4 research outputs found

    Custom Integrated Circuit Design for Portable Ultrasound Scanners

    Get PDF

    Design of Intellectual Property-Based Hardware Blocks Integrable with Embedded RISC Processors

    Get PDF
    The main focus of this thesis is to research methods, architecture, and implementation of hardware acceleration for a Reduced Instruction Set Computer (RISC) platform. The target platform is a single-core general-purpose embedded processor (the COFFEE core) which was developed by our group at Tampere University of Technology. The COFFEE core alone cannot meet the requirements of the modern applications due to the lack of several components of which the Memory Management Unit (MMU) is one of the prominent ones. Since the MMU is one of the main requirements of today’s processors, COFFEE with no MMU was not able to run an operating system. In the design of the MMU, we employed two additional micro-Translation-Lookaside Buffers (TLBs) to speed up the translation process, as well as minimizing congestions of the data/instruction address translations with a unified TLB. The MMU is tightly-coupled with the COFFEE RISC core through the Peripheral Control Block (PCB) interface of the core. The hardware implementation, alongside some optimization techniques and post synthesis results are presented, as well.Another intention of this work is to prepare a reconfigurable platform to send and receive data packets of the next generation wireless communications. Hence, we will further discuss a recently emerged wireless modulation technique known as Non-Contiguous Orthogonal Frequency Division Multiplexing (NC-OFDM), a promising technique to alleviate spectrum scarcity problem. However, one of the primary concerns in such systems is the synchronization. To that end, we developed a reconfigurable hardware component to perform as a synchronizer. The developed module exploits Partial Reconfiguration (PR) feature in order to reconfigure itself. Eventually, we will come up with several architectural choices for systems with different limiting factors such as power consumption, operating frequency, and silicon area. The synchronizer can be loosely-coupled via one of the available co-processor slots of the target processor, the COFFEE RISC core.In addition, we are willing to improve the versatility of the COFFEE core even in industrial use cases. Hence, we developed a reconfigurable hardware component capable of operating in the Controller Area Network (CAN) protocol. In the first step of this implementation, we mainly concentrate on receiving, decoding, and extracting the data segment of a CAN-based packet. Moreover, this hardware block can reconfigure itself on-the-fly to operate on different data frames. More details regarding hardware implementation issues, as well as post synthesis results are also presented. The CAN module is loosely-coupled with the COFFEE RISC processor through one of the available co-processor block

    Intelligent Circuits and Systems

    Get PDF
    ICICS-2020 is the third conference initiated by the School of Electronics and Electrical Engineering at Lovely Professional University that explored recent innovations of researchers working for the development of smart and green technologies in the fields of Energy, Electronics, Communications, Computers, and Control. ICICS provides innovators to identify new opportunities for the social and economic benefits of society.  This conference bridges the gap between academics and R&D institutions, social visionaries, and experts from all strata of society to present their ongoing research activities and foster research relations between them. It provides opportunities for the exchange of new ideas, applications, and experiences in the field of smart technologies and finding global partners for future collaboration. The ICICS-2020 was conducted in two broad categories, Intelligent Circuits & Intelligent Systems and Emerging Technologies in Electrical Engineering
    corecore