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Abstract — This paper discusses the methods of optimal 

IIR filter FPGA implementation. The methods are focused 

on the reduction of occupied resources and increasing data 

throughput. Higher demands on an internal controller 

complexity are successfully solved by utilizing 

programmable microcode controller. The novelty of SOS 

core and its capabilities are presented and different variants 

of SOS core are assessed. The workflow of IIR filter design 

using MATLAB considering rounded coefficient method is 

demonstrated. 
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I. INTRODUCTION 

The Infinite Impulse Response (IIR) digital filter 

design is well known for decades and a great variety of 

Field Programmable Gate Array (FPGA) and CMOS 

process implementations have been published. 

Nevertheless, the performance of published IIR filter [1], 

[2] implementations in proportion to occupied FPGA 

fabric resources do not reach optimal levels. This is 

particularly important for mid-range FPGAs where a non-

optimal design of a simple IIR filter can easily deplete 

FPGA resources. One of the ways how to reduce the logic 

complexity and resources demands to implement an IIR 

filter is to fit arithmetical resources optimally to 

requirements of the given signal. Time sharing of the 

FPGA most valuable resources is the other way how to 

reach higher performance. Dividing of complex IIR 

filters into 2nd Order Sections (SOS) helps in both cases 

[3], [4].  

II. SOS COMPUTATION COMPLEXITY 

Referring to Fig. 1 it can be seen that for implementing 

of 2nd order IIR filter it is necessary to multiply with four 

different constants (b1, b2, a1, a2) and add five values 

(x(n), x(n1)·b1, x(n2)·b2, y(n1)·a1, y(n2)·a2) and 

accumulate them. 

The values used for computation are filter input values 

x(n), x(n1), x(n2) and filter output values y(n1) and 

y(n2). The output value y(n) have to be saved for next 

computation.  

Assuming that the filter input value x(n) must be also 

stored somewhere, the whole 2nd order IIR digital filter 

requires six memory elements (word bit width according 

to requested arithmetical accuracy).  

 

Fig. 1. General 2nd order IIR digital filter. 

Mentioned general 2nd order IIR digital filter can be 

considered as a basic building SOS block of all other 

more complex IIR filters.  

According to conventional design methods and fabric 

resources of mid-range FPGA (Spartan-6 family by 

Xilinx Inc. can be considered as an example of mid-range 

FPGA) one SOS consuming 4 multipliers and 4 adders in 

case of using recursion. That means 144 D-type flip-flops 

in rather common 24 bit arithmetic, not mentioning 

pipeline registers at this place. The computing of one 

value would take one system clock, specifically on 

Spartan-6, computing frequency can exceed 100 MHz, 

although this design speed is not necessary for many 

applications. On the other side, designs with more 2nd 

Order Sections for implementation of higher order IIR 

filters or more individual digital filters imply structure 

replication and spending multiple resources. 

In applications where filter sample frequency versus 

design frequency ratio allows it the adders and the 

multipliers can be time multiplexed (see Fig. 2) and the 

memory places can be shared between 2nd Order Sections 

(see Fig. 3). For the purpose of researching, the amount 

of resources used for computation of one 2nd Order 

Section MSOSps (Mega SOS per second) was defined. 

One multiplier and one adder in mid-range FPGA 

possibly carry out 12.5 to 20 MSOSps at 100MHz 

frequency according to pipeline length and controller 

complexity. For higher MSOSps performance utilizing of 

more adders and multipliers is necessary.  
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Fig. 2: Time multiplexed computation of SOS. 

If the computation is processed in time multiplex with 

the adder (the accumulator) the length of accumulation 

determines the ratio between the amount of data stored 

and data fetched periodically in each clock cycle; the 

amount of data stored is constant and the amount of data 

fetched necessarily is even with adder and multiplier data 

flow i.e. one data word regardless of its particular bit 

length. The IIR filter consists of series of 2nd Order 

Sections. The internal 2nd Order Sections (not the first, 

not the last in the series) need to store five times less 

amount of data than read – one storage per five fetches 

and accumulate cycles. The first SOS input data and the 

last SOS output data have to be stored somewhere too, 

but we neglect it for now. Instead of using discrete D-

type flip-flop in FPGA fabric it is more efficient to use 

addressable memory because the amount of data stored 

and fetched in each clock cycle is small (up to one word). 

Considering Spartan-6 FPGA there are two possibilities 

of addressable memory. The first is distributed memory 

(special mode of Configurable Logic Blocks 

configuration memory) with 64x1 bit granularity which 

can be used for filters with sample rates from ones to tens 

Msps or equivalently ones MSOSps at design frequency 

100 MHz. The other is block RAM (BRAM) with the 

capacity of 18 kbit each and configurable organization of 

port width from 1 to 36 bits.  

 

Fig. 3. Resource sharing between SOS's. 

 

 

Considering the ideal fill, one BRAM can support up 

to 168 SOS's (in this extreme case, it is necessary to 

implement arithmetic in modulus 3 which is not 

particularly efficient for the FPGA implementation and 

all SOS's share the memory places with exception of the 

first one and the last one) what implies sample frequency 

in hundreds ksps. 

With appropriate controller, this concept does not 

restrict implementation to just one filter but allows 

compute different filters for possibly different channels in 

one SOS cell based on one RAM, one multiplier and one 

adder, see Fig. 4. In a straightforward way, the sampling 

is simultaneous on all inputs so data comes 

synchronously but the controller can cover cases with 

different but commensurable sample rates or even with 

incommensurable sample rates. 

TABLE I.  
SOS CORE THROUGHPUT AND RESOURCE UTILIZATION 

 Spartan-6 at 100 MHz 

1 multiplier and 1 adder 12.5 to 20 MSOSps 

distributed memory suitable up to 10 SOS / sample 

BRAM 512×361 suitable up to 64 to 168 SOS / sample 

BRAM 1024×182 suitable up to 128 to 339 SOS / sample 

III. CONTROLLER MICROCODE IMPLEMENTATION 

Controller can be designed and implemented with 

common FSM design techniques (VHDL for example) 

but this way is complicated and gives unsatisfactory 

results in FPGA timing and space occupation; future 

modifications are complicated. As a more efficient way, 

the controller can be designed utilizing a program counter 

and RAM (BRAM in case of Spartan-6). A simple 

assembler language is suitable for writing controller 

microcode.  

Table 2 displays example of computation two SOS's 

for one signal channel. The first section z-domain transfer 

function H(z) is: 

 𝐻(𝑧) =
Y(z)

X(z)
=

1−
11

8
𝑧−1+𝑧−2

1−
13

8
𝑧−1+

7

8
𝑧−2

 (1) 

 

Fig. 4. SOS cell with programmable controller. 

 

 

 

                                                           
1 Suitable for up to fixed-point int36 or single precision floating-

point  
2 Suitable for up to fixed-point int18 or half precision floating-point  
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The second section z-domain transfer function H(z) is: 

 𝐻(𝑧) =
Y(z)

X(z)
=

1−
5

4
𝑧−1+𝑧−2

1−
5

4
𝑧−1+

1

2
𝑧−2

 (2) 

TABLE II.  
AN EXAMPLE OF CONTROLLER MICROCODE 

IN SIMPLE ASSEMBLER LANGUAGE 

input&store port(0), ram(0.0) 

load ram(0.0), c=1/1 
acc ram(0.2), c=−11/8 

acc ram(0.1), c=1/1 

acc ram(1.2), c=13/8 
acc&store ram(1.1), c=−7/8, ram(1.0) 

load ram(1.0), c=1/1 

acc ram(1.2), c=-5/4 
acc ram(1.1), c=1/1 

acc ram(2.2), c=5/4 

acc&store&output ram(2.1), c=−1/2, ram(2.0), port(0) 
next3 

 

IV. FILTER DESIGN AND OPTIMIZATION WORKFLOW 

A. Allowed Poles and Zeros Locations 

The most important part of the design of particular IIR 

filter is coefficient set. The width of multipliers increases 

demands for resources so the design aim is to minimize 

coefficient mantissa widths. The goal of the method of 

rounded coefficients is to obtain such coefficients that 

lead to multiplication and division by small integer 

numbers. Coefficient optimization is crucial otherwise 

unpredictable results can occur. 

Fig. 5 displays possible pole locations for constants a1, 

a2 obtained as n/8 where n is integer. Because poles are 

complex conjugate, always symmetrical, the picture 

includes only the upper half of the complex plane. 

For complex conjugate poles p1,2 = c ± di (and the 

same for zeros n1,2) holds: 

 (𝑧 − 𝑝1)(𝑧 − 𝑝2) = 𝑧 + 𝑎1𝑧
−1 + 𝑎2𝑧

−2, (3) 

where 𝑎1 = −2𝑐 = −2ℜ(𝑝1,2) and 𝑎2 = 𝑐2 + 𝑑2 =

|𝑝1,2|
2
. 

Because of these properties, allowed pole locations are 

grouped in columns with the same real part and in 

concentric circles with the same magnitude. 

B. Poles and Zeros Location Optimization 

For given filter poles and zeroes can be obtained using 

MATLAB with the command  

[z,p,k]=cheby2(4,20,3/10);  

Table 3 contains obtained and rounded coefficients and 

poles and zeros locations. 

Fig. 6 displays the results of the original given filter 

and filter with rounded coefficients. According to the 

figure, the filter has too high attenuation in the region 

between 1/10 to 2/10 π·rad/sample. 

Other parameters of the filter meet expectations. The 

attenuation in mentioned region is dominated by pole 

pairs p1,2 from Table 3. 

 

 

 

Fig. 5. Pole locations for constants n/8. 

TABLE III.  
POLES AND ZEROS LOCATIONS 

 exact location n/8 coefficients rounded locations 

  first iteration of rounding 

p1,2 0.3023 ± 0.2725i a1 = −5/8; a2 = 1/8 0.3125 ± 0.1654i 

z1,2 −0.2787 ± 0.9604i b1 = 4/8; b2 = 1 −0.25 ± 0.9682i 

p3,4 0.6015 ± 0.5783i a1 = −9/8; a2 = 6/8 0.5625 ± 0.6585i 

z3,4 0.5336 ± 0.8458i b1 = −1; b2 = 1 0.5 ± 0.866i 

TABLE IV.  
POLE PAIR P1,2 RELOCATION 

 p |p|2 = a2 arg p 

original p1,2 0.3023 ± 0.2725i 0.1656 ±0.7337 

relocated p1,2 0.3125 ± 0.1654i 0.125 ±0.4868 

 

Poles cause peaks in the magnitude transfer charac-

teristics of a filter. An argument (arg p) determines the 

frequency of a peak whereas an absolute value (abs p) 

determines the magnitude of the peak. 

Rounding quoted in Table 4 moves the pole pair p1,2 

towards lower frequency and lower magnitude. 

Fig. 7 displays other five possible relocations of the 

pole pair p1,2 using constants n/8. Better results can be 

obtained with a pole pair with different absolute value 

and argument combination. 

 

Fig. 6. Influence of coefficients rounding on filter. 
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Fig. 7. Other possible pole pair p1,2 relocations. 

Fig. 8 shows frequency response of the original filter 

and two other filters with alternative pole pairs p1,2 

locations. The most suitable results yield the pole 

[1 6/8 2/8]. 

In the matter of zeros, it is interesting to note that many 

IIR filter design methods place zeros on the complex unit 

circle (b2 = 1), the only remaining parameter is then b1. 

The smallest resolution occurs for filters with very low or 

very high3 cutting frequencies. Therefore the method of 

rounded coefficients is not sufficient for filters with cut 

off frequency too much low or too much high in 

comparison to sample frequency. In the case of low 

frequencies, there might help to decimate the signal first 

or process the signal via a filter with the finite response 

(FIR), moving average filter or sinck filter can be a good 

candidate.  

Implementation of the filter which operates on the 

decimated signal causes the poles and zeros are moved to 

higher values of arg p. Moreover, filter with poles close 

to the complex unity circle has higher demands for 

accumulation accuracy. 

C. Overall Filter Gain 

Every 2nd Order Section has its DC gain g:  

 𝑔 =
𝑏0+𝑏1+𝑏2

𝑎0+𝑎1+𝑎2
 (4) 

Implementation of IIR filter with accumulator and 

microcode requires that a0 = 1. Because b0 is a parameter 

that can be chosen, the overall gain of all 2nd Order 

Section (whole filter) can be set to match the final filter 

realization. For example, the gain of all sections can be 

matched to 2n so it is possible to divide the output of the 

filter just by shifting right. 

Resolution of placement of zeros on the complex unit 

circle can be improved by replacing coefficient b0 = b2 to 

some other value than 1.  

Regarding the fact that b1/b0 ratio need not be only n/2k 

but can reach other values n/k (for example 5/7, 6/7, 8/9) 

zero pairs can be selected from a finer set on complex 

unity circle.  

 

 

 

                                                           
3 Near Nyquist frequency (sample frequency / 2) 

 

Fig. 8. Influence of relocation of the pole pair p1,2. 

D.  Risk of Arithmetical Overflow 

If it is guaranteed that the output of 2nd Order Section 

accumulator does not overflow (after the last 

accumulation has been done), there is no need to check 

overflow during the accumulation process assuming the 

accumulator uses two's complement representation. The 

maximal overshoot for each 2nd Order Section should be 

determined by simulation using step response. For the 

best results, SOS with the highest gain and the lowest 

overshoot should be placed first in series of SOS for 

reaching smaller rounding error (gain) and more 

arithmetical resources used by valid signal (overshoot). 

V. CONCLUSION 

Modern mid-range FPGAs can process IIR filters on  

very high throughput. IIR filter need not be designed with 

floating point arithmetic and with full fixed-point or 

floating-point multipliers. For a great number of filters 

with cutting frequencies in a reasonable ratio to the 

sampling frequency, the poles and zeros locations can be 

optimized so that IIR filter coefficients are round 

numbers whose multiplication can be realized without a 

complex multiplier. Utilizing the microcode controller 

and creating time multiplex allow recycling the FPGA 

fabric of IIR 2nd Order Section cell in a highly effective 

way for filtering more signals with different filter 

coefficients. 
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