
Quantifying the Benefits of SPECint Distant Parallelism
in Simultaneous Multithreading Architectures

Daniel Ortegay, Iván Martely, Venkata Krishnanz, Eduard Ayguad´ey and Mateo Valeroy

Alpha Development Groupz Departamento de Arquitectura de Computadoresy,

Compaq Computer Corporation Universidad Polit´ecnica de Catalu˜na – Barcelona, Spain

Venkata.Krishnan@compaq.com fdortega,imartel,eduard,mateog@ac.upc.es

Abstract

In this paper we exploit the existence of distant paral-
lelism that future compilers could detect and characterise
its performance under simultaneous multithreading archi-
tectures. By distant parallelism we mean parallelism that
can not be captured by the processor instruction window
and that can produce threads suitable for parallel execution
in a multithreaded processor. We will show that distant par-
allelism can make feasible wider issue processors by pro-
viding more instructions from the distant threads, thus bet-
ter exploiting the resources from the processor in the case of
speeding up single integer applications. We also investigate
the necessity of out–of–order processors in the presence of
multiple threads of the same program. It is important to
notice at this point that the benefits described herein are to-
tally orthogonal to any other architectural techniques tar-
geting a single thread.

1. Introduction

The main objective of compiler and processor designers
is to effectively exploit the parallelism available in applica-
tions. Although most of the times their research activities
have been conducted separately, we believe that a stronger
co–operation between them will make effective the increase
of potential parallelism that applications exhibit. However,
the issue of where to look for this parallelism and how to
exploit it is one of the main issues of today’s microarchitec-
ture research.

The current paradigm of computation for unithreaded ap-
plications is the superscalar out–of–order processor, where
the parallelism is found among instructions of the unique
control flow via the use of instruction windows. Several
techniques can make this search of parallelism among in-
structions (ILP) more effective. Some of them, such as
branch prediction strategies [17, 24], try to introduce more

useful instructions into the processor window, allowing
more instructions to be active at a time. Others such as
register renaming [20] try to break false dependencies in-
troduced by the compiler due to constraints in the number
of logical registers. More recent techniques, such as data
value speculation [9], try to benefit from the predictability
of values in programs to break data dependencies. These
techniques, which are just a sample, have as a primal ob-
jective the exposure of more data flows to the processor,
thus allowing the exploitation of more parallelism among
instructions.

Nevertheless, the parallelism found dynamically by
these techniques has been shown to be bounded. Recent
studies show that augmenting the instruction window size,
thus increasing the dynamic scope of the processor may
not be cost effective, not only because of technological rea-
sons [12] but also because of the characteristics of the pro-
grams themselves, which show a saturation in the speed–up
obtainable with highly aggressive architectures [15].

To overcome the limitations that a unique control thread
may impose, the exploitation of multiple flows of control
has been proposed [4, 23]. These multiple threads of con-
trol can be independent one from the other, thus simplifying
the complexity of the processor. Nonetheless, automatically
finding and exposing threads represents a complex problem.
Recent hardware techniques have been proposed in which
the hardware extracts multiple threads from a unithreaded
application. These threads are speculative, and methods to
detect mis–speculation and to recover from it have to be
supported. Some hardware thread creation techniques pro-
pose to detect dynamic traces and/or speculate parallelism
among them [16, 19]. Other techniques detect higher lev-
els of semantics in the application and try to benefit from
them: the detection of loops and the speculation of their it-
erations [10], the speculation of data dependencies between
a loop and its continuation [21], or even the speculation
of parallelism between a procedure call and its continua-
tion [1].

One of the problems that impose all these hardware

mechanisms that exploit thread level speculation is the enor-
mous technological complexity they require. Detecting
threads and recovering from misspeculation implies a lot
of hardware that could be devoted to other computational
tasks if threads could be statically explicited by the com-
piler. This reasoning is not new at all, the Multiscalar [18]
architecture considered the exposure of threads as part of
the compilers task.

Compilers have successfully exploited thread level par-
allelism in regular control structures such as low level loops,
as it is done by POLARIS [2] or SUIF [6]. Even non–
structured parallelism can be automatically detected when
accurately combining the analysis of control and data de-
pendencies in a hierarchical task graph [13] (like in the
Parafrase–2 [14] or PROMIS compilers [3]).

All these efforts have redounded in an effective paral-
lelising technology for numerical applications. However,
integer applications are considered non–parallelisable be-
cause of the data and computation structures used in them.
These applications tend to use dynamically allocated data
structures (such as lists and trees) accessed through one or
several levels of indirections, thus complicating the task
of the compiler, which usually need the help of program-
mers by means of directives and assertions, multithreading
libraries, or restructuration of the source code in order to
expose parallelism. Because of all this, non–numerical ap-
plications are considered to be single threaded and little is
expected from exploiting its parallelism.

In this paper we will show that non–numerical applica-
tions have inherent parallelism, and that reasonable perfor-
mance gains can be expected from exploiting it. During the
analysis of different non–numerical applications, we have
found that they posses lots of semantic thread level paral-
lelism [11], i.e. zones of code representing different com-
putations which not necessarily must be done in a sequen-
tial order. However, semantic parallelism is difficult to find
automatically, for many times the programmer or even the
compiler may introduce dependencies among these paral-
lel zones in the process of expressing the computation in a
particular language. These false data dependencies must be
therefore categorised and broken in order to expose paral-
lelism. The techniques used to do so are not new, but those
found in the parallelisation of numerical applications. The
only difference is the non–homogeneous nature of the com-
putation in non–numerical applications which may obscure
the presence of parallelism.

The first objective of this paper is to show where to find
this non–speculative parallelism and what techniques can be
used to exploit it. The non–speculative nature of the paral-
lelism we are aiming at will make the hardware more sim-
ple, therefore leaving room for other architectural enhance-
ments. The second objective of the paper is to measure the
benefits that this type of parallelism has under simultaneous

multithreading architectures. For the programs evaluated,
the parallel versions show a speed–up of up to 2.20 for a
twelve way and up to 1.91 for an eight way out–of–order
issue processor.

The organisation of the paper is as follows. Section 2
relates distant parallelism in integer applications to the al-
ready known types of parallelism in numerical applications.
Section 3 summarises the compiler requirements that a fu-
ture compiler should have in order to detect this kind of par-
allelism. Section 4 describes the simulation environment
and the benchmarks analysed. A thorough analysis of re-
sults and their implications is done in Section 5. The paper
ends with the conclusions in Section 6.

2. Distant Parallelism in Non–Numerical Ap-
plications

The main characteristic of distant parallelism is that, by
definition, can not be detected at run–time, i.e. we have cho-
sen not to search any type of thread level parallelism which
could be detected by hardware mechanisms. This is im-
plied by the term distant, which refers not only to dynamic
distance, the number of dynamic instructions between two
points in the execution of the program, but also to static
distance, which is distance between two instructions in the
code. Some hardware mechanisms exploit small distances
in static code, such as speculating the continuation of loops
or procedures, but our techniques ignore this type of paral-
lelism, what makes them orthogonal to any of these hard-
ware mechanisms, and also orthogonal to any other ILP ori-
ented mechanism.

In the search for distant parallelism we have concen-
trated on zones of code defined by coarser loops. When
looking at the relationship of dynamically executed instruc-
tions and static instructions in the code throughout execu-
tion time, one can see that certain zones of static code,
coarser loops, are accessed in a repetitive way continuously,
that is, the zone in particular is accessed during severaliter-
ationswithout intervening other zones of code. The pattern
of access between iterations may not be exactly the same,
especially when speaking of loops that cover bigger por-
tions of static code. In fact, the bigger the loop, the higher
probability of finding different paths of execution inside it.
The loop is the natural way of simplifying how we express
computation, and therefore, we have focused our search of
parallelism in the computation they represent, either be-
tween iterations or inside each one.

This search of parallelism in loops is not new at all. Nu-
merical applications have exploited the so called loop level
parallelism for a long time, especially in low level loops.
Nevertheless, the parallelism found in the lowest loop level
in non–numerical applications is usually very poor. Low
level loops in non–numerical applications are usually of

......

Loop before
transformation

+1

+1loop with
recurrences

loop without
recurrences

Communication
queue

Figure 1. Decoupled asynchronous execution
of a loop in compress

very few iterations, each one having little work to do and
with many recurrences between them. Therefore, this low
level of loops is not a good place to find parallelism in non–
numerical applications.

At the code level, coarser loops can be seen as ways
of expressing repetitive tasks that cover hundreds or thou-
sands of instructions. To simplify the understanding of the
computation, the programmer usually creates a static call-
ing graph which responds to the algorithmic solution of the
problem. All these function calls complicate the task of the
compiler. Once understood the particular semantic problem
the loop is addressing, the structure of the parallelisation
becomes clear. The different techniques used are analogous
to the ones used in non–numerical applications.

If the loop has a recurrence in it, we have tried to break
the recurrence whenever possible. If this is not possible,
as incompress , we have moved the instruction causing
the recurrence up the instruction stream, and applied loop
distribution to break the body of the loop in two zones, the
one independent of the recurrence and the one dependent on

......

Loop before
transformation

parallelised
loop

thread
dependencies

Figure 2. Thread scheduling in m88ksim

it. Once this is done, it is easy to execute both in parallel in a
decoupled asynchronous way, with communication streams
going from the first to the second one. This can be seen in
Figure 1.

Sometimes, even data level parallelism can be found in
non–numerical applications, especially those found in the
field of multimedia processing, such asijpeg . In this ap-
plication, the loops were parallelised by splitting the work
to be done among all the processors. These loops, although
completely parallel, have plenty of function calls which do
the processing.

Some coarser loops do not have this kind of parallelism
between iterations. Nevertheless, if the loop is big enough
and covers a large portion of static code, the probability of
finding semantic parallelism in it is very high. An exam-
ple of it is m88ksim or the colour transforming phases of
ijpeg . In particular, inm88ksim , the coarser loop is the

......

Loop before
transformation

parallel
loop

loop with
recurrences
& reductions

+1

......

+1

......

..........

succesive
iterations

barrier synchronisation

reducible list
operation

local
operation

local
operation

reductions

Figure 3. Loop splitting in go

one in charge of executing the instructions of the simulator.
This execution implies a set of semantically parallel compu-
tations which cover enough code to create a thread for each
of them (Figure 2). These threads were statically scheduled
in parallel with synchronisations among them. If we were
to make an analogy with the parallelisation of numerical
applications, this task level parallelism would relate to the
instruction scheduling done by current compilers in order to
exploit the characteristics of superscalar out–of–order pro-
cessors.

Finally, we have found loops that comprise lots of com-
putation and that have dependencies among successive iter-
ations, such as ingo . In these cases, we have tried to isolate
the dependencies and split the code in the loop. Some de-
pendencies could be finally changed into a reduction oper-
ation, while others had to be separated from the rest of the
loop in order to parallelise it. With code splitting we can

leave the sequential execution of the iterations carrying the
dependencies in one loop (Figure 3), and have a completely
parallel loop with the rest of the computation found in the
original loop. This technique is analogous to what has been
called partial parallelisation in the field of numerical appli-
cations.

3. Compiler requirements

The objective of the parallelisations presented in this
work is to show the benefits of thread level parallelism in in-
teger applications. Therefore, they were not focused on cov-
ering large amounts of code nor in the fully exploitation of
the characteristics of the algorithm being parallelised. We
were more interested in generalising the ideas that could
lead to the automatisation of the proposals explained be-
fore. Accordingly we made no changes in the algorithms
but those that could be automatised, such as normal paral-
lelising techniques like privatisation.

In the following paragraphs we will try to explain the
compiler requirements that a parallelising compiler should
have in order to automatically detect and exploit this type
of parallelism.

The biggest requirement the compiler should have is
an accurate interprocedural analysis able to disambiguate
memory references and efficiently derive alias informa-
tion. Coarser loop level usually traverses various levels of
functions, accessing different data structures, many times
through pointers. Once the compiler has detected the loop
to be parallelised, a lot of work must be done to analyse
data dependencies in a particular iteration and between iter-
ations. This will possibly imply the construction of a task
graph combining control and data dependencies in the form
of task precedences.

If a particular loop is selected for parallelisation, the
appropriate technique should be applied in order to create
threads. Some kind of loop categorisation is needed to dif-
ferentiate the possibilities of parallelisation. We have ex-
plained four different schemes that give parallel threads, but
any technique already used in numerical environments to
expose parallelism is liable of providing threads. Any of
these techniques is likely to require code movement among
threads in order to expose parallelism or even to balance
the amount of work of each thread. Code movement usu-
ally implies a mechanism to estimate execution costs, either
through program profiling or static estimation.

Another technique likely to be needed is variable privati-
sation, which we have used extensively in all the paralleli-
sations. Not only scalar variables needed privatisation, but
also structured variables and linked structures such as lists.
Therefore, a complex pointer analysis is required to auto-
matically implement these parallelisations.

Another technique closely related to privatisation is re-
duction. The detection of reduction operations should also
be considered among the requirements of the parallelising
compiler. An important fact, is that not only simple opera-
tions such as add should be considered reducible, but many
more complex operations (e.g. merging of ordered lists)
also fall in this category.

4. Evaluation environment

Processor Configurations
In this paper we focus on the influence of some char-

acteristics that define current microprocessors: the order of
issue, the issue width and the sizes of the first level of cache.
The rest of the characteristics have been chosen so that they
do not seem inappropriate with respect to these parameters.

We have made simulations varying the order of issue
from a classical in–order issue processor to an out–of–order
processor. Both configurations were studied with different
issue widths and quantity of resources, trying to establish
the relation of the parameters with the performance results
they provided. The different issue widths can be seen in Ta-
ble 1. We assume an aggressive superscalar core for both
the in–order issue and the out–of–order issue. It can fetch
and retire up ton instructions each cycle. A 2 K–entry
direct–mapped 2 level branch prediction table allows mul-
tiple branch predictions to be performed even when there
are pending unresolved branches. All instructions take 1
cycle to complete, except: integer multiply and divide take
2 and 8 cycles respectively; floating–point multiply takes 2
cycles, while divide takes 4 (single precision) and 7 (double
precision) cycles.

Issue Number of Entries in Number of
Width Functional Units Instruction Renaming Registers

(int/ld-st/fp) Window (int/fp)

4 4/3/2 32 32/32
8 6/3/4 128 128/128
12 12/6/4 200 200/200

Table 1. Characteristics of the processor core.

Finally, we model the memory sub–system in great de-
tail. Caches are non–blocking with full load–bypassing en-
abled. We assume a perfect I–cache for all our experiments
and model only the D–cache. We have analysed 3 different
configurations for the L1 cache, with sizes of 16, 32 and 64
Kbytes and another one assuming perfect memory. Hits in
L1 cache, L2 cache and main memory take respectively 1,
6 and 26 cycles of time. When simulating a simultaneous
multithreading processor we have supposed one single L1
cache shared among all the threads.

Simulation Approach
Our simulation environment is built on a MINT–based

execution–driven simulator [8]. MINT [22] captures both
application and library code execution and generates events
by instrumenting binaries. Our back–end simulator is ex-
tremely detailed and performs a cycle–accurate simulation
of the architectures and hardware support for speculation
described. The synchronisation introduced by our paralleli-
sation strategies assumes that all communication must tra-
verse L1 cache.
Benchmarks

The four programs analysed,compress95 , ijpeg ,
go andm88ksim , belong to the SPECint95 suite. All of
them were hand parallelised using standard semaphore and
thread creating system calls. In the following paragraphs we
are going to explain briefly the amount of code parallelised,
the average number of threads in each of the zones par-
allelised and the theoretical speed–ups obtainable without
considering any problems in the simulations. For a deeper
explanation on the parallelisations, please refer to [11].

compress95 has been divided in two different bench-
marks, that comprise the compression and the decompres-
sion phase. Both of them were tested with a normalised data
input, that covers one cycle of compression, the amount of
data between two cleanings of the hash table used to com-
press. This input exhibits the same behaviour as the whole
standard input, and was preferred for simulation timing rea-
sons. In the compression phase, the parallelised zones re-
side in functionscompressandoutput. The first thread is the
one in charge of comprising the input and the second one
does the compacting of the compression codes produced
by the former. In the decompression phase the parallelism
is found in functionsgetcodeanddecompress, the former
being in charge of decompacting the input and the latter
of decompressing the different codes to produce the out-
put. Their duty is analogous to the functions parallelised in
the compression phase. A theoretical analysis was done for
both, measuring the average length in instructions of each of
the threads created in the parallelisation. Supposing that the
critical path could be reduced to executing only the longest
thread, this would lead us to theoretical speed–ups of 1.24
for the compression and 1.72 for the decompression. Nev-
ertheless, the high variance in length of the threads and the
fact that the threads themselves are very short, which makes
synchronisation overheads bigger in proportion, diminish
the potential results observed under simulation.

The zones of code parallelised inijpeg belong
mainly to the following functions: rgb ycc convert,
h2v2mergedupsample, forward DCT andjpeg idct islow.
The first two functions transform data between three dimen-
sional colour spaces, thus having potentially a speed–up of
three. The other zones allow a parametrisable amount of
threads, for they posses data parallelism. We have calcu-

lated the theoretical speed–up of having three threads in the
first two zones and eight threads in the parametrisable ones.
If we consider each of the zones parallelised to have de-
creased by a factor equal to the number of threads, then we
can estimate the total speed–up obtainable from the profile
information. All the simulations were done with the test
input, and the theoretical speed–up according the profile in-
formation from these runs reached 1.7. Using profile infor-
mation from the standard input yields a potential speed–up
of 2.04.

In programgo we concentrated our parallelisation in two
analogous zones in functionsbdeadandfindcapturedwhich
mainly contain a loop that callsiscaptured. With the com-
piler transformations explained in Sections 2 and 3 we were
able of executing a variable amount of calls toiscaptured
in parallel. Using profile information as inijpeg and the
average amount of threads executed in parallel, we can es-
timate a theoretical speed–up forgo of 1.7.

m88ksim is a processor simulator. A loop ingo exec
is the one in charge of simulating all the instructions of the
particular input program by executing the different phases
of the execution in the processor. The body of this loop
is constituted mainly by a function calledData path. It is
in this function where we have found the parallel zones of
code in charge of simulating the different phases of execu-
tion. A maximum number of four threads can be executing
at a time. All the simulations were done with test input.
Using profile information as in the other examples we have
concluded a potential speed–up of 2.7.

5. Analysis of results

In this section of results we will present a thorough anal-
ysis of the benefits of the parallelisations. First of all we
will present some global data that supports our main goal:
demonstrating that distant parallelism in non–numerical ap-
plications can derive performance gains in terms of execu-
tion time. The first results that show this tendency are the
ones presented in Figure 4.

This figure presents six different configurations per pro-
gram analysed (compress95 has been divided in compres-
sion and decompression phase). All configurations assume
a 32 Kbyte L1 Cache and out–of–order execution. The
six different bars differ in the issue width (four, eight and
twelve instructions per cycle) and the version of the particu-
lar program (sequential versus parallelised). All the speed–
ups were normalised with respect to the sequential 4 issue
configuration.

The natural tendency of the sequential versions of the
programs is to show a saturation in the ratio perfor-
mance/issue width. Going from an issue width of four in-
structions to one of eight or twelve instructions yields a poor
performance increase. The possible benefits of issuing up to

ijpeg compression decompression go m88ksim
1.0

1.5

2.0

2.5

Sp
ee

d-
U

p sequential out-of-order 4 way
sequential out-of-order 8 way
sequential out-of-order 12 way
smt out-of-order 4 way
smt out-of-order 8 way
smt out-of-order 12 way(n

or
m

al
is

ed
)

Figure 4. Normalised speed–ups of basic configurations for SPECint programs

8 7 6 5 4 3 2 1 0 8 7 6 5 4 3 2 1 00.0

0.1

0.2

0.3

0.4

non useful instructions

useful instructions

parallelised
version

sequential
version

Figure 5. Normalised amount of cycles in which n slots could be issued for m88ksim

eight or twelve instructions per cycle, are diminished by the
lack of ILP in this type of applications. The parallelised
versions, however, exhibit a different behaviour. Although
all the parallelised versions of the programs running under
a four issue configuration go better than their respective se-
quential ones, and even sometimes better than the eight is-
sue sequential ones, it is under the wider issue configura-
tions where all the potential benefits derived from the paral-
lelisation are shown.

We believe this tendency will be seen in any parallelised
version of non–numerical applications. The exposure of
thread level parallelismprovidesthe processor with more
useful instructions, overcoming the negative effect of low
IPC (instructions per cycle). This can also be seen in Fig-
ure 5. We have chosenm88ksim to demonstrate this fact,
although the rest of the applications under analysis show
the same trend. We have analysed the number of cycles we
were able of issuingn instructions in an eight way out–of–
order processor with 32 Kbytes of Cache L1, both for the
sequential version of the program and for the parallelised
one. All the bars are normalised to the total amount of cy-
cles of each simulation. The black shaded part of each bar
represents the proportion of issued cycles that belong to in-
structions from paths following incorrectly branch specu-
lated instructions. The first impression we get from this fig-
ure is that the histogram of the parallelised version exhibits
a growing tendency with the number of instructions issued,
reaching its peak in the maximum amount of instructions.
The sequential version does not have this behaviour. The
distribution of the sequential histogram is bimodal, having
a peak in zero and in six instructions issued. Besides, this
figure presents an interesting result. The proportion of non
useful instructions is much less in the parallelised version.

This is due to the exposure of more non speculative basic
blocks, one for each thread, thus limiting the need of issu-
ing speculative instructions.

Our second goal in this section is to show the perfor-
mance gains that in–order issue processors have in presence
of thread level parallelism, with respect to out–of–order su-
perscalar architectures. To show this we have compared
(Figure 6) a superscalar out–of–order, four, eight and twelve
issue processor for the sequential versions, versus an in–
order processor for the parallelised versions. All bars are
normalised with respect to the sequential out–of–order four
issue configuration. All the simulations of this figure as-
sume a 32 Kbytes L1 cache, as in the previous figures.

The results in Figure 6 show that a parallelised version
of a non–numerical application can exploit more parallelism
in an in–order processor than what a sequential version of
the same program can do with an out–of–order superscalar
processor. With the exception of the compression phase of
compress95 , the rest of the benchmarks exhibit speed–
ups when comparing the parallelised in–order simulations
with the sequential out–of–order processors. The compres-
sion phase does not exhibit this behaviour because of the
synchronisation overheads introduced in the compilation.

As happened with the out–of–order configurations, our
threaded versions do not exhibit a great speed–up when run-
ning in four issue processors. When wider issue processors
are compared, the comparison results are better and an out-
standing conclusion can be made: in–order simultaneous
multithreading processors can achieve better overall perfor-
mance than out–of–order superscalar processors. It is not an
intention of this paper to quantify the speed–up achievable
in the low level process design due to an increase in clock
rate, but we believe, partially from the papers published in

ijpeg compression decompression go m88ksim
1.0

1.5

2.0

2.5

Sp
ee

d-
U

p sequential out-of-order 4 way
sequential out-of-order 8 way
sequential out-of-order 12 way
smt in-order 4 way
smt in-order 8 way
smt in-order 12 way(n

or
m

al
is

ed
)

Figure 6. Normalised speed–ups of basic configurations for SPECint programs

sequential parallel sequential parallel0.8

1.0

1.2

1.4

Sp
ee

d-
U

p 16K Cache L1

32K Cache L1

64K Cache L1

Perfect Memory(n
or

m
al

is
ed

) compress95 go

Figure 7. Normalised execution times of basic memory configurations for compress95 and go

this field [12, 7], that introducing light weight threads in an
in–order processor may be less costly in terms of cycle time
than augmenting the instruction window and issue width. If
this could be stated, we could affirm that an extra benefit
could be expected for in–order multithreaded architectures.

We have also analysed the effect that our threaded ver-
sions may have in the cache hierarchy. We have seen no
difference in behaviour between the sequential versions and
the parallelised ones. The character of the applications in
the cache hierarchy does not seem to be affected by the mul-
tithreaded versions of our programs, neither positively nor
negatively. This effect can be seen in Figure 7. We have
chosen two programs of our set of benchmarks, the com-
pression part ofcompress95 andgo because they were
representative of a high miss rate and a low one, respec-
tively. All the simulations were run in an eight way, out–
of–order processor with various cache sizes, as well as with
perfect memory. Each version of the programs presents nor-
malised speed–ups with respect to the worse simulation of
the four, that of 16 Kbytes of L1 cache. We have nor-
malised separately the sequential and the parallelised ver-
sions of both programs to be able of analysing the effect of
the memory hierarchy alone. In this figure we can see that
both parallel versions behave as the sequential counterparts.
Instead of thinking that our parallelised versions behave ex-
actly the same than the sequential ones, we believe that the
way this kind of parallelism is expressed tends to counter-
act the benefits it may produce from prefetching or from
memory latency tolerance with the disadvantages of having
many threads polluting the cache. In future analyses we will
try to investigate how to separate these two different effects,
and the potential improvements it may derive.

6. Conclusions

The main way of increasing IPC, and therefore speed-
ing up applications, has always been the exploitation of
the inherent parallelism of programs, either using software
techniques or hardware mechanisms. The majority of previ-
ous research in ILP focused on the performance of a single
thread of execution; however, a more effective increase of
ILP can be achieved from the execution of multiple threads
belonging to the same application [5]. Although several
previous proposals have focused on the dynamic detection
of these threads, we push for a combined effort, both from
compiler and architecture, towards getting higher effective
increments in IPC. The compiler should be able to detect
distant parallelism (not captured by the hardware mecha-
nisms included in the processor) and the processor should
be able to efficiently exploit intra–thread parallelism and
manage the multiple threads efficiently.

Based in the existence of distant thread level parallelism
demonstrated earlier in our research, we have focused in this
paper in the measurement of the possible real benefits of this
new kind of parallelism under simultaneous multithreading
architectures. We have studied the possible effects of this
type of parallelism with wider issue architectures than the
ones currently in the market. We have also investigated the
need for out–of–order architectures in the presence of mul-
tiple threads. Finally, we have analysed the effects that mul-
tiple threads from a single non–numerical application may
have with respect to the size of the first level of cache.

Globally, we have shown performance speed–ups rang-
ing from a 10% improvement to over doubling (2.20 speed-
up) the speed of the application on a twelve issue out–of-
order machine, which taking into account the coverage of
our hand parallelisations yields a very good impression on
the possibilities of distant parallelism.

We can conclude that distant thread level parallelism im-
poses a new insight in the field of multithreading proces-
sors, making this type of architectures ideal for the task
of increasing performance on non–numerical applications.
This is due to the fact that the exposure of new types of
parallelism in non–numerical applications can use more ef-
ficiently the resources of wide issue architectures.

7. Acknowlegments

This work was supported by the Ministry of Education
of Spain under contracts CICYT TIC98–0511 and TIC97–
1445–CE and grant AP98–42879678, the Direcci´o General
de Recerca under grant 1998FI–00292–APTIND, and the
CEPBA. The authors wish to thank Jes´us Labarta, Jes´us
Corbal and Xavier Martorell for the time devoted to fruit-
ful discussions and their help in understanding some of the
benchmarks.

References

[1] H. Akkary and M. Driscoll. A dynamic multithreaded
processor.International Symposium on Microarchitecture,
1998.

[2] W. Blume, R. Eigenmann, J. Hoeflinger, D. Padua, P. Pe-
tersen, L. Rauchwerger, and P. Tu. Automatic detection of
parallelism: A grand challenge for high performance com-
puting. IEEE Parallel and Distributed Technology, Fall
1994.

[3] C. Brownhill, A. Nicolau, S. Novack, and C. Poly-
chronopoulos. The promis compiler prototype.1997 Con-
ference on Parallel Architectures and Compilation Tech-
niques, June 1997.

[4] S. Eggers, J. Emer, H. Levy, J. Lo, R. Stamm, and
D. Tullsen. Simultaneous multithreading: A platform
for next generation processors.IEEE Micro, Septem-
ber/October 1997.

[5] A. Farcy and O. Temam. Improving single-process perfor-
mance with multithreaded processors.International Confer-
ence on Supercomputing, May 1996.

[6] M. Hall, J. Anderson, S. Amarasinghe, B. Murphy, S. Liao,
E. Bugnion, and M. Lam. Maximizing multiprocessor per-
formance with the suif compiler.IEEE Computer, December
1996.

[7] S. Hily and A. Seznec. Out-of-order execution may not be
cost effective on processors featuring simultaneous multi-
threading. International Symposium on High-Performance
Computer Architecture, January 1999.

[8] V. Krishnan and J. Torrellas. A direct execution framework
for fast and accurate simulation of superscalar processors.
International Conference on Parallel Architectures and

Compilation Techniques, October 1998.
[9] M. Lipasti and J. Shen. Exceeding the dataflow limit via

value prediction.29th Annual International Symposium on
Microarchitecture, December 1996.

[10] P. Marcuello and A. Gonz´alez. Speculative multithreaded
processors.ACM International Conference on Supercom-
puting, 1998.

[11] I. Martel, D. Ortega, E. Ayguad´e, and M. Valero. Increasing
effective ipc by exploiting distant parallelism.International
Conference on Supercomputing, June 1999.

[12] S. Palacharla, N. Jouppi, and J. Smith. Complexity-effective
superscalar processors.24th Annual International Sympo-
sium on Computer Architecture, June 1996.

[13] C. Polychronopoulos. Nano-threads: Compiler driven mul-
tithreading. 4th International Workshop on Compilers for
Parallel Computing, November 1993.

[14] C. Polychronopoulos, M. Girkar, M. Haghighat, C. Lee,
B. Leung, and D. Schouten. Parafrase–2: An environment
for parallelizing, partitioning, and scheduling programs on
multiprocessors.International Journal of High Speed Com-
puting, 1989.

[15] M. Postiff, D. Greene, G. Tyson, and T. Mudge. The limits
of instruction level parallelism in spec95 applications.3rd
Workshop on Interaction between Compilers and computer
Architectures, October 1998.

[16] E. Rotenberg, Q. Jacobson, Y. Sazeides, and J. Smith. Trace
processors.30th International Symposium on Microarchi-
tecture, December 1997.

[17] J. Smith. A study of branch prediction strategies.8th Annual
International Symposium on Computer Architecture, 1981.

[18] G. Sohi, S. Breach, and T. Vijaykumar. Multiscalar proces-
sors. 22nd Annual International Symposium on Computer
Architecture, June 1995.

[19] J. Steffan and T. Mowry. The potential for using thread-
level data speculation to facilitate automatic paralleliza-
tion. Fourth International Symposium on High-Performance
Computer Architecture, February 1998.

[20] R. Tomasulo. An efficient algorithm for exploiting multiple
arithmetic units.IBM Journal of Research and Development,
January 1967.

[21] S. Vajapeyam, P.J.Joseph, and T. Mitra. Dynamic vectoriza-
tion: A mechanism for exploiting far-flung ilp in ordinary
programs.International Symposium on Computer Architec-
ture, 1999.

[22] J. Veenstra and R. Fowler. Mint tutorial and user manual.
Technical Report 452, Computer Science Department,The
University of Rochester, June 1993.

[23] W. Yamamoto and M. Nemirovsky. Increasing superscalar
performance thorugh multistreaming.International Confer-
ence on Parallel Architectures and Compilation Techniques,
October 95.

[24] T.-Y. Yeh and Y. Patt. Alternative implementations of two–
level adaptive branch predictors.19th Annual International
Symposium on Computer Architecture, May 1992.

