167 research outputs found

    Program Semantics in Model-Based WCET Analysis: A State of the Art Perspective

    Get PDF
    Advanced design techniques of safety-critical applications use specialized development model based methods. Under this setting, the application exists at several levels of description, as the result of a sequence of transformations. On the positive side, the application is developed in a systematic way, while on the negative side, its high-level semantics may be obfuscated when represented at the lower levels. The application should provide certain functional and non-functional guarantees. When the application is a hard real-time program, such guarantees could be deadlines, thus making the computation of worst-case execution time (WCET) bounds mandatory. This paper overviews, in the context of WCET analysis, what are the existing techniques to extract, express and exploit the program semantics along the model-based development workflow

    Control flow graphs for real-time systems analysis: reconstruction from binary executables and usage in ILP-based path analysis

    Get PDF
    Real-time systems have to complete their actions w.r.t. given timing constraints. In order to validate that these constraints are met, static timing analysis is usually performed to compute an upper bound of the worst-case execution times (WCET) of all the involved tasks. This thesis identifies the requirements of real-time system analysis on the control flow graph that the static analyses work on. A novel approach is presented that extracts a control flow graph from binary executables, which are typically used when performing WCET analysis of real-time systems. Timing analysis can be split into two steps: a) the analysis of the behaviour of the hardware components, b) finding the worst-case path. A novel approach to path analysis is described in this thesis that introduces sophisticated interprocedural analysis techniques that were not available before.Echtzeitsysteme müssen ihre Aufgaben innerhalb vorgegebener Zeitschranken abwickeln. Um die Einhaltung der Zeitschranken zu überprüfen, sind für gewöhnlich statische Analysen der schlimmsten Ausführzeiten der Teilprogramme des Echtzeitsystems nötig. Diese Arbeit stellt die Anforderungen von Echtzeitsystem an den Kontrollflussgraphen vor, auf dem die statischen Analysen arbeiten. Ein neuartiger Ansatz zur Rückberechnung von Kontrollflußgraphen aus Maschinenprogrammen, die häufig die Grundlage der WCET-Analyse von Echtzeitsystemen bilden, wird vorgestellt. WCET-Analysen können in zwei Teile zerlegt werden: a) die Analyse des Verhaltens der Hardwarebausteine, b) die Suche nach dem schlimmsten Ausführpfad. In dieser Arbeit wird ein neuartiger Ansatz der Pfadanalyse vorgestellt, der für ausgefeilte interprozedurale Analysemethoden ausgelegt ist, die vorher hier nicht verfügbar waren

    Control flow graphs for real-time systems analysis: reconstruction from binary executables and usage in ILP-based path analysis

    Get PDF
    Real-time systems have to complete their actions w.r.t. given timing constraints. In order to validate that these constraints are met, static timing analysis is usually performed to compute an upper bound of the worst-case execution times (WCET) of all the involved tasks. This thesis identifies the requirements of real-time system analysis on the control flow graph that the static analyses work on. A novel approach is presented that extracts a control flow graph from binary executables, which are typically used when performing WCET analysis of real-time systems. Timing analysis can be split into two steps: a) the analysis of the behaviour of the hardware components, b) finding the worst-case path. A novel approach to path analysis is described in this thesis that introduces sophisticated interprocedural analysis techniques that were not available before.Echtzeitsysteme müssen ihre Aufgaben innerhalb vorgegebener Zeitschranken abwickeln. Um die Einhaltung der Zeitschranken zu überprüfen, sind für gewöhnlich statische Analysen der schlimmsten Ausführzeiten der Teilprogramme des Echtzeitsystems nötig. Diese Arbeit stellt die Anforderungen von Echtzeitsystem an den Kontrollflussgraphen vor, auf dem die statischen Analysen arbeiten. Ein neuartiger Ansatz zur Rückberechnung von Kontrollflußgraphen aus Maschinenprogrammen, die häufig die Grundlage der WCET-Analyse von Echtzeitsystemen bilden, wird vorgestellt. WCET-Analysen können in zwei Teile zerlegt werden: a) die Analyse des Verhaltens der Hardwarebausteine, b) die Suche nach dem schlimmsten Ausführpfad. In dieser Arbeit wird ein neuartiger Ansatz der Pfadanalyse vorgestellt, der für ausgefeilte interprozedurale Analysemethoden ausgelegt ist, die vorher hier nicht verfügbar waren

    WCET-Directed Dynamic Scratchpad Memory Allocation of Data

    Full text link
    Many embedded systems feature processors coupled with a small and fast scratchpad memory. To the difference with caches, allocation of data to scratchpad memory must be handled by software. The major gain is to enhance the pre-dictability of memory accesses latencies. A compile-time dy-namic allocation approach enables eviction and placement of data to the scratchpad memory at runtime. Previous dynamic scratchpad memory allocation ap-proaches aimed to reduce average-case program execution time or the energy consumption due to memory accesses. For real-time systems, worst-case execution time is the main metric to optimize. In this paper, we propose a WCET-directed algorithm to dynamically allocate static data and stack data of a pro-gram to scratchpad memory. The granularity of placement of memory transfers (e.g. on function, basic block bound-aries) is discussed from the perspective of its computation complexity and the quality of allocation. 1

    Quantifying the benefits of SPECint distant parallelism in simultaneous multithreading architectures

    Get PDF
    We exploit the existence of distant parallelism that future compilers could detect and characterise its performance under simultaneous multithreading architectures. By distant parallelism we mean parallelism that cannot be captured by the processor instruction window and that can produce threads suitable for parallel execution in a multithreaded processor. We show that distant parallelism can make feasible wider issue processors by providing more instructions from the distant threads, thus better exploiting the resources from the processor in the case of speeding up single integer applications. We also investigate the necessity of out-of-order processors in the presence of multiple threads of the same program. It is important to notice at this point that the benefits described are totally orthogonal to any other architectural techniques targeting a single thread.Peer ReviewedPostprint (published version

    TuBound - A Conceptually New Tool for Worst-Case Execution Time Analysis

    Get PDF
    TuBound is a conceptually new tool for the worst-case execution time (WCET) analysis of programs. A distinctive feature of TuBound is the seamless integration of a WCET analysis component and of a compiler in a uniform tool. TuBound enables the programmer to provide hints improving the precision of the WCET computation on the high-level program source code, while preserving the advantages of using an optimizing compiler and the accuracy of a WCET analysis performed on the low-level machine code. This way, TuBound ideally serves the needs of both the programmer and the WCET analysis by providing them the interface on the very abstraction level that is most appropriate and convenient to them. In this paper we present the system architecture of TuBound, discuss the internal work-flow of the tool, and report on first measurements using benchmarks from Maelardalen University. TuBound took also part in the WCET Tool Challenge 2008

    Verifying non-functional real-time properties by static analysis

    Get PDF
    International audienceStatic analyzers based on abstract interpretation are tools aiming at the automatic detection of run-time properties by analyzing the source, assembly or binary code of a program. From Airbus' point of view, the first interesting properties covered by static analyzers available on the market, or as prototypes coming from research, are absence of run-time errors, maximum stack usage and Worst-Case Execution Time (WCET). This paper will focus on the two latter

    BEST: a Binary Executable Slicing Tool

    Get PDF
    We describe the implementation of BEST, a tool for slicing binary code. We aim to integrate this tool in a WCET estimation framework based on model checking. In this approach, program slicing is used to abstract the program model in order to reduce the state space of the system. In this article, we also report on the results of an evaluation of the efficiency of the abstraction technique
    corecore