
Transactions on Electrical Engineering, Vol. 8 (2019), No. 2 22

TELEN2019008

DOI 10.14311/TEE.2019.2.022

High Performance IIR Filter FPGA

Implementation Utilizing SOS Microcode Core

Ing. Ondřej Zoubek, Ph.D.1) and Ing. Tomáš Musil, Ph.D.2)

1) FEE CTU in Prague, Prague, Czech Republic, e-mail: zoubeon1@fel.cvut.cz
2) FTS CTU in Prague, Prague, Czech Republic, e-mail: musil@fd.cvut.cz

Abstract — This paper discusses the methods of optimal

IIR filter FPGA implementation. The methods are focused

on the reduction of occupied resources and increasing data

throughput. Higher demands on an internal controller

complexity are successfully solved by utilizing

programmable microcode controller. The novelty of SOS

core and its capabilities are presented and different variants

of SOS core are assessed. The workflow of IIR filter design

using MATLAB considering rounded coefficient method is

demonstrated.

Keywords — digital filters, FPGA, high throughput,

IIR filter, microcode, MSOSps, Second Order Section.

I. INTRODUCTION

The Infinite Impulse Response (IIR) digital filter

design is well known for decades and a great variety of

Field Programmable Gate Array (FPGA) and CMOS

process implementations have been published.

Nevertheless, the performance of published IIR filter [1],

[2] implementations in proportion to occupied FPGA

fabric resources do not reach optimal levels. This is

particularly important for mid-range FPGAs where a non-

optimal design of a simple IIR filter can easily deplete

FPGA resources. One of the ways how to reduce the logic

complexity and resources demands to implement an IIR

filter is to fit arithmetical resources optimally to

requirements of the given signal. Time sharing of the

FPGA most valuable resources is the other way how to

reach higher performance. Dividing of complex IIR

filters into 2nd Order Sections (SOS) helps in both cases

[3], [4].

II. SOS COMPUTATION COMPLEXITY

Referring to Fig. 1 it can be seen that for implementing

of 2nd order IIR filter it is necessary to multiply with four

different constants (b1, b2, a1, a2) and add five values

(x(n), x(n1)·b1, x(n2)·b2, y(n1)·a1, y(n2)·a2) and

accumulate them.

The values used for computation are filter input values

x(n), x(n1), x(n2) and filter output values y(n1) and

y(n2). The output value y(n) have to be saved for next

computation.

Assuming that the filter input value x(n) must be also

stored somewhere, the whole 2nd order IIR digital filter

requires six memory elements (word bit width according

to requested arithmetical accuracy).

Fig. 1. General 2nd order IIR digital filter.

Mentioned general 2nd order IIR digital filter can be

considered as a basic building SOS block of all other

more complex IIR filters.

According to conventional design methods and fabric

resources of mid-range FPGA (Spartan-6 family by

Xilinx Inc. can be considered as an example of mid-range

FPGA) one SOS consuming 4 multipliers and 4 adders in

case of using recursion. That means 144 D-type flip-flops

in rather common 24 bit arithmetic, not mentioning

pipeline registers at this place. The computing of one

value would take one system clock, specifically on

Spartan-6, computing frequency can exceed 100 MHz,

although this design speed is not necessary for many

applications. On the other side, designs with more 2nd

Order Sections for implementation of higher order IIR

filters or more individual digital filters imply structure

replication and spending multiple resources.

In applications where filter sample frequency versus

design frequency ratio allows it the adders and the

multipliers can be time multiplexed (see Fig. 2) and the

memory places can be shared between 2nd Order Sections

(see Fig. 3). For the purpose of researching, the amount

of resources used for computation of one 2nd Order

Section MSOSps (Mega SOS per second) was defined.

One multiplier and one adder in mid-range FPGA

possibly carry out 12.5 to 20 MSOSps at 100MHz

frequency according to pipeline length and controller

complexity. For higher MSOSps performance utilizing of

more adders and multipliers is necessary.

https://doi.org/10.14311/TEE.2019.2.022
https://creativecommons.org/licenses/?lang=en

Transactions on Electrical Engineering, Vol. 8 (2019), No. 2 23

TELEN2019008

DOI 10.14311/TEE.2019.2.022

Fig. 2: Time multiplexed computation of SOS.

If the computation is processed in time multiplex with

the adder (the accumulator) the length of accumulation

determines the ratio between the amount of data stored

and data fetched periodically in each clock cycle; the

amount of data stored is constant and the amount of data

fetched necessarily is even with adder and multiplier data

flow i.e. one data word regardless of its particular bit

length. The IIR filter consists of series of 2nd Order

Sections. The internal 2nd Order Sections (not the first,

not the last in the series) need to store five times less

amount of data than read – one storage per five fetches

and accumulate cycles. The first SOS input data and the

last SOS output data have to be stored somewhere too,

but we neglect it for now. Instead of using discrete D-

type flip-flop in FPGA fabric it is more efficient to use

addressable memory because the amount of data stored

and fetched in each clock cycle is small (up to one word).

Considering Spartan-6 FPGA there are two possibilities

of addressable memory. The first is distributed memory

(special mode of Configurable Logic Blocks

configuration memory) with 64x1 bit granularity which

can be used for filters with sample rates from ones to tens

Msps or equivalently ones MSOSps at design frequency

100 MHz. The other is block RAM (BRAM) with the

capacity of 18 kbit each and configurable organization of

port width from 1 to 36 bits.

Fig. 3. Resource sharing between SOS's.

Considering the ideal fill, one BRAM can support up

to 168 SOS's (in this extreme case, it is necessary to

implement arithmetic in modulus 3 which is not

particularly efficient for the FPGA implementation and

all SOS's share the memory places with exception of the

first one and the last one) what implies sample frequency

in hundreds ksps.

With appropriate controller, this concept does not

restrict implementation to just one filter but allows

compute different filters for possibly different channels in

one SOS cell based on one RAM, one multiplier and one

adder, see Fig. 4. In a straightforward way, the sampling

is simultaneous on all inputs so data comes

synchronously but the controller can cover cases with

different but commensurable sample rates or even with

incommensurable sample rates.

TABLE I.
SOS CORE THROUGHPUT AND RESOURCE UTILIZATION

 Spartan-6 at 100 MHz

1 multiplier and 1 adder 12.5 to 20 MSOSps

distributed memory suitable up to 10 SOS / sample

BRAM 512×361 suitable up to 64 to 168 SOS / sample

BRAM 1024×182 suitable up to 128 to 339 SOS / sample

III. CONTROLLER MICROCODE IMPLEMENTATION

Controller can be designed and implemented with

common FSM design techniques (VHDL for example)

but this way is complicated and gives unsatisfactory

results in FPGA timing and space occupation; future

modifications are complicated. As a more efficient way,

the controller can be designed utilizing a program counter

and RAM (BRAM in case of Spartan-6). A simple

assembler language is suitable for writing controller

microcode.

Table 2 displays example of computation two SOS's

for one signal channel. The first section z-domain transfer

function H(z) is:

 𝐻(𝑧) =
Y(z)

X(z)
=

1−
11

8
𝑧−1+𝑧−2

1−
13

8
𝑧−1+

7

8
𝑧−2

 (1)

Fig. 4. SOS cell with programmable controller.

1 Suitable for up to fixed-point int36 or single precision floating-

point
2 Suitable for up to fixed-point int18 or half precision floating-point

https://doi.org/10.14311/TEE.2019.2.022
https://creativecommons.org/licenses/?lang=en

Transactions on Electrical Engineering, Vol. 8 (2019), No. 2 24

TELEN2019008

DOI 10.14311/TEE.2019.2.022

The second section z-domain transfer function H(z) is:

 𝐻(𝑧) =
Y(z)

X(z)
=

1−
5

4
𝑧−1+𝑧−2

1−
5

4
𝑧−1+

1

2
𝑧−2

 (2)

TABLE II.
AN EXAMPLE OF CONTROLLER MICROCODE

IN SIMPLE ASSEMBLER LANGUAGE

input&store port(0), ram(0.0)

load ram(0.0), c=1/1
acc ram(0.2), c=−11/8

acc ram(0.1), c=1/1

acc ram(1.2), c=13/8
acc&store ram(1.1), c=−7/8, ram(1.0)

load ram(1.0), c=1/1

acc ram(1.2), c=-5/4
acc ram(1.1), c=1/1

acc ram(2.2), c=5/4

acc&store&output ram(2.1), c=−1/2, ram(2.0), port(0)
next3

IV. FILTER DESIGN AND OPTIMIZATION WORKFLOW

A. Allowed Poles and Zeros Locations

The most important part of the design of particular IIR

filter is coefficient set. The width of multipliers increases

demands for resources so the design aim is to minimize

coefficient mantissa widths. The goal of the method of

rounded coefficients is to obtain such coefficients that

lead to multiplication and division by small integer

numbers. Coefficient optimization is crucial otherwise

unpredictable results can occur.

Fig. 5 displays possible pole locations for constants a1,

a2 obtained as n/8 where n is integer. Because poles are

complex conjugate, always symmetrical, the picture

includes only the upper half of the complex plane.

For complex conjugate poles p1,2 = c ± di (and the

same for zeros n1,2) holds:

 (𝑧 − 𝑝1)(𝑧 − 𝑝2) = 𝑧 + 𝑎1𝑧
−1 + 𝑎2𝑧

−2, (3)

where 𝑎1 = −2𝑐 = −2ℜ(𝑝1,2) and 𝑎2 = 𝑐2 + 𝑑2 =

|𝑝1,2|
2
.

Because of these properties, allowed pole locations are

grouped in columns with the same real part and in

concentric circles with the same magnitude.

B. Poles and Zeros Location Optimization

For given filter poles and zeroes can be obtained using

MATLAB with the command

[z,p,k]=cheby2(4,20,3/10);

Table 3 contains obtained and rounded coefficients and

poles and zeros locations.

Fig. 6 displays the results of the original given filter

and filter with rounded coefficients. According to the

figure, the filter has too high attenuation in the region

between 1/10 to 2/10 π·rad/sample.

Other parameters of the filter meet expectations. The

attenuation in mentioned region is dominated by pole

pairs p1,2 from Table 3.

Fig. 5. Pole locations for constants n/8.

TABLE III.
POLES AND ZEROS LOCATIONS

 exact location n/8 coefficients rounded locations

 first iteration of rounding

p1,2 0.3023 ± 0.2725i a1 = −5/8; a2 = 1/8 0.3125 ± 0.1654i

z1,2 −0.2787 ± 0.9604i b1 = 4/8; b2 = 1 −0.25 ± 0.9682i

p3,4 0.6015 ± 0.5783i a1 = −9/8; a2 = 6/8 0.5625 ± 0.6585i

z3,4 0.5336 ± 0.8458i b1 = −1; b2 = 1 0.5 ± 0.866i

TABLE IV.
POLE PAIR P1,2 RELOCATION

 p |p|2 = a2 arg p

original p1,2 0.3023 ± 0.2725i 0.1656 ±0.7337

relocated p1,2 0.3125 ± 0.1654i 0.125 ±0.4868

Poles cause peaks in the magnitude transfer charac-

teristics of a filter. An argument (arg p) determines the

frequency of a peak whereas an absolute value (abs p)

determines the magnitude of the peak.

Rounding quoted in Table 4 moves the pole pair p1,2

towards lower frequency and lower magnitude.

Fig. 7 displays other five possible relocations of the

pole pair p1,2 using constants n/8. Better results can be

obtained with a pole pair with different absolute value

and argument combination.

Fig. 6. Influence of coefficients rounding on filter.

https://doi.org/10.14311/TEE.2019.2.022
https://creativecommons.org/licenses/?lang=en

Transactions on Electrical Engineering, Vol. 8 (2019), No. 2 25

TELEN2019008

DOI 10.14311/TEE.2019.2.022

Fig. 7. Other possible pole pair p1,2 relocations.

Fig. 8 shows frequency response of the original filter

and two other filters with alternative pole pairs p1,2

locations. The most suitable results yield the pole

[1 6/8 2/8].

In the matter of zeros, it is interesting to note that many

IIR filter design methods place zeros on the complex unit

circle (b2 = 1), the only remaining parameter is then b1.

The smallest resolution occurs for filters with very low or

very high3 cutting frequencies. Therefore the method of

rounded coefficients is not sufficient for filters with cut

off frequency too much low or too much high in

comparison to sample frequency. In the case of low

frequencies, there might help to decimate the signal first

or process the signal via a filter with the finite response

(FIR), moving average filter or sinck filter can be a good

candidate.

Implementation of the filter which operates on the

decimated signal causes the poles and zeros are moved to

higher values of arg p. Moreover, filter with poles close

to the complex unity circle has higher demands for

accumulation accuracy.

C. Overall Filter Gain

Every 2nd Order Section has its DC gain g:

 𝑔 =
𝑏0+𝑏1+𝑏2

𝑎0+𝑎1+𝑎2
 (4)

Implementation of IIR filter with accumulator and

microcode requires that a0 = 1. Because b0 is a parameter

that can be chosen, the overall gain of all 2nd Order

Section (whole filter) can be set to match the final filter

realization. For example, the gain of all sections can be

matched to 2n so it is possible to divide the output of the

filter just by shifting right.

Resolution of placement of zeros on the complex unit

circle can be improved by replacing coefficient b0 = b2 to

some other value than 1.

Regarding the fact that b1/b0 ratio need not be only n/2k

but can reach other values n/k (for example 5/7, 6/7, 8/9)

zero pairs can be selected from a finer set on complex

unity circle.

3 Near Nyquist frequency (sample frequency / 2)

Fig. 8. Influence of relocation of the pole pair p1,2.

D. Risk of Arithmetical Overflow

If it is guaranteed that the output of 2nd Order Section

accumulator does not overflow (after the last

accumulation has been done), there is no need to check

overflow during the accumulation process assuming the

accumulator uses two's complement representation. The

maximal overshoot for each 2nd Order Section should be

determined by simulation using step response. For the

best results, SOS with the highest gain and the lowest

overshoot should be placed first in series of SOS for

reaching smaller rounding error (gain) and more

arithmetical resources used by valid signal (overshoot).

V. CONCLUSION

Modern mid-range FPGAs can process IIR filters on

very high throughput. IIR filter need not be designed with

floating point arithmetic and with full fixed-point or

floating-point multipliers. For a great number of filters

with cutting frequencies in a reasonable ratio to the

sampling frequency, the poles and zeros locations can be

optimized so that IIR filter coefficients are round

numbers whose multiplication can be realized without a

complex multiplier. Utilizing the microcode controller

and creating time multiplex allow recycling the FPGA

fabric of IIR 2nd Order Section cell in a highly effective

way for filtering more signals with different filter

coefficients.

REFERENCES

[1] R. Landry, V. Calmettes and E. Robin, “High speed IIR filter for
XILINX FPGA,” in 1998 Midwest Symposium on Circuits and
Systems (Cat. No. 98CB36268), Notre Dame, IN, 1998, pp.46-49.

[2] S. T. Pan, “Evolutionary Computation on Programmable Robust
IIR Filter Pole-Placement Design,” IEEE Transactions on
Instrumentation and Measurement, vol. 60, no.4, pp.1469-1479,
April 2011. https://doi.org/10.1109/TIM.2010.2086850

[3] R. G. Lyons, “Infinite impulse response filters,” in Understanding
digital signal processing, 2nd ed., New Jersey, USA: Pearson
Education Inc. 2008, ch. 6, pp. 211–282.

[4] U. Meyer-Baese, “Infinite impulse response (IIR) digital filters,” in
Digital signal processing with Field Programmable Gate Arrays,
4th ed., Heidelberg, Germany: Springer-Verlag Berlin Heidelberg.
2014, ch. 4, pp. 225–304.
https://doi.org/10.1007/978-3-642-45309-0_4

https://doi.org/10.14311/TEE.2019.2.022
https://creativecommons.org/licenses/?lang=en
https://doi.org/10.1109/TIM.2010.2086850
https://doi.org/10.1007/978-3-642-45309-0_4

