
conjugate directions, for a particular class of continuously differentiable functions.
As direct search algorithms, by definition, can at best be proven to converge to
a stationary point for a general continuously differentiable objective function, we
define the class of objective functions in order to remain general, but at the same
time guarantee convergence to the set of minima.

4.1 Direct Search Methods
Let us consider the following optimization problem

min
x∈X⊂Rn

f(x), (4.1)

where f : Rn → R is the objective function, x the optimization variable and X ⊂ Rn

the search space. We propose to solve the stated optimization problem by means of
Direct Search algorithm, developed in the next section.

Direct search algorithms are a class of gradient-free optimization algorithms
based on comparison of the objective function values between different points of
the search space.

The first appearance of the term “direct search” is attributed to Hooke and
Jeeves in the 1961 paper Hooke and Jeeves (1961), where the following definition
is reported

We use the phrase “direct search” to describe sequential examination of
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trial solutions involving comparison of each trial solution with the “best”
obtained up to that time together with a strategy for determining (as
a function of earlier results) what the next trial solution will be. The
phrase implies our preference, based on experience, for straightforward
search strategies which employ no techniques of classical analysis except
where there is a demonstrable advantage in doing so.

As pointed out in Lewis et al. (2000) and Kolda et al. (2003), however, this
definition brought confusion in the scientific community as no distinction between
“direct search” and “gradient-free” was made clear. Namely, it is not apparent if
procedures estimating the gradient of the objective function from function values
or fitting the collected data into model functions still belong to the class of direct
search algorithms.

The answer to this question remained unclear until Trosset in Trosset (1996)
gave a clear definition of “direct search” algorithms. The definition proposed by
Trosset, to which we will oblige, is given in the following

Definition 4.1. A direct search method for numerical optimizations is any algorithm
that depends on the objective function only through the ranks of a countable set of
function values.

Hence direct search algorithms, at least in the unconstrained case, work with the
difference between the objective function values, regardless of the actual objective
function values.

Even before the definition by Hooke and Jeeves in Hooke and Jeeves (1961),
direct search algorithms were already known and used. One of the first reported
examples of direct search algorithms can be found in Davidon (1991), where Davi-
don describes a simple direct search algorithm used by Fermi and Metropolis for
numerical optimization. He states:

Enrico Fermi and Nicholas Metropolis used one of the first digital com-
puters, the Los Alamos Maniac, to determine which values of certain
theoretical parameters (phase shifts) best fit experimental data (scat-
tering cross sections) Fermi and Metropolis (1952). They varied one
theoretical parameter at a time by steps of the same magnitude, and
when no such increase or decrease in any one parameter further improved
the fit to the experimental data, they halved the step size and repeated
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the process until the steps were deemed sufficiently small. Their sim-
ple procedure was slow but sure, and several of us used it on the Avidac
computer at the Argonne National Laboratory for adjusting six theoret-
ical parameters to fit the pion-proton scattering data we had gathered
using the University of Chicago synchrocyclotron Davidon (1991).

As simple as it is, the procedure used by Fermi and Metropolis encompasses
all the characteristics of a direct search algorithm. Namely no knowledge of the
objective function is assumed, nor any attempt is made to fit the objective function
values to any model, or to estimate the gradient.

The algorithm works by acquiring new objective function values by exploring
the search space, one variable at a time, through steps of the same magnitude. As
Davidon, we will denote this quantity step size and identify it with the symbol ∆.

We will call the procedure of minimizing an objective function along a direction,
starting from a point of the search space, a line minimization procedure. In this
regard we distinguish between two types of line minimizations.

Definition 4.2 (Exact line minimization). Consider a direction d ∈ Rn, a starting
position x̄ ∈ Rn and a function f : Rn → R. An exact line minimization is any
procedure solving the following optimization problem

min
α∈R

f(x+ αd),

and returning the value α.

Definition 4.3 (Discrete line minimization with fixed step size). Consider a direction
d ∈ Rn, a starting position x̄ ∈ Rn, a function f : Rn → R. A discrete line
minimization with fixed step size ∆ > 0 is any procedure that solves the following
optimization problem

min
β∈Z

f(x+ β∆d)

and returns the value β.

The algorithm used by Fermi and Metropolis is based on discrete line minimiza-
tions, and, as it explores only the coordinate axes, it is usually denoted as compass
search (or coordinate search) algorithm.

In the next sections we will introduce a class of direct search algorithms based
on line minimizations, named Generating Set Search methods, and a particular
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algorithm belonging to that class, the Recursive Smith-Powell (or conjugate direc-
tions) algorithm, whose main property is to guarantee convergence the minimizer
of a convex quadratic function in a finite number of (exact) line minimizations.

4.1.1 Generating Set Search (GSS) Algorithms

The convergence of the compass search algorithm stems from exploring the search
space along a set of directions spanning all Rn, the coordinate axes. Generating
set search algorithms generalize this idea. The name Generating Set Search comes,
indeed, from the set of directions along which the minimum of the objective function
is searched. This set is finite and has to “generate” (positively span) all the feasible
directions, i.e. Rn in the unconstrained case.

Definition 4.4 (Positively spanning set). Let G = {d1, d2, ..., dp} be a set of p ≥ n+1
vectors in Rn. Then the set G generates (or positively spans) Rn if for any vector
v ∈ Rn, there exist λ1, λ2..., λp ≥ 0 such that:

v = ∑p
i=1 λidi

The importance of positively spanning sets is due to the following property.

Property 4.1. For a continuously differentiable function f : Rn → R and a set of
positively spanning directions {d1, d2, ..., dp}, with p ≥ n + 1, for all x ∈ Rn such
that ∇f(x) 6= 0, there exists i ∈ {1, 2, ..., p} such that 〈∇f(x), di〉 < 0.

Namely at least one direction in {d1, d2, ..., dp} is a descent direction.
A general GSS algorithm is shown in Fig. 4.1 (Kolda et al. (2003)).
Denote as Gk the set of directions positively spanning Rn at iteration k. At each

iteration k of the algorithm in Fig. 4.1, a step ∆k > 0 is taken from the current
iterate xk in a direction dk ∈ Gk and the objective function f is evaluated at that
point, i.e. f(xk + ∆kdk). If a point with a smaller objective function value is found,
namely the following sufficient decrease condition is satisfied

f(xk) > f(xk + ∆kdk)− ρ(∆k) with dk ∈ Gk, (4.2)

the search continuous in that direction, namely the next iteration starting value is
taken as:

xk+1 = xk + ∆kdk, (4.3)
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Algorithm : GSS
1 Data: Suppose given a set G0 := {d01, d02, ..., d0p} of positively spanning directions in Rn

and an intial step size ∆0 > 0. Let θmax ∈ (0, 1) be an upper bound on the contraction
parameter θk ∈ (0, 1). Let φmax ∈ [1,∞) be the upper bound on the expansion
parameter φk ∈ [1,∞). Let ρ : [0,+∞)→ R be a continuous function such that
ρ(∆k) = o(∆k) as ∆k → 0. Let βmax ≥ βmin > 0 be upper and lower bounds,
respectively, on the lengths of the vectors in the generating sets Gk. Let κmin > 0 be a
lower bound on the cosine measure of any generating set Gk. Let the initial position
x00 ∈ Rn be given.

2 for k ∈ N do
3 if ∃dk ∈ Gk : f(xk + ∆kdk) ≤ f(xk)− ρ(∆k) then
4 xk+1 ←− xk + ∆kdk

5 ∆k+1 ←− Φk∆k

6 else
7 xk+1 ←− xk

8 ∆k ←− θk∆k

9 end
10 Select Gk+1 such that ∀d ∈ Gk+1 βmin ≤ ‖d‖ ≤ βmax and κ(Gk+1) ≥ κmin.
11 end

Figure 4.1: The GSS algorithm

possibly increasing the step size. In case no member of Gk satisfies (4.2) we will
call the iteration unsuccessful. In this case the step size ∆k is reduced and the
procedure restarts all over again.

Notice that the sufficient decrease condition is reduced to the classic simple
decrease condition for ρ(·) ≡ 0. The importance of the sufficient decrease condition
over the simple decrease is related to the globalization strategy adopted, and will
be clarified soon.

The cosine measure of G is defined as

κ(G) := min
v∈Rn

max
d∈G

vTd

‖v‖ ‖d‖
, (4.4)

that is the cosine of the biggest angle between a direction d ∈ G and any vector
v ∈ Rn.

The lower bound on κ(Gk) in Fig. 4.1 guarantees that the property of Property
4.1 is satisfied for all k. As reported in Lucidi and Sciandrone (2002), this condition
can be relaxed to a lower bound on the limit of κ(Gk) for k →∞.

In Kolda et al. (2003) it has been shown that the step size parameter ∆k is
directly related to the convergence of GSS methods to a stationary point (namely
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a point xk such that ∇f(xk) = 0).
Indeed let us define as U ⊂ N the set of k that are unsuccessful iterations, the

next result follows.

Theorem 4.1. Kolda et al. (2003) Let f : Rn → R be continuously differentiable, and
suppose ∇f is Lipschitz continuous with constant M. Then GSS produces iterates
such that for any k ∈ U , we have

‖∇f(xk)‖ ≤ κ(Gk)−1
[
M∆kβmax + ρ(∆k)

∆kβmax

]
(4.5)

It follows that if
lim
k→∞

∆k = 0, (4.6)

then a stationary point could be reached, at least for the sequence of unsuccessful
iterations. Moreover from (4.5) it is possible to notice that a stopping criterion
based on a minimum ∆k = ∆tol does not provide any guarantee that a small enough
neighborhood of a stationary point has been reached.

In order to guarantee the convergence to a stationary point of the GSS algorithm,
conditions have to be placed on the choice of the step size and the choice of the
directions in G at each iteration. Namely for a too short or a too long step size,
the convergence to a stationary point can be hindered, since the sequence of iterate
could converge to a point different from a stationary point. The same happens if
the chosen descent direction (satisfying only a simple decrease condition) is almost
perpendicular to the gradient of f .

For line minimization methods in which the gradient is known, in order to choose
a proper step size it is sufficient to satisfy the Wolfe conditions at each iteration,

f(xk + ∆kdk) ≤ f(xk) + c1∆k∇f(xk)T

∇f(xk + ∆kdk)Tdk ≥ c2∇f(xk)Tdk
(4.7)

with 0 < c1 < c2 < 1.
The first condition, named the Armijo condition (or sufficient decrease con-

dition, not casually with the same name as (4.2)) ensures that the steps are not too
big, while the second condition, called the curvature condition, ensures that the
steps are not too small.

The same conditions would guarantee a proper choice of the step size for GSS
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algorithms but the problem is that we are assuming no derivative information. In
fact the second condition of (4.7) can be automatically ensured by backtracking,
namely starting with a relatively big step size and reducing it only in case the
Armijo condition is not satisfied (that is, in our case, only at unsuccessfull itera-
tions).

TheArmijo condition can instead be satisfied by ensuring the sufficient decrease
condition (4.2) (or by imposing other conditions not relevant to us, refer to Kolda
et al. (2003) for a complete review).

A bad choice in the descent direction can be prevented by imposing a lower
bound on the cosine measure of the set of directions, as well as the sufficient decrease
condition.

The next theorem wraps up the general convergence properties for GSS methods
based on a sufficient decrease condition.

Theorem 4.2. Kolda et al. (2003) Let f : Rn → R be a continuously differentiable
function. Moreover let f be bounded below and the sublevel sets of f

Lf(x0) := {x ∈ Rn : f(x) ≤ f(x0), x0 ∈ Rn} (4.8)

be compact ∀x0 ∈ Rn. Then the GSS algorithm in Fig. 4.1 produces iterates such
that

lim
k→∞, k∈U

∇f(xk) = 0 (4.9)

Remark 4.1. Notice that the sequence xk, for k ∈ U , does not need to converge to
a single stationary point for the above result to hold. Indeed, as shown in Audet
(2004), the sequence of points at unsuccessful iterations can converge to a set of
stationary points. 4

Remark 4.2. We report that the same result of Theorem 4.2 can be achieved requir-
ing a simple decrease condition but adding different assumptions, see for example
Coope and Price (1999) and Kolda et al. (2003). 4

Theorem 4.2 can be strengthened to have the whole sequence of iterates con-
verging to a set of stationary points under the hypothesis that, at each iteration,
all the directions are checked and only the “best” direction is selected for decrease
(see Theorem 3.1Fig. 4.3-4.4 in Kolda et al. (2003)).
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4.1.2 Recursive Smith-Powell Method

In this section we will introduce the Recursive Smith-Powell (RSP) method, also
called Conjugate Directions method.

Let us start by defining what conjugate directions are and the properties that
they possess.

Definition 4.5 (Conjugate directions). Two non-zero directions (or vectors) d1, d2 ∈
Rn are conjugate with respect to a matrix H ∈ Rn×n (or H-conjugate) if

dT1Hd2 = 0 (≡ dT2Hd1 = 0) (4.10)

In the rest of the thesis we will address as convex quadratic any function f :
Rn → R that can be defined as f(x) := xTHx + bTx + c, with c ∈ R, b ∈ Rn×1

and H ∈ Rn×n the Hessian matrix of f assumed to be positive definite, namely
xTHx > 0 ∀x ∈ Rn. When clear from the context, we will refer to two, or more,
directions as conjugate with respect to a convex quadratic function when they are
conjugate with respect to its Hessian matrix.

The importance of conjugate directions stems from the following theorem.

Theorem 4.3. Consider a convex quadratic function fc : Rn → R defined as fc(x) :=
xTHx + bTx + c, with c ∈ R, b ∈ Rn×1 and H ∈ Rn×n the Hessian matrix of fc
assumed to be positive definite. Then, given a set of n conjugate directions, with
respect to H, namely a set G := {d1, d2, ..., dn} ⊂ Rn, where

dTi Hdj = 0 i 6= j,

a sequence of n exact line minimizations, one per direction in G, reaches exactly the
minimum of fc.

Proof. First of all notice that the vectors in a set of n conjugate directions in Rn

with respect to a positive definite symmetric matrix H, are all linearly independent.
To show this, we move by contradiction.

Suppose they are not linearly independent. Then there exists a vector α =
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col(α1, α2, ...αn) ∈ Rn, with α 6= 0, such that

n∑
k=1

αkdk = 0. (4.11)

Pre-multiplying by H
H

n∑
k=1

αkdk =
n∑
k=1

Hαkdk = 0. (4.12)

Taking the scalar inner product with any dj ∈ G, with j ∈ {1, 2, ..., n−1}, it follows
that

〈dj,
n∑
k=1

αkdk〉 = αj〈dj, Hdj〉 = 0, (4.13)

since 〈dj, Hdk〉 = 0 ∀j 6= k due to conjugacy. Since H is symmetric positive definite,
it defines an inner product, and thus 〈dj, Hdj〉 should be bigger than zero for dj 6= 0.
As a consequence, αj = 0.

Repeating the same reasoning for all j ∈ {1, 2, ..., n− 1}, it follows that α = 0,
thus reaching a contradiction. Hence the vectors in G are linearly independent.

Moving back to the proof of Theorem 4.3, rewrite fc as

fc(x) = (x− x?)TH(x− x?) + c̄, (4.14)

where x? is the position of the minimum of fc, Hx? = −b and c̄ = c− x?THx?. As
the directions in G form a basis for Rn, we can write

x− x? =
n∑
k=1

(αk − α?k)dk, (4.15)

for some αk, α?k ∈ R, k = 1, 2, ..., n. From (4.15), we can rewrite (4.14) as

fc(α) =
n∑
k=1

(αk − α?k)2dTkHdk + c̄.

The function fc can thus be minimized by αk = α?k, k = 1, 2, ..., n, and this is
equivalent to performing n exact line minimizations along the directions dk. �

As the result of Theorem 4.3 is surely interesting for function optimization pur-
poses, in order to compute a set of n conjugate directions, knowledge of the Hessian
matrix of the cost function should be assumed. As this is often not possible, Smith
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(1962) developed an algorithm, then extended by Powell (1964), that iteratively
computes a set of conjugate directions without assuming knowledge of the cost
function, apart from its structure (i.e. convex quadratic), by exploiting the follow-
ing Parallel Subspace Property.

Theorem 4.4 (Parallel Subspace Property (Fletcher (2000), Theorem Fig. 4.3-4.4.2.1)).
Consider a convex quadratic function f : Rn → R and two parallel affine sub-
spaces S1, S2 ⊂ Rn, generated by linearly independent directions d1, d2, ..., dk, where
k < n, from the points x1, x2 ∈ Rn respectively. That is Sj := {x ∈ Rn : x =
xj + ∑k

i=1 αidi ∀αi ∈ R} for j = 1, 2. Denote the points which minimize f on S1

and S2 by x?1 and x?2 respectively. Then x?2 − x?1 is conjugate to d1, d2, ..., dk.

Thus starting from one direction d1 ∈ Rn, and computing two exact line mini-
mizations along two parallel (but not coincident) lines defined by d1, it is possible to
compute a direction d2 ∈ Rn conjugate to d1. The process can continue iteratively
by exploring two parallel affine subspaces defined by d1, d2 in order to compute d3

conjugate to d1, d2 and so on. That is the idea of the algorithm proposed in Smith
(1962).

Notice that, since the restriction of a convex quadratic function to a k-dimensional
linear subspace is convex quadratic, to find the minimum of a convex quadratic func-
tion on the linear subspace, it is enough to compute k line minimizations along the
k conjugate directions defining the subspace.

The algorithm proposed by Powell in Powell (1964) (Fig. 4.2) preserves the
quadratic termination property of Theorem 4.3, namely reaches the minimum of a
convex quadratic function in a finite number of line minimizations. In particular,
it is reached in n2 line minimizations.

In case of discrete line minimizations Theorem 4.3 is, in general, not true any-
more. An approximate result can be achieved in that case.

Theorem 4.5 (Discrete Theorem 4.3 Byatt et al. (2004)). Let f : Rn → R be a
convex quadratic function with minimizer x? ∈ Rn. Then, given a step size ∆ > 0
and a set of conjugate directions G (with respect to f), a sequence of n discrete line
miniminizations with fixed step size ∆ converges to a point x̂? such that

‖x? − x̂?‖ ≤ 1
2diam(PG(x?)), (4.16)

where PG(x?) is the n-parallelotope generated by the directions in G scaled by ∆ and
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Algorithm : RSP
1 Data: Suppose given a set G := {d0, ..., dn−1} of linearly independent directions in Rn.

Let the initial position x◦ ∈ Rn be given.
2 Initialization: Let αn−1 be such that x◦ + αn−1dn−1 is the minimizer of (4.17) resulting

from an exact line minimization procedure along the direction dn−1 from x◦.
3 x00 ←− x◦ + αn−1dn−1
4 for k ∈ N do
5 for j ∈ {0, 1, ..., n− 1} do
6 Compute an exact line minimization along dj from xkj to obtain αj

7 xk(j+1) ←− xkj + αjdj

8 end
9 z ←− xk0 +

∑n−1
j=0 αjdj

10 for j ∈ {0, 1, ..., n− 2} do
11 dj ←− dj+1
12 end
13 dn−1 ←− z − xk0 (=

∑n−1
j=0 αjdj)

14 Compute an exact line minimization along dn−1 from z to obtain αn−1
15 x(k+1)0 ←− z + αn−1dn−1
16 end

Figure 4.2: The RSP algorithm

centered at x?.

The problem, again, is that, without knowledge of the cost function, a set of
conjugate directions is hard to compute, in a finite amount of line minimizations,
without exploiting the Parallel Subspace Property. As this property is no more
valid in the discrete setting (unless the minimum is reached exactly in each line
minimization), it turns out that, without going out of the framework of direct
search algorithms, e.g. by resorting to interpolation techniques, it is not possible
to construct a set of conjugate directions while retaining convergence for general
functions. Indeed, for example, Brodlie (1975) and Nazareth (1976) could only
achieve asymptotic conjugacy for convex quadratic functions.

In Coope and Price (1999) the quadratic termination property was achieved
by quadratic interpolation of the explored points and estimate of the gradient and
Hessian of the convex quadratic function.

As the aim of this work is not to set apart from the direct search framework,
and as asymptotic conjugacy brings no gain with respect to asymptotic convergence
due to the step size reduction, we will, on the wake of Mayhew et al. (2007), retain
the simplest form of the RSP as a method to compute new directions in the GSS
framework, in order to, possibly, better guide the search of the minimum for convex
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quadratic functions or in a neighborhood small enough of the minimizers for more
general functions.

4.1.3 A globally convergent GSS algorithm for a particular class
of functions

In this section we proceed to the design of a novel GSS algorithm, based on conjugate
directions, that solves the optimization problem

min
x∈Rn

f(x), (4.17)

where f : Rn → R is the objective function. In particular, the novelty introduced
is that the proposed algorithm exactly asymptotically solves problem (4.17) under
the following assumptions.

(A0) f is continuously differentiable, globally lower bounded and it is not assumed
to be known, but sampled measurements of it are supposed to be available
every τ ? > 0, with τ ? a tunable parameter;

(A1) the set {x ∈ Rn : ∇f(x) = 0} of critical points of f is such that every local
minimum is also a global minimum (i.e. all local minima share the same
objective function value), every local maximum is an isolated point and f is
analytic at every local maximum, and there are no saddle points;

(A2) the sublevel sets of f , namely the sets Lf (c) := {x ∈ Rn : f(x) ≤ c}, are
compact for all c ∈ R.

The set of global minima will be denoted as A? := {x? ∈ Rn : f(x?) ≤ f(x) ∀x ∈
Rn}.

Assumptions (A0) and (A2) are standard for Direct Search methods, see Coope
and Price (1999), Kolda et al. (2003) and Lucidi and Sciandrone (2002). Assumption
(A0) can be relaxed by considering f to be locally Lipschitz, as shown in Kolda et al.
(2003) and Popovic and Teel (2004), which requires the use of generalized gradients
for analysis.

The reason for the particular structure of the set of critical points assumed in
(A1) stems from the fact that our goal is to prove and guarantee convergence to the
set of minima. While the assumptions on the value of the local minima is considered
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to simplify the structure of the problem, without the other assumptions on local
maxima and saddle points, the proposed algorithm only guarantees convergence to
the set of critical points. In particular, the assumption on analyticity at the maxima
gives the possibility of escaping local maxima by adopting a non-analytic function
of the step size as function imposing the sufficient decrease condition.

The proposed algorithm, shown in Fig. (4.3)-(4.4), is a GSS algorithm and
belongs to the class of Algorithm 2 in Lucidi and Sciandrone (2002). It improves
the results in Mayhew et al. (2007) by guaranteeing, under the less restrictive as-
sumptions (A0) and (A1), asymptotic convergence to the set of minima. The main
differences are highlighted in red. In particular, referring to the Algorithm in Fig.
4.3-4.4:

1) A different step size ∆i is associated to each direction di in order to guarantee
more freedom of exploration. As such, when a new direction is computed
(lines 19-23) also a new step size is associated to the new direction (line 18);

2) In case no improvement is made along a direction (lines 8-10), the corre-
sponding step size is reduced. This is the key step guaranteeing asymptotic
convergence to the minima of the cost function;

3) The newly computed direction is “accepted” only if it keeps the directions in
G linearly independent (lines 19-23), otherwise the previous set of directions
is retained.

Remark 4.3. The step size associated to the newly computed direction is chosen as
the maximum step size associated to the other directions, but any function bounded
by the minimum and maximum of the step sizes would do. This is needed in order
to guarantee that the step sizes are asymptotically reduced to zero. 4

Remark 4.4. The reduction of the step size when no improvement is found, stems
from the framework of GSS algorithms and Theorem 4.2. 4

Remark 4.5. As pointed out in Zangwill (1967), 3), or similar steps guarantee-
ing linear independence of the directions, is necessary, also for convex quadratic
functions, in order to guarantee convergence of the algorithm. 4

The line minimization procedure explores a direction dj from a starting point
xkj and returns the distance αj traveled from xkj to the found minimum of f along
dj. The main differences in the line minimization procedure are the following:

54



Algorithm 2 : Proposed RSP
1 Data: A set G0 := {d00, ..., d0(n−1)} of linearly independent directions in Rn, the set of

initial step-sizes ∆0,n−1 := {∆00, ...,∆0(n−1)}, each corresponding to a direction in G,
Φ > 0 a global step size, 0 < λs < 1 < λt, θ ∈ (0, 1), γ ≥ 1, µ ∈ (0, 1/λt), δdet > 0, and
the initial position x◦ ∈ Rn.

2 Initialization: Let α be such that x◦ + αd0(n−1) is the minimizer of (4.17) resulting from
a line minimization with step-size ∆0(n−1), along the direction d0(n−1) from x◦.

3 x00 ←− x◦ + αd0(n−1)
4 for k ∈ N do
5 for j ∈ {0, 1, ..., n− 1} do
6 Compute a line minimization with step size ∆kj along dkj from xkj to obtain αkj

7 xk(j+1) ←− xkj + αkjdkj

8 if αkj = 0 then
9 if θ∆kj ≤ λsΦk then
10 ∆kj ←− θ∆kj

11 end
12 end
13 end
14 if αkj = 0 ∀j = 0, 1, ..., n− 1 then
15 Φk+1 = µΦk

16 for j ∈ {0, 1, ..., n− 1} do
17 if ∆kj > µΦk then
18 ∆kj = µΦk

19 end
20 end
21 end
22 z ←− xk0 +

∑n−1
j=0 αkjdkj

23 for j ∈ {0, 1, ..., n− 2} do
24 d(k+1)j ←− dk(j+1)
25 ∆(k+1)j ←− ∆k(j+1)
26 end
27 ∆(k+1)(n−1) ←− maxj∈{0,1,...,n−2}∆(k+1)j

28 if | det(col(dT
(k+1)0, d

T
(k+1)1, ..., d

T
(k+1)(n−2), (z − xk0)T ))| ≥ δdet then

29 d(k+1)(n−1) ←− z − xk0 (=
∑n−1

j=0 αkjdkj)
30 else
31 d(k+1)(n−1) = dk0
32 end
33 Compute a line minimization with step size ∆(k+1)(n−1) along d(k+1)(n−1) from z to

obtain α(k+1)(n−1)
34 x(k+1)0 ←− z + α(k+1)(n−1)d(k+1)(n−1)
35 end

Figure 4.3: New RSP algorithm.
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Line minimization procedure
1 Initialization: i = 0, xkj0 = xkj , ∆kj0 = ∆kj

2 while f(xkji + ∆kjidkj) ≤ f(xkji)− ρ(∆kji) do
3 xkj(i+1) ←− xkji + ∆kjidkj

4 if γ∆kji ≤ λtΦk then
5 ∆kj(i+1) ←− γ∆kji

6 else
7 ∆kj(i+1) ←− λtΦk

8 end
9 i←− i+ 1

10 end
11 if i = 0 then
12 while f(xkji −∆kjidkj) ≤ f(xkji)− ρ(∆kji) do
13 xkj(i+1) ←− xkji −∆kjidkj

14 if γ∆kji ≤ λtΦk then
15 ∆kj(i+1) ←− γ∆kji

16 else
17 ∆kj(i+1) ←− λtΦk

18 end
19 i←− i+ 1
20 end
21 end
22 αkj ←− i∆kji, xkj ←− xkji, ∆kj ←− ∆kji

Figure 4.4: Line minimization procedure.
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1) Newly explored points are accepted only if a sufficient decrease condition is
satisified (lines 2 and 8);

2) When a new iteration is accepted, the step size is, possibly, increased (lines
Fig. 4.3-4.4 and 10);

3) A different step size is associated to each direction and, also, a global step
size Φ is considered in order to bound the different step sizes.

Remark 4.6. The sufficient decrease condition guarantees that the Armijo condition,
needed for the algorithm convergence, is satisfied and also guarantees a margin of
robustness to measurement noise, as we will see in Chapter 6. For the sufficient
decrease condition, we adopt the function ρ : R→ R defined as

ρ(∆) :=

∆ 1
∆ ∆ ≤ e

∆ + (e 1
e − e) ∆ ≥ e,

(4.18)

with e the Napier’s constant. The function (4.18) is a strictly increasing function
of ∆, that at ∆ = 0 is smooth (from the right) but non-analytic, and such that
ρ(∆) = o(∆n) for ∆ → 0 for all n ∈ N, implying that, under assumption (A1), if
x̄ ∈ Rn is a local maxima for f , there exists ∆̄ > 0 such that for all d ∈ G and
∆ ∈ (0, ∆̄], f(x̄+ ∆d) < f(x̄)− ρ(∆). In particular, the following result is true.

Lemma 4.1. For every n ∈ N0, the function ρ : R → R defined in (4.18) is o(∆n)
for ∆ → 0 and, given θ ∈ (0, 1) and ∆ ∈ (0, 1), the series ∑∞n=0(θn∆)(

1
θn∆) is

convergent.

Proof. Throughout this proof we can consider, without loss of generality, ρ(∆) =
∆ 1

∆ .
Let us show that ∆ 1

∆ is o(∆). It comes directly from the definition of little-o
notation, indeed

lim
∆→0

∆ 1
∆

∆ = lim
∆→0

∆ 1−∆
∆ = 0.

From the same reasoning it follows that for every n > 0, ∆ 1
∆ is o(∆n). Indeed

notice that
lim
∆→0

∆ 1
∆

∆n
= lim

∆→0
∆ 1−n∆

∆ = 0.
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Regarding the series ∑∞n=0(θn∆)(
1

θn∆), we can rewrite it as

∞∑
n=0

(θn∆)(
1

θn∆) =
( ∞∑
n=0

((
θ

1
∆
)n)( 1

θn )
) ∞∑

n=0

(
(∆)(

1
∆)
)( 1

θn )
 . (4.19)

By assumption θ 1
∆ ∈ (0, 1).

Define as θ̄ ∈ R>0 the smallest real number such that θ ≤ θ̄ and 1/θ̄ ∈ N.

Then, as the series ∑∞n=0

((
θ

1
∆
)n)( 1

θn ) is bounded by ∑∞n=0

((
θ̄

1
∆
)n)( 1

θ̄n ), that is a
subseries of ∑∞n=0

(
θ̄

1
∆
)n
, it will converge.

For the same reasoning, since∑∞n=0

(
(∆)(

1
∆)
)( 1

θn )
can be bounded by a subseries

of ∑∞n=0

(
∆ 1

∆
)n
, and all the terms in (4.19) are positive, the whole series converges.

�

Notice that any other function with the same properties as (4.18) would also be
an appropriate choice for ρ. 4

Remark 4.7. The step size increase during the line minimization procedure helps
in better exploiting the directions in which the cost function decreases. This step
does not hinder convergence of the algorithm thanks to assumption (A2). 4

We provide next the convergence results for the algorithm in Fig. 4.3-4.4.
Denote as i?kj the number of steps computed in the line minimization procedure

at iteration k along direction dj and as blocked points all the points xkj such that

f(xkj ±∆kjdkji) > f(xkj)− ρ(∆kji). ∀j = 0, 1, ..., n− 1

On the wake of the results of Garcia-Palomares and Rodriguez (2002), we can
conclude the following Lemma 4.2 and Theorem 4.6.

Lemma 4.2. The sequence of step sizes {∆kji} produced by the line minimization
procedure in Fig. 4.4 is such that

lim
k→∞

lim
i→i?

kj

∆kji = 0 ∀j = 0, 1, ..., n− 1.

Proof.
By construction, λsΦk ≤ ∆kji ≤ λtΦk and Φk is a non-increasing sequence that

reduces at blocked points. Hence, if blocked points occurred infinitely often, then
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we would have that, at blocked points, Φk → 0, and thus ∆kji → 0.
By contradiction, if blocked points were not to occur infinitely often, then it

means that there exists w ∈ N such that Φk = Φw for all k ≥ w. Thus, given
λsΦw = ε, it follows that ∆kji ≥ ε for all k ≥ w. Hence, for all k ≥ w, there exists
j ∈ {0, 1, ..., n− 1} and i?kj > 0 such that dkj is such that

f(xkji + ∆kjidkj) ≤ f(xkji)− ρ(∆kji) ≤ f(xkji)− ρ(ε). ∀i ≤ i?kj (4.20)

As such, f(xkji) would decrease without a bound, contradicting (A2). Hence the
claim is proved. �

Theorem 4.6. Every limit point x of the sequence of blocked points generated by the
algorithm in Fig. 4.3-4.4 satisfies ∇f(x) = 0.

Proof. Denote as {x̄k} the sequence of blocked points. Then

f(x̄k + ∆kjidkj)− f(x̄k) > −ρ(∆kji). ∀j

Notice that, by det(col(dT0 , dT1 , ..., dTn−1)) > ε, compactness of the sublevel sets of
f and the update rule for computing new directions, computing a new direction as
the distance between two points explored points (and thus bounded by the diameter
of the initial compact sublevel set), the norm of dkj, for all j = 0, 1, ..., n − 1 and
k ≥ 0, is upper bounded by dmax := maxj=0,1,...,n{d0j, diam(Lf (xo))}, and lower
bounded. The sequence {dkj} is thus bounded, and as such, considering any limit
point d̄j, we can conclude that

f(x̄k + ∆kj d̄j)− f(x̄k) =
f(x̄k + ∆kjdkj)− f(x̄k) + f(x̄k + ∆kj d̄j)− f(x̄k + ∆kjdkj)
≥ −|ρ(∆kj)|+ f(x̄k + ∆kj d̄j)− f(x̄k + ∆kjdkj)
≥ −|ρ(∆kj)| − |f(x̄k + ∆kj d̄j)− f(x̄k + ∆kjdkj)|,

thus, denoting as κ > 0 the Lipschitz constant of f at x̄k + ∆kj d̄j,

f(x̄k + ∆kj d̄j)− f(x̄k)
∆kj

≥ −|ρ(∆kj)|
∆kj

− κ‖d̄j − dkj‖.
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Then

∇f(x̄)T d̄j = lim
x̄k→x,∆kj→0

f(x̄k + ∆kj d̄j)− f(x̄k)
∆kj

≥

≥ lim
∆kj→0

−ρ(∆kj)
∆kj

− κ‖d̄j − dkj‖ = 0.

Since this result is valid also for −d̄j, it follows that ∇f(x)T d̄j = 0. Moreover
it is independent of j, and since {d̄0, d̄1, ..., d̄n−1} span Rn, we can conclude that
∇f(x) = 0. �

It is shown in Kolda et al. (2003) that Direct Search algorithm that continue
the exploration along a direction as long as a (sufficient) decrease in the objective
function is encountered, guarantee to achieve convergence to the minimum of sub-
sequence of the blocked points. But as shown in Audet (2004), such a convergence
result may also lead to converge to a set of infinite points, some of which may have
gradient different from zero.

Some of the issues pointed out in Audet (2004) can be solved by exploring at each
iteration all the directions belonging to the set G, and continuing the exploration
only along the directions where the most decrease in the cost function was found.
This method, however, is not very practical for real application. Since, if we think
about a vehicle that to take a step in a direction, it every time has to first visit all
the directions belonging to G, it is a really time consuming task.

As such, we next show how the structure of the cost function defined by as-
sumptions (A0)-(A2) and the particular choice of the function ρ make it possible
to conclude convergence of the whole sequence of iterates xkji produced by the al-
gorithm in Fig. 4.3-4.4, without resorting to explore all the directions in G, but
simply continuing the exploration along the first direction for which the sufficient
decrease condition is satisfied. To the best of our knowledge, the following result is
novel in the literature.

Theorem 4.7. Consider the class of cost functions defined by (A0)-(A2), the se-
quence of iterate xkji generated by the New RSP algorithm in Fig. 4.3-4.4 is such
that

lim
k→∞

lim
i→i?

kj

‖xkji‖A? = 0 ∀j = 0, 1, ..., n− 1. (4.21)

Proof. We proceed by first showing that the every limit point of the sequence of
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blocked points is a minimum, to then prove that also the whole sequence of iterates
converges to a set of minima.

By assumption (A1) and Theorem 4.6, we only need to show that every limit
point of the sequence of blocked points is not a maximum. As we are assuming that
every maximum is an isolated point, it follows that, considering a local maximum
x̄ ∈ Rn, there exists εm > 0 such that ∀x 6= x̄ ∈ Rn such that ‖x − x̄‖ ≤ εm, it
follows that f(x) < f(x̄).

Suppose there exists a subsequence of blocked points converging to x̄. Denote
it as {xl}. Notice that since, for each j = 0, 1, ..., n− 1, ∆kji > 0 and ∆kji → 0 for
k →∞, there exists l̄ > 0 such that ∀l ≥ l̄, ‖xl − x̄‖ < εm.

If every point of the above sequence is such that xl 6= x̄, then, by the sufficient
decrease condition and the definition of local maximum, it follows that xl 6→ x̄,
since f(x̄) > f(xl), thus contradicting that such a sequence exists.

So the only way for such a sequence to exist is if for some ¯̄l ≥ l̄, xl = x̄ for all
l ≥ ¯̄l.

As f is analytic at x̄, there exists an even m > 0 such that the m− th derivative
of f with respect x is different from zero and, being x̄ a maximum, its norm is lower
than zero. Denote it as fm(x). Then, considering the Taylor expansion of f(x̄+∆d)
around x̄, and noticing that ∆ 1

∆ is o(∆m) and ‖d‖ is lower bounded, there exists a
∆̄ ∈ (0, 1) such that for all ∆ ∈ (0,∆)

fm(x)‖d‖m∆m < −ρ(∆),

and thus there exists l > 0 such that xl 6= x̄ and f(xl) < f(x̄).
Thus every limit point of the sequence of blocked points cannot be a maximum,

hence they will all be minima.
To show that the whole sequence of iterates converges to the set of minima,

notice that the subsequence of blocked points xbk of xkji converges to A?, by the
above discussion. Suppose, by contradiction, that a subsequence xpk of xkji does
converge to a point x̄ /∈ A?.

By definition of converging sequence, given εp > 0, there exists a p? > 0 such
that, for all p > p?, ‖xpk − x̄‖ ≤ εp > 0 and ‖x̄‖A? > εp. Denote as fεp :=
min{x:‖x−x̄‖≤εp} f(x). Pick εb > 0 such that max{x:‖x‖A?≤εb} f(x) < fεp and notice
that ‖x̄‖A? > εp + εb.

Then there exists a b? > 0 such that for all b > b?, ‖xbk‖A? ≤ εb.
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Pick pb? = max(p?, b?) and define as b̄? ≥ pb? the smallest k such that xb̄? is a
blocked point and p̄? ≥ pb? the smallest k such that xp̄? belongs to the sequence
xpk . Then, clearly, since f(xk) is a decreasing sequence (by the sufficient decrease
condition), for k ≥ p̄?, no point in {x : ‖x− x̄‖ ≤ εp} can be selected, thus reaching
a contradiction. �

4.1.4 Examples

In this section we highlight with an example the features of the proposed RSP.
We will first consider a simple convex quadratic function and show asymptotic

convergence of the algorithm. We consider the following cost function.

f(x) = x2
1 + 5x2

2, (4.22)

where x = col(x1, x2) ∈ R2. Results of a simulation of the proposed RSP in Matlab
are shown in Fig. 4.5 for the initial conditions x◦ = col(1.5, 0), Φ0 = 0.01, d01 =
col(− sin(π/8), cos(π/8)), ∆0j = 0.01, j = 0, 1, γ = 1.2, θ = 0.5, δdet = 0.001, µ =
0.15, λs = 0.001, and λt = 5 .

From Fig. 4.5, it can be noticed as, at the same time, the step size converges
to zero and the algorithm converges to the minimum. Notice, moreover, how the
update of the set of directions with new (almost) conjugate directions speeds up
the convergence as the exploration moves towards the minimum.

It comes as an intuition that, contrary to gradient descent methods which exploit
only cost function information at the current iterate, Direct Search algorithms,
which explore an arbitrary large neighborhood of the current iterate, can possibly
escape undesired stationary points. In particular, we will show the ability of the
proposed algorithm to escape maxima and, possibly, local minima. In this context,
we apply the proposed RSP algorithm considering as objective function the “Drop
Wave” function, whose expression is given next.

f(x) = −
1 + cos(12

√
x2

1 + x2
2)

0.5(x2
1 + x2

2) + 2 . (4.23)

A section of the level sets of the Drop Wave function is shown in Fig. 4.6(a). It is a
commonly used function for benchmarking ooptimization algorithms as it presents
infinite global maximum points, infinite local minimum points, no saddle points, and
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(a) Iterates of the proposed RSP algorithm versus the level sets of the quadratic convex fuction
(4.22).
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(b) Plot of the sequence explored points and their corresponding function value.

Figure 4.5: Plot of the trajectories sequence of iterates produced by the proposed RSP
applied to the quadratic convex function (4.22). The dots ’*’ represent the position and
function value of the points explored by the algorithms, while the “time” variable t ∈ N
is a function t : N3 → N given by t(k, j, i) =

∑k−1
k̄=0

∑n−1
j̄=0 i

?
k̄j̄

+
∑j−1
j̄=0 ikj̄ + i, representing

the sum of all the iterations computed by the line minimization procedure.
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one global minimum. The simulation presented in Fig. 4.6 was obtained considering
the following initial conditions for the new RSP algorithm, x◦ = col(2.5, 2.5), d01 =
col(− sin(π/8), cos(π/8)), Φ0 = 1.3 ∆0j = 1.3, j = 0, 1, γ = 1, θ = 0.9, δdet =
0.001, µ = 0.7, λs = 0.9, and λt = 1.1. We highlight as classic gradient descent
algorithms would remain stuck at any of the stationary points of (4.23), while it
is possible to notice as our algorithm not only escapes all the maxima, but also,
if properly initialized, can move between level sets of local minima. In particular,
we can notice this phenomenon happening between iteration 40 and 50, as evident
from the shift in behavior of the function values in Fig. 4.6(b).
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(a) Iterations of the proposed RSP algorithm versus the level sets of the Drop Wave fuction.

(b) Plot of the sequence explored points and their corresponding function value.

Figure 4.6: Plot of the sequence of iterates produced by the proposed RSP applied to the
Drop Wave function. The dots ’*’ represent the position and function value of the points
explored by the algorithms, while the “time” variable t ∈ N is a function t : N3 → N given
by t(k, j, i) =

∑k−1
k̄=0

∑n−1
j̄=0 i

?
k̄j̄

+
∑j−1
j̄=0 ikj̄ + i, representing the sum of all the iterations

computed by the line minimization procedure.
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5
Hybrid Dynamical Systems

Hybrid dynamical systems aim at incorporating into a general framework both
continuous time and discrete time dynamics, namely both differential and difference
equations, or, more generally, inclusions. Early contributions to the study of hybrid
systems can be found, between many, in Tavernini (1987), Lygeros (1996), and
van der Schaft and Schumacher (1998). As the algorithms discussed in the previous
section are inherently discrete, and as we aim at developing techniques for regulation
and control of (continuous-time) dynamical systems in the case in which the error
to be regulated is not measurable, but a proxy objective function is available in its
stead, the framework of hybrid systems makes the perfect common ground to study
and develop controllers for the interaction of these two dynamical systems.

The framework to which we will refer in this dissertation is the one proposed by
Goebel, Sanfelice and Teel in Goebel et al. (2012).

In this chapter we will review the ingredients at the basis of hybrid systems,
from the definition of a hybrid system, to solutions and stability concepts and
theorems for hybrid systems. At last, as instrumental to prove the results in the
next section, we also derive an extension to the hybrid setting of the sufficient
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Lyapunov conditions proposed by Aeyels and Peuteman in Aeyels and Peuteman
(1998).

5.1 Hybrid Systems
In the formalism of Goebel et al. (2012), a hybrid system H is defined as a 4-
tuple (C,F,D,G), whose elements are called the data of the hybrid system. The
data of a hybrid system are composed by two sets C ⊂ Rn and D ⊂ Rn, denoted
respectively the flow set and the jump set, and two set-valued map F : Rn ⇒ Rn

and G : Rn ⇒ Rn, denoted respectively the flow map and the jump map.
The flow map F and the jump map G encompass one the continuous dynamics of

H, or flow, the other the discrete dynamics ofH, or jumps. The possibly overlapping
flow and jump set define the region of the state space in which it is admissible to
flow or jump.

A general hybrid system H can be compactly represented in the following way

H :

ẋ ∈ F (x) x ∈ C

x+ ∈ G(x) x ∈ D.
(5.1)

As for continuous-time systems solutions are parameterized by a real time variable
t ∈ R≥0, and for discrete-time are parametrized by a natural time variable j ∈ N,
solutions to (5.1) are specified by the couple (t, j) ∈ R≥0×N on a subset of R≥0×N
denoted hybrid time domain.

Definition 5.1 (Hybrid Time Domains). A subset E ⊂ R≥0×N is a compact hybrid
time domain if

E =
J−1⋃
j=0

([tj, tj+1], j)

for some finite sequence of times 0 = t0 ≤ t1 ≤ t2 ≤ ... ≤ tJ . It is a hybrid time
domain if for all (T, J) ∈ E, E ∩ ([0, T ] × {0, 1, ..., J}) is a compact hybrid time
domain.

On any two points (t, i), (s, j) ∈ E, with E a hybrid time domain, we define
the ordered relation (t, i) � (s, j) if t + i ≤ s + j. We define in the same way the
relations ≺, =, �, �.
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Definition 5.2 (Hybrid Arc). A function φ : E → Rn is a hybrid arc if E is a hybrid
time domain and if for each j ∈ N, the function t 7→ φ(t, j) is locally absolutely
continuous on the interval Ij = {t : (t, j) ∈ E}.

Given a hybrid time domain E, denote as length(E) = suptE+supj E the length
of the hybrid time domain, where suptE = sup{t ∈ R≥0 : ∃j ∈ N such that (t, j) ∈
E} and supj E = sup{j ∈ N : ∃t ∈ R≥0 such that (t, j) ∈ E}.

Hybrid arcs can be classified depending on the structure of their hybrid time
domain. Given an hybrid arc φ, we will address to it as complete if length(domφ) =
∞ and Zeno if it is complete and supt domφ <∞.

We now have all the ingredients to define a solution to a hybrid system.

Definition 5.3 (Solution to a hybrid system). A hybrid arc φ is a solution to a hybrid
system (C,F,D,G) if φ(0, 0) ∈ C̄ ∪D, and

(S1) for all j ∈ N such that Ij := {t : (t, j) ∈ domφ} has nonempty interior

φ ∈ C for all t ∈ int Ij

φ̇ ∈ F (φ(t, j)) for almost all t ∈ Ij

(S2) for all (t, j) ∈ domφ such that (t, j + 1) ∈ domφ,

φ(t, j) ∈ D,
φ(t, j + 1) ∈ G(φ(t, j)).

A solution φ to H is maximal if there does not exist another solution ψ to H
such that domφ ⊂ domψ and φ(t, j) = ψ(t, j) for all (t, j) ∈ domφ.

Definition 5.4 (Pre-forward completeness). Given a set S ⊂ Rn
≥0, a hybrid system

H on Rn
≥0 is pre-forward complete from S if every maximal solution to H from S

is either bounded or complete.

5.2 Nominally well-posed hybrid systems
Convergence of “well-behaved” sequences of hybrid arcs is often not satisfied in the
point-wise, or uniform, sense, due to the discontinuous nature of hybrid arcs. As
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such, convergence of sequences of hybrid arcs, as for set-valued maps, is treated in
the graphical sense.

Definition 5.5 (Graphical convergence of hybrid arcs). A sequence {φi}∞i=1 of hybrid
arcs φi : domφi → Rn converges graphically if the sequence of sets {graphφi}∞i=1,
where graphφ = {(t, j, x) : (t, j) ∈ domφ, x = φ(t, j)}, converges to the graph
graph φ̄ of a hybrid arc φ̄. In this case we write

φ̄ = gph-limi→∞ φi

We define closeness of solutions to a hybrid system in the following way.

Definition 5.6 ((T, J, ε)-closeness of hybrid arcs). Given T ≥ 0, J ≥ 0. and ε > 0,
two hybrid arcs φ1 and φ2 are (T, J, ε)-close if

(a) for all (t, j) ∈ domφ1 with t ≤ T , j ≤ J , there exists s such that (s, j) ∈
domφ2, |t− s| < ε, and |φ1(t, j)− φ2(t, j)| < ε;

(b) for all (t, j) ∈ domφ2 with t ≤ T , j ≤ J , there exists s such that (s, j) ∈
domφ1, |t− s| < ε, and |φ2(t, j)− φ1(t, j)| < ε

Even in the graphical sense, however, sequential compactness of solutions to
hybrid systems is in general not true. The particular class of hybrid systems for
which sequences of solutions graphically converge to a solution are called nominally
well-posed hybrid systems.

Definition 5.7 (Nominally well-posed hybrid systems). A hybrid system H is called
nominally well-posed if the following property holds: for every graphically convergent
sequence {φi}∞i=1 of solutions to H with limi→∞ φ(0, 0) = ξ for some ξ ∈ Rn,

(a) if the sequence {φi}∞i=1 is locally eventually bounded then the sequence {length(φi)}∞i=1

is either convergent or properly divergent to ∞ and

φ = gph-limi→∞ φi

is a solution to H with φ(0, 0) = ξ and length(φ) = limi→∞ length(φi);

(b) if the sequence {φi}∞i=1 is not locally eventually bounded then there exists a
number m ∈ (0,∞) for which there exist (ti, ji) ∈ domφi, i = 1, 2, ..., such
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that limi→∞ |φi(ti, ji)| =∞ and

φ = (gph-limi→∞ φi)|t+j<m

is a maximal solution to H with length(φ) = m and

lim
t→supt domφ

|φ(t, supj domφ)| =∞.

As expressed in the next theorem, sufficient conditions for a hybrid system to
be nominally well-posed are the following hybrid basic conditions

Definition 5.8 (Hybrid basic conditions).

(1) C and D are closed subsets of Rn;

(2) F : Rn ⇒ Rn is outer semicontinuous and locally bounded relative to C,
C ⊂ domF , and F (x) is convex for every x ∈ C;

(3) G : Rn ⇒ Rn is outer semicontinuous and locally bounded relative to D, and
D ⊂ domG.

Theorem 5.1 (Hybrid basic conditions and nominal well-posedness). If the hybrid
system H = (C,F,D,G) satisfies Assumption 5.8 then it is nominally well-posed.

Denote as TC(x) the tangent cone to the set C at x ∈ C, namely all the v ∈ Rn

such that exists a sequence hi → 0+ and a sequence vi → v such that for all i ∈ N,
x+ hnvn ∈ C.

We report the following basic existence result for solutions to hybrid systems.

Theorem 5.2. Let H = (C,F,D,G) satisfy the conditions in Definition 5.8. Take
an arbitrary ξ ∈ C ∪D. If ξ ∈ D or

(VC) there exists a neighborhood U of ξ such that for every x ∈ U ∩ C,

F (x) ∩ TC(x) 6= ∅, (5.2)

then there exists a nontrivial solution φ to H with φ(0, 0) = ξ. If (VC) holds for
every ξ ∈ C \D, then there exists a nontrivial solution to H from every initial point
in C ∪D, and every maximal solution φ to H satisfies exactly one of the following
conditions:
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(a) φ is complete;

(b) domφ is bounded and the interval IJ , where J = supj domφ, has a nonempty
interior and t 7→ φ(t, J) is a maximal solution to ż ∈ F (z), in fact limt→T |φ(t, J)| =
∞, where T = supt domφ;

(c) φ(T, J) /∈ C ∪D, where (T, J)) sup domφ.

Furthermore, if G(D) ⊂ C ∪D, then (c) above does not occur.

5.3 Stability Results

5.3.1 Stability Notions

In this section we recall the main and invariance definitions. We start by recalling
the basic invariance definitions for a hybrid system H with respect to the set A.

Definition 5.9. Consider the hybrid system H, the set A is

• Weakly forward pre-invariant if for every x0 ∈ A there exists at least a
maximal solution from x0 such that x(t, j) ∈ A for all (t, j) ∈ dom x.

• Weakly backward pre-invariant if for every x0 ∈ A and every T > 0, there
exists at least one maximal solution from A such that x(t0, j0) = x0 for some
(t0, j0) ∈ dom x fulfilling t0 + j0 ≥ T , and x(t, j) ∈ A for all (t, j) ∈ dom x

with (t, j) � (t0, j0).

• Weakly pre-invariant if it is both weakly forward pre-invariant and weakly
backward pre-invariant.

• Forward pre-invariant if for every x0 ∈ A, all maximal solutions x to H from
x0 are such that x(t, j) ∈ A for all (t, j) ∈ dom x.

• Backward pre-invariant if for every x0 ∈ A and T > 0, every maximal so-
lution x to H that satisfies x(t0, j0) = x0, for some (t0, j0) ∈ dom x fulfilling
t0 + j0 ≥ T , is such that x(t, j) ∈ A for all (t, j) � (t0, j0), (t, j) ∈ dom x.

• Pre-invariant if it is both forward pre-invariant and backward pre-invariant.

Definition 5.10 (Attractivity notions). Given a hybrid system H and a subset X ⊂
C ∪D, the set A is said to be:
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• Pre-attractive from X if every maximal solution x to H with initial condition
in X is bounded and, if complete, |x(t, j)|A → 0 for t+ j →∞.

• Attractive from X if pre-attractive and pre-forward complete from X.

• Uniformly pre-attractive if for each ε > 0 there exists T > 0 such that, for
all maximal solutions x to H starting in X with length(dom x) ≥ T , it holds
that |x(t, j)|A ≤ ε for all (t, j) ∈ dom x|≥T .

• Uniformly attractive from X if uniformly pre-attractive and pre-forward com-
plete from X.

Definition 5.11 (Stability notions). Given a hybrid system H, the set A is said to
be:

• Stable if for every ε > 0 there exists δ > 0 such that x(0, 0) ∈ A+ δB implies
|x(t, j)|A ≤ ε for all (t, j) ∈ dom x.

• Pre-asymptotically stable from X if stable and pre-attractive from X.

• Uniformly pre-asymptotically stable from X if stable and uniformly pre-
attractive from X.

• Uniformly asymptotically stable from X if stable and uniformly attractive
from X.

5.3.2 Lyapunov stability theorem

We report the basic Lyapunov stability theorem for hybrid systems, stating sufficient
conditions for the asymptotic stability of a compact set, and refer the reader to
Goebel et al. (2012), and the references therein, for further studies.

Definition 5.12 (Lyapunov function candidate). A function V : dom V → R is said
to be a Lyapunov function candidate for the hybrid system H = (C,F,D,G) if the
following hold:

1. C̄ ∪D ∪G(D) ⊂ dom V ;

2. V is continuously differentiable of an open set containing C̄.
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Theorem 5.3 (Sufficient Lyapunov conditions). Let H = (C,F,D,G) be a hybrid
system and let A ⊂ Rn be closed. If V is a Lyapunov function candidate for H and
there exist α1, α2 ∈ K∞, and a continuous ρ ∈ PD such that

α1(|x|A) ≤ V (x) ≤ α2(|x|A) ∀x ∈ C ∪ D ∪ G(D) (5.3)

〈∇V (x), f〉 ≤ −ρ(|x|A) ∀x ∈ C, f ∈ F (x) (5.4)

V (g)− V (x) ≤ −ρ(|x|A) ∀x ∈ D, g ∈ G(x) (5.5)

then A is uniformly globally pre-asymptotically stable for H

As it will be instrumental for a later analysis, we derive a hybrid extension of
the relaxed Lyapunov sufficient conditions proposed by Aeyels and Peuteman in
Aeyels and Peuteman (1998).

We first report a result by Goebel and Teel (2006a) regarding closeness of solu-
tions.

Corollary 5.1. Suppose that H is nominally well-posed and pre-forward complete at
every x ∈ A, for some compact set A. For any ε > 0 and (T, J) ∈ R≥0 × N, there
exists a δ > 0 with the following property: for any maximal solution xδ with initial
condition in A + δB there exists a solution x to H with x(0, 0) ∈ A such that xδ
and x are (T, J, ε)− close.

Theorem 5.4. Consider a function V : U → R, with U ⊂ Rn an open neighborhood
of the compact pre-invariant set A for H, and assume that the hybrid system H is
nominally well-posed and pre-forward complete from U . We assume the following
conditions are satisfied.

· Condition 1: V (A) = 0 and ∀x ∈ U : α(‖x‖A) ≤ V (x) ≤ β(‖x‖A). The
functions α(·) and β(·) are class K∞ functions.

· Condition 2: There exists T > 0 and there exists an open set U ′ ⊂ U

which contains A such that, for each hybrid arc x : dom x → Rn, solu-
tion to H, starting from U ′, there exists an increasing sequence of times
(t?k, j?k) ∈ dom x (k ∈ N) such that (t?k+1 + j?k+1) − (t?k + j?k) ≤ T (∀k ∈ N),
such that ∀k ∈ N and ∀x(t?k, j?k) ∈ U ′ \ {A}:

V (x(t?k+1, j
?
k+1))− V (x(t?k, j?k)) ≤ 0. (5.6)
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Then the set A is uniformly stable.

Proof. Consider the set A+ εB, with ε > 0 small enough, such that A+ εB ⊂ U ′.
Since A is pre-invariant, any solution φ to H starting in A will remain into A for

all (t, j) ∈ domφ. Thus applying Corollary 5.1, given ε and T , there exists ε′ > 0
such that for all x(t0, j0) ∈ A + εB, ‖x(t, j)‖A ≤ ε′ for all (t, j) ∈ [(t0, j0), (t0 +
T ′, j0 + J ′)] ⊂ dom x, with T ′ + J ′ ≤ T .

Define δ′ := β−1(α(ε′)) and consider the closed ballA+δ′B. Apply now Corollary
5.1 again, to δ′ and T , and get δ′′ > 0. For all x(t0, j0) ∈ A+δ′′B, ‖x(t, j)‖A ≤ δ′ for
all (t, j) ∈ [(t0, j0), (t0+T ′, j0+J ′)] ⊂ dom x, with T ′+J ′ ≤ T . By Condition 2, there
exists a k0 ∈ N such that (t?k0 +j?k0)−(t0 +j0) ≤ T , implying that ‖x(t?k0 , j

?
k0)‖A ≤ δ′.

For x(t?k0 , j
?
k0) ∈ A + δ′B, β(‖x(t?k0 , j

?
k0)‖A) ≤ α(ε′), and thus V (x(t?k0 , j

?
k0)) ≤

α(ε′).
Since, by Condition 2, V (x(t?k0+1, j

?
k0+1)) ≤ V (x(t?k0 , j

?
k0)), V (x(t?k0+1, j

?
k0+1)) ≤

α(ε′). Since α(‖x(t?k0+1, j
?
k0+1)‖A) ≤ V (x(t?k0+1, j

?
k0+1)) ≤ α(ε′), one obtains that

‖x(t?k0+1, j
?
k0+1)‖A ≤ ε′.

By the same argument, ∀n ∈ N, x(t?k0+n, j
?
k0+n) ∈ A + ε′B. It follows, from

Corollary 5.1, that ∀(t, j) ≥ (t0, j0), ‖x(t, j)‖A ≤ ε. Thus uniform stability is
proved. �
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6
Robust Hybrid Direct Search

Controller

In the output regulation framework it is always assumed to have availability of
the regulated error. The case in which, instead of the error variable, a “proxy”
of the error is available under the form of a function to be minimized, of unknown
expression but measurable, and whose minimum represents the reference signal, has
yet to be studied in the literature. In particular, interesting is the case in which
the minimum of the associated objective function is moving with time, possibly as
a scalde solution of an exogenous dynamical system. One of the biggest challenges
of this problem, from an output regulation point of view, is that the error dynamics
are not locally observable at the minimum. This characteristic, however, possibly
opens the path to a plethora of adaptive and optimization schemes, like the one
proposed in this section, to, possibly, work in synergy with a regulator, based on
the internal model principle, in order to solve this problem.

In this chapter, on an attempt to lay the ground for a future development of
the just framed problem, aiming at a future interconnection with the results in
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Part 1, we study the problem of steering a particular class of dynamical systems
towards the minimum of an objective function, assumed to not be known but whose
measurements are available at fixed intervals of time. To this end, we consider
continuous-time dynamical systems that can be steered, by a known input, between
any two points of the state space.

The problem at hand has been tackled in the literature with a variety of ap-
proaches, mostly related to source-seeking applications, from gradient descent meth-
ods applied to single vehicles Burian et al. (1996) and in the multi-agent framework
Bachmayer and Leonard (2002), to stochastic approximation methods Azuma et al.
(2012), to the extremum-seeking control technique Cochran and Krstic (2009).

This chapter is based on the preliminary work Mayhew et al. (2007) (see also
Mayhew et al. (2008a) and Mayhew et al. (2008b)), where the source-seeking prob-
lem is solved by a hybrid controller based on the RSP algorithm. The choice to
resort to a modified RSP algorithm stems from its simple form and ease of imple-
mentation.

In Mayhew et al. (2007), the classic RSP algorithm is implemented with discrete
line minimizations with fixed step size. Practical asymptotic stability of the set of
minimizers is shown for the 2-dimensional convex case, but due to the a dense
exploration step introduced to guarantee the aforementioned stability result, no
direct extension to the n dimensional scenario is possible. In Coope and Price
(1999) an extension of the RSP was proposed in the general context of continuously
differentiable functions. We adopt the algorithm proposed in Section 4.3 that, by
using a decreasing step size asymptotically converging to zero, ensures asymptotic
convergence to a stationary point.

Due to the inherent discrete dynamics of the algorithm, and the continuous
dynamics of the dynamical system, on the wake of Mayhew et al. (2007), the con-
troller is implemented as a hybrid controller, based on the hybrid systems framework
developed in Goebel et al. (2012). In particular, the proposed hybrid controller ad-
dresses the optimization problem of an n-dimensional continuously differentiable
function with a set of global minima, and possibly isolated local maxima, and it
renders the set of minima almost globally asymptotically stable. We show, how-
ever, that asymptotic Direct Search methods based on line minimizations, as well
as the algorithm developed in Section 4.3, are not robust to measurement noise.
Thus we propose a robust algorithm, addressing n-dimensional objective functions
(including the results of Mayhew et al. (2007) as a special case), highlighting that
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a trade-off between asymptotic convergence and robustness is inevitable. Moreover
an explicit bound relating the step size to the supremum norm of the noise, acting
on the objective function, is computed.

6.1 Hybrid Controller
In this section we design a hybrid controller Hc implementing the algorithm devel-
oped in Sectoin 4.3 to solve a minimization problem in Rn under the assumptions
(A0)-(A2) in Section 4.1.3.

The reason for resorting to the hybrid systems’ framework is to provide results
regarding the stability and robustness of the proposed algorithm when applied to
continuous-time dynamical systems.

We will consider the optimization problem constrained by the following dynam-
ics

ξ̇ = ϕ(ξ, u) ξ = col(x, ζ) ∈ Rn+l, u ∈ Rm (6.1)

with ϕ continuously differentiable in ξ and u. The state variables x represent the
variables involved in the optimization problem, while ζ represent other possible
states. Given τ ? > 0, we assume that for each x0 and xf in Rn there exists t 7→ u(t)
such that the solution to ξ̇ = ϕ(ξ, u(t)) from ξ0 = (x0, ·), reaches ξf = (xf , ·) after τ ?

seconds. We also assume that for each bounded input ‖u(t)‖ ≤ ū > 0 for all t ≥ 0,
ζ(t) is bounded for all t ≥ 0. The class of systems represented by (6.1), includes, for
example, point-mass vehicles (ξ = x, with x representing the position) and Dubin’s
vehicles (ξ = col(xT , ζ), with x and ζ representing position and orientation).

The algorithm in Fig. 4.3-4.4 in Section 4.1.3 is implemented as a discrete time
system, whose dynamics are set-valued in order to satisfy the hybrid basic conditions
and have the closed-loop system Hcl, given by the interconnection of Hc and (6.1),
nominally well-posed.

6.1.1 State of Hc

The full state of the controller xc is composed by the state variables τ ∈ R≥0,
dj ∈ Rn, with j = 0, 1, ..., n− 1, ∆j ∈ R≥0, with j = 0, 1, ..., n− 1, Φ ∈ R≥0, λ ∈ R,
α ∈ Rn, ᾱ ∈ R≥0, p ∈ {−1, 1}, m ∈ {0, 1}, k ∈ {0, 1, ..., n}, q ∈ {0, 1, 2}, z ∈ R,
∆ ∈ R, and v ∈ Rn. In particular, we denote xc = col(τ,∆0, ...,∆n−1, d0, ..., dn−1,
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Φ, λ, αT , ᾱ, p,m, k, q, z, ∆, vT ) belonging to the domain Xc given by the Cartesian
product of the domains of each state variable composing xc, namely Xc := R≥0 ×
Rn
≥0×Rn×n×R≥0×R×Rn×R≥0×{−1, 1}×{0, 1}×{0, ..., n}×{0, 1, 2}×R×R×Rn,

where, with abuse of notation, we denoted the domain of the set of step sizes ∆j as
Rn
≥0 and the domain of the set of directions dj as Rn×n.
The state variable τ ∈ R≥0 is a timer, that resets every τ ? > 0 seconds, and

that regulates when new cost function evaluations are available.
Its hybrid dynamics are given by

τ̇ = 1 (ξ, xc) ∈ C := {(ξ, xc) ∈ Rn+l ×Xc : τ ≤ τ ?}, (6.2)

during flow, and

τ̇ = 1 (ξ, xc) ∈ C := {(ξ, xc) ∈ Rn+l ×Xc : τ ≥ τ ?}, (6.3)

during jumps.
The states dj ∈ Rn and ∆j ∈ R≥0, with j = 0, 1, ..., n− 1, represent, as in Fig.

4.3-4.4, the search directions and the step sizes corresponding to each direction.
In the algorithm in Fig. 4.3-4.4, the variable αj corresponds to the total distance
traveled along each direction. The state Φ ∈ R≥0 represents the global step size.

The state variable λ ∈ R which keeps track of the distance traveled along the
currently explored direction, and the state variable α ∈ Rn

>0, which stores the total
traveled vector from direction d0, are related to the distance traveled along each
direction, which is the variable αj introduced in in Fig. 4.3-4.4. While the state
ᾱ ∈ R≥0 is the total distance traveled during each cycle of directions exploration.

The proposed implementation of the new RSP explores each direction dj first
in the positive, and then in the negative sense. As such the positive or negative
exploration along the current direction is determined by the state p ∈ {−1, 1},
and the variable m ∈ {0, 1} indicates whether a switch in sense of exploration has
already happened along the current direction.

To define in which operating point of the new RSP algorithm the controller
is, the state variables k ∈ {0, 1, ..., n} and q ∈ {0, 1, 2} have been introduced. The
variable k represents the state of the RSP, namely which direction is currently being
explored. Notice that it has n + 1 components since the direction dn−1 is explored
twice to be able to exploit the Parallel Subspace Property. The variable q, defining
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the state of the line minimization, assumes these values

- q = 0: the positive line minimization;

- q = 1: the negative line minimization;

- q = 2: the line minimization is completed.

The state variable z ∈ R is a memory state that keeps track of the best minimum
value of f found satisfying the sufficient decrease condition.

Two more states have been added for ease of notation, namely ∆ ∈ R and
v ∈ Rn, that store the currently used step size and search direction.

6.1.2 Hybrid Controller Structure

The structure of Hc is given by

Hc :



ẋc = Fc :=



1

0
...

0


(x, xc) ∈ C

x+
c ∈ Gc(xc, f(x)) :=

 0

Gc/τ (xc, f(x))

 (x, xc) ∈ D

u = K(x, xc, τ ?),

(6.4)

with sets C, D defined before. The flow map Fc is a single-valued constant function
with all components equal to zero except for the timer. The jump map Gc : Xc ×
R → Xc is a set-valued map, composed by the timer discrete dynamics and Gc/τ :
Xc/R × R → Xc/R, which is defined next. The output of Hc is a function K :
Rn × Xc × R>0 → Rm that steers the x-subsystem from x(tj, j) to x(tj + τ ?, j) =
x(tj, j) + p(tj, j)∆(tj, j)v(tj, j), with tj = inft∈R≥0(t, j) ∈ dom x, for all j ∈ N.

The set-valued map Gc/τ is presented next. It is given by the composition of
the maps gi(xc, f(xc)) defined on the subsets Di, i = 1, 2, ..., 5 of the jump set D,
namely Gc/τ (xc, f(x)) := gi(xc, f(x)) for (xc, x) ∈ Di, where D = ∪5

i=1Di. We omit
the update law of the state variables that remain constant at jumps.

The sets Di define the conditions under which the different operations of the
algorithm proposed in Fig. 4.3-4.4, integrated in the functions gi, take place.
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In order to keep the presentation of the discrete dynamics of the controller com-
pact, the conditions defined as “otherwise”, represent the closure of the complement
of the union of the subsets of the state space defined by the other conditions.

1) Continue a positive line search:
D1 = {(ξ, xc) ∈ Rn+l ×Xc : f(x) ≤ z − ρ(∆), p = 1, q ∈ {0, 1}, m = 0}
g1 : z+ = f(x), q+ = 1,

λ+ =

λ+ ∆n−1p if k = 0

λ+ ∆k−1p otherwise

∆+
k−1 =

γ∆k−1 if k = 1, 2, ..., n− 1 and γ∆k−1 ≤ λtΦ

λtΦ if k = 1, 2, ..., n− 1 and γ∆k−1 ≥ λtΦ

∆+
n−1 =

γ∆n−1 if k = 0, n and γ∆n−1 ≤ λtΦ

λtΦ if k = 0, n and γ∆n−1 ≥ λtΦ

∆+ =


γ∆k−1 if k = 1, 2, ..., n− 1 and γ∆ ≤ λtΦ

γ∆n−1 if k = 0, n and γ∆ ≤ λtΦ

λtΦ ifγ∆ ≥ λtΦ

2) Correct overshoot:
D2 = {(ξ, xc) ∈ Rn+l ×Xc : f(x) ≥ z − ρ(∆), q ∈ {0, 1}, m = 0}
g2 : p+ = −p, m+ = 1, q+ = q + 1,

3) Starting negative line search:
D3 = {(ξ, xc) ∈ Rn+l ×Xc : m = 1, p = −1, q = 1}
g3 : z+ = f(x), m+ = 0, λ+ = 0,

4) Continue a negative line search:
D4 = {(ξ, xc) ∈ Rn+l ×Xc : f(x) ≤ z − ρ(∆), p = −1, q = 1, m = 0}
g4 : z+ = f(x),

λ+ =

λ+ ∆n−1p if k = 0

λ+ ∆k−1p otherwise

∆+
k−1 =

γ∆k−1 if k = 1, 2, ..., n− 1 and γ∆k−1 ≤ λtΦ

λtΦ if k = 1, 2, ..., n− 1 and γ∆k−1 ≥ λtΦ

∆+
n−1 =

γ∆n−1 if k = 0, n and γ∆n−1 ≤ λtΦ

λtΦ if k = 0, n and γ∆n−1 ≥ λtΦ
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∆+ =


γ∆k−1 if k = 1, 2, ..., n− 1 and γ∆ ≤ λtΦ

γ∆n−1 if k = 0, n and γ∆ ≤ λtΦ

λtΦ ifγ∆ ≥ λtΦ

5) Update direction and start positive line search:
D5 = {(ξ, xc) ∈ Rn+l ×Xc : q = 2}
g5 :
q+ = 0, p+ = 1, λ+ = 0, m+ = 0, z+ = f(x)

α+ =

α + λv if k = 0, 1, ..., n− 1

0 if k = n

ᾱ+ =

ᾱ + ‖λv‖ if k = 0, 1, ..., n− 1

0 if k = n

k+ = (k + 1) mod n+ 1

∆+ =

∆(k mod n+1) if k = 0, 1, ..., n− 1

maxj∈{0,1,...,n−2}∆j if k = n

Φ+ =

µΦ if k = n and ᾱ + ‖λv‖ ≤ minj∈{0,1,...,n−1}∆j

Φ otherwise

v+ =

φ(α, λv,M1,n−1, d0) if k = n

dk otherwise

d+
0 =

d0 if k = 0, ..., n− 1

d1 if k = n
...

d+
n−2 =

dn−2 if k = 0, ..., n− 1

dn−1 if k = n

d+
n−1 =

dn−1 if k = 0, 1, ..., n− 1

φ(α, λv,M1,n−1, d0) if k = n
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∆+
0 =



θ∆0 if k = 1 and |λ| ≤ ∆0
2 and θ∆0 ≥ λsΦ

λsΦ if k = 1 and |λ| ≤ ∆0
2 and θ∆0 ≤ λsΦ

∆0 if k = 0, 2, ..., n− 1 or

(k = 1 and |λ| ≥ ∆0
2 )

µλtΦ if k = n and ᾱ + ‖λv‖ ≤ minj∈{0,1,...,n−1}∆j and ∆1 ≥ µλtΦ

∆1 otherwise
...

∆+
n−2 =



θ∆n−2 if k = n− 1 and |λ| ≤ ∆n−2
2 and θ∆n−2 ≥ λsΦ

λsΦ if ((k = n− 1 and |λ| ≤ ∆n−2
2 ) or

(k = n and |λ| ≤ ∆n−1
2 )) and θ∆n−2 ≤ λsΦ

∆n−2 if k = 0, ..., n− 2 or

(k = n− 1 and |λ| ≥ ∆n−2
2 )

θ∆n−1 if k = n and |λ| ≤ ∆n−1
2 and ∆n−1 ≥ µλtΦ

µΦ if k = n and ᾱ + ‖λv‖ ≤ minj∈{0,1,...,n−1}∆j and ∆n−1 ≥ µλtΦ

∆n−1 otherwise

∆+
n−1 =



θ∆n−1 if k = 0 and |λ| ≤ ∆n−1
2 and θ∆n−1 ≥ λsΦ

λsΦ if k = 0 and |λ| ≤ ∆n−1
2 and θ∆n−2 ≤ λsΦ

∆n−1 if k = 1, ..., n− 1 or

(k = 0 and |λ| ≥ ∆n−1
2 )

µΦ if k = n and ᾱ + ‖λv‖ ≤ minj∈{0,1,...,n−1}∆j and

maxj∈{0,1,...,n−2}∆j ≥ µλtΦ

maxj∈{0,1,...,n−2}∆j otherwise

We highlight that the map Gc/τ is defined, and nonempty, on all D. This is
ensured by the “otherwise” condition for some state variables and the fact that, for
the remaining ones, the conditions determining the discrete dynamics involve only
the state variable k, but are defined for all k ∈ {0, 1, ..., n}.

Even if the logic of the jump map Gc/τ resembles the one in the proposed RSP
in Fig. 4.3-4.4, a couple of explanations are in order.

The computation of the new conjugate direction in g5 is addressed by the func-
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tion φ : Rn × Rn × Rn×(n−1) × Rn defined as

φ(α, β,M1,n−1, d0) =


α + β det(col(MT

1,n−1, (α + β)T )T ) > δdet

d0 det(col(MT
1,n−1, (α + β)T )T ) < δdet

{d0, α + β} otherwise,

(6.5)

where M1,n−1 := col(dT1 , ..., dTn−1)T . The conditions in φ check if the new direction
α+ β, that is going to be computed exploiting the Parallel Subspace Property, is
linearly independent from the last n−1 directions, namely if the determinant of the
concatenation of M1,n−1 and the new direction is bigger than a tunable parameter
δdet > 0. In case this condition is not satisfied, the previous set of directions is
retained.

The update rule of the states ∆j, j = 0, 1, ..., n− 1 also needs clarification. Let
us consider ∆+

n−1 since the same reasoning applies to the other state variables. The
condition |λ| < ∆n−1/2 is a different way to express the condition λ = 0, while at
the same time satisfying outer semicontinuity of the map g5. Indeed |λ| < ∆n−1/2
is satisfied only for λ = 0, except perhaps at the initialization, since along direction
dn−1, ∆n−1 is the minimum displacement possible for λ.

When k = n, ∆n−1 is updated as the maximum of the other n − 1 ∆j state
variables, but any function preserving the maximum value would do, since the final
objective is to have ∆j → 0, j = 0, 1, ..., n.

Notice that, in the current implementation, the step size is reduced and the timer
limit is kept constant, and thus the speed of system (6.1) is reduced proportionally
by reduction of the step size. In this way the distance traveled during the flow
gets smaller and smaller, and the algorithm asymptotically converges to the set of
minima.
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6.2 Stability Analysis
Define the hybrid closed-loop Hcl as the interconnection of the dynamics (6.1) and
the controller Hc developed in the previous section, namely

Hcl :



ξ̇ = ϕ(ξ,K(x, xc, τ ?))
ẋc = Fc

ξ+ = ξ

x+
c ∈ Gc(xc, f(x))

 (ξ, xc) ∈ C
 (ξ, xc) ∈ D

(6.6)

The flow and jump maps of the closed-loop systemHcl are thus defined as F (ξ, xc) :=
col(ϕ(ξ,K(x, xc, τ ?)), Fc) for all (ξ, xc) ∈ C and Gc(ξ, xc) := col(ξ,G(xc, f(x))) for
all (ξ, xc) ∈ D. We begin by showing nominal well-posedness of the closed loop
system (6.6), a property of a class of hybrid systems instrumental to derive the
next stability results.

Lemma 6.1. Let assumptions (A0)-(A2) hold, and τ ? > 0, δdet > 0, 0 < λs < 1 < λt,
µ ∈ (0, 1/λt), θ ∈ (0, 1) and γ ∈ R≥1. Then the hybrid closed-loop system Hcl in
(6.6) is nominally well-posed.

Proof. In order to show nominal well-posedness of (6.6), we show first that (6.6)
satisfies the hybrid basic conditions (Definition 5.8) and then invoke Theorem 5.1.
It is straightforward that the sets C and D are closed.

Both F and K are continuous functions in C and thus outer semicontinuous
and locally bounded. Moreover, being both single-valued, they are also convex for
every (x, xc) ∈ C.

The set-valued map G(·, f(·)) is composed by linear functions, apart for an
instance of α+ where the norm operator is present, which is continuous in the
set of definition, and an instance of ∆+

n−1 where the max function is used, which
is continuous as well. The map Gc\τ is thus piecewise continuous. As all the
inequalities defining the components of Gc on all the subspaces of D are not strict,
at the points of discontinuity, G includes both the left and right limit. Hence G
outer semicontinous by definition.

Since G(·, f(·)) is piecewise continuous, it is locally bounded by continuity.
The hybrid closed-loop system Hcl thus satisfies the hybrid basic conditions and

is, thus, nominally well-posed. �
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Define the set of global minima of f as A? := {x? ∈ Rn : f(x?) ≤ f(x) ∀x ∈ Rn}
and, for a more compact notation, the set Adis := {−1, 1} × {0, 1} × {0, 1, ..., n} ×
{0, 1, 2}. Then we consider the stabilization problem with respect to the sets A ⊂
Ae ⊂ Rn+l ×Xc, defined as

A := Rl ×A? ×[0, 1]× {0n} × Rn×n × {0} × {0}×
{0n} × {0} × Adis × {f(A?)} × {0} × Rn,

(6.7)

Ae := Rn+l × [0, 1]× {{0n} × Rn×n × {0} ∪ Rn×
{0n×n} × R≥0} × {0} × {0n} × {0} × Adis
×R× {{0} × Rn ∪ R× {0n}}.

(6.8)

The setA represents the desired equilibrium set, namely the subset of Rn+l×Xc such
that if (ξ(0, 0), xc(0, 0)) ∈ A, then x(t, j) ∈ A? for all (t, j) ∈ dom(ξ, xc). Notice
that invariance of A is guaranteed by all the step size variables being zero, so that
x(tj+τ ?, j) = x(tj, j). The equilibrium set A is given by ζ ∈ Rl, x ∈ A?, ∆j = 0 for
all j = 0, 1, ..., n− 1, dj ∈ Rn for all j = 0, 1, ..., n− 1, Φ = 0, λ = 0, α = 0, ᾱ = 0,
z = f(A?), and the remaining states belonging to their domain. In particular,
notice how the auxiliary state ζ is irrelevant for the current control problem, as
well as the directions dj, since as long as the step sizes are zero, the displacement
computed along each direction is zero, hence the state x remains constrained in
the set A and the directions can, in principle, assume any value without hindering
stability.

However, an initialization with Φ(0, 0) = 0 and/or dj(0, 0) = 0, even in the
case in which the initial state x(0, 0) is not a minimum for f , i.e. x(0, 0) /∈ A?, is
possible. In such a case, no magnitude of the exploration steps along each direction
dj is zero, and as such the state variable x remains stuck in its initial position. We,
thus, define a new set, Ae, as the largest set of equilibrium points for Hcl for which
no optimization step is performed due to an initialization with Φ = 0 and/or dj = 0
for all j = 0, 1, ..., n− 1. It includes both the desired equilibrium set A, both those,
undesired, equilibrium states originated from a bad initialization. As such, it can be
noticed, from (6.8), that the equilibrium set for the x state variable is Rn, namely
for a bad initialization, the optimization variable x can remain stuck everywhere in
its domain.
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Next we derive the stability properties of (6.6) with respect to the sets A and
Ae.

Theorem 6.1. Let assumptions (A0)-(A2) hold, τ ? > 0, and the parameters of the
algorithm in Fig. 4.3-4.4 satisfy δdet > 0, 0 < λs < 1 < λt, µ ∈ (0, 1/λt), θ ∈ (0, 1)
and γ ≥ 1. Then, for the closed-loop system Hcl, the set A in (6.7) is

• stable;

• almost globally attractive;

hence it is almost globally asymptotically stable. Furthermore, the set Ae in (6.8)
is globally attractive for Hcl.

Proof. As we need the following result for the future discussions, we first show that
all maximal solutions to Hcl are complete.

Lemma 6.2. Let assumptions (A0)-(A2) hold, and τ ? > 0, δdet > 0, 0 < λs < 1 < λt,
µ ∈ (0, 1/λt), θ ∈ (0, 1) and γ ∈ R≥1. Then all maximal solutions to Hcl are
complete.

Proof. We prove completeness of maximal solutions to Hcl by invoking Proposition
6.10 in Goebel et al. (2012) on existence of solutions, and showing that no maximal
solution jumps outside of C ∪D or has finite escape time.

We first show that the viability condition in Proposition 6.10 in Goebel et al.
(2012) holds for all (ξ, xc) ∈ C \ D, namely that F (ξ, xc) ∩ TC(ξ, xc) 6= ∅, with
TC : Rn+l × Xc → Rn+l × Xc the Bouligand tangent cone of C at (ξ, xc). Since
0 ∈ TC(ξ, xc) always, the viability condition is readily satisfied for all the state
variables apart from ξ and τ , since F is zero in that case, and thus the intersection
not empty. As the projection onto the ξ-subspace of C \D is equal to the domain
of definition of ξ, i.e. Rn+l, and thus the projection of F (ξ, xc) onto the ξ-subspace
is never empty, the viability condition is satisfied also for the ξ state variable.
Regarding the timer τ , define the projection of C and D onto the τ -subspace as
Cτ := [0, τ ?] and Dτ := [τ ?,∞). As the set Cτ \Dτ = [0, τ ?) is open to the right,
we only need to check the viability condition at τ = 0. Since at τ = 0, τ̇ = 1, the
viability condition is satisfied also for τ .

Then, by Proposition 6.10 in Goebel et al. (2012), there exists a nontrivial
solution from every initial condition in Rn+l×Xc. Moreover, sinceG(C∪D) ⊂ C∪D,
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the solutions to Hcl or have finite time escape or are complete. Notice that for all
solutions to Hcl, ζ(t) does not have finite escape time by assumption. We show
completeness by showing that the state variables (x, xc), for all solutions to Hcl,
are bounded. Indeed, by condition (A2) and the update rule for the computation
of new directions, (6.5), for all initial conditions (ξ(0, 0), xc(0, 0)) ∈ Rn+l × Xc, the
state variables dj, with j = 0, 1, ..., n, are upper bounded in norm by

dmax := max
j=0,1,...,n

{‖dj(0, 0)‖, diam(Lf (max{f(x(0, 0)), z(0, 0)}))},

where, given A ⊂ Rn, diam(A) := supx,y∈A ‖x − y‖. Moreover, as the determinant
of the matrix composed by the set of directions is lower bounded by δdet > 0, the
directions dj are also lower bounded in norm. Denote the lower bound as dmin ∈ R.
Then ∆j, j = 0, 1, ..., n, are upper bounded by

∆max := (1 + γ) max
{

maxj=0,1,...,n ∆j(0, 0), diam(Lf (max{f(x(0,0)),z(0,0)}))
dmin

, λsΦ(0, 0)
}
.

Based on the same reasoning, Φ(t, j) ≤ Φ(0, 0), |λ(t, j)| ≤ dmax∆max, ‖α(t, j)‖ ≤
ndmax∆max, ᾱ(t, j) ≤ ndmax∆max, z(t, j) ≤ max{z(0, 0), f(x(0, 0))}, ‖x(t, j)‖A? ≤
d2

max∆2
maxd for all (t, j) ∈ dom(ξ, xc). Hence any state variable of Hcl is bounded,

thus all the maximal solutions to Hcl are complete. �

In order to prove stability of A, define the Lyapunov function V (ξ, xc) = z −
f(A?). We stress that, given assumption (A1), f(A?) is a scalar. Since V is C1, it
is possible to bound the growth of V along any maximal solution φ to Hcl as

V (φ(t̄, j̄))− V (φ(t, j)) ≤
∫ t̄

t

d

dt
V (φ(t, j(t)))dt+

j̄∑
j=j+1

[V (φ(t(j), j))− V (φ(t(j), j − 1))],

where

d

dt
V (φ(t, j(t))) = ż(t, j(t)) = 0, (6.9)

V (φ(t(j), j))− V (φ(t(j), j − 1)) =

0 xc ∈ D2,5

z(t(j), j)− z(t(j), j − 1) ≤ 0 xc ∈ D1,3,4,

(6.10)

where t(j) and j(t) denote respectively the least time t and the least index j such
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that (t, j) ∈ domφ, D2,5 := D2 ∪D5 and D1,3,4 := D1 ∪D3 ∪D4.
The above conditions follow directly from the definition of Fc and Gc. Indeed

z changes only during jumps, and in that case, for x /∈ A?, it can decrease for
xc ∈ D1,3,4 and remain unchanged for xc ∈ D2,5. However the Lyapunov function V
is not strictly nonincreasing, nor positive definite, since there exist initial conditions
for z and x such that z(0, 0) < f(x(0, 0)). However, after at most 3 timer-cycles,
when D3 is reached, z gets updated to f(x), thus V becomes positive definite, and
from that point onward, since, by the dynamics of z, z can only non-increase, we
can show stability of A, and apply a hybrid invariance principle to show attractivity
of Ae.

The above nonincreasing conditions on V are thus only valid for t ≥ 3τ ? and
j ≥ 2, where (t, j) = (0, 0) initially. As we show next, this does not hinder the
stability of the set A and convergence to the set Ae for the hybrid system Hcl.

By the above discussion, compactness of A, the conditions on V , and Theorem
7.6 in Sanfelice et al. (2007), for all ε1 > 0 there exists a δ1 > 0 such that

‖(ξ(3τ ?, 2), xc(3τ ?, 2))‖A < δ1 =⇒ ‖(ξ(t, j), xc(t, j))‖A < ε1 ∀t+ j ≥ 3τ ? + 2
(6.11)

Noticing that the set A is invariant for Hcl, it follows, by Lemma 6.2 and Corollary
4.8 in Goebel and Teel (2006b), that

∀ε2 > 0,∀T > 0,∃δ2 > 0 : ‖(ξ(0, 0), xc(0, 0))‖A < δ2 =⇒
‖(ξ(t, j), xc(t, j))‖ < ε2 ∀t+ j < T

(6.12)

By choosing in (6.12) T = 3τ ?+2 and ε2 = δ1, we see that the definition of uniform
stability is recovered with ε = ε1 and δ = δ2. Thus A is uniformly stable for Hcl.

To show attractivity of Ae we invoke Theorem 4.7 in Sanfelice et al. (2007),
setting U := R≥3τ?+2(Rn+l × Xc), namely the set of states that are reachable after
3τ ? + 2 (see Definition 6.15 in Goebel et al. (2012)). Notice that U is forward
invariant due to Lemma 6.2 and the definition of reachable set. By referring to the
remark at the bottom of the proof of Theorem 4.7, we set T = 3τ ? and J = 2,
and defining uC and uD in the statement of Theorem 4.7 respectively as (6.9) and
(6.10), for some r ∈ V (Rn+l × Xc), the trajectories of Hcl approach the largest
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weakly invariant subset of

V −1(r) ∩ U ∩ [u−1
C (0) ∪ (u−1

D (0) ∩G(u−1
D (0)))]. (6.13)

The Lyapunov function V is constant along solutions to Hcl in D2, D5 and the
set Ae. By m+ = 1 in g2 and by q+ = 0 in g5 we can conclude that neither D2

nor D5 are (weakly) invariant. Indeed Ae is actually the largest (weakly) invariant
set contained in U where V is constant along maximal solutions whose range is
contained in U . �

Remark 6.1. From Theorem 6.1 and the structure of A and Ae, it follows in par-
ticular that, for any initialization such that det(col(d0, d1, ..., dn−1)) 6= 0 and Φ 6= 0,
boundedness of the closed-loop trajectories and asymptotic convergence to the set
A are guaranteed. 4

Remark 6.2. Notice that, depending on the values of the constants δdet, the quadratic
termination property can be lost. Nonetheless, the asymptotic convergence property
is preserved. 4

6.3 Robustness Considerations
In this section we investigate the robustness of the proposed algorithm to noise
acting on the cost function measurements. We start with a negative result showing
that general Direct Search Algorithms based on line minimizations and asymptotic
step size reduction are not robust to any bounded measurement noise.

Theorem 6.2. Consider the class of Direct Search algorithms based on line mini-
mizations and with asymptotic step size reduction, to which the algorithm in Fig.
4.3-4.4 belongs to, acting on a function f : Rn → R satisfying assumptions (A0) and
(A2). Then, for any bound n̄s > 0, there exists a noise ns : R→ R, with |ns(t)| ≤ n̄s

∀t ∈ R, such that, for noisy cost function measurements, namely f(x(t)) + ns(t),
and all initial conditions apart from a set of measure zero, the sequence of iterate
produced by such algorithms escapes any compact sub-level set of f .

Proof. We will first show that, for any n̄s > 0, these class of algorithms can
potentially remain stuck at every x ∈ Rn. As such, by continuous differentiability
of f , for every compact set C ⊂ Rn, there exists a maximum gradient norm ∇fC.
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Consider, without loss of generality, a unique step size variable ∆ > 0 and a single
direction d ∈ Rn. By the mean value theorem, it follows that, for all x, y ∈ C,
|f(x)− f(w)| ≤ ∇fC‖x−w‖, and, for w = x− p∆d, at iteration k in the algorithm

|f(xk)− f(xk − pk∆kdk)| ≤ ∇fC∆kd̄, (6.14)

where, by continuous differentiability of f , ∇fC < ∞ for all compact C ⊂ Rn, and
‖dk‖ ≤ d̄ > 0.

Given a noise bound n̄s > 0, and remembering that ∆k → 0 for k → ∞, there
exists a k? > 0 such that

∇fC∆k? d̄+ ρ(∆k?) < ∇fC∆k? d̄
1

1− θ + ι∆?
k? < n̄s, (6.15)

with ι > 0 and ∆?
k? > 0 the value of the series ∑∞n=0(θn∆k?)

(
1

θn∆k?

)
, proved to

be convergent in Lemma 4.1. The term 1/(1 − θ) follows by noticing that given
iteration k1, after k2 iterations of blocked points, then ∆k1+k2 = θk2∆k1 , and, as
k2 →∞, if we sum all the terms, we have a geometric series. We defined the bound
in this way, since we build a noise function by iteratively summing previous noise
values to produce the new one.

A noise signal defined to be ns(k) = 0 for k < k? and ns(k) = ∇fC∆kd̄+ρ(∆k)+
ns(k − 1) for k ≥ k? will keep the algorithm stuck in x = xk? for all k ≥ k?.

The reason is that the following relationship will always be satisfied

f(xk + pk∆kdk) + ns(k) ≥ f(xk) + ns(k − 1)− ρ(∆k),

where f(xk+pk∆kdk)+ns(k) is the cost function measurement obtained at iteration
k and f(xk) + ns(k− 1) is the cost function measurement obtained at the previous
iteration. Namely no improvement is ever found in any direction, since

ns(k) = ∇fC∆kd̄+ ρ(∆k) + ns(k − 1) ≥ f(xk)− f(xk + pk∆kdk)− ρ(∆k) + ns(k − 1).
(6.16)

Now notice that at iterations where

f(xk + pk∆kdk) ≥ f(xk)− ρ(∆k),
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namely at iterations where no improvement would be found in case of no noise, the
noise could act in order to mistakenly consider an improvement. Indeed in that
case, with a noise of the form

ns(k) = −∇fC∆kd̄− ρ(∆k) + ns(k − 1), (6.17)

for k ≥ k?1 ≥ 0 and ns(k?1) = 0, a wrong descent direction will be picked from
everywhere in C.

Alternating the noise values of (6.16) and (6.17), by considering ns(k − 1) = 0
when switching strategy, as long as ∆k ≤ ∆k? , can steer the algorithm to every
point in C.

Consider now a compact set C1 ⊃ C and denote the maximum gradient norm of
f on C1 as ∇fC1 , where ∇fC1 ≥ ∇fC.

Applying the noise (6.16) in C, it is possible to notice that there exists a k?1 ≥ k?

such that for k = k?1 condition (6.15) is satisfied for ∇fC1 .
Now, by switching between noise expressions (6.16) and (6.17), guaranteeing

that ∆k ≤ ∆k?1
, makes it possible to steer the sequence of iterate everywhere in C1

and in particular outside C.
It is thus clear that repeating this procedure iteratively can make the sequence

of iterate leave any compact sub-level set of f . �

The above result shows that there is no robustness guarantee for the modi-
fied RSP algorithm, even if stability has been shown and convergence results are
attainable for a proper choice of initial conditions.

This result translates to not robustness of the hybrid implementation of the
proposed RSP algorithm. As such, we remark that it agrees with the robustness
results of Chapter 7 of Goebel et al. (2012), where sufficient conditions for robustness
of nominally well-posed hybrid systems are proposed. Indeed, it is proven in Goebel
et al. (2012) that a sufficient condition for the robustness of a nominally well-posed
hybrid system is pre-asymptotic stability of a compact set, while, in the current
setting, only almost-global asymptotic stability of a compact set is shown. This fact
opens up questions on the necessity, and possible relaxation, of the pre-asymptotic
stability condition for robustness that will be investigated in future works.

Robustness to measurement noise for the hybrid closed-loop system Hcl is re-
covered by imposing a lower bound Φ > 0 on the global step size Φ, and modifying
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accordingly Gc\τ . In particular, in g5, the discrete dynamics of Φ can be modified
as follows.

Φ+ =



µΦ if k = n and ᾱ + ‖λv‖ ≤ min
j∈{0,1,...,n−1}

∆j/2 and µΦ ≥ Φ

Φ if k = n and ᾱ + ‖λv‖ ≤ min
j∈{0,1,...,n−1}

∆j/2 and µΦ ≤ Φ

Φ otherwise.

(6.18)

Moreover, given δdet > 0, we restrict the domain of all the directions dj to be such
that det(col(d0, d1, ..., dn−1)) ≥ δdet. Without loss of generality, we will denote the
desired equilibrium set within the restricted domain for the directions as A.

Theorem 6.3. Let assumptions (A0)-(A2) hold, Φ > 0, the parameters of the algo-
rithm in Fig. 4.3-4.4 satisfy 0 < λs < 1 < λt, δdet > 0, µ ∈ (0, 1/λt), θ ∈ (0, 1) and
γ ≥ 1, with the update of Φ modified such that Φ(t, j) ≥ Φ for all (t, j) ∈ dom Φ.
Then the set A is semiglobally practically asymptotically stable on Φ > 0 for Hcl.

Proof. Let ε1 > ε2 > 0 and constants 0 < λs < 1 < λt be given.
Notice that, by the bounds on the state variables defined in the proof of Lemma

6.2, it is always possible to choose δ > 0 to be the maximum radius of all the balls,
one per state variable composing (x, xc), such that the maximum of the bounds
reported in the proof of Lemma 6.2 is upper bounded by ε1. Namely pick δ such
that for all initial conditions in δB(A),

max
δ>0

max
(ξ(0,0),xc(0,0))∈δB(A)

{dmax,∆max,Φ(0, 0), dmax∆max, ndmax∆max,

max{z(0, 0), f(x(0, 0))} − f(A?), d2
max∆2

max} < ε1.

Then pick SΦ = (0, δ] and notice that, by (6.18), for all Φ ∈ SΦ, (ξ(0, 0), xc(0, 0)) ∈
δB(A) =⇒ (ξ(t, j), xc(t, j)) ∈ ε1B(A) for all (t, j) ∈ dom(ξ, xc).

Denote as Lε the largest sublevel set of f subset of the closure of min{ε2, δ}B(A?),
and as fε the biggest value that f achieves in Lε.

Pick B := cl{x ∈ Rn : x ∈ ε1B(A) and x /∈ Lε}.
By assumptions (A0)-(A2) and the fact that the set of directions dj, with j =

0, 1, ..., n − 1, always span Rn, it follows (from the fact that for any neighborhood
small enough not containing any local maxima or local minima, the norm of the
gradient of f is lower bounded away from zero) that for every compact set in Rn not
containing a local minimum, there exists a Φ̄ > 0, such that for all Φ ∈ (0, Φ̄), there
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exists at least one direction, that, rescaled by λsΦ, produces a sufficient decrease of
f from every point in that compact set.

Since B is compact and does not contain a local minimum, it implies, by the
above reasoning, that there exists Φ̄ > 0, such that for all Φbound ∈ (0, Φ̄) at least
one direction is a descent direction for Φ = Φbound, hence, after at most n iterations,
z decreases.

Define now the Lyapunov candidate function V (ξ, xc) = z − fε, and notice that
it satisfies (6.9) and (6.10), after at most 3τ ? + 2, on ε1B(A) \min{ε2, δ}B(A). By
Lemma 4.2 and picking Φ ∈ (0, Φ̄), it follows that there exist (T, J) ∈ dom(ξ, xc)
such that for all (t, j) ∈ dom(ξ, xc) such that t+ j ≥ T + J , Φ = Φ and ∆j = λsΦ.
This implies that as long as x ∈ B, after at most every n iterations, z decreases,
and thus, by applying Theorem 4.7 in Sanfelice et al. (2007), (ξ, xc)→ ε2B(A). To
conclude the proof, choose Φ ∈ (0,min{δ, Φ̄}). �

The lower bound on Φ also guarantees an explicit bound on the allowable max-
imum noise that can be accepted without losing robustness.

Corollary 6.1. For all parameters of the algorithm in Fig. 4.3-4.4 satisfying 0 <

λs < 1 < λt, δdet > 0, µ ∈ (0, 1/λt), θ ∈ (0, 1), γ ≥ 1, and all measurement noise
ns : R× N→ R added to f , with |ns(t, j)| ≤ n̄s for all (t, j) ∈ R× N, with n̄s > 0,
pick Φ? > 0 such that

n̄s = ρ(λsΦ?)
2 . (6.19)

Then the set A is semiglobally practically asymptotically stable on Φ ≥ Φ? for Hcl,
with the update of Φ modified such that Φ(t, j) ≥ Φ for all (t, j) ∈ dom Φ.

Proof. Consider the Lyapunov function V (x) = f(x)− f(A?) for the case of lower
bounded step size Φ, with lower bound Φ > 0, and the sequence of times (t(j?k), j?k),
where t(j) is the biggest time t such that (t, j) ∈ dom x, (t(j?0), j?0) is such that
j?0 ≥ j0 + 3 and, given (t(j?k), j?k), (t(j?k+1), j?k+1) is computed as (t(j?k + 1), j?k + 1)
if (ξ(t(j?k + 1), j?k + 1), xc(t(j?k + 1), j?k + 1)) /∈ D2. We claim that such V satisfies
Condition 1 and Condition 2 of Theorem 5.4.

Condition 1 Clearly V (A?) = 0, moreover, since f is lower bounded, with lower
bound f(A?) and continuous, V can be bounded by

ᾱ(‖x‖A?) ≤ V (x) ≤ β̄(‖x‖A?),
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where

ᾱ(‖x‖A?) := (−e−‖x‖A? + 1) inf
x̄∈Rn:‖x̄‖A?≥‖x‖A?

(f(x̄)− f(A?))

β̄(‖x‖A?) := ‖x‖A? max
x̄∈Rn:‖x̄‖A?≤‖x‖A?

‖∇f(x̄)‖

Condition 2 We first show that (t(j?k) + j?k) − (t(j?k+1), j?k+1) ≤ T = 3T ′ + 3, with
T ′ > 0 the period of the timer.

Notice that D2 is defined for q ∈ {0, 1}, q̇ = 0 always, and for (ξ, xc) ∈ D2 q
+ =

q+1. Since the jump rule is defined by the timer only, given (ξ(t(j?k), j?k), xc(t(j?k), j?k)) ∈
D\D2, there exists j̄ ∈ {1, 2, 3} such that (ξ(t(j?k + j̄), j?k + j̄), xc(t(j?k + j̄), j?k + j̄)) ∈
D \D2 again.

At (t(j?k), j?k), (ξ(t(j?k), j?k), x(t(j?k), j?k)) ∈ D.
As a cycle in the algorithm results in the state x(t(j), j) moving between Di in

the following order

D5 → D1 → ...→ D1 → D2 → D3 → D4 → ...→ D4 → D5, (6.20)

we can notice the following:
If x(t(j?k), j?k) ∈ D1, then y(t(j?k), j?k) = f(x(t(j?k), j?k)) +ns(t(j?k), j?k) ≤ z(t(j?k), j?k)−
ρ(∆(t(j?k), j?k)) ≤ f(x(t(j?k − 1), j?k − 1)) + n̄s − ρ(∆(t(j?k), j?k)).
If x(t(j?k), j?k) ∈ D2, then we do not consider the Lyapunov function there.
If x(t(j?k), j?k) ∈ D3, then f(x(t(j?k), j?k)) = f(x(t(j?k − 2), j?k − 2)).
If x(t(j?k), j?k) ∈ D4, then y(t(j?k), j?k) = f(x(t(j?k), j?k)) +ns(t(j?k), j?k) ≤ z(t(j?k), j?k)−
ρ(∆(t(j?k), j?k)) ≤ f(x(t(j?k − 1), j?k − 1)) + n̄s − ρ(∆(t(j?k), j?k)).
If x(t(j?k), j?k) ∈ D5, then f(x(t(j?k), j?k)) = f(x(t(j?k − 2), j?k − 2)).

If we assume n̄s = 0, then we can notice that V (x(t(j?k+1), j?k+1))−V (x(t(j?k), j?k)) ≤
0 for all hybrid arcs x, for all k ∈ N.

V (x(t(j?k+1), j?k+1))− V (x(t(j?k), j?k)) =f(x(t(j?k+1), j?k+1))− f(x(t(j?k), j?k) if x(t(j?k+1), j?k) ∈ D1,4

0 if x(t(j?k+1), j?k) ∈ D3,5

(6.21)

In case we assume noise acting on the cost function measurement, ns(t, j) ≤ n̄s,

96



then, for x(t(j?k+1), j?k) ∈ D1,4,

V (x(t(j?k+1), j?k+1))− V (x(t(j?k), j?k)) = f(x(t(j?k+1), j?k+1))− f(x(t(j?k), j?k)) =
(6.22)

δf (t(j?k+1), j?k+1).
(6.23)

Hence δf (t(j?k+1), j?k+1) totally determines the sign of V (x(t(j?k+1), j?k+1))−V (x(t(j?k), j?k)).
Since

y(t(j?k+1), j?k+1) = f(x(t(j?k+1), j?k+1)) + ns(t(j?k+1), j?k+1) ≤ z(t(j?k), j?k)−∆(t(j?k), j?k)
1

∆(t(j?
k

),j?
k

)

= f(x(t(j?k), j?k)) + ns(t(j?k), j?k)−∆(t(j?k), j?k)
1

∆(t(j?
k

),j?
k

) =⇒

f(x(t(j?k+1), j?k+1)) ≤ f(x(t(j?k), j?k)) + 2n̄s −∆(t(j?k), j?k)
1

∆(t(j?
k

),j?
k

) =⇒
f(x(t(j?k+1), j?k+1))− f(x(t(j?k), j?k)) = δf (t(j?k+1), j?k+1) ≤ 2n̄s − ρ(∆(t(j?k), j?k)).

If 2n̄s− ρ(λsΦ) ≤ 0, then V (x(t(j?k+1), j?k+1))−V (x(t(j?k), j?k)) ≤ 0 for all k ∈ N.
Indeed, semiglobal practical stability is preserved for all ns : R × N → R, with
ns(t, j) ≤ n̄s for all (t, j) ∈ R× N and such that

n̄s ≤
ρ(λsΦ)

2 (6.24)

�

Knowledge of a bound on the maximum norm of the measurement noise makes
it possible to easily design robust hybrid controllers without resorting to further
robust control techniques.

Remark 6.3. In Mayhew et al. (2007) an explicit characterization of the practical
neighborhood of convergence to A, as function of the step size, is provided. As
the dense exploration procedure adopted in Mayhew et al. (2007) to guarantee
such bounds cannot be extended to n-dimensional search spaces, a similar result
cannot be achieved without further assumptions on f . Nonetheless, the norm of the
gradient of f can be bounded at steady state by a function of Φ and the equilibrium
set of exploring directions (see Theorem 3.3 in Kolda et al. (2003)). 4

Remark 6.4. The trade-off between practical global asymptotic stability and almost
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global asymptotic stability is, also, related to the lack of knowledge of A? or f(A?).
By assuming, for example, knowledge of f(A?), the discrete dynamics of Φ can be
extended with the addition of a term ρf (|f(x) − f(A?)|), where ρf : R≥0 → R≥0

and ρf (|f(x) − f(A?)|) > 0 for x such that |f(x) − f(A?)| > 0. This term would
prevent the algorithm to remain stuck at the initial position when Φ is initialized
at zero and, thus, Theorem 6.1 could be extended to guarantee global asymptotic
stability of the set of minimizers. 4

6.4 Examples
In this section we show the results of different simulations of the proposed hybrid
controller to the minimization of different objective functions.

Fig. 6.1 illustrates the level sets of the quadratic convex function

f(x) = x2
1 + 5x2

2, (6.25)

where x = col(x1, x2). The trajectory of a point-mass vehicle, steered by the pro-
posed hybrid controller in order to minimize (6.25), is superimposed to the level
sets of (6.25), showing the value of f(x) at each corresponding point of the tra-
jectory. The control input was chosen as K(x, xc, τ ?) = p∆v/τ ?. For this sim-
ulation, the initial values of the state variables of the hybrid closed loop were
chosen as x(0, 0) = col(1.5, 0), τ(0, 0) = 0, λ(0, 0) = 0, α(0, 0) = 0, z(0, 0) =
0, p(0, 0) = 1, q(0, 0) = 0, m(0, 0) = 0, k(0, 0) = 0, α(0, 0) = 0, d00(0, 0) =
col(cos(π/8), sin(π/8)), d01 = col(− sin(π/8), cos(π/8)), v(0, 0) = d00 ∆0j(0, 0) =
0.01, j = 0, 1, ∆(0, 0) = ∆00. The tunable parameters of the controller were de-
fined as γ = 1.2, θ = 0.5, δdet = 0.001, µ = 0.15, λs = 0.001, and λt = 5 .

It can be noticed as in both Fig. 6.1(a) and Fig. 6.1(b), the distance to the
minimizer tends asymptotically to zero as the step size converges to zero. We
highlight how, at jump times, the state variable x, steered by the hybrid controller
implementing the new RSP algorithm, coincides (up to a small numerical error given
by the integration of the continuous time dynamics in the simulating environment)
with the sequence of iterates produced by the new RSP algorithm for the same
example in Section 4.1.4, under the assumption of “exact” controllability of the
underlying continuous time dynamical system, i.e. the x subsystem.

The simulation reported in Fig. 6.2, instead, considered the nonconvex Rosen-
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brock function
f(x) = (1− x1)2 + 10(x2 − x2

1)2, (6.26)

and the Dubin’s vehicle dynamics. The initial conditions and parameter values were
kept the same of the previous simulation. In this case the minimizer is given by
x? = (1, 1) and, in spite of the nonconvex optimization problem, the trajectory of
the state variable x is converging towards it, remarkably.

In Fig. 6.3 we show a comparison of the x-trajectories of Hcl for a point-
mass vehicle in case measurement noise affecting (6.25) are considered. The initial
conditions and parameter values were kept the same of the previous simulations
apart from Φ(0, 0) = ∆j(0, 0) = ∆(0, 0) = 1. In Fig. 6.3(a)-6.3(b) no lower
bound on Φ and no measurement noise is assumed, the x-trajectory indeed behaves
similarly to the one in Fig. 6.1, converging asymptotically to the minimum x? =
(0, 0). In Fig. 6.3(c)-6.3(d) no lower bound on Φ is assumed, but a measurement
noise ns(t, j), upper bounded by n̄s = 0.04 on f is considered. The measurement
noise ns is designed as proposed in the proof of Theorem 6.2. Notice that for
∆ = 0.38, ρ(∆)/2 ' n̄s. Indeed we highlight that when ρ(∆j) ≤ n̄s, for j = 0, 1,
is satisfied, and it is for ∆j ≤ 0.38 for all j = 0, 1, the effect of the noise tricks
the hybrid controller into steering the x-subsystem away from the minimum. This
behavior can be seen in the plot of f(x) in Fig. 6.3(d) after about 20 seconds of
simulation. In Fig. 6.3(e)-6.3(f) the same measurement noise is assumed, but, from
(6.19), Φ = 40 is choosen, implying ∆j(t, j) ≥ 0.4 for all (t, j) ∈ dom(ξ, xc). As
proven in Corollary 6.1, the imposed lower bound on Φ compensates the effects of
the measurement noise, stabilizing the state x in a neighborhood of the minimum.
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(a) x trajectory versus the level sets of a quadratic convex function
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(b) x(t) and f(x(t))

Figure 6.1: Plot of the trajectories of x(t, j) and f(x(t, j)), where f(x) = x2
1 + 5x2

2. (a)
Shows the vehicle path (blue with ’*’ where jump occurs) on the level sets of f . The
initial point is indicated with a green ’*’ and the unique minimizer (0, 0, 0) with a red ’*’.
(b) Shows the evolution of x and f(x) as function of time.
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Figure 6.2: The Dubin’s vehicle path on the level sets of the Rosenbrock function (6.26).
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(a) x trajectory versus the level sets (6.25) assum-
ing no lower bound on Φ and no measurement
noise

(b) x(t) and f(x(t))

(c) x trajectory versus the level sets (6.25) as-
suming no lower bound on Φ but measurement
noise added to f

(d) x(t) and f(x(t))

(e) x trajectory versus the level sets (6.25) assum-
ing a lower bound on Φ and measurement noise
added to f

(f) x(t) and f(x(t))

Figure 6.3: Comparison of the plots of the trajectories of x(t, j) and f(x(t, j)), where
f(x) = x2

1 + 5x2
2, under different assumptions on measurement noise and Φ. (a),(c) and

(e) show the vehicle path (blue with ’*’ where jump occurs) on the level sets of f . The
initial point is indicated with a red ’*’ and the unique minimizer (0, 0, 0) with a green ’*’.
(b),(d) and (f) show the evolution of x and f(x) as function of time.
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Concluding Remarks

In this second part of the thesis we first introduced the class of derivative-free
optimization algorithms denoted Direct Search algorithms, and their sub-class of
Generating Set Search algorithms, together with the conjugacy property of vectors
with respect to a matrix, adopted in Smith (1962) in order to reach the minimum of
a convex quadratic function in a finite number of line minimizations. In this frame-
work we developed an algorithm based on conjugate directions able to asymptoti-
cally reach the minimimum of a particular class of, possibly, non-convex function.
The proposed algorithm computes a series of discrete line minimizations, based on a
sufficient decrease condition, along a set of linearly independent directions spanning
the search space, constantly updated with locally conjugate directions. When no
further descent is achieved for the current value of the step size, the step size is
reduced and the exploration starts again. We implemented the proposed optimiza-
tion algorithm in a hybrid controller in order to study its stability and robustness
properties when coupled with a continuous time dynamical system. Almost global
asymptotic stability was shown for the proposed implementation with, however, a
lack of robustness to noise acting on the objective function measurements. A ro-
bust solution is, thus, considered by imposing a lower bound on the admissible step
sizes values. In particular an explicit expression for the relationship relating the
minimum step size to the maximum norm of the measurement noise is computed.

Being intrinsically simple, one of the main advantages of the proposed hybrid
controller is the ease of implementation. Indeed no complex operations are com-
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puted in the jump map G, and, apart from the state variable ξ, state of the con-
tinuous time dynamical system to be steered, and the timer, no other closed-loop
state variable changes in continuous time, lending itself also for an easy digital im-
plementation. Moreover, knowledge of the maximum bound on the noise will lead
to a robust solution without any filtering of the measured objective function signal.

For the studied problem, the adopted hybrid system framework presented itself
as a natural theory able to blend the inherent discrete dynamics of the proposed
algorithm with a continuous time dynamical system executing the optimization
algorithm. Other positive results of this idea can be found, for example, in the
recently developed theory for hybrid extremum seeking control, see e.g. Poveda
et al. (2018). In general, an extension of the proposed framework, based on a hy-
brid interconnection, with different optimization algorithms, is not straightforward
as, in order to guarantee that the hybrid basic conditions are satisfied, particular
attention has to be placed on the outer semicontinuity of functions adopted in each
optimization algorithm. However, this will be the focus of future studies. A cur-
rently studied problem in this direction is the use of identification techniques to
capture derivative information from function evaluations.

On the wake of these results, interesting research directions include further ex-
tensions to the hybrid system framework of optimization algorithms addressing more
complex scenarios. In particular, we aim at further developing the proposed RSP
algorithm to address constrained optimization problems. Applications, and tech-
niques, regarding Direct Search algorithm framing this problem can, for example,
be found in Section 8 in Kolda et al. (2003), but their hybrid implementation is not
straight forward as, unless the geometry of the constraints is known exactly a priori,
computing online new directions of exploration that belong to the tangent cone to
the constraint set, while at the same time satisfying the hybrid basic conditions, is
not trivial.

Further research directions under exploration are extensions to the non-smooth
case, properly modifying and implementing the results in Popovic and Teel (2004),
as well as to the multi-agent scenario, by noticing that the amount of line minimiza-
tions needed in order to apply the Parallel Subspace Property could be reduced by
simultaneous parallel line minimizations computed by different agents collaborating
to solve the same optimization problem.

On the other hand, the robustness analysis developed in the previous section
fueled interest in further studying the necessity of the pre-asymptotic stability con-
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dition to guarantee robustness of hybrid systems, as well as providing conditions
for the robustness (or lack of) for almost globally asymptotically stable hybrid dy-
namical systems. These topics will be material of future investigation.
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Conclusions

This thesis work addressed two main topics, seemingly unrelated, but whose
study has the same scope of paving the way towards robust solutions to the output
regulation problem.

The first part dealt with the problem of adaptive linear output regulation when
the exosystem is not assumed to be known. The proposed solution is based on
the construction of an adaptive observer estimating the steady state variables of
the internal model solving the regulator equations. The adaptive observer is built
by the interconnection of an “extended” internal model unit and a continuous-
time least-squares identifier. The achieved result, based on a small-gain argument,
states that, under a persistence of excitation condition, if the identifier dynamics
are “slow enough” with respect to the plant, stabilizer and internal model unit
dynamics, then semiglobal asymptotic stability of the error zeroing subspace is
proven. To be noticed is that, as no minimum phase assumptions were considered,
the non-minimum phase case can be treated without any additional effort.

The second part of the thesis addressed the problem of steering the state of a
continuous-dynamical system toward the minimum of an unknown, but sporadically
measurable, objective function. The class of algorithms considered to solve this op-
timization problem are the Direct Search algorithms. In the framework of Direct
Search algorithms, under particular assumptions on the structure of the, possibly
non convex, objective function, a novel algorithm is developed, able to asymptoti-
cally converge to the set of minima. A hybrid controller is designed to implement
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the interconnection of the proposed algorithm with the the underlying dynamical
system. The controller is shown to be almost globally asymptotically stable and,
under a robustness analysis, shown to be, as all direct search methods based on
asymptotic step size reduction, not robust to any bounded noise acting additively
on the objective function measurements. An alternative design, encompassing the
one proposed in Mayhew et al. (2007), is thus proposed and shown to be semiglob-
ally practically asymptotically stable and robust to bounded measurement noise.
Moreover, an expression relating the minimum step size and the noise bound is com-
puted, making it possible to guarantee robustness of the proposed scheme without
adding any processing of the measured signal. It is worth stressing that, under no
additional assumptions, a trade-off between asymptotic stability and robustness is
inevitable.

The studied topics should be framed in an attempt to seek more robust solutions
to the output regulation problem, and not only. Indeed future work directions will
be the study of the (linear) output regulation problem in a hybrid framework,
considering the proposed new RSP algorithm as a possible identifier for the internal
model parameters. Moreover, under the assumption of not measurability of the
error, to solve the output regulation problem upon availability, sporadically, the
measurements of an objective function whose minimum corresponds to the zero
error steady state. In this regard, an attempt will be made into approaching the
solution of this problem with the proposed hybrid direct search controller but from
an output regulation point of view.
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