6 research outputs found

    Backstepping and Sequential Predictors for Control Systems

    Get PDF
    We provide new methods in mathematical control theory for two significant classes of control systems with time delays, based on backstepping and sequential prediction. Our bounded backstepping results ensure global asymptotic stability for partially linear systems with an arbitrarily large number of integrators. We also build sequential predictors for time-varying linear systems with time-varying delays in the control, sampling in the control, and time-varying measurement delays. Our bounded backstepping results are novel because of their use of converging-input-converging-state conditions, which make it possible to solve feedback stabilization problems under input delays and under boundedness conditions on the feedback control. Our sequential predictors work is novel in its ability to cover time-varying measurement delays and sampling which were beyond the scope of existing sequential predictor methods for time-varying linear systems, and in the fact that the feedback controls that we obtain from our sequential predictors do not contain any distributed terms

    PENGEMBANGAN PERILAKU KARAKTER TIKUS PADA GAME MENJAGA MAKANAN

    Get PDF
    ABSTRAK Game merupakan bentuk dari animasi interaktif yang dimana pengguna dapat berinteraksi dengan dunia game. Game sendiri terbagi atas beberapa tipe aliran (GamePlay). Aliran game yang dikembangkan oleh penulis adalah EduGames. EduGames adalah tipe aliran game ketangkatas. Sajian ilmu dari games edukasi yang dibuat penulis tentang ilmu — ilmu pembelajaran yang ringan, yang bisa untuk semua umur terutama yang masih di bangku sekolah dasar. Munculnya game edukasi ini dipicu oleh menurunnya keinginan minat belajar anak dikarenakan pembelajaran di bangku sekolah sendiri yang menarik. Unsur terpenting dalam pembuatan sebuah game adalah manfaat dari game tersebut dan menarik atau tidaknya aliran game tersebut. Cara membuat game tersebut agar menarik adalah peran NPC (Non Player Character), karena dengan adanya peran NPC game tersebut menjadi lebih realistis dan tidak membosankan. Tugas Akhir ini membahas permasalahan tentang karakter NPC dalam game. Mulai dari pembahasan perpindahan karakter NPC, target favorit karakter NPC, sampai tingkah laku NPC tersebut. Tujuan Tugas Akhir ini adalah untuk mendukung kecerdasan, keterampilan, penalaran pemain ketika memainkan game tersebut. Pemain akan berfikir sekreatif mungkin untuk menjaga makanan dari karakter NPC yang kelakuannya semakin agresif seiring meningkatkan nya Ievel game tersebut. Kata kunci: games, non player character, interaction, edugames, multi — agent

    Virtual Power Plant Concepts for Ancillary Market - Demonstration, Development, and Validation

    Get PDF
    The increased penetration of distributed energy resources and renewables open up issues in power systems as a whole. Chapter 1 discusses these issues, and highlights the literature solutions. The concept of VPP is highlighted, different options are explored, and the use of VPP is motivated. The chapter further discusses different ancillary services, with both technical and market perspectives. It makes a clear demarcation amongst transmission and distribution level VPPs, and their economic and technical aspects. Different components within VPP are also highlighted in this chapter. The models of VPP, based on SGAM, are presented in Chapter 2, with detailed test cases. The models characterize VPP as an aggregator at TSO, VPP as DER-Aggregator/DERMS at DSO-DMS, and VPP as business case for flexibility to DSO-DMS. It includes the VPP actors, their characteristics, and a compact architecture based on SGAM. It further splits VPP participants in different software: MATLAB/Simulink, DIgSILENT, and LabVIEW for defined test cases. These are further elaborated in detail in the next chapters, and all are discussed w.r.t regulatory, technical, and economic aspects. Chapter 3 co-simulates VPP-DERMS (Distributed Energy Resource Management System as a Virtual Power Plant) based customers' DR through LabVIEW. It develops interface to customers' meters for reactive power visibility, and then develops a HMI and recording tool at VPP controller. The performance of the tool is analyzed in the chapter, which is in fact the modeling of Modbus based customers' interaction for reactive power. Chapter 4 co-simulates effects of DER on a distribution grid in DIgSILENT. A distribution grid is modelled in DIgSILENT, and then DERs are added to the network. Node voltages and line loading are analyzed in the absence and presence of unplanned DERs. Then the network is seen from two perspectives \u2013 flexibility that can be provided to TSO with STATCOM at transmission node, and flexibility that can be provided to DSO with planned DGs at distribution node. Chapter 5 co-simulates storage model in MATLAB/Simulink. It starts with the techno-economic analysis of potential storage systems, and then to realize the storage model for simulation. The model of selected storage system is implemented in MATLAB/Simulink, and then a explicit service test case is developed within VPP-aggregator to analyze the flexibility margin by storage. Next step is the integration of these co-simulators within different service platform levels. The objective of Chapter 6 is to develop an interface amongst co-simulators to simulate the VPP chain. At first step, the co-simulators are realized within tags: wind farm tags are created in DIgSILENT, customers' based tags are built in LabVIEW, and storage tags are located inside MATLAB/Simulink. Then communication amongst the co-interfaces is done by the development of Matrikon OPC server and explorer platform. The master platform is implemented in LabVIEW-RT tool. Then test cases are defined for the validation of platform, which is performed in Chapter 7. Chapter 7 is dedicated to the validation of the formulated VPPs \u2013 DERMS, business VPP, and aggregator. DERMS based model is validated within DIgSILENT, by using a portion of the Italian distribution grid. Aggregator based model is validated within DIgSILENT, by using the IEEE 9 bus transmission test model. Business VPP model is validated using IEC 61850 compliant feature of DIgSILENT for the same distribution grid in a translational manner. The validated VPP is used as an application for power system reliability, which is presented in Chapter 8. It describes the conventional schemes for power system protection, and the issues with DER penetration. It then models a VPP, and verifies its functionality for power system protection. Chapter 9 concludes the thesis
    corecore