4,916 research outputs found

    Design and multiplierless implementation of two-channel biorthogonal IIR filter banks with low system delay

    Get PDF
    An efficient method for the design of low-delay two-channel, perfect reconstruction IIR filter banks is proposed. The design problem is formulated in terms of minimax designs of a general stable IIR filter that can be obtained using semidefinite programming and an FIR filter that can be obtained using the Remez exchange algorithm. A multiplierless implementation on this filter bank is also proposed and investigated.published_or_final_versio

    High Performance IIR Filter FPGA Implementation Utilizing SOS Microcode Core

    Get PDF
    This paper discusses the methods of optimal IIR filter FPGA implementation. The methods are focused on the reduction of occupied resources and increasing data throughput. Higher demands on an internal controller complexity are successfully solved by utilizing programmable microcode controller. The novelty of SOS core and its capabilities are presented and different variants of SOS core are assessed. The workflow of IIR filter design using MATLAB considering rounded coefficient method is demonstrated

    The application of genetic algorithms to the adaptation of IIR filters

    Get PDF
    The adaptation of an IIR filter is a very difficult problem due to its non-quadratic performance surface and potential instability. Conventional adaptive IIR algorithms suffer from potential instability problems and a high cost for stability monitoring. Therefore, there is much interest in adaptive IIR filters based on alternative algorithms. Genetic algorithms are a family of search algorithms based on natural selection and genetics. They have been successfully used in many different areas. Genetic algorithms applied to the adaptation of IIR filtering problems are studied in this thesis, and show that the genetic algorithm approach has a number of advantages over conventional gradient algorithms, particularly, for the adaptation of high order adaptive IIR filters, IIR filters with poles close to the unit circle and IIR filters with multi-modal error surfaces. The conventional gradient algorithms have difficulty solving these problems. Coefficient results are presented for various orders of IIR filters in this thesis. In the computer simulations presented in this thesis, the direct, cascade, parallel and lattice form IIR filter structures have been used and compared. The lattice form IIR filter structure shows its superiority over the cascade and parallel form IIR filter structures in terms of its mean square error convergence performance

    Real-Time Prediction of Power Electronic Device Temperatures Using PRBS-Generated Frequency-Domain Thermal Cross Coupling Characteristics

    Get PDF
    This paper presents a technique to predict the temperature response of a multielement thermal system based on the thermal cross coupling between elements. The complex frequency-domain cross coupling of devices is first characterized using a pseudorandom binary sequence technique. The characteristics are then used to predict device temperatures for a known input power waveform using a discrete Fourier transform-based technique. The resulting prediction shows good agreement with an example practical system used for evaluation. To reduce the computational complexity of the initial method, a digital infinite impedance response (IIR) filter is fitted to each cross coupling characteristic. A high correlation fit is demonstrated that produces a near-identical temperature response compared to the initial procedure while requiring fewer mathematical operations. Experimental validation on the practical system shows good agreement between IIR filter predictions and practical results. It is further demonstrated that this agreement can be substantially improved by taking feedback from an internal reference temperature. Additionally, the proposed IIR filter technique allows the efficient calculation of future device temperatures based on simulated input, facilitating future temperature predictions

    Perancangan Dan Simulasi Filter IIR Menggunakan Graphical User Interface (GUI)

    Get PDF
    Intisari--- Pada makalah ini telah disajikan metode mensimulasikan filter IIR menggunakan GUI. Metode ini tidak hanya tergantung pada kode matlab, tetapi juga menampilkan control penggunaan yang dibangun berdasarkan GUI, sehingga semua operasi pemfilteran dapat diselesaikan oleh GUI. Makalah  ini menggunakan metode Pole-zero placement, Impulse invariant, Matched z-transform , dan Bilinear z-transfor dalam merealisasikan filter IIR dan untuk sebagai contoh untuk merancang filter low-pass, high-pass and band-pass. Dari simulasi menunjukkan bahwa perancangan berdasrkan GUI ini sangatlah nyaman, cepat, dan fleksibelKata kunci--- GUI, IIR, Filter Digital, Simulasi                                      Abstract--- A method to simulate the IIR filter based on GUI(Graphic User Interface) is introduced in this paper. This method not only depended on Matlab code, but also made use of controls which generate a GUI, All the operations have been done by GUI. This paper took Pole-zero placement, Impulse invariant, Matched z-transform method to realize IIR filter for example to design digital low-pass, high-pass and band-pass filters. The simulation results showthat the design based on GUI is convenient, fast, and flexible.Keywords--- GUI, IIR, Digital Filter, Simulatio

    Channel shortening filter design based on polynomial methods

    Get PDF
    Intersymbol interference (HI) is a major cause of performance degradation for both wireless and wireline communication systems. It can he mitigated by several different methods including equalization and multicarrier modulation, but the complexity and efficiency of all methods would depend on the length of the ISI channel. In this paper, we propose a general framework for channel shortening where we considered the channel as a rational transfer function (having infinite impulse response (IIR)), and the source and the noise as autoregressive moving average (ARMA) processes. The aim is to shorten the channel using an IIR filter to a desirable length, so that computationally efficient post processing techniques can be applied to the resulting signal. The use of an IIR filter provides more degrees of freedom for channel shortening as compared to an FIR filter

    A Note on IIR Filters with Random Parameters

    Get PDF
    The infinite impulse response (IIR) filter of an AR(1) process is studied under a random parameter assumption. The statistical properties of the random transfer function arederived. Stochastic process modeling is also considered. Finally, a conclusion section is given
    corecore