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Abslrwt-Intersymhol interference (HI) is a major cause 
of performance degradation for both wireless and wireline 
communication systems. It can he mitigated hy several difterent 
methods including equalization and multicarrier modulation, hut 
the complexity and efficiency of all methods would depend on 
the length of the IS1 channel. In this paper, we propose a 
general framework for channel shortening where we considered 
the channel as a rational transfer function (having infinite 
impulse response (IIR)), and the source and the noise as auto- 
regressive moving average (ARMA) processes. The aim is to 
shorten the channel using an W filter to a desirable length, 
so that computationally efficient post processing techniques can 
he applied to the resulting signal. The use of an I IR filter provides 
more d e g m  of freedom for channel shortening as compared to 
an FIR filter. 

A. Introduction 

Intersymbol interference (ISI) caused by frequency selectiv- 
ity of the channel is one of the major factors which degrades 
the performance of both wireless and wireline communication 
systems. A great amount of research has been conducted 
to combat IS1 with channel equalization. It is well known 
that a maximum likelihood sequence estimator (MLSE) has a 
performance superior to a linear equalizer hut its complexity 
increases exponentially with the length of the channel. In 
the literature, several attempts have been made to reduce the 
complexity while retaining a performance close to the full 
complexity counterpart, these include reduced state MLSE [7] 
and channel shortening methods [8],[1 I]. 

Another method is based upon multicarrier modulation 
techniques which transform the frequency selective fading 
channel into independent parallel flat fading suhchannels. A 
cyclic prefix is added to the transmission packet to eliminate 
interhlock interference (IBI). The length of the cyclic prefix 
must he greater than or equal to the order of the IS1 channel. 
Therefore the aansmission efficiency is limited by the length 
of the channel. Again, to reduce the channel length, channel 
shortening equalizers can be employed [IO]. 

In the literature, there have been several attempts to design 
good channel shortening filters. For the MLSE equalizer the 
main approach is the minimum mean square error method 
under a unit-tap or a unit energy constraint, [41, [8]. For 
multicarrier modulation systems besides the minimum mean 
square error (MMSE) solution several other methods have also 
been proposed such as the geometric signal to noise ratio 

(SNR) and maximum hit rate (MBR) solutions [61, [5], [ 101. 
In this paper, however, we will focus on thk MMSE criterion 
applied to an IIR based channel shortening filter based on a .  
polynomial approach. 

It is well known that the zeros of a system can he perfectly 
compensated for the poles of an IIR equalizer. If a zero of the 
channel is very close to the unit circle, the IIR filter is required 
to place a pole at that location for a zero forcing solution. For 
the MMSE solution, as it takes noise into account, it does not 
exactly cancel the zero hut places a pole very close to the 
position of the zero. Both solutions, however, result in a very 
long impulse response. An FIR filter can also he employed 
to approximate this impulse response, hut if the length of the 
filter is not adequate, the resulting error could be much higher 
than that of using an IIR filter. 

A known problem associated with an IIR filter is its noise 
amplification due to infinite length of the impulse response, 
hut as it will he demonstrated a superior channel shortening 
performance could compensate for the noise amplification 
when the signal-to-interference plus noise ratio is considered. 
Another important issue which needs special treatment in IIR 
filter design is the stability problem. This problem is carefully 
addressed in the design by choosing stable poles through 
spectral factorization. 

To our best knowledge, there has been only one attempt to 
tackle channel shortening filter design using IIR filters. In [5 ] ,  
the channel shortening filter is first designed using a very long 
FIR filter, and then this long FIR filter is approximated to an 
IIR filter, [3]. 

In this paper we propose a frequency domain approach 
based on polynomial equations [I]. [2] to design IIR channel 
shortening filters directly under the criterion of MMSE. We 
consider a general framework by allowing the channel, noise 
and transmitted signal models to he anta-regressive moving 
average (ARMA) filters, hut special cases such as FIR chan- 
nels, white signal and noise sources can he readily obtained 
from the general approach. 

For a polynomial of length n P i  1, 

P(q-1) =po+p14-'+ ...+ P"Pp4-e (1) 

the conjugate polynomial is defined as 
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( 5 )  
m* = ~ BB,CC, MM, 

AA,DD,NN, AA,DD,+'", 

Fig. 1. The general framework for the channel shortening method, when the 
source and noise processes ilre ARMA and the channel has a rational lnnsfer 
function. The channel is assumed to be shortened to a finite length E R  filter. 

where q-l is the backward shift operator, i.e. q - l x ( k )  = x ( k -  
I ) .  and (.)* is the complex conjugate operator. A polynomial 
P(q-') is called stable if all of its zeros are located inside 
the unit circle, and causal when the polynomial contains only 
the term q-', similarly anticausal if it is composed of positive 
power of q. 

I .  PROBLEM STATEMENT 

Consider the smcture in Figure 1 depicting the channel, 
target impulse response and the shortening filter together 
with the input data and noise models. Data source and 
noise processes, s(k )  and n(k) ,  are parametrized by ARMA 
models, C(q- ' ) /D(q - ' )  and M(q- ' ) /N(q - ' )  respectively. 
The channel is assumed to have a rational transfer function, 
B(q-I ) /A(q - ' ) .  The A N A  source model for the data could 
model certain preprocessing techniques applied to the signal 

rPP* = BB,CC,NN, + pAA,DD,MM, (6) 

where r = L , , / L d ,  and p = L,,/L,j. It is clear that the order of 
P(q-') is = max{nB+nC+nN,nA+nD+nM}. Parenthe- 
ses are dropped where convenient. 

The aim is to design the shortening filter 
Q(q-')/R(q-l) and the TIR b(q-l) to reduce the length of 
the equalized channel to nb+ 1 taps while minimizing the 
difference between the equalized channel and the TIR in the 
MMSE sense. After shortening, most of the energy of the 
original channel will be compressed to the window between 
the m'th and (m +nb)'th taps. 

11. IIR CHANNEL SHORTENING FILTER 

The error 'signal which is a measure of the difference 
between the target impulse response and the shortened channel 
can be expressed as 

&(k)  = l ( k ) - ? ( k )  
Q M  = [ q-mb--- ::]E - d ( k ) -  . - - v (k )  R N  (7) 

The aim of the channel shortening filter is to minimize the 
mean square error (MSE) cost function, with respect to the 
shortening filter Q(q-')/R(q-')  and the TIR b(q-'), 

before transmission. All polynomials except B ( q - l )  are manic 
and furthermore the polynomials D(q-l), A ( q - ' )  and N(9- l )  
are assumed to be stable. The signals d ( k )  and v(k)  are 
assumed to be mutually independent, stationary, white and 
zero mean, with variances &j and X,,, respectively. The channel 
shortening filter is modelled by a causal and stable rational 
transfer function, Q(q- l ) /R(q - ' ) .  The polynomials Q(9-I) 
and R(9-I) are assumed to be coprime, otherwise the common 
terms will cancel each other. The channel shortening filter is 

J = E { & ( t ) E * ( t ) }  

=& f r [ = -  Qp zFmbB,CC,N, 
2 x j  rPiD 

l:l=t [ Q*P. - Ib,BCC*N 

bb,AA,CC 
R A D J "  rPD, 

n 
designed to shorten the channel to a finite length window 
with a causal target impulse response (TIR) polynomial, 
b(9-') = bO+blq-'+ ...+b,,hq-"h, where nb is the order of 
the TIR. The delay parameter m is adjusted to maximize the 
performance. 

The input to the channel shortening filter is 

This signal can be written in the innovations form as 

where P(4-l) = 1 +P19-' + ... + Pnp9-"p is the manic, causal 
and stable spectral factor polynomial, q ( k )  is the zero mean 
and white innovations process with variance unity, and l,, is 
a gain factor. Equating the power spectral densities of both 
definitions of y(k) in (3) and (4), we obtain 

t 

where we used Parseval's formnla (the term q-' is replaced 
by i-l where appropriate) and completed the squares for the 
terms involving the shortening filter coefficients. It can be seen 
that the MSE depends on both the shortening filter and the 
TIR coefficients. The first step is to find the shortening filter 
solution as a function of the TIR, by minimizing the MSE. 
coefficients. Then back substituting this solution to the MSE in 
(9), we obtain the MSE depending only on the TIR coefficients 
which requires a second set of optimization. 

We could observe that the first term in the first parenthesis in 
(9) is strictly causal, stable and contains the transfer function 
of the shortening filter, Q/R,  while the second term is mixed. 
We can infer that the best that the shortening filter could 
do to minimize the MSE is to cancel the causal pan of the 
second term in the first parenthesis in (9). The same reasoning 
also applies to the second parenthesis, but in th is  case the 
shortening filter cancels the anticausal terms. Decomposing the 
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second term into its causal and anticausal factors, we could 

where Ql and zL* are respectively strictly causal and anu- 
causal polynomials satisfying the equality. The order of QI 
is nQl = max{nb+nC+m,nD- I} and the order of L, is 
nL= max{nB+nC+iN-m,nP} - 1. 

Equivalently, we can rewrite ( I O )  as 

zP"B,CC,N, = +zDL, (11) 

which is a Diophantine equation and there is an efficient 
method to solve this equation [91, [I]. The left hand side term 
is written in the vector form where each row corresponds to a 
time delay, and the right hand side can he written as the mul- 
tiplication of a convolution matrix containing the coefficients 
rp.  and zD, and a vector containing the coefficients of Q1 and 
L,. By solving this system of equations one can easily find 
QI  and L, depending on b(q-') .  

Comparing (9) and (10) we conclude that QPIRADN 
cancels Q l / D ,  i.e. 

Here we should note some facts; the numerator directly can- 
cels the stable and causal spectral factor of the filter input, and 
the numerator has factors cancelling the poles of the channel 
and noise processes together with a third term, Q I .  Actually 
the term ANIP is the inverse of the rational transfer function 
in the innovations model, therefore the channel shortening 
filter first tries to whiten the input signal (since D is not 
included in the design branch (Figure 1) it is not included 
in this cancellation). With the selection of the shortening filter 
coefficients as in (13) the first parenthesis in (9) results in a 
strictly anticausal expression, -zL*/rP*, which is the best that 
a strictly causal and stable shortening filter can do. Since QI  
and zL, are strictly causal and anticausal, respectively, they are 
mutually independent. Therefore both of them are functions of 
the TIR coefficients, b(q-') ,  but they do not depend on each 
other. The same result could also be obtained by utilizing the 
principle of orthogonality, 

E M k ) Y * ( k ) }  = 0 (14) 

Cauchy's integral theorem states that the contour integration 
of a rational function yields zero if all of the poles of 
that function are located outside the contour. Therefore the 
numerator should cancel all the poles inside the unit circle to 
minimize the MSE, i.e. 

z-"RbAB,CC,NN, - rPP*Q = zRADNL, (16) 

In a polynomial equation with three terms, if a factor is 
common to two terms, it must also be a factor of the third one. 
Since R is common to the first and the third terms, it must also 
be included in the second term. Since the only stable factor 
in the second term is P (note that the polynomials Q and R 
are coprime hence only P is considered), it follows that R = P. 
Using a similar reasoning we can determine that Q = QlAN. 

Back substituting the solution in (13) into (9), we obtain 

Since L,(q) can be solved from ( 1  1) as a function of b(q-'), 
the only unknown in (17) is the TIR b(q-'). Cauchy's integral 
formula states that 

Therefore the only poles contributing to the integral in (17) 
are i and the roots of P(9-I). After utilizing a partial fraction 
expansion to find the numerators of these I @  + 1 terms and 
summing them up, (17) can be expressed as a quadratic 
expression with the coefficients of b(q-')  as variables. In 
matrix notation 

J = bHRb (19) 

where b = [bo 61 . . . b,,bIT, and the matrix R is positive 
semidefinite. A loose proof follows from the intuitive rea- 
soning that the left hand side of (19) corresponds to a non- 
negative quantity (power). The MSE can be minimized by 
choosing b as the eigenvector corresponding to the smallest 
eigenvalue of R. Hence, the proposed method has a unit energy 
TIR which means the shortening filter forces the equalized 
channel to have unity gain. 

The equalized channel after performing the channel short- 
ening is 

111. COMPARISON OF THE IIR HLTER WITH THE FIR 
FILTER 

In this section we will compare the proposed method with 
the FIR MMSE channel shortening approach, [41, under unit 
energy criterion (UEC), and provide an interesting observation. 

Assume that the channel is approximated with an FIR model 
of length nh. Also assume that C = D = 1 in the model ( 3 ) .  
Then, the channel shortening solution with an FIR filter with 
length nw can be written as 

W$ = ~ & R , H ~ ( H R , , H ~  +R,,)-' (21) 

where R, is the (nw+nh) x (nw+nh) autocorrelation matrix 
of the input sequence and R, is the nw x nw autocorrela- 
tion matrix of the noise sequence. H is the nw x (nw+nh) 
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convolution matrix defined hy 

L :  0 0 ... ho hi . . ’  hnh-l : 1  
The vector Gap, = [o,,, bop, Olxn”.+,,l?-,,-m]T is the (nw+ 

nh) x I augmented target impulse response. The target impulse 
response vector b o ,  under unit energy constraint can he found 
by minimizing 

= b$Rbapt (23) 

which is the eigenvector corresponding to the smallest eigen- 
value of the matrix R, where R is defined as 

R = F ( R ,  - R.&;jlRy.r)r (24) 

where R.v is the ( m v f n h )  x i i w  crosscorrelation matrix of 
the input sequence and the shortening filter input, Ryy is the 
itiv x nw autocomelation matrix of the shortening filter input 
and I-= [Oabxm Inb Onbxnw+nh-nb-mIT, 

It is observed in the simulations that for minimum phase 
systems, as the length of the FIR filter increases, the optimum 
TIR solution in (23) approaches the solution obtained by the 
IIR channel shortening filter in (19). Similarly, the impulse 
response of the FIR shortening filter also approaches that of 
the IIR filter. Moreover, the term R,,HH(HR,HH + R,l,,)-l 
in the solution for the FIR filter approaches the equivalent 
impulse response of Ah’,$ in the IIR filter based solution. 
The FIR channel shortening filter compensates the poles of 
the IIR filter (in fact corresponds to p) by placing zeros. 

For a maximum phase system, since the IIR filter has to 
place its poles inside the unit circle (p is strictly stable), it 
cannot exactly cancellcompensate the maximum phase zeros 
of the channel, hut places the filter poles to their conjugate 
inverses resulting in a whitening filter. The numerator poly- 
nomial on the IIR channel shortening filter. however, places 
appropriate zeros to funher shorten the resulting channel. 

IV. SIMULATIONS 
It is assumed that the channel is given in a pole-zero form. 

If this is not the case, without loss of generality the pole-zero 
equivalent of an IIR filter can he calculated, i.e. employing 
the method in [ 3 ] .  

Poles of a channel can easily he cancelled by the zeros of 
the shortening filter, therefore the issue of cancelling zeros 
of the channel is a more important issue. When a zero gets 
closer to the unit circle, the shortening filter needs to put a 
pole close to that position, which increases the length of the 
impulse response of the filter. In the simulations we examine 
this phenomenon by considering a channel having a conjugate 
pair of zeros and a conjugate pair of poles, and hy fixing the 
location of the poles hut placing the zeros at different positions 
inside the unit circle. 

Two performance criteria will he considered. The first one 
is the compression ratio of the shortening filter, defined as the 
ratio of the energy of the signal inside the desired response 

window to that of the signal outside the window. The second 
criterion is the shortening signal to interference plus noise ratio 
(SINR), similar to the first criterion hut noise amplification is 
also included to the interference term. 

For a fair comparison, the implementation complexity (i.e. 
number of coefficients) of both IIR and FIR filters are kept 
the same, that is, if the IIR filter has p poles and q zeros, the 
compared FIR filter is designed with p + q +  1 taps. 

Figure 2-4 depict the comparison of the simulation results 
of the proposed IIR design with the FIR MMSE-UEC ap- 
proach. The channel is chosen such that the poled are fixed 
at 0.8ejinI4, hut the position of zeros refie are allowed to 
change. We also fix the input ARMA model to C = D = I and 

In Figure 2, the time domain shortening performance of both 
approaches is demonstrated together with the original channel 
when the zeros are set to 0.95e*j”/3, at 10 dB SNR at the 
shortening filter input. The channel is shortened to two taps 
(nb = I ) ,  and the optimum delay tumed out to he m = 0. It 
has been found that 67% of the energy of the original channel 
is contained in the desired window which spans the first two 
samples. The FIR channel shortening filter can increase this 
ratio to 85.4% while the proposed IIR based scheme can 
achieve a compression of 99.6%. 

Figure 3 compares the SINR performance of the two meth- 
ods by varying the radius r of the zeros (when 0 is fixed at 
n/3) in Subfigure 3.a and by varying the angle 0 (when r 
is fixed at 0.95) in Suhfigure 3.h. All parameters except the 
location of the poles are the same as those in Figure 2. It can 
he seen that the performance of both methods is very close 
when the radius r 5 0.4. But as the zeros get closer to the unit 
circle the proposed method outperforms the FIR counterpart 
justifying the motivation of our study. Subfigure 3.h shows that 
the performance is very sensitive to angle hut the performance 
of the IIR filter is either the same or better than that of the 
FIR filter. 

Figure 4 provides the SINR comparison of W and FIR 
filters with respect to the signal-to-noise ratio (SNR) at the 
input of the filters. The zeros are located at 0.95ejinI3. The 
IIR filter always outperforms the FIR filter, specially at high 
SNR region, as in this region the compression ratio plays a 
major rate in the SINR definition. 

noise model to M = 1 - 0 . 3 q - ’ , N  = I +0.7q- I . 

V. CONCLUSIONS 

We proposed a novel design method for IIR channel short- 
ening filter design under the MMSE criterion. The method 
involves a very general framework which includes ARMA 
data and noise processes and rational channel transfer fnnc- 
tion. Special cases such as FIR channel impulse response, 
white or colored noise models can easily he obtained from 
this general framework. We demonstrated that the proposed 
scheme outperforms an FIR channel shortening filter under 
most conditions, specially when the zeros of the channel 
get closer to the unit circle. Although the IIR filter appear 
to amplify the noise, its superior compression performance 

0-7803-8255-WU).M) 02l.704 IEEE. 568 

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on December 17, 2009 at 04:20 from IEEE Xplore.  Restrictions apply. 



. . . . . . .  

. . . . . . . . . . . . . .  

‘403 

(b) 

. . . . . . . . . . . . . . . . . .  . . . . . . . . . . . .  

(C) 

Fig. 2. Impulse response of (a) the onginal chamel. (b) the equalized channel 
using a length eight FIR filter, (c) the equalized channel using the proposed 
IIR filter with four zeros and three poles. 

compensates the noise amplification when SINR is considered 
as the merit of performance. 
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