7 research outputs found

    Intrinsic distortion of a fully differential BD-modulated Class-D amplifier with analog feedback

    Get PDF
    This paper presents a mathematical analysis of a fully differential BD-modulated Class-D amplifier with analog feedback, i.e., one having a bridge-tied-load output configuration with negative feedback and ternary PWM signal. Notwithstanding the highly nonlinear nature of the amplifier's operation, an extremely accurate closed-form expression for the audible output signal is derived and verified based on computer simulations. This expression demonstrates that there exist larger high-order intrinsic distortions (e.g., 5th-order harmonic distortion and intermodulation distortion) for BD-modulation, compared to that for AD-modulation (binary PWM signal). Furthermore, the 3rd-order harmonic distortion has a roughly parabolic response as a function of the magnitude of the input signal and reaches its peak when the modulation index of the input signal is around 0.7. Overall, the BD-modulated Class-D amplifier has a larger intrinsic distortion for small input signal but a smaller intrinsic distortion for large input signal, compared to AD-modulated designs

    Low Power High Efficiency Integrated Class-D Amplifier Circuits for Mobile Devices

    Get PDF
    The consumer’s demand for state-of-the-art multimedia devices such as smart phones and tablet computers has forced manufacturers to provide more system features to compete for a larger portion of the market share. The added features increase the power consumption and heat dissipation of integrated circuits, depleting the battery charge faster. Therefore, low-power high-efficiency circuits, such as the class-D audio amplifier, are needed to reduce heat dissipation and extend battery life in mobile devices. This dissertation focuses on new design techniques to create high performance class-D audio amplifiers that have low power consumption and occupy less space. The first part of this dissertation introduces the research motivation and fundamentals of audio amplification. The loudspeaker’s operation and main audio performance metrics are examined to explain the limitations in the amplification process. Moreover, the operating principle and design procedure of the main class-D amplifier architectures are reviewed to provide the performance tradeoffs involved. The second part of this dissertation presents two new circuit designs to improve the audio performance, power consumption, and efficiency of standard class-D audio amplifiers. The first work proposes a feed-forward power-supply noise cancellation technique for single-ended class-D amplifier architectures to improve the power-supply rejection ratio across the entire audio frequency range. The design methodology, implementation, and tradeoffs of the proposed technique are clearly delineated to demonstrate its simplicity and effectiveness. The second work introduces a new class-D output stage design for piezoelectric speakers. The proposed design uses stacked-cascode thick-oxide CMOS transistors at the output stage that makes possible to handle high voltages in a low voltage standard CMOS technology. The design tradeoffs in efficiency, linearity, and electromagnetic interference are discussed. Finally, the open problems in audio amplification for mobile devices are discussed to delineate the possible future work to improve the performance of class-D amplifiers. For all the presented works, proof-of-concept prototypes are fabricated, and the measured results are used to verify the correct operation of the proposed solutions

    Low Power DC-DC Converters and a Low Quiescent Power High PSRR Class-D Audio Amplifier

    Get PDF
    High-performance DC-DC voltage converters and high-efficient class-D audio amplifiers are required to extend battery life and reduce cost in portable electronics. This dissertation focuses on new system architectures and design techniques to reduce area and minimize quiescent power while achieving high performance. Experimental results from prototype circuits to verify theory are shown. Firstly, basics on low drop-out (LDO) voltage regulators are provided. Demand for system-on-chip solutions has increased the interest in LDO voltage regulators that do not require a bulky off-chip capacitor to achieve stability, also called capacitor- less LDO (CL-LDO) regulators. Several architectures have been proposed; however, comparing these reported architectures proves difficult, as each has a distinct process technology and specifications. This dissertation compares CL-LDOs in a unified manner. Five CL-LDO regulator topologies were designed, fabricated, and tested under common design conditions. Secondly, fundamentals on DC-DC buck converters are presented and area reduction techniques for the external output filter, power stage, and compensator are proposed. A fully integrated buck converter using standard CMOS technology is presented. The external output filter has been fully-integrated by increasing the switching frequency up to 45 MHz. Moreover, a monolithic single-input dual-output buck converter is proposed. This architecture implements only three switches instead of the four switches used in conventional solutions, thus potentially reducing area in the power stage through proper design of the power switches. Lastly, a monolithic PWM voltage mode buck converter with compact Type-III compensation is proposed. This compensation scheme employs a combination of Gm-RC and Active-RC techniques to reduce the area of the compensator, while maintaining low quiescent power consumption and fast transient response. The proposed compensator reduces area by more than 45% when compared to an equivalent conventional Type-III compensator. Finally, basics on class-D audio amplifiers are presented and a clock-free current controlled class-D audio amplifier using integral sliding mode control is proposed. The proposed amplifier achieves up to 82 dB of power supply rejection ratio and a total harmonic distortion plus noise as low as 0.02%. The IC prototype’s controller consumes 30% less power than those featured in recently published works

    Analog dithering techniques for highly linear and efficient transmitters

    Get PDF
    The current thesis is about investigation of new methods and techniques to be able to utilize the switched mode amplifiers, for linear and efficient applications. Switched mode amplifiers benefit from low overlap between the current and voltage wave forms in their output terminals, but they seriously suffer from nonlinearity. This makes it impossible to use them to amplify non-constant envelope message signals, where very high linearity is expected. In order to do that, dithering techniques are studied and a full linearity analysis approach is developed, by which the linearity performance of the dithered amplifier can be analyzed, based on the dithering level and frequency. The approach was based on orthogonalization of the equivalent nonlinearity and is capable of prediction of both co-channel and adjacent channel nonlinearity metrics, for a Gaussian complex or real input random signal. Behavioral switched mode amplifier models are studied and new models are developed, which can be utilized to predict the nonlinear performance of the dithered power amplifier, including the nonlinear capacitors effects. For HFD application, self-oscillating and asynchronous sigma delta techniques are currently used, as pulse with modulators (PWM), to encode a generic RF message signal, on the duty cycle of an output pulse train. The proposed models and analysis techniques were applied to this architecture in the first phase, and the method was validated with measurement on a prototype sample, realized in 65 nm TSMC CMOS technology. Afterwards, based on the same dithering phenomenon, a new linearization technique was proposed, which linearizes the switched mode class D amplifier, and at the same time can reduce the reactive power loss of the amplifier. This method is based on the dithering of the switched mode amplifier with frequencies lower than the band-pass message signal and is called low frequency dithering (LFD). To test this new technique, two test circuits were realized and the idea was applied to them. Both of the circuits were of the hard nonlinear type (class D) and are integrated CMOS and discrete LDMOS technologies respectively. The idea was successfully tested on both test circuits and all of the linearity metric predictions for a digitally modulated RF signal and a random signal were compared to the measurements. Moreover a search method to find the optimum dither frequency was proposed and validated. Finally, inspired by averaging interpretation of the dithering phenomenon, three new topologies were proposed, which are namely DLM, RF-ADC and area modulation power combining, which are all nonlinear systems linearized with dithering techniques. A new averaging method was developed and used for analysis of a Gilbert cell mixer topology, which resulted in a closed form relationship for the conversion gain, for long channel devices

    Design and Implementation of Switching Voltage Integrated Circuits Based on Sliding Mode Control

    Get PDF
    The need for high performance circuits in systems with low-voltage and low-power requirements has exponentially increased during the few last years due to the sophistication and miniaturization of electronic components. Most of these circuits are required to have a very good efficiency behavior in order to extend the battery life of the device. This dissertation addresses two important topics concerning very high efficiency circuits with very high performance specifications. The first topic is the design and implementation of class D audio power amplifiers, keeping their inherent high efficiency characteristic while improving their linearity performance, reducing their quiescent power consumption, and minimizing the silicon area. The second topic is the design and implementation of switching voltage regulators and their controllers, to provide a low-cost, compact, high efficient and reliable power conversion for integrated circuits. The first part of this dissertation includes a short, although deep, analysis on class D amplifiers, their history, principles of operation, architectures, performance metrics, practical design considerations, and their present and future market distribution. Moreover, the harmonic distortion of open-loop class D amplifiers based on pulse-width modulation (PWM) is analyzed by applying the duty cycle variation technique for the most popular carrier waveforms giving an easy and practical analytic method to evaluate the class D amplifier distortion and determine its specifications for a given linearity requirement. Additionally, three class D amplifiers, with an architecture based on sliding mode control, are proposed, designed, fabricated and tested. The amplifiers make use of a hysteretic controller to avoid the need of complex overhead circuitry typically needed in other architectures to compensate non-idealities of practical implementations. The design of the amplifiers based on this technique is compact, small, reliable, and provides a performance comparable to the state-of-the-art class D amplifiers, but consumes only one tenth of quiescent power. This characteristic gives to the proposed amplifiers an advantage for applications with minimal power consumption and very high performance requirements. The second part of this dissertation presents the design, implementation, and testing of switching voltage regulators. It starts with a description and brief analysis on the power converters architectures. It outlines the advantages and drawbacks of the main topologies, discusses practical design considerations, and compares their current and future market distribution. Then, two different buck converters are proposed to overcome the most critical issue in switching voltage regulators: to provide a stable voltage supply for electronic devices, with good regulation voltage, high efficiency performance, and, most important, a minimum number of components. The first buck converter, which has been designed, fabricated and tested, is an integrated dual-output voltage regulator based on sliding mode control that provides a power efficiency comparable to the conventional solutions, but potentially saves silicon area and input filter components. The design is based on the idea of stacking traditional buck converters to provide multiple output voltages with the minimum number of switches. Finally, a fully integrated buck converter based on sliding mode control is proposed. The architecture integrates the external passive components to deliver a complete monolithic solution with minimal silicon area. The buck converter employs a poly-phase structure to minimize the output current ripple and a hysteretic controller to avoid the generation of an additional high frequency carrier waveform needed in conventional solutions. The simulated results are comparable to the state-of-the-art works even with no additional post-fabrication process to improve the converter performance

    Efficient Audio Systems

    Get PDF

    IMD of Closed-Loop Filterless Class D Amplifiers

    No full text
    corecore