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ABSTRACT 
An efficient method for the design of low-delay two-channel, per- 
fect reconstruction IIR filter banks is proposed. The design prob- 
lem is formulated in terms of minimax designs of a general stable 
IIR filter that can be obtained using semidefinite programming and 
an FIR filter that can be obtained using the Remez exchange algo- 
rithm. A multiplierless implementation on this filter bank is also 
proposed and investigated. 

1. INTRODUCTION 

Low system delay is often desired for filter banks used in subband 
coding, subband adaptive filtering, and many other applications 
11-31. An interesting problem formulation that can be used for the 
design of low-delay filter banks was proposed by Kim and Ansari 
in [4] and developed further by Phoong, Kim, Vaidyanathan, and 
Ansari in [5 ] .  This formulation entails two independent func- 
tions of :, a(:) and 3(:). that can be chosen to satisfy speci- 
fied frequency-domain requirements while maintaining the perfect 
reconstruction property (PR). More recent work on this type of 
filter banh includes the method in [6] where a(;) and a(;) are 
rational functions of : that represent IIR filters and the method in 
[7] where both a(-) and d(:) are polynomials in ;-l that rep- 
resent nonlinear-phase FIR filters. In this paper, we use the for- 
mulation in [4][5] to design low-delay filter banks but chose a ( z )  
to be a polynomial in :-‘ that represents a linear-phase FIR fil- 
ter and 3(,) to be a rational function of z that represents an IIR 
filter. Thus a(;) can be obtained by designing the FIR filter us- 
ing the Remez exchange algorithm whereas 3(:) can be obtained 
by designing the corresponding IIR filter by using semidefinite 
programming (SDP). Computer simulations demonstrate that the 
proposed method yields satisfactory designs in terms of transition 
width, stopband attenuation, and implementation complexity com- 
pared with several existing methods. A multiplierless implemen- 
tation of such IIR filter bank is also proposed. 

2. DESIGN OF IIR ANALYSIS FILTER BANK 

2.1. Lowpass Analysis Filter 

Consider the 2-channel biorthogonal maximally decimated filter 
bank shown in Fig. 1 where the analysis lowpass filter H o  and high- 
pass filter HI are characterized by 

and 

HI(,)  = -cu(:2)Ho(z) + z--2Af-1 (Ib) 

respectively, function a(;) is a polynomial in and p(;) is a 
rational function in z .  The transfer functions of the synthesis filters 
are given by Go(:) = -HI( - : )  and GI(z) = Ho(-z ) .  A filter 
bank of this type is known to have the perfect reconstruction (PR) 
property regardless of the choices of a(:) and O ( z )  [4][5]. The 
formula of Ho ( z )  in ( la) suggests that if we design a lowpass filter 
represented by p ( z )  with passband [0,2w,] and passband group 
delay A -  f , then Ho will be a lowpass filter with passband [0, L+] 

and passband group delay 2N [5]. 
Let us assume that 8(;) is the transfer function of an IIR filter 

of the form 
n 

1=0 

By formulating an error function and minimizing it using SDP, 
a(=) can be determined. Assuming that the sampling frequency is 
27r. an error function can be defined as 

where 3 d ( ~ )  is the desired frequency response of the IIR filter and 
is equal to e--3d(N-1’2) f o r d  E [0, 2wp] and zero elsewhere. An 
approximation for a(:) can be obtained by solving the minimiza- 
tion problem 

minimize 6 (32) 

for w E [0 ,2~) , ]  

d ( z )  # 0 for I:/ 2 1 (3c) 

where 6 = m a z l E o ( ~ ) ) ) ,  denotes the denominator poly- 
nomial d ( ; )  obtained in the ( k  - 1)th iteration, IT=i(w) > 0 is a 
weighting function. and the stability of the IIR filter is assured by 
the constraint in (3c). Now if x = [6 b dIT with b = [bo . . . b,] 
and d = [cl0 . . . d,], then the constraint in (3b) is equivalent to 

6 cll cl’ 

(4) 

11-465 
0-7803-6685-910 1/$10.000200 1 IEEE 



where the notation r ( x ,  w) 0 denotes that matrix r ( x ,  i.) is 
positive definite and a, for i = 1 , 2  are known functions of x and 
w [SI. Using the well-known Lyapunov stability theory [9], it can 
be shown that &-I(.) has all its zeros in the unit circle if and only 
if there exists a positive definite matrix P k - l  such that 

where D k - 1  is the canonical matrix obtained by using the coeffi- 
cients of &-I [8][9], and the notation + 0 denotes that the above 
matrix is positive definite. After the (k- 1)th iteration is complete, 
one can solve the Lyapunov equation Pk-1 -DT-lPk-~Dk--l = 
I for the positive definite solution of P k - l  and use it to construct 
the linear matrix inequality (LMI) 

in the kth iteration to assure the stability of the IIR filter. In the 
above equation, a parameter T > 0 is introduced to control the 
stability margin of the filter. The kth iteration of the design can 
now be formulated as the SDP problem 

minimize crx 

subject to: [ rg) Qk(x) 0 ] >- 0 

wherec = [l O . . .  OITandr(x)  = diag[r(x,i.O),...,r(x,wm)] 
with ut, 1 5 i 5 m being a set of frequency points in the interval 
[O, 2w,]. The optimization problem in (5) can be efficiently solved 
using the LMI toolbox of MATLAB. With d ( s )  known, the anal- 
ysis lowpass filter Ho can be obtained. 

2.2. Highpass Analysis Filter 

Now let us examine the design of the analysis highpass filter HI.  
If function a(-) is assumed to be the transfer function of a linear- 
phase FIR filter of even length of the form a(:) = 
we can define the error function for the analysis highpass filter H1 
as 

E l ( w )  = Hl(e.'") - Hld(d )  

- - -a(e'3u)Ho(e3") + e -J (2" '+1)d  - H l d ( d )  (6) 

where Hld(d )  is the desired frequency response of H1 and is 
equal to e-3u('d'+1) for w E [us, 7r ]  and zero elsewhere. Now 
let Ho(e3") = A(w)e-33"" , where A(u) is approximately equal 
to one in magnitude for w E [0, up]. and let the frequency response 
of the FIR filter be a(eJY) = e-JY(vck-1)'2 cos(ut/2)Pa(cosw), 
where P, (cos w) is a Chebyshev polynomial of order iV, / 2  - 1 
that contains the coefficients of a(:). The error function in (6) can 
then be expressed as 

= e-~(2-q ' f l )d  [l - cos(w)P,(cos(2w))A(w)] 
for LJ E [O, x/2] 

By setting OlEl (i.)('/OP, to zero, we obtain the Chebyshev poly- 
nomial P,(cos(2w)) that minimizes IEl(w)J '  as 

P, (cos(2iJ)) = for i. # 7r/2 ( 7 )  lA(w)l- cosw 

Hence the design problem at hand can be formulated as the least 
pth minimization problem [IO1 

minimizeLT ~~-~(r)lP,(z) - Pd(z)/~dx (8) 

where 5 = cos(2w). 2, = c0s(2dp), I ,  is the interval defined 
by I ,  = (-1, -x,) U (z.. l ) ,  and TT7a(w) is a weighting function 
given by TITa(z) = cos(0.5ar~~cosz)~~(0.5arccosz)~'. The op- 
timization problem in (8) with P = CO can be solved using the 
Remez exchange algorithm [I  I]. With a(2) known. the analysis 
highpass filter HI can be obtained. 

2.3. Selection of Design Parameters 

We now describe some simple guidelines for the selection of pa- 
rameters N, n, h1, and N, for given design specifications. If 
filter Ho were a linear-phase half-band FIR filter. its length could 
be predicted by using a formula due to Herrmann et al. [ 1 I ]  as 

( 9 )  

where B = '"s2:-p'. F = 11.012, 

D = [O.O05309(log bso)2 + O.Oi1141ogb,, - 0.47611 logb:., 
-[O.O026G(log ~ 5 , ~ ) ~  + 0.5941(log6,,) + 0.42i81 

In the above formulas, b,, is the stopband ripple, d p  and dS are 
the passband and stopband edgts of the analysis lowpass filter. re- 
spectively; [QJ denotes the largest integer smaller than Q. Now 
if HO is an IIR filter, then extensive simulations have shown that 
parameter N could be taken to be one eighth of L [IO]. i.e., 

L 
S N = [-1 

where [Ql denotes the smallest integer larger than Q. A value of 
i\i smaller than this may still work. but the filter bank may exhibit 
undesirable artifacts in the transition band. Having chosen param- 
eter iV, the value n = N + 2 ur;ually leads to satisfactory designs. 
On the other hand, the values A f  = 3N - 1 and ]Ya = ahi lead 
to a highpass analysis filter HI whose frequency performance is 
comparable with that of the lowpass analysis filter Ho. In doing 
so, a good overall performance of the filter bank can be obtained. 

3. A CASE STUDY 

3.1. Design of a Filter Bank with Continuous Coefficients 

We have applied the design method proposed in Section 2 to de- 
sign an IIR filter bank with thc following specifications: b,, = 
1.7iSe - 3, d p  = 0 . 4 5 ~ .  and w, = 0 . 5 5 ~ .  The length of a linear- 
phase half-band FIR filter was predicted to be L = GO: there- 
fore, parameter N for the low.delay IIR filter bank was chosen 
as IY = [L/S1 = 8; with N known. the other parameters can 
be deduced as follows: 11 = 10. 111 = 23. and A, = 32.  We 
first designed an FIR nonlinear-phase transfer function of order 
35, represented by O l ( z ) ,  by using the method proposed in [7 ] .  
A balanced approximation method [I31 was applied to the FIR 
transfer function & (:) to yield a stable rational function do(:) 
of order 10. This 1 3 ~ (  z )  was then used as the initial guess in the 
SDP optimization described in Section 2.  The SDP algorithm took 
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one iteration to converge and the result was a stable rational func- 
tion p ( ; )  that gave an IIR filter Ho with equiripple magnitude 
response. Next, the Remez exchange algorithm was applied to ob- 
tain a linear-phase FIR transfer function a(;) of order 31. The 
transfer functions Ho(;), HI( : ) ,  Go(;), and GI(;) were then 
constructed using (I). The system delay of the filter bank was 
2 M  + 2N + 1 = 63 s. The performance of the filter bank de- 
signed was evaluated and compared with that of the designs ob- 
tained with several existing methods. These include the methods 
in [4][7] where the same filter bank formulation was applied but 
with different selections of Cl(;) and a(;). Based on the method 
proposed in [4], we obtained an allpass transfer function L?(z) of 
order 8 and a linear-phase FIR transfer function a(2) of order 31. 
By using the method proposed in [7], we obtained a nonlinear- 
phase FIR transfer function B(; )  of order 35 and a linear-phase 
FIR transfer function a(;) of order 31. The linear-phase FIR filter 
bank with 32 lattice stages proposed in [ 141 was also considered in 
our comparison study. All the designs have the same system delay 
of 63 s. 

The frequency responses of a(;), / 3 ( z ) ,  and analysis IIR fil- 
ters Ho and HI are shown in Figs. 2(a)-(c). The performance 
of the designs is illustrated in Table I, where Ad = dP - w, is 
the width of transition band for both Ho and HI,  and 6,". 6,, are 
the stopband attenuations of filters Ho and HI,  respectively. It is 
observed that the IIR filter bank designed by the proposed method 
outperforms the other methods in that it yields a narrower transi- 
tion width and improved stopband attenuation. With regard to the 
implementation complexity, the allpass function of order 8 is im- 
plemented with 8 multipliers and 24 adders [ 2 ] ,  the IIR function 
L?(z) is realized in terms of a 10-stage lattice and ladder structure 
[ 1 I], and the linear-phase FIR a(;) is implemented using the di- 
rect form [12]. It is noted that the proposed method requires less 
multiplications and additions (at the original sampling rate) com- 
pared to the method in [7] but is not as economical as the methods 
in [4] and [ 141. 

3.2. Multiplierless Implementation of the Filter Bank 

It is advantageous to implement a filter bank without multiplica- 
tions. A commonly used approach is to employ individual filters 
with coefficients that can be expressed as sums of a small number 
of power-of-two terms. In this way the filters can be implemented 
in terms of additions of shifted versions of the input. In what fol- 
lows, we call such filter banks as filter banks with sum-of-power- 
of-two (SP2) coefficients. Optimal implementation of filter banks 
with SP2 coefficients can be achieved by using techniques such as 
simulated annealing or genetic algorithms but these methods re- 
quire a large amount of computation. The approach we take here 
c'an be described as follows. First we design a filter bank with con- 
tinuous coefficients. Next we assign a certain number of bits for 
each coefficient based on its magnitude, and determine its lower 
and upper SP2 bounds. For the filter bank designed in Section 3.1 
there were 21 coefficients in a(:), five of which were very small in 
magnitude and were not sensitive to quantization; these were fixed 
to their nearest SP2 values. Then through an exhaustive search we 
selected either the upper bound or the lower bound for each of the 
I6 remaining coefficients such that the objective function 

is minimized. In (1 I )  Hqk(w) for k = 0 , l  are the frequency re- 
sponses with the coefficients quantized and Hk(4) for k = 0 , l  
are the corresponding desired frequency responses. For the linear- 
phase FIR transfer function a(;), there were 16 coefficients that 
needed to be quantized to their SP2 values, and the exhaustive 
search was also performed as for transfer function b'(2). The 
search for the optimal SP2 coefficients for Cl(;) and a(;), which 
involved the selection of the optimal combination out of 2" com- 
binations in each case, was carried out on a Pentium I1 400 MHz 
PC. The resulting magnitude responses of the multiplierless 2- 
channel IIR filter bank are depicted in Fig. 2(d). The average 
number of power-of-two terms used was 2.9. It is observed that 
the filter bank with SP2 coefficients still offers more than 50 dB 
stopband attenuation. 

x (n) i 
Figure 1: A two-channel maximally decimated filter bank. 
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Group delay in passband 

165’ 

nu 
S,, (dB) 

S., tdBi 

Mult. 

Add. 

I I  

0.1 0.1 0.172 0.1 

45.5 55.2 42.5 55.5 

45 52.7 42.5 52.8 

11 26 17 23.5 

28.5 34 49 31.5 

Table 1 : Performance Comparisons 

I Allpnss [-I] I Non-LP FIR [7] I LP FIR FB [ 141 I Proposed W I 

Noimalizrd frequency 

Figure 2: Two-channel low-delay IIR filter bank. (a) Magnitude 
responses of IIR filters repre.sented by B(z )  (solid line) and the 
linear-phase FIR filter represented by a(=) (dashed line); (b) mag- 
nitude responses of the analysis IIR filters; (c) passband group de- 
lays of the analysis IIR filters; (d) magnitude responses of multi- 
plierless IIR analysis filter bank. (The heavy solid lines in (b) and 
(d) are the passband gains of filters HO and HI, multiplied by a 
factor of 200 in order to illustrate the passband ripple.) 
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