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Abstract

This thesis presents time-predictable inter-core communication on a multicore
platform with a time-division multiplexing (TDM) network-on-chip (NoC) for
hard real-time systems. The thesis is structured as a collection of papers that
contribute within the areas of: reconfigurable TDM NoCs, static TDM schedul-
ing, and time-predictable inter-core communication.

More specifically, the work presented in this thesis investigates the inter-
action between hardware and software involved in time-predictable inter-core
communication on the multicore platform. The thesis presents: a new gen-
eration of the Argo NoC network interface (NI) that supports instantaneous
reconfiguration, a TDM traffic scheduler that generates virtual circuit (VC)
configurations for the Argo NoC, and software functions for two types of inter-
core communication.

The new generation of the Argo NoC adds the capability of instantaneously
reconfiguring VCs and it addresses the identified shortcomings of the previous
generation. The VCs provide the guaranteed bandwidth and latency required to
implement time-predictable inter-core communication on top of the Argo NoC.
This new Argo generation is, in terms of hardware, less than half the size of NoCs
that provide similar functionalities and it offers a higher degree of flexibility to
the application programmer.

The developed TDM scheduler supports a generic TDM NoC and custom
parameterizable communication patterns. These communication patterns allow
the application programmer to generate schedules that provide a set of VCs that
efficiently uses the hardware resources. The TDM scheduler also shows better
results, in terms of TDM period, compared to previous state-of-the-art TDM
schedulers. Furthermore, we provide a description of how a communication
pattern can be optimized in terms of shortening the TDM period.

The thesis identifies two types of inter-core communication that are com-
monly used in real-time systems: message passing and state-based communica-
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tion. We implement message passing as a circular buffer with the data transfer
through the NoC. The worst-case execution time (WCET) of the send and re-
ceive functions of our implementation is not dependent on the message size.
We also implement five algorithms for state-based communication and analyze
them in terms of the WCET and worst-case communication delay. The five
algorithms each have scenarios where they are better than the others.

This thesis shows in detail how time-predictable inter-core communication
can be implemented in an efficient way, from the low-level hardware to the
high-level software functions.



Resumé

Denne afhandling præsentere tidsforudsigelig kommunikation mellem processor
kerner på en multikerne platform med et time-division multiplexing (TDM)
network-on-chip (NoC) for hårde tidstro systemer. Afhandlingen er struktureret
som en samling af videnskabelige artikler, der bidrager inden for områderne:
rekonfigurerbare TDM NoC’er, statiske TDM planlæggere og tidsforudsigelig
kommunikation mellem processor kerner.

Mere specifikt udforsker denne afhandling sammenspillet mellem hardwa-
re og software der er involveret i tidsforudsigelig kommunikation mellem pro-
cessor kerner på en multikerne platform. Denne afhandling præsenterer: en ny
generation af Argo NoC’ets network interface (NI) der supporterer øjeblikkelig
re-konfigurering, en TDM trafik planlægger der generere virtual circuit (VC)
konfigurationer for Argo NoC’et og software funktioner for to typer af kommu-
nikation mellem processor kerner.

Den nye generation af Argo NoC’et tilføjer funktionalitet til øjeblikkeligt
re-konfigurering af VCs og den adresserer de mangler vi har identificeret ved
den tidligere generation. VC’erne sikre de garanteret båndbredde og latenstids
krav for at implementere tidsforudsigelig kommunikation mellem kerner på Argo
NoC’et. Denne nye generation af Argo er, i forhold til hardware størrelse, halvt
så lille i forhold til NoC’er med lignende funktionalitet. Endvidere tilbyder den
nye generation et højere niveau af fleksibilitet til applikations programmøren.

Den udviklede TDM planlægger supporterer en generisk TDM NoC og
brugertilpasset kommunikationsmønstre. Disse kommunikationsmønstre tillader
applikations programmøren at generere planer hvor VC’er gør effektivt brug af
hardware ressourcerne. TDM planlæggeren kan generere planer med kortere
perioder sammenlignet med tidligere publicerede TDM planlæggere. Ydermere
giver vi en beskrivelse af hvordan et kommunikations mønster kan optimeres
med hensyn til forkortelse af TDM perioden.
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Denne afhandling identificere to typer af kommunikation mellem proces-
sor kerner der ofte bruges i tidstro systemer: message passing og tilstandsbase-
ret kommunikation. Vi implementerer message passing som en cirkulær buffer
med data overførslen gennem NoC’en. For vores implementering er worst-case
execution time (WCET) for en send og modtag funktionerne ikke afhængige af
meddelelsens størrelse. Vi implementere også fem algoritmer for tilstandsbaseret
kommunikation og analysere dem med hensyn til WCET og worst-case commu-
nication delay. De fem algoritmer har hver deres fordele i forskellige scenarier.

Denne afhandling viser i detaljen hvordan tidsforudsigelig kommunikation
mellem processor kerner kan implementeres på en effektiv måde, fra den lavni-
veau hardware til de højniveau software funktioner.
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Chapter 1

Introduction

The topic of this thesis is real-time core-to-core communication on a multicore
platform using a resource-efficient time-division multiplexing (TDM) network-
on-chip (NoC). The thesis contributes in three areas: reconfigurable time-division
multiplexing networks-on-chip, static time-division multiplexing scheduling, and
time-predictable inter-core communication. The contributions of the three re-
search areas are closely related, because they build on top of one another. The
TDM NoC uses the TDM schedules generated by the TDM scheduler to provide
guaranteed service (GS) of the NoC data transfers. The GS of the NoC data
transfers enable the time-predictable inter-core communication. This chapter
presents a motivation of this thesis, the contributions of the author in more
detail, and an introduction of the research topics of the remaining chapters of
the thesis.

1.1 Motivation

A real-time system is a computing system that is required to deliver a correct
response within a predefined time window, often referred to as the deadline.
A response that arrives after the deadline, even if it is functionally correct,
can lead to failure in the system. If a failure in the systems can have catas-
trophic consequences, such as loss of human life or damage to the environment,
then the real-time system is also a safety-critical system. Therefore, the time-
predictability of a real-time system is of paramount importance to ensure correct
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behavior of the system. To a large extend, the time-predictability of a real-time
application depends on the hardware platform that it is executes on.

After the processor clock frequency stopped increasing in the mid 2000’s
due to power density limitations, general-purpose processors started moving
into the multicore era [11], to continue the increase in overall computational
power of a single chip. The adoption of multi/many-core processors in the real-
time systems industry is more conservative, but the embedded processors for
such real-time systems are also moving into the multi/many-core era [24]. As
the development and fabrication costs of application-specific integrated circuits
continue to increase, application-specific platforms are only feasible for a few
ultra high volume applications. Therefore, we are interested in domain-specific
platforms that can support a range of real-time applications.

In recent years, we have seen new commercial domain-specific multi/many-
core platforms that also target the real-time domain, such as LEON4 (Gaisler-
flex/ESA) [1], P4080 (Freescale) [3], and MPPA-256 (Kalray) [6]. The worst-
case off-chip memory access timings of the LEON4 is difficult to calculate[10],
because they depend on the behavior of other cores in the system. This makes
the LEON4 challenging to use in a hard real-time system. The P4080 is an
8 core platform with the CoreNet fabric interconnecting the 8 cores and the
MPPA-256 has 16 clusters of 16 processing cores. Only few hardware details on
the P4080 CoreNet fabric are published and for many-core platforms real-time
applications need a time-predictable NoC. The NoC of the MPPA-256 has a
large hardware size, due to the extensive use of buffers in the routers. We are
therefore interested in investigating the resource-efficiency of time-predictable
inter-core communication.

The time-predictable NoC that interconnects the cores is one of the chal-
lenges of designing a domain-specific many-core platform for real-time systems.
The ability to set up GS communication channels is what distinguishes time-
predictable NoCs from general-purpose NoCs. A GS communication channel has
a guaranteed minimum bandwidth and maximum latency. Implementing GS in
NoCs using TDM results in a simple and resource-efficient architecture [12].
TDM avoids buffering in the routers, which is for most NoC architectures the
largest contributer towards the area. Alternatives of implementing GS in NoCs
are virtual-channels, rate control and link priorities as used by Mango [5] or
rate control, buffers and network calculus as used by Kalray MPPA-256 [7].
The Mango NoC and the MPPA-256 NoC have large hardware size and the
Æthereal NoC is designed to be application specific [13]. Therefore, we focus
on TDM NoCs that provide a high level of flexibility to support an application
domain in a resource-efficient way.

The research field of time-predictable NoC architectures, for which we can
calculate hard guarantees on latency and bandwidth of inter-core communica-
tion at the application level, is still in its infancy and the design space needs to be
explored further. Bjerregaard and Mahadevan [4] divides the research on NoCs
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into four layers: link layer, network layer, network adapter layer, and system
layer. Previous research has targeted NoCs at the network interface layer for
real-time systems [33, 13, 23, 29, 32]. To a large extent this research has mainly
focused on providing complete solutions, for end-to-end GS communication, di-
rectly in the NoC hardware. We want to show that, through a holistic view, a
NoC that provides primitive functionality to the software application program-
ing interface (API), results in high flexibility and high resource-efficiency.

The discussion of providing primitives and not solutions in NoCs, can be
seen as an analogy to the discussion from the 1980’s, where researchers were
discussing the instruction set architecture (ISA) of the processor paradigms:
complex instruction set computer (CISC) and reduced instruction set computer
(RISC). The discussion focused on which processor instructions that a proces-
sor should provide to the programmer/compiler. An architecture following the
CISC paradigm had a large number of instructions that could execute complex
operations in a single instruction. This type of architecture results in dense
code, but also, as the name hints, a complex hardware. An architecture fol-
lowing the RISC paradigm only implements the instructions that make up the
majority of the execution time of most programs [26] and the complex opera-
tions are then implemented using multiple primitive instructions. In the 1980’s,
a major advantage of the RISC computer was that the reduction in supported
instructions reduced the size of the processor enough to make it fit on a single
die. The increased level of integration was the main contributing factor to the
increased performance of the RISC processors.

As opposed to most of the ISAs of the 1980’s that could be programmed in
C, the communication interfaces offered to applications by current state-of-the-
art NoC architectures have not yet converged into a common set of operations.
Therefore, it is difficult to make parallel application that make explicit use of the
NoC and can run on a wide range of platforms without modifications. For this
reason, it is not straight forward to make a quantitative analysis to determine
how to split functionality between hardware and software. To increase the level
of integration, we follow the mindset of providing primitives and not solutions,
which reduces the area of the NoC hardware and makes room for larger on-chip
memories or a larger number of processing cores.

With a focus on flexibility and resource-efficiency this thesis addresses the
time-predictability of core-to-core communication crossing the hardware/software
interface in each core. In the terminology of Bjerregaard and Mahadevan [4], we
investigate the communication stack from the system layer functions in the API
down to the hardware components of the network interface layer that sends data
packets through the network of routers. We base our work on the T-CREST
platform and on the work of Evangelia Kasapaki [17], who focused on the net-
work mechanics and asynchronous routers of the T-CREST platform. Through
the gained insight we develop a second generation of the NoC hardware and
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investigate how software can implement a time-predictable API on-top of the
hardware.

Our goal is to provide cheap and flexible solutions to the application pro-
grammer using hardware that offers primitive functions. We compare our solu-
tion to existing architectures of the Æthereal family [13, 12, 31] of NoCs that
provide end-to-end communication ports in hardware. We address the resource-
efficiency by designing our NoC, and mainly the network interface (NI) of our
NoC, only to provide communication primitives to the processor and not com-
plete solutions. We use these communication primitives for designing and imple-
menting time-predictable core-to-core communication in an effective and flexible
manner.

We have let the three following observations guide our work. First, there
are multiple inter-core communication styles that have different requirements to
the lower level communication functions. Some communication styles are not
coherent with the traditional streaming communications that are implemented
by many NoCs. To support as many communication styles as possible, we need
a flexible hardware platform with functional primitives that are independent of
the higher level semantics.

Second, the problem of creating a TDM schedule can be modeled as a
multi-commodity integer flow problem, which is known to be NP-complete [8].
Therefore, for most cases it is not possible to find an optimal TDM schedule, but
we can optimize the solution by increasing the flexibility of the TDM schedule,
such that the schedule fits the requirements as precise as possible.

Third, real-time applications can have multiple modes of operation, where
each mode executes a set of tasks that may or may not overlap with the set of
tasks of the other modes. Each set of tasks may have different communication
requirements and the union of the communication requirements of all modes
may not be supported in a single configuration of the GS channels in the NoC.
In case the communication requirements of all modes are not supported in a
single NoC configuration, the NoC must support run-time reconfiguration of
the GS communication channels.

1.2 Contributions and Organization
This section outlines the contributions of the author, based on the previous
observations, in three research areas: Reconfigurable time-division multiplexing
network-on-chip, static time-division multiplexing scheduling and time-predictable
inter-core communication. For each area we state which publications contribute
in this area and how they tie together.

• Reconfigurable time-division multiplexing network-on-chip
Paper A – An area-efficient TDM NoC supporting reconfiguration for
mode changes



Contributions and Organization 5

This paper outlines a new and area-efficient NI for the Argo TDMNoC [19].
The architecture of this new NI is a redesign compared to the previous
version of the NI. This redesign increases the flexibility of the hardware
and adds hardware support for reconfiguring the virtual circuits (VCs).
The method of reconfiguring VCs is faster than similar NoCs that execute
a reconfiguration incrementally, by tearing down and setting up individual
VCs.

Paper B – A resource-efficient network interface supporting low latency
reconfiguration of virtual circuits in time-division multiplexing networks-
on-chip
This paper presents a more detailed description and evaluation of the NI
that was outlined in PaperA. The paper shows how a compact schedule
representation reduces the memory requirements and how variable-length
network packets reduces the length of the TDM schedules. The new NI
also adds interrupt packets that allow cores to send interrupts to other
cores.

• Static time-division multiplexing scheduling
Paper C –A metaheuristic scheduler for time division multiplexed networks-
on-chip
This paper presents a metaheuristic TDM scheduler that can generate
TDM schedules for our TDM NoC. The TDM schedules enforce the band-
width of the VCs that an application requires. This scheduler supports the
new features of reconfiguration and variable-length packets that we intro-
duced in PaperA and PaperB. The paper also investigates how we can
reduce the period of long TDM schedules, by normalizing the bandwidth
requirements.

• Time-predictable inter-core communication
Paper D – Message passing on a time-predictable multicore processor
This paper presents the time-predictable design and implementation of
message passing on our multicore platform using the NoC for inter-core
communication. The message passing is implemented as a circular buffer,
where the receiver needs to acknowledge the received buffer elements. The
paper investigates the timing analysis of the implemented message passing
functions and of the end-to-end latency of sending a message.

Paper E – State-based communication on time-predictable multicore pro-
cessors
This paper studies five time-predictable algorithms for state-based com-
munication. The five algorithms are implemented on our multicore plat-
form using the NoC for inter-core communication. The paper analyses the
timing of the read and write functions of the five algorithms and the delay
of communicating a state value.
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This thesis is organized in 7 chapters. This chapter summarizes the work of
the thesis in the areas described above. Chapter 2 reprints PaperA. Chapter 3
reprints PaperB. Chapter 4 reprints PaperC. Chapter 5 reprints PaperD.
Chapter 6 reprints PaperE. Chapter 7 concludes the thesis.

1.3 Reconfigurable Time-division Multiplexing
Network-on-Chip

This section first describes how TDM can be used in NoCs. Second, the section
introduces the Argo NoC architecture [30, 18, 19] (Argo 1.0) that the work of
this thesis builds on. The Argo 1.0 implements TDM very efficiently, but lacks
a number of important features to support real-time applications. Third, the
section outlines the new generation of the Argo NoC architecture (Argo 2.0) that
is presented in PaperA and PaperB.

1.3.1 Time-Division Multiplexing in Networks-on-Chip
Examples of previous published NoCs that support TDM for routing and static
arbitration are Nostrum [25] and the Æthereal family [12, 14, 31]. In a pure
TDM NoC that does not support best effort traffic, there is no need for buffers
in the routers and no logic to perform dynamic arbitration. This results in
simple router hardware and a low network traversal latency of network packets.
TDM is not work-conserving and a network packet waits in the source NI until
there is an allocated time slot towards its destination. The waiting time, until
an allocated time slot, can be much larger than the network traversal time of
the packet. Nevertheless, Puffitsch et al. [27] show that the latency guarantees
of TDM are generally lower than the latency guarantees of network calculus.

The arbitration in TDM NoCs is implemented by controlling the injection
time and the route of network packets with a static TDM schedule. A packet is
sent in its statically allocated time slot on a statically allocated route through
the network of routers.

Figure 1.1 shows an example of what a TDM schedule is. In the example,
the communication requirements in one TDM period are for communication
channel C1, from core p0 to core p1, one packet of three time slots and for
communication channel C4, from core p0 to core p5, two packets of two time
slots. The packets of C1 can only travel on the shortest path marked as c1 in
the figure and the packets for C4 can travel on any of the three shortest paths
marked as c′4, c′′4 , or c′′′4 in the figure. A schedule of outgoing packets from core
p0 is shown at the top in Figure 1.1, where C4 is routed in c′4 and c′′4 .

TDM NoCs implement static routing using source routing or distributed
routing. Source routing stores the routing information in the NIs and places the
route that a packet shall take through the network in the header of an outgoing
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Figure 1.1: A multicore platform with a NoC and an example of a TDM sched-
ule for core p0 with two outgoing communication channels c1 and
c4. The marked route c′′′4 of c4 is not used.

packet. An advantage of source routing is that the routers have no local state
and therefore do not need to be configured or reset. Distributed routing stores
the routing information in the router. Incoming packets are routed according to
the schedule stored locally in the router and not according to a packet header.
One advantage of distributed routing is that a packet does not need to carry
the route, therefore the overhead of transmitting the route with every packet is
reduced and the bandwidth is increased. Another advantage is that the length
of the route is not limited by the number of bits in a packet header.

1.3.2 Argo 1.0

The Argo 1.0 NoC is a source routed NoC consisting of routers, links, and NIs.
Argo 1.0 uses TDM and static scheduling as arbitration of packets to guarantee
bandwidth and latency through GS channels. The Argo 1.0 NI implements data
transfers from the local scratchpad memory (SPM) of the initiating core to the
local SPM of a remote core.

The novelty of the Argo 1.0 NI is that it integrates the direct memory access
(DMA) controllers of the local processor into the NI, making the TDM schedule
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Figure 1.2: The microarchitecture of Argo 1.0.

drive the transmission of packets. Figure 1.2 shows the architecture of Argo 1.0.
In Argo 1.0, the number of clock cycles in one time slot is three. Therefore,
the TDM counter increments one every three clock cycles and indexes into the
schedule table that stores the TDM schedule. A new valid slot from the schedule
table activates the DMA controller that is specified in the TDM schedule. The
selected DMA table entry dictates the route of the network packets that it sends.
When a packet is sent, the fields of the DMA entry are updated accordingly.
Incoming packets are written directly into the SPM at the address that they
carry in the header, after they have been completely received.

Argo 1.0 has a number of shortcomings that prevent the software from ef-
ficiently using the hardware. We outline these shortcomings in the following
list. The first four shortcomings possesses research challenges and the last three
represent missing features that are solved by engineering work.

Reconfiguration Argo 1.0 lacks the hardware resources to reconfigure the length
of the TDM schedule and the TDM schedule itself without resetting all
routers and NIs. In Argo 1.0 the length of the TDM schedule cannot be
changed during run-time, because the architecture lacks a synchronized
way of changing the period length across all cores in the network.

Schedule storage To support large platforms, the number of entries in the
slot table and in the DMA table of each Argo 1.0 NI increases. In the slot
table, all time slots of a schedule are represented regardless of whether the
slots are active or not.

Header overhead The length of packets in Argo 1.0 is fixed to three words,
which is one header word and two data words. The header overhead of
33% can be prohibitive in case of large data transfers.
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Clock domain crossing through SPM If the processors attached to the Argo 1.0
NoC are operated at frequencies different from the NoC clock frequency,
the local SPM of each processor is used to bridge between the global clock
domain of the NoC and the local clock domain of each processor. In case
the NI of the NoC writes to an address in the SPM at the same time as
the processor reads from the same address, there is a risk of propagating
metastability into the processor pipeline. Argo 1.0 lacks primitives to pre-
vent the processor from reading an address that is simultaneously written
from the NoC clock domain.

Core-to-core interrupts Real-life applications often run on top of an oper-
ating systems. A multicore operating system requires the capabilities of
interrupting other cores in the platform for several reasons, such as start-
ing and stopping tasks that run on other cores. Therefore, a multicore
platform needs to implement core-to-core interrupts to efficiently support
a multicore operating system.

Pull communication Argo 1.0 only supports push communication, which is
also referred to as a remote write operation. Argo 1.0 lacks the possibil-
ity of supporting pull communication, also referred to as a remote read
operation. In systems where some nodes in the platform are hardware
accelerators or memories, pull communication is needed to read from the
memories or get the results from accelerators.

Memory allocation 64-bit granularity In Argo 1.0, the application needs
to allocate memory in the SPM in a multiple of 8 bytes and aligned to
8 byte boundaries, because this is what the network packets send. This
is due to the fact that sending and receiving a 32-bit word in every clock
cycle from the same SPM port requires the port to be 64 bits wide. In a
small embedded system this might waste valuable memory.

1.3.3 Argo 2.0
The Argo 2.0 builds on the Argo 1.0 concept of integrating DMA controllers
into the NI, using the TDM schedule to activate the DMA controller that is
allowed to send in the given time slot. In this section, we first present the
new architecture of Argo 2.0 and then in the following subsections we describe
how the shortcomings of Argo 1.0 where addressed. The major contributions
of Argo 2.0 is the addition of reconfiguration capabilities, addressing the other
shortcomings, and a more flexible implementation of the network interface.

1.3.3.1 Architecture

Argo 2.0 supports three packet formats: data packets, configuration packets and
interrupt packets. Data packets are used to move a block of data from the local



10 Introduction

Transmit module

Receive 
module

To scratchpad memory

Schedule table
T2N Route DMA idx.

S

DMA table
Active Word cnt. Write ptr. Read ptr.

S

TDM controller

S S

 FIFO Local
 FIFO Remote

R

Pkt. out

Pkt. in

M

Receive unit

Packet manager

Configuration bus

SS
Arbiter

M

M

Config. IF

A
d

dr
es

s

D
at

a

M

A
d

dr
es

s

D
at

a

IRQ unit

Pkt. len.

M

Lo
c.

 I
R

Q

R
m

t. 
IR

Q

Network interface

Config. table
High ptr. Low ptr.

S

Reconfiguration 
controller

To processor

 IRQ IF

To processor

Pkt. typeTDM counter

Figure 1.3: The architecture of the second generation Argo NoC.

SPM to the SPM of a remote core. Configuration packets are similar to data
packets, but they move a block of data from the local SPM into the tables of the
NI in a remote core. Interrupt packets are used to send an interrupt from one
core to a remote core. Each packet format consist of a 32-bit header followed
by a number of 32-bit payloads. The header consist of a 2-bit packet type, a
14-bit address and a 16-bit route.

The NI architecture of Argo 2.0, as shown in Figure 1.3, is split in two mod-
ules: one for transmitting packets and one for receiving packets. The transmit
module synchronizes the activation of DMA controllers with the TDM schedule.
The TDM controller keeps track of the current time slot and which schedule en-
try to readout next. This schedule entry contains the index into the DMA table.
The packet manager collects the information from the schedule table, the DMA
table, and the data from the SPM. From the collected information and the data,
the packet manager assembles the packet, updates the entry in the DMA table,
and sends it out to the router.

The receive module handles the incoming packets, by either writing the
payload to the local SPM or into one of the tables in the NI through the config-
uration bus. In the case that a received packet is marked as the last packet of
a data transfer, the address of the last word of that packet is stored in the IRQ
local first in first out (FIFO). In the case of an interrupt packet, the payload is
written to the address in the local SPM that is specified in the interrupt header.
Furthermore, the address of the interrupt header is written into the IRQ unit,
where it is stored in the IRQ Remote FIFO. Storing the header address in one
of the IRQ FIFOs triggers either a remote interrupt or a local interrupt in the
processor.
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Figure 1.4: A timing diagram of the reconfiguration method.

1.3.3.2 Reconfiguration

Our approach of reconfiguring the TDM schedule of the NoC is to instanta-
neously switch from one TDM schedule to another across the whole platform.
The switch to a new schedule is aligned to a TDM period boundary. This ap-
proach requires that the TDM schedule table can store the old and the new
schedule at the same time. A schedule is represented by a number of entries
in the schedule table and two pointers to the first and to the last entry of
the schedule. These two pointers are stored in the configuration table of the
transmit module.

Figure 1.4 shows a timing diagram of our reconfiguration method. To re-
configure the NoC, the master core writes the index of the schedule that the
NoC should switch to into the reconfiguration controller of the NI. On the next
schedule period boundary, the NI of the master core sends a packet to each
reconfiguration controller in the slave NIs. These configuration packets contain
the index of the configuration that all NIs should switch to and the TDM pe-
riod number when they should execute the switch. Three TDM periods after
the master core requested its NI to change the configuration of the TDM sched-
ule, the TDM schedule is switched to the new schedule synchronously across
the entire platform. This reconfiguration approach requires that the current
TDM schedule contains GS channels from the master to all slave cores. These
GS channels can be allocated exclusively to reconfiguration, if it is necessary to
avoid changing the timing of active DMA transfers from the master.

In the Æthereal family of NoCs the reconfiguration is performed by in-
crementally tearing down and setting up virtual circuits in the active TDM
schedule. That approach suffers from fragmentation in the TDM schedule and
a lengthy transition of the schedule table from one schedule to another.

In Argo 2.0 there are two scenarios in which a reconfiguration can be carried
out: one scenario is when the new TDM schedule is already in the schedule
table, the other scenario is when the new TDM schedule is not in the schedule
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Table 1.1: The worst-case reconfiguration time (WCRT) for the selection of
benchmarks.

Benchmark WCRT
FFT-1024 267
Fpppp 285
RS-dec 279
RS-enc 261
H264-720p 279
Robot 381
Sparse 135
All2all 270

Table 1.2: The worst-case schedule transmission time for the selection of
benchmarks.

Ccurr

Cnew FFT-
1024 Fpppp

RS-
dec

RS-
enc

H264-
720p RobotSparse All2-

all
FFT-1024 – 2010 1418 1270 1341 1560 1122 2229
Fpppp 2577 – 1814 1624 1716 2004 579 2862
RS-dec 2091 2088 – 1318 1398 1626 1164 2316
RS-enc 1983 1980 1396 – 1326 1548 1104 2196
H264-720p 2115 2112 1494 1338 – 1644 1176 2355
Robot 3435 3438 2422 2174 2292 – 1914 3822
Sparse 822 549 579 519 546 639 – 912
All2all 2034 2037 1431 1281 1365 1587 1137 –

table and needs to be transmitted through the NoC. We call the time to carry
out a reconfiguration for the reconfiguration time, and the time to transmit
a new schedule through the NoC for the schedule transmission time. In the
first scenario, the worst-case reconfiguration time is three times the length of
the TDM period of the currently executing schedule. In the second scenario,
the schedule transmission time is added to the reconfiguration time of the first
scenario.

We use the benchmarks of the MCSL benchmark suite [22] to evaluate the
reconfiguration times of our new architecture. Table 1.1 shows the worst-case
reconfiguration time for each schedule being the current schedule. Table 1.2
show the worst-case schedule transmission time of each schedule (columns) with
respect to the currently executing schedule (rows). It is clear that the additional
worst-case schedule transmission time is much higher than the worst-case recon-
figuration time. To reduce the occurrences of transmitting a schedule through
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Table 1.3: The schedule compression ratio of the Argo 2.0 schedule over the
Argo 1.0 schedule.

Benchmark Argo 1.0 Argo 2.0 Reduction
(entries) (entrites) (%)

FFT-1024 21 15 28.6
Fpppp 40 16 60.0
RS-dec 30 8 73.3
RS-enc 28 6 78.6
H264-720p 30 7 76.7
Robot 57 10 82.5
Sparse 9 4 55.6
All2all 18 16 11.1

the NoC it is a great advantage that as many schedules as possible fit in the
schedule table.

1.3.3.3 Schedule Storage and Header Overhead

We can make the representation of a schedule more dense by only representing
active time slots. An active time slot is a slot that represents the event of
transmitting a packet header. We avoid representing empty slots in the schedule
table and slots that represent the payload cycles, by storing the time between
packet headers in the T2N field and the length of a packet in the pkt. len. field
of each entry, respectively.

Encoding the length of a packet in the pkt. len. field allows us to send
packets of variable length. Longer packets reduces the overhead of transmitting
headers and increases the time between packet headers. Table 1.3 shows the
compression ratio between Argo 2.0 and Argo 1.0 for each benchmark schedule.
We observe that the number of entries for most of the benchmarks are reduced
by more than 50%.

Our compact schedule representation can also be used with the incremental
approach of reconfiguration that is used by the Æthereal family of NoCs. In the
compact schedule representation, the time to transmit a packet is based on
the time that the previous packet was sent plus the offset in the T2N field.
Thus, changing the T2N field in an entry in a schedule table will change the
TDM period of the active schedule. Therefore, the user can execute incremental
updates of the schedule, but must not change any of the T2N fields. This may
sound restricting, but by setting all T2N fields to three, the NI supports the
same class of schedules as the Æthereal family of NoCs. In this way, the user
can atomically update an entry in the schedule table without affecting other
entries.
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1.3.3.4 Clock Domain Crossing Through SPM

When a processor continuously reads a memory address in the SPM to detect
whether it has received data through the NoC, the problem of reading while
writing can occur. The effect of this problem can be eliminated by creating a
mechanism where the reader can detect if it received the expected data before
it reads from that address in the SPM.

Our mechanism to prevent the problem is to trigger an interrupt when the
last data packet of a DMA transfer arrives in the NI. The last data packet
triggers an interrupt after the NI has written the last data of a DMA transfer
into the destination SPM. To prevent an incoming interrupt from interfering
with an executing task, the processor should mask the interrupt when it is not
trying to receive a message. This feature allows the sender and receiver to
coordinate at the data block level and avoid metastability. To identify the VC
that caused the interrupt, we store the address of the last data word written
into the SPM in a FIFO queue.

1.3.3.5 Addressing the Remaining Shortcomings

We support core-to-core interrupt capabilities by adding an interrupt packet
format. The interrupt packet contains 32 bits of data that can be used as an
interrupt identifier, a function pointer or some kind of command. The 32-bit
data word is stored at the address specified in the interrupt packet header and
that address is pushed into the IRQ FIFO for remote interrupts.

We implement pull communication or remote reads by sending a configu-
ration packet that writes into the DMA table of the NI from where we want to
read. The configuration packet sets up a DMA transfer of the data block that
we want to read from SPM of the remote NI. The worst-case latency of a re-
mote read consist of the worst-case of two remote writes. One remote write with
64-bit payload to setup the DMA transfer in the remote core, and one remote
write transferring the desired data from the remote core to the local core.

In Argo 2.0, we use an SPM from which we can read or write a 32-bit or a
64-bit word in each clock cycle aligned to a 32-bit address. With this SPM we
can send and receive packets with any number of 32-bit payload words, thereby
reducing the minimum amount of allocatable memory to 32 bits.

1.4 Static Scheduling in Time-Division Multi-
plexing Networks-on-Chip

This section introduces: the application and platform model that our TDM
scheduler uses, the scheduling algorithm that schedules the packets, and two
features of the scheduler that improve the flexibility and performance of the
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Figure 1.5: The mapping of an application onto a multi-core platform from a
task graph of an application through a core communication graph
to a multi-core platform.

generated schedules. This section outlines PaperC, but work performed after
the publication of PaperC is also presented here. In PaperC the numbers
of the TDM period are in time slots, where a single time slot is 3 clock cycles.
Whereas, the numbers in the other papers are in clock cycles.

1.4.1 Application and Platform Model

A real-time application that runs on a multicore platform has requirements to
the communication bandwidth between the communicating cores. In a NoC for
real-time systems these bandwidth requirements are setup as unidirectional GS
communication channels, with guarantees on the bandwidth and latency.

We assume that an application can be represented as a task graph, as shown
in Figure 1.5, where the nodes are the tasks and the edges are the unidirectional
bandwidth requirements between the tasks. Furthermore, we assume that tasks



16 Introduction

(a) Examples of topologies that are supported
by our scheduler. The links can be unidi-
rectional or bidirectional and each node is
connected to one IP.

(b) An example of the abstract RTL view, as-
sumed by our scheduler, of a NoC with
routers of three pipeline stages. The
dashed lines encapsulate a router.

Figure 1.6: The supported platform model of our scheduler at the node level
and at the register transfer level (RTL).

are statically mapped to processing cores. We call this mapping a core commu-
nication graph. The task of the scheduler is to map the bandwidth requirements
of the core communication graph onto the NoC with a TDM schedule.

The bandwidth requirements of an application are in MB/s. The scheduler
needs to know how many NoC packets that it needs to schedule within one TDM
period for each channel. The scheduler needs the bandwidth requirements in
MB/s converted to bandwidth requirements in number of NoC packets per TDM
period.

We model our platform as a 2 dimensional array of nodes with possible
connections between the edges to allow topologies with rings, such as a torus.
Furthermore, we do not require that all nodes are present in the 2 dimensional
array, to allow the scheduler to support irregular NoC topologies. Figure 1.6a
shows three examples of topologies that are supported by our scheduler: a mesh
network, a torus network, and an irregular custom network. Each router can
connect to one processing core or an intellectual property (IP) and to four other
routers. We assume that all routers have the same pipeline depth, where no
packets traverse a router faster than others, and that individual links can have
arbitrary pipeline depths. These assumptions can be relaxed by assuming that
the pipeline depth of routers is one and assigning the remaining pipeline stages
of each router to its incoming links, so that any non-zero pipeline depth of
routers is possible.

Figure 1.6b shows an example of an abstract register transfer level (RTL)
view of a network with routers of three pipeline stages and link of zero pipeline
stages. The crossbar in the routers are the only branching points. The number
of pipeline stages between each router can be configured, but packets are only
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routed on a path between the source and destination, with the minimum number
of pipeline registers. This RTL model is generic and it only assumes that routers
and links are bufferless, but makes no assumptions of the router and link pipeline
depth. We expect that this abstract model will fit most NoCs that use TDM.
Scheduling at the level of single pipeline stages allows us to schedule packets with
arbitrary length on platforms where routers and links have arbitrary pipeline
depth. On the other hand, if this low level scheduling is not needed and the
length of the packets is a multiple of the pipeline depth of the routers, the user
can model the pipeline depth of the routers as a single pipeline stage in the
network model.

1.4.2 The Scheduling Algorithm

Besides fulfilling the bandwidth requirements, a valid schedule is required to:
ensure in-order arrival of packets, guarantee that no packets collide, and prevent
deadlocks from occurring. Our scheduler ensures that all packets of a communi-
cation channel arrives at their destination in the same order as they were sent,
by restricting packets only to travel on shortest paths. Our scheduler allocates
a sequence of consecutive links from the source to the sink, only if the links
are available, so there can be no collisions of packets in the generated schedule.
Freedom of deadlocks is trivially obtained, because there is no flow control in
the network, thus no packets can block other packets.

Our scheduling algorithm has two phases. Phase one is an all-pair shortest
path search that finds all possible packet routes, for any combination of source
and sink nodes. Phase two is the allocation of routing resources to communi-
cation channels. The routing resources are links and pipeline registers that are
divided in time slots. In one time slot, one word of a NoC packet can traverse
one link and the following register. Our algorithm allocates all the required com-
munication channels in a graph that is a time expansion of the platform. The
graph is expanded in time to as many time slots as the bandwidth requirements
dictate. The depth of the pipelines between routers are modeled by connecting
the outgoing edges to the neighboring routers in as many time slots later as
the pipeline to the router dictates. Therefore, the complexity of the routing
problem does not changes with the pipeline depth in the platform model.

The allocation of routing resources is done in an iterative approach. First, a
greedy algorithm generates a valid solution and then that solution is optimized
using a metaheuristic algorithm until a termination criterion is satisfied, in this
case time. The scheduler implements two metaheuristic algorithms: greedy
randomized adaptive search procedure (GRASP) [9] and adaptive large neigh-
borhood search (ALNS) [28]. The user can select which metaheuristic to use
and for how long to run it or just run the greedy algorithm once.
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Figure 1.7: The TDM period length of five of the MCSL benchmarks, as a
function of the normalization factor.

1.4.3 Bandwidth Normalization

A real application specifies its bandwidth requirements in MB/s, while a TDM
schedule is generated with a number of time slots in a TDM period. So the
scheduler needs the requirements in MB/s converted to a number of network
packets per TDM period. The requirements of each communication channel
in the core communication graph can be converted to a number of network
packets by normalizing with a common factor and assigning at least one packet
to a communication channel.

The common factor is bound by the highest and lowest bandwidth require-
ments of the core communication graph. Normalizing to the lowest bandwidth
requirement results in a communication pattern where the bandwidth ratio of
the highest and lowest bandwidth requirements are intact. This normalization
can lead to a high number of network packets within one TDM period if the
bandwidth ratio, between the lowest and highest bandwidth requirements, is
high.

Normalizing to the highest bandwidth requirement results in a communi-
cation pattern where all bandwidth requirements are one, the least possible.
This normalization can lead to a TDM period that does not provide the desired
bandwidth.

To satisfying the bandwidth requirements with as few TDM slots as pos-
sible, we investigate how the guaranteed bandwidth varies as we increase the
normalization factor from the lowest bandwidth requirement. Figure 1.7 shows
the TDM period length of five benchmark applications as a function of the nor-
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Benchmark Fixed-len. pkt. Var.-len. pkt.
(cc) (cc) (%)

FFT-1024 78 74 5
Fpppp 120 95 21
RS-dec 92 77 16
RS-enc 86 73 15
H264-720p 92 78 15
Robot 171 127 26
Sparse 30 30 0
All2all 75 75 0

Table 1.4: Reduction (%) of TDM period in clock cycles (cc) due to variable-
length packets.

malization factor. If the TDM period scales down inversely proportional to the
normalization factor, then the highest bandwidth requirements of a communica-
tion channel are maintained. In Figure 1.7, the dashed lines represent the linear
scale down where the bandwidth is maintained. Increasing the normalization
factor while the TDM period scales down along the dashed line does not reduce
the bandwidth. The user can allow a decrease in the provided bandwidth com-
pared to the dashed line in case the TDM period is too long to be implemented
in a practical system.

1.4.4 Variable-Length Packets

As mentioned in Section 1.3 the new generation of the Argo NoC supports
variable-length packets, by using the compact schedule representation. Longer
packets reduce the overhead of transmitting packet headers, by sending fewer
and longer packets. PaperB shows how much the scheduler can reduce the
TDM periods of the MCSL benchmarks by allowing variable-length packets.
Table 1.4 shows the TDM period reductions in clock cycles due to variable-
length packets. In percent, the TDM period reduction is equal to the increase
in bandwidth.

The largest TDM period reductions occur for the Fpppp and the Robot
benchmarks. These benchmarks have a few cores that have high bandwidth
requirements and the TDM period reduction is due to the reduction in header
overhead of these high bandwidth requirements.
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1.5 Time-Predictable Inter-Core Communication
This section gives an overview of the topics from PaperD and PaperE, by
presenting the time-predictable inter-core communication that executes on the
multicore platform using the NoC to transfer data between cores.

1.5.1 Communication in Real-time Systems

Communication between the processes of a parallel application can in the source
code be specified implicitly or explicitly. Implicit communication is when pro-
cesses exchange data in a way that is not directly visible from the source code.
This could be through a shared data structure, where the processes communi-
cate by reading and writing to the same memory address. Explicit communi-
cation is when processes exchange data in a way that is visible from the source
code. This could be through a unidirectional communication channel that is
explicitly accessed in the source code by a send or receive primitive. Examples
of languages or programming models that use explicit communication are Kahn
process networks [16], communicating sequential processes [15], and synchronous
dataflow [21].

Explicit communication is the required communication style between par-
titions, also referred to as processes, in the ARINC (Aeronautical Radio, Incor-
porated) [2] 653 specification. Explicit communication has different semantics.
The ARINC standard specifies two types of explicit communication between par-
titions: queuing communication and sampling communication. Queuing com-
munication is as the name suggests communication through a queue, meaning
that the consumer needs to consume all messages that are produced by the pro-
ducer. This type of communication is generally referred to as message passing,
which we will use throughout the thesis. Sampling communication means that
the producer and consumer communicates through a single sample that is up-
dated atomically, such that the consumer does not need to read all values that
are produced, but only reads the newest one. The sampling communication
values are also referred to as state messages [20], so we use the term state-based
communication.

A time-predictable platform must provide end-to-end worst-case latencies
of messages to an application running on the platform. As we are concerned with
domain-specific platforms that support a wide range of applications, we require
the platform to provide a software interface with communication primitives that
can be statically analyzed.

1.5.2 Message Passing

If two processes communicate through a message queue, the consumer needs to
consume all messages that are produced. Therefore, the maximum frequency
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Figure 1.8: The memory layout of a message queue with four elements.

at which the producer produces messages must be lower than the worst-case
frequency, i.e., the minimum frequency, at which the consumer consumes mes-
sages.

To implement a message queue, we need to move messages from the local
SPM of the sender to the local SPM of the receiver. These messages can be
moved through the NoC from the sender to the receiver in two ways: the sender
pushes the messages to the receiver or the receiver pulls the messages from the
sender.

We have implemented the message queue as a circular buffer in the receiver
with the sender pushing messages into the circular buffer. The receiver polls
to check whether it has received a message. To avoid unnecessary copying
of data, the receiver operates on the head of the message queue. When the
receiver is done with the current head of the message queue, the receiver sends an
acknowledgment to the sender, indicating that the buffer element is again free.
The acknowledgment count is the total number of messages that the receiver
has acknowledged since the queue was set up. The sender compares the number
of messages that the receiver acknowledged, with the number of messages that
the sender sent since the queue was set up. This difference is the fill level of the
message queue in the receiver.

To overlap communication and computation in the sender, we implement
double buffering at the sender side, such that the sender can write data of a new
message while the NI is transmitting the previous message. Figure 1.8 shows
the memory layout of the message queue in a situation where the producer is
writing a new message, while the NI of the producer is transferring the previous
message. On the other side, the consumer has acknowledged a single message
and is reading the new head of the queue.
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With the new features of Argo 2.0, the receiver receives an interrupt when a
transfer has completed. Therefore, the receiver can choose to disable interrupts
and then poll the pending interrupt register to check if a message has arrived.
When the receiver detects the interrupt, the receiver can read out the address
of the last written word of the transfer to verify that the interrupt came from
the correct VC. This method avoids reading memory locations that might be
written at the same time by an incoming network packet.

The worst-case execution time (WCET) of sending or receiving a message,
as seen from the processing core, is independent of the message size, because
the copying or transferring of the message is done by the NI in parallel with
execution of the processing core. The transfer time of the message through the
NoC depends on the bandwidth of the communication channel that is allocated
towards the destination.

1.5.3 State-Based Communication
If two processes communicate through state-based communication, the reader
must always read the newest completely written state value. A write or read of
the newest state value must be executed atomically, such that the reader does
not see a mix of an old and a new value.

We have implemented five algorithms for state-based communication and
evaluated their WCET and their worst-case communication delay (WCCD). The
first algorithm has a single shared buffer that is protected by a lock. The writer
and reader acquire the lock to copy the full state value to or from the buffer.
The critical section of the writer contains the transfer of the whole state value
through the NoC and the critical section of the reader contains the copying of
the whole state value from the local SPM.

The second and third algorithm use two shared buffers protected by a lock.
In the second algorithm, the writer acquires the lock to update which buffer
contains the newest state value and the reader acquires the lock to read the
entire state value. The critical section of the writer only contains the updating
of which buffer contains the newest state value and the critical section of the
reader still contains copying the whole state value.

In the third algorithm, the writer acquires the lock to transfer the entire
state value to the reader and the reader acquires the lock to get the buffer index
with the newest state value and to update which buffer it is reading. The critical
section of the writer contains the transfer of the whole state value through the
NoC and the critical section of the reader contains the updating of which state
value it is reading.

The fourth algorithm use three shared buffers protected by a lock. The
writer acquires the lock to update which buffer contains the newest state value
and the reader acquires the lock to update which buffer it is reading. The
critical section of the writer only contains the updating of which state value
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Figure 1.9: The memory layout of state-based communication.

is the newest and the critical section of the reader only contains the updating
of which state value it is reading. Figure 1.9 shows the memory layout of the
protocol with three shared buffers and a lock.

The fifth algorithm uses a message queue, where the reader dequeues all
the elements and only keeps the newest state value. We used the message queue
that we implemented for the message passing. This protocol requires that the
number of elements in the message queue is larger than the ratio of the writing
frequency over the reading frequency, this is to ensure that there are always free
buffers in the queue.

For the four algorithms that use a lock on the Argo 2.0 hardware, the reader
does not need a local interrupt when a data transfer has completed, because the
mutual exclusion is enforced by the lock. Therefore, the writer setup data
transfers via the NoC that do not trigger a local interrupt at the reader. For
the algorithm that uses the message passing queue, the Argo 2.0 features are
used as described in the previous section.

The timing analysis of the five algorithms show that they each have their
advantages and disadvantages and out perform the other algorithms depending
on which performance metric is more valued. Most remarkably, the highest
WCET of the write and read functions do not result in the longest WCCD from
one core to another.
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Abstract
This paper presents an area-efficient time-division-multiplexing (TDM)
network-on-chip (NoC) intended for use in a multicore platform for hard
real-time systems. In such a platform, a mode change at the application
level requires the tear-down and set-up of some virtual circuits without
affecting the virtual circuits that persist across the mode change. Our
NoC supports such reconfiguration in a very efficient way, using the same
resources that are used for transmission of regular data. We evaluate the
presented NoC in terms of worst-case reconfiguration time, hardware
cost, and maximum operating frequency. The results show that the
hardware cost for an FPGA implementation of our architecture is a
factor of 2.2 to 3.9 times smaller than other NoCs with reconfiguration
functionalities, and that the worst-case time for a reconfiguration is
shorter or comparable to those NoCs.
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2.1 Introduction

Packet-switched networks-on-chips (NoCs) have become the preferred paradigm
for interconnecting the many cores (processors, hardware accelerators, etc.)
found in complex application-specific multi-processor systems-on-chip [4, 1].

Hard real-time multicore applications rely on the guaranteed-service (GS)
of the NoC, in terms of bandwidth and latency for end-to-end virtual circuits,
in order to guarantee correct timing behavior. This class of applications often
has multiple modes of operations that they switch between during normal oper-
ation. A mode change consists of a change of a subset of the executing software
tasks and it can be triggered as part of the normal operation of the system or
in response to external events [3, p.340]. To support applications that change
between modes, the NoC must be able to reconfigure the GS connections dur-
ing run-time, since a single configuration of the time-predictable NoC may not
support all modes of operation for a given real-time application.

This paper proposes and evaluates a flexible and resource-efficient NoC for
use in the hard real-time domain. The proposed NoC extends the existing NI
of the Argo NoC [10] to support mode changes. This extension is the main
contribution of the paper, and a key feature of the proposed NoC. Our NoC
implements virtual end-to-end circuits using static scheduling and time-division
multiplexing (TDM). The Æthereal family of NoCs [5, 11] provides similar func-
tionality at a much higher hardware cost.

The key idea of the Argo NI [10] is that the DMA controllers that drive
the data transfers are integrated with the TDM scheduling in the NIs. This
architecture avoids both physical virtual channel buffers in the NIs and credit-
based flow control among the NIs that are found in most other NoC designs [2, 8,
11]. Since these resources must be reconfigured as part of a mode change [5, 11],
the NI architecture of [10] can be extended to support mode changes using little
extra hardware as we show in this paper.

This paper is organized in seven sections. Section 2.2 presents related work.
Section 2.3 presents the overall functionality of the network interface (NI) of the
presented NoC and Section 2.4 describes its hardware architecture. Section 2.5
presents the controller that manages the reconfiguration process. Section 2.6
evaluates the presented architecture. Section 2.7 concludes the paper.

2.2 Related Work

A multicore platform for hard real-time systems has to provide time-predictable
inter-processor communication. In the following we present some TDM NoCs
that offer GS connections and support run-time reconfiguration of the GS con-
nections.
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The Æthereal family of NoCs [5, 11] uses TDM and static scheduling to
provide GS. The original Æthereal NoC supports both GS and BE traffic. The
scheduling and routing tables controlling the GS traffic are distributed into the
NIs and routers. The data structures that are written into these tables are
distributed using BE traffic. The use of BE traffic for reconfiguration may com-
promise the time-predictability. Observing the high cost of distributed routing
and combined support for BE and GS traffic, the aelite NoC [5] supports only
GS traffic and source routing. Reconfiguration is performed using GS connec-
tions (reserved for this purpose only) from a reconfiguration master. Essentially,
our NoC implements similar functionality using fewer hardware resources. The
dAElite NoC, focusing on multicast, re-introduces distributed routing and adds
a dedicated network with a tree topology to handle reconfiguration.

The Argo NoC [6] supports GS traffic and uses TDM with source routing
like the aelite NoC, but Argo does not support the reconfiguration needed to do
a mode change. In the Argo NoC, the TDM schedule drives the transmission
of data between scratchpad memories (SPM) attached to the processors in each
node of the platform. The Argo network interface (NI) contains a direct memory
access (DMA) table, where the local processor can setup DMA transfers to
remote SPMs. The TDM schedule activates a certain DMA entry when it is
allowed to send a packet. The Argo NoC uses TDM schedules generated by
the off-line scheduler presented in [9]. We assume that each mode consists
of a set of communicating tasks assigned to processors, and that each mode
has an associated bandwidth graph, from which the scheduler can generate a
schedule that provides the GS requirements of each virtual circuit for each mode
of operation.

2.3 Network Interface Functionality

This section describes the key ideas of the reconfiguration feature and outlines
the NI architecture, shown in Fig. 2.1.

In our resource-efficient NoC, we decided to use the existing resources to
transfer reconfiguration information. This implies that virtual circuits dedicated
for transmission of reconfiguration information must be set up alongside the
virtual circuits that are used for transmission of regular data; for example, a
reconfiguration channel from a master core to each of the other cores in the
platform.

As mentioned earlier, reconfiguration of a NoC typically requires accessing
and modifying some state in the NoC, as well as flushing the virtual circuits that
are torn down and performing some initialization of virtual circuits that are set
up. Our NoC is a source routed NoC with simple routers without any buffers,
flow control or arbitration. For this reason, reconfiguration involves only the
NIs.
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Figure 2.1: A block diagram of our NI. The block diagram is split in two parts:
the transmit pipeline and the receive pipeline.

Moreover, the end-to-end transmission of packets for which incoming pack-
ets are written directly into the local SPM of the destination node, in combina-
tion with the way the scheduler maps virtual circuits to time slots in the TDM
schedule, means that the network of routers is conceptually drained from packets
at the end of each TDM period. This opens for the very interesting perspective
of instantaneously switching from one TDM schedule to another in a way that
is fully transparent to virtual circuits that persist across the reconfiguration.
The last TDM period of one schedule can be followed immediately by the first
TDM period of a new schedule, and the virtual circuits that persist across a
mode change can be mapped to different paths and different timeslots in the
TDM schedule, without any interference on the data flows. This again avoids
the fragmentation of resources seen in the previously published solutions [5, 11]
in which no changes can be made to virtual circuits that persist across a mode
change.

The architecture of the NI is split into the transmit pipeline and the receive
pipeline. The two pipelines interact through the SPM arbiter, the maximum
rate of both pipelines is one 64-bit transaction every two cycles. Therefore, the
arbiter can safely prioritize read requests from the transmit pipeline, with just
a single register in the receive pipeline interface.

In the transmit pipeline, the TDM controller reads out scheduling infor-
mation of the current time slot from the schedule table. The output from the
schedule table activates the packet manager that assembles the packet header,
updates the fields in the DMA table, reads the payload data from the local
SPM, and sends the packet.

An important extension of our NI compared to Argo, is that incoming
packets can be written to the internal tables of the NI, which allows a remote
core to change the settings of the NI. We have extended the packet format to
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3 types of packets, data packets, configuration packets, and interrupt packets.
In the receive pipeline the RX unit handles the incoming packets according to
their type.

2.4 Hardware Architecture

The packet format of the three packet types that are used in our NI, consists
of a 32-bit header followed by 2n 32-bit payloads. Fig. 2.1 shows our NI archi-
tecture. The transmit pipeline contains the TDM controller, the schedule table,
the DMA table, the packet manager, and the reconfiguration controller. The
reconfiguration controller is described in Section 2.5.

At boot time, each core initializes its schedule table and configuration table
in the local NI. When all NIs are initialized, the master core signals all TDM
counters to start counting synchronously, through a global reset signal.

The TDM controller indexes into the schedule table. The T2N (time-to-
next) field contains the number of cycles until the TDM controller increments
the index. The Pkt. len. field is the number of 64-bit payloads following the
packet header. The Route field contains the route the scheduled packet must
follow through the NoC. The DMA idx. field is the DMA table index of the
associated DMA transfer.

The DMA table contains the DMA entries that the processor uses to trans-
fer data through the NoC. The processor and the configuration unit can set the
Active bit, to indicate that the DMA is active and the packet manager can clear
the Active bit when the last data is sent. The transmit pipeline logic reads the
active bit to determine whether a packet should be sent. The Word cnt. field
is the number of 64-bit words remaining of the active DMA transfer. The Read
ptr. points to the next local 64-bit word address of the DMA transfer. The
Write ptr. is the write address for the next packet header. The Pkt. type is
the packet type for the DMA transfer. When a packet is sent, Word cnt. is
decremented and Read ptr. and Write ptr. are incremented all by the packet
length.

The receive pipeline, shown in Fig. 2.1, contains the RX unit and the in-
terrupt request (IRQ) FIFO. According to the packet type, the RX unit writes
the packet payload to either the SPM, the internal tables of the NI, or the IRQ
FIFO. The IRQ FIFO unit contains two queues that store the interrupt IDs of
the interrupts. A local interrupt is invoked by the NI when the last data packet
of a DMA transfer arrives at the destination to indicate the completion of a
data block transfer. A remote in interrupt is invoked when an interrupt packet
arrives at the NI.
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2.5 Reconfiguration Controller

To support reconfiguration, we add a reconfiguration controller to the NI and
connect the RX unit to the configuration bus, as shown in in Fig. 2.1. The
latter allows the RX unit to write incoming configuration packets into all the
tables connected to the configuration bus. The schedule table may hold multiple
schedules at the same time, each spanning a range of entries. Each range is
represented by a pair of pointers, high and low, stored in a small table in the
reconfiguration controller. A reconfiguration simply requires that the TDM
counter is set to the start entry of the new schedule when the TDM counter
reaches the end of the current schedule.

A master processor invokes a reconfiguration of the NoC by sending a con-
figuration packet to the reconfiguration controllers of all slave processor NIs,
announcing that they must switch to the new schedule. This packet contains
two parameters: the index of the reconfiguration table entry that holds the high
and low pointers for the new schedule and the ID of the TDM period after which
the new schedule should start.

The ID of the TDM period is defined in the reconfiguration controllers
in all the NIs, but due to pipelining of routers, packets sent during a TDM
period arrive in a time window that is phase-shifted by some clock cycles. Our
scheduler minimizes this phase shift: virtual circuits that cross many routers
are not scheduled towards the end of a TDM period. With this constraint,
the phase shift is determined by the pipeline depth through the routers on the
shortest path between two NIs. In our design, the shortest path is through two
routers and, using 3-stage pipelined routers, this results in a phase-shift of 6
clock cycles. If a master processor issues a reconfiguration command in TDM
period i, then the NI in the master node sends configuration packets to all the
nodes during the next TDM period, i+ 1. This means that some configuration
packets may be received during TDM period i+2 and therefore the new schedule
can start after TDM period i+ 2 has finished.

2.6 Evaluation

This section evaluates the proposed architecture in terms of worst-case recon-
figuration time (WCRT), hardware cost, and maximum operating frequency of
the NI.

For the WCRT evaluation, we use a 4-by-4 platform with a bi-torus network
and 3-stage pipelined routers. The WCRT of a new schedule Cnew depends on
the currently executing schedule Ccurr. The worst-case analysis of software
depends on the processor that executes the software. Therefore, we consider
the software overhead of setting up DMA transfers outside the scope of this
paper.
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The preferred situation is that the Cnew is already loaded in the schedule
table of the slave NIs. It can be resident or pre-loaded in the background. In
this case the WCRT is only three times the TDM period of Ccurr, as explained in
Section 2.5. For the benchmarks presented in Table 2.1, the WCRT is between
135 and 381 clock cycles, depending on the current benchmark.

In case that the schedule Cnew is not already loaded in the schedule table of
the slave NIs, we need to add the worst-case latency of transferring Cnew to the
slave NIs. For this we assume that Cnew is loaded in the processor local SPM of
the reconfiguration master. The worst-case latency of transferring Cnew to the
slave NIs is the maximum of the individual worst-case latency for each slave NI.
We calculate the worst-case reconfiguration time between the schedules of the
MCSL benchmark suite [7] and an All2all schedule to any other of these. The
results are shown in Table 2.1. For space reasons, we leave out the column for
H264-1080p, as the results are identical to H264-720p.

We see that the WCRT in Table 2.1 is between 549 and 2298 clock cycles.
The Sparse benchmark, as Ccurr, results in the lowest WCRT, as Sparse has
the shortest TDM period, and thus the highest bandwidth to the slaves. The
worst-case transfer time of Cnew dominates the WCRT.

The time interval required by Æthereal and dAElite to set up a single
virtual circuits is 246 and 60 clock cycles, respectively [11]. Moreover, these
NoCs also need to tear down unnecessary virtual circuits. Assuming that any
two modes differ by more than a handful of virtual circuits, the reconfiguration
time of our NoC is in general comparable or shorter than the one of Æthereal
and dAElite.

In case the new schedule needs to be transmitted to the slave NIs, our
approach is still comparable. The maximum WCRT shown in Table 2.1 is
2298 clock cycles. For our NoC, this transition represents the transmission and
the reconfiguration of 255 virtual circuits. In this time interval, Æthereal and
dAElite can only set-up 9 and 38 virtual circuits, respectively.

We compare the hardware cost and the maximum operating frequency of
the presented design against the TDM-based NoCs aelite and dAElite [11] as well
as the original Argo NoC [6]. Table 2.2 shows the synthesis results of the four
designs for one router and one NI and the supported number of TDM slots and
connections per node. The published numbers we compare with are all a 2-by-2
mesh topologies implemented on the Xilinx Virtex-6 FPGA architecture. We
divided the numbers by four to get the hardware consumption of one 3-ported
router and one NI.

The results in Table 2.2 for a 3-port router show that overall our imple-
mentation is smaller than the other NoCs against which we compare and has
a similar maximum operating frequency fmax. In terms of slices, our imple-
mentation is a factor of 3.9 times smaller than aelite and a factor of 2.2 times
smaller than dAElite. Table 2.2 also presents figures for a network node with
a 5-ported router and a reasonable number of TDM slots and connections for
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Table 2.1: The worst-case reconfiguration time, including schedule transfer.
Since the worst-case reconfiguration time depends on the current
schedule and the new one, we show a matrix of the combination of
current and new schedules.

Ccurr

Cnew FFT-
1024 Fpppp

RS-
dec

RS-
enc

H264-
720p Robot Sparse

All2-
all

FFT-1024 – 1436 1169 1080 1077 1074 991 1611
Fpppp 1627 – 1244 1149 1152 1149 677 1722
RS-dec 1593 1497 – 1125 1128 1125 1032 1680
RS-enc 1491 1401 1140 – 1056 1059 966 1572
H264-720p 1590 1494 1221 1128 – 1122 1029 1689
H264-1080p 1590 1494 1221 1128 1131 1122 1029 1689
Robot 2165 2041 1660 1539 1536 – 1406 2298
Sparse 777 684 594 549 552 549 – 822
All2all 1539 1452 1176 1086 1095 1092 1002 –

a larger platform. Comparing these results the Argo NoC we can see that our
extended NoC is only around 17% larger than the original Argo NoC.

The results in Table 2.2 for the maximum operating frequency fmax show
that the maximum frequency of our implementation is comparable to the ones of
aelite and dAElite for a 3-port router. For a 5-port router, our implementation
is around 30% faster than the 3-port router, since it uses block RAM instead of
distributed memory (FFs), and around 10% faster than Argo.

2.7 Conclusion
This paper presented a resource-efficient NoC that supports reconfiguration for
mode changes. The NoC extends the existing NI of the Argo NoC and provides
guaranteed-service communication between processors. An implementation of
the proposed architecture is evaluated in terms of worst-case reconfiguration
time, hardware cost, and maximum operating frequency. The results show that
our NoC is between 2.2 and 3.9 times smaller than NoCs with similar function-
ality and that the worst-case reconfiguration time is comparable or shorter to
those NoCs.
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Table 2.2: A hardware resource and maximum operating frequency compari-
son of one router and one NI between the presented architecture
and three similar designs.

3-port router 5-port router
aelite dAElite Our imp Argo Our imp

Slots 8 8 8 256 256
Conn 1 1 2 64 64
Slices 1375 774 350 289 338
LUTs 1916 2506 1279 1119 1267
FFs 3861 3081 1074 871 924
BRAM 0 0 0 4 4
fmax (MHz) 119 122 124 146 161
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Chapter 3
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Abstract
This paper presents a resource-efficient time-division multiplexing
(TDM) network interface (NI) of a network-on-chip (NoC) intended
for use in a multicore platform for hard real-time systems. The NoC
provides virtual circuits (VCs) to move data between core-local on-chip
memories. In such a platform, a change of the application’s operating
mode may require reconfiguration of VCs that are setup by the NoC. A
unique feature of our NI is the instantaneous reconfiguration between
different TDM schedules, containing sets of VCs, without affecting VCs
that persist across the reconfiguration. The results show that the worst-
case latency from triggering a reconfiguration until the new schedule is
executing, is in the range of 300 clock cycles. Experiments show that
new schedules can be transmitted from a single master to all slave nodes
for a 16 core platform in between 500 and 3500 clock cycles. The re-
sults also show that the hardware cost for an FPGA implementation
of our architecture is considerably smaller than other NoCs with sim-
ilar reconfiguration functionalities, and that the worst-case time for a
reconfiguration is smaller than that seen in functionally equivalent ar-
chitectures.



40

A Resource-Efficient Network Interface Supporting Low
Latency Reconfiguration of Virtual Circuits in Time-Division

Multiplexing Networks-on-Chip

3.1 Introduction

Packet-switched networks-on-chip (NoCs) have become the preferred paradigm
for interconnecting the many cores (processors, hardware accelerators etc.) found
in today’s complex application-specific multi-processor systems-on-chip [7, 1]
and general-purpose chip multi-processors [6, 11].

In the multi-processor systems-on-chip domain, a significant amount of pre-
vious research has targeted the generation of application-specific NoC platforms
e.g., [21, 3]. With the growing cost of developing and fabricating complex VLSI
chips, application-specific platforms are only feasible for very few ultra-high-
volume products. In all other cases, a cost-efficient platform must support a
range of applications with related functionality. This implies that the hardware
resources and the functionality they implement should be as general-purpose
and generic as possible, targeting a complete application domain instead of a
single application. This view is expressed in the principle provide primitives
not solutions that is well-known and accepted in the field of computer architec-
ture. We adopt this view, striving to avoid hardware resources for dedicated
and specific functionality.

The application domain we target is real-time systems. In real-time sys-
tems, the whole architecture needs to be time-predictable to support worst-case
execution time (WCET) analysis. A NoC for real-time systems needs to support
guaranteed-service (GS) channels. Furthermore, many hard real-time applica-
tions have multiple modes of operation. To support applications that change
between operating modes, the NoC must be able to reconfigure the virtual cir-
cuits (VCs) at run-time.

This paper proposes and evaluates a flexible and resource-efficient network
interface (NI) for hard real-time systems. Our NoC implements VCs using
static scheduling and time-division multiplexing (TDM). A VC provides GS
channels in the form of a guaranteed minimum bandwidth and a maximum
latency. Furthermore, transfer of data between an on-chip memory and the NoC
is coupled with the TDM schedule so that we can give end-to-end guarantees for
the movement of data from one core-local memory to another core-local memory.
This architecture avoids both physical VC buffers in the NIs and credit-based
flow control among the NIs that are found in most other NoC designs [2, 23, 28].
Moreover, the usage of TDM schedules leads to a reduced hardware complexity
due to the lack of buffering in the routers and due to a static traffic arbitration.

The main contribution of the paper and a key feature of this NI is its very
efficient support for mode changes. The active schedule can be switched from
one TDM period to the next, without breaking the communication flow of VCs
that persist across the switch. This is in contrast to the Æthereal family of
NoCs [12, 28], which provides similar functionality at a higher hardware cost
and longer reconfiguration time.
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Our NI can store multiple TDM schedules and it supports instant switching
from one schedule to another, synchronously across all NIs. The last TDM
period of one schedule can be followed immediately by the first TDM period
of a new schedule. This allows VCs that persist across a schedule switch to be
mapped to different paths, without any interference to their data flow. This
again avoids the fragmentation of resources seen in the previously published
solutions [12, 28], in which no changes can be made to circuits that persist
across a mode change and where the set-up of a new circuit is limited to using
free resources.

If the schedule tables are too small to store all necessary schedules, our
NoC can transparently transmit new schedules via the standard VCs. In this
way we avoid fixed allocation of resources for schedule transmission.

The NI presented here is an extension of [27], which is part of the Argo
NoC [16]. A preliminary version of the new NI was published in [26]. In the rest
of the paper, we refer to the NoC that uses the new NI as the Argo 2.0 NoC.
The main contributions of this paper are:

• support of instant reconfiguration of VCs;

• a more elaborate analysis of the TDM schedule distribution through the
NoC;

• variable-length packets to reduce the packet header overhead, resulting in
shorter schedules and/or higher bandwidth on the VCs;

• interrupt packets to support multicore operating systems;

• a more compact TDM schedule representation in the NIs, reducing the
schedule memory requirements;

• analysis of the effect on the TDM period length of using GS communication
for reconfiguration;

• a discussion on the scalability of the architecture.

This paper is organized into seven sections. Section 3.2 presents related
work. Section 3.3 provides background on mode changes, TDM scheduling,
and the Argo NoC. Section 3.4 presents the Argo 2.0 architecture in detail.
Section 3.5 describes the reconfiguration method and its utilization. Section 3.6
evaluates the presented architecture. Section 3.7 concludes the paper.

3.2 Related Work
This section presents a selection of NoCs that offer GS connections and that
support run-time reconfiguration of the GS provided. One approach to im-
plementing GS connections is to use non-blocking routers in combination with



42

A Resource-Efficient Network Interface Supporting Low
Latency Reconfiguration of Virtual Circuits in Time-Division

Multiplexing Networks-on-Chip

mechanisms that constrain packet injection rates. These NoCs are reconfigured
by resetting the parameters that regulate the packet injection rates to the new
requirements.

Mango [4] uses non-blocking routers and rate-control, but only links are
shared between VCs. Each end-to-end connection is allocated to a unique buffer
in the output port of every router that the connection traverses and these buffers
use credit-based flow control between them. The bandwidth and latency of
the different connections are configured by setting priorities in the output port
arbiters of the router and by bounding the injection rate at the source NI.
Connections are set up and torn down by programming the crossbar switches,
which is done using best effort (BE) traffic. In Mango, we can observe that
the reconfiguration directly interacts with the rate control mechanism in the
NIs, the crossbars, and the arbiters in the routers. In addition, the fact that
GS connections are programmed using BE packets may compromise the time-
predictability of performing a reconfiguration.

The NoC used in the Kalray MPPA-256 processor [10] uses flow regula-
tion, output-buffered routers with round-robin arbitration, and no flow control.
Network calculus [8] is used to determine the flow regulation parameters that
constrain the packet injection rates such that buffer overflows are avoided and
GS requirements are fulfilled. The Kalray NoC is configured by initializing the
routing tables and injection rate limits in the NIs.

IDAMC [20] is a source-routed NoC using credit-based flow control and vir-
tual channel input buffers together to provide GS. IDAMC provides GS connec-
tions by implementing the Back Suction scheme [9], which prioritizes non-critical
traffic while the critical traffic progresses to meet the deadline.

To our knowledge, details on how reconfiguration is handled in Kalray,
Mango and IDAMC have not been published. However, we can safely assume
that setting up a new connection must involve the initialization and modifica-
tion of flow regulation parameters, and tearing down a connection must involve
draining in-flight packets from the VC buffers in the NoC.

An alternative to the usage of non-blocking routers in combination with
constrained packet injection rates is VC switching implemented using static
scheduling and time-division multiplexing (TDM). These NoCs can be recon-
figured by modifying the schedule and routing tables in the NIs and/or in the
routers.

The Æthereal family of NoCs [12, 28] uses TDM and static scheduling to
provide GS. The original Æthereal NoC [13] supports both GS and BE traffic.
The scheduling tables are in the NIs and the routing tables are in the routers.
Reconfiguration is performed by writing into these tables using BE traffic. Anal-
ogously to the Mango NoC approach, this way of doing things may compromise
the time-predictability of a (re)configuration. The dAElite NoC [28] focuses on
multicast and overcomes this problem by introducing a separate dedicated NoC
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with a tree topology for the distribution of the schedule and routing information
during run-time reconfiguration.

The aelite NoC [12] only supports GS traffic and it is based on source
routing. This reduces significantly the high hardware cost of distributed routing
and combined support for BE and GS traffic of the original Æthereal NoC. For
this NoC, the routers are simple pipelined switches and both schedule tables and
routing tables are in the NIs. Reconfiguration involves sending messages across
the NoC using GS connections from a reconfiguration master to the schedule and
routing tables that are required to change; these GS connections are reserved
for this purpose only.

The original version of the Argo NoC [16] has some functional similarity
with aelite. It only supports GS traffic and it also uses a TDM router with source
routing. The Argo design avoids VC buffers and the credit-based flow control
that account for most of the area of the NIs of the Æthereal, aelite, and dAElite
range of NoCs. The Argo NoC uses a more efficient NI [27] in which the direct
memory access (DMA) controllers are integrated with the TDM scheduling. The
original version of the Argo NoC does not support reconfiguration.

In all the presented NoCs that uses VC switching and TDM static schedul-
ing, the re-mapping of VCs that persist across the reconfiguration is not sup-
ported, since the reconfiguration is done incrementally (tearing down unused
circuit and setting up new ones). This can lead to sub-optimal usage of resources
due to fragmentation. If re-mapping of VCs is needed, the entire application
must be suspended during the reconfiguration.

This paper presents a new version of the Argo architecture that implements
the same functionality as the first version of Argo, while adding instantaneous
reconfiguration capabilities, including re-mapping of VCs that persist across the
reconfiguration.

3.3 Background
This section provides background on the Argo NoC, TDM scheduling, and re-
configuration for mode changes.

3.3.1 Message passing in the Argo NoC

Argo is a packet-switched and source-routed NoC that uses static allocation of
network resources through TDM as a means to provide VCs for which commu-
nication bandwidth and latency can be guaranteed.

The NoC offers message passing communication. Technically, this is im-
plemented using DMA controllers, one per source end of every VC. A DMA
controller transfers a block of data from the local memory of a processor node
into the local memory of a remote node. This functionality is similar to what
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is seen in many other multi-core platforms including the Cell processor [17], the
CompSoC platform [14], and the Epiphany processor [22]. Argo uses a very
efficient NI-architecture [27] in which the DMA controllers have been integrated
with the TDM-mechanism in the NI. This integration avoids all the buffering
and flow control that is found in most NoCs. In addition, the NI-hardware
is dominated by area-efficient memory structures in the form of configuration
tables.

3.3.2 TDM Scheduling

A parallel application on a multicore platform can be described as a set of tasks
mapped to a set of processors. The steps of mapping a real-time application onto
a multi-core platform and the generation of a TDM schedule for the T-CREST
platform are shown in Fig. 3.1.

A set of communicating tasks can be modeled as a task graph (Fig. 3.1(a)),
where the vertices represent the tasks and the edges represent the communica-
tion between them.

By assigning the tasks to the processing nodes, it is possible to derive a
core communication graph (Fig. 3.1(b)). The assignment of tasks to processing
nodes has to be performed in a way that minimizes the total number of hops
for traffic. For this graph, the vertices represent the processing nodes, and the
edges represent the set of VCs between each pair of processing nodes.

TDM scheduling shares the resources of the NoC in time between multiple
VCs. The Argo NoC uses the scheduler described in [25]. This approach divides
the time into TDM periods, and a period is further divided into time-slots.

The scheduler is an off-line procedure that uses the bandwidth require-
ments and a description of the NoC topology to generate a schedule that avoids
deadlocks and collisions, and that ensures in-order arrival of packets. The static
schedule is stored in the NIs of the NoC and specifies the route of each packet
and the time slot in which each packet is injected into the router. We can
calculate the minimum frequency that the schedule should run at, from the
bandwidth requirements and the created schedule.

Fig. 3.1(c) shows (part of) two TDM periods for the traffic out of the
processor P0 (VC c1 and c4 ). VC c1 has been assigned four time slots and
VC c4 has been assigned two times three time slots which will use two different
(shortest) paths through the NoC (c4’ and c4”). Fig. 3.1(d) shows the VC
paths on a section of the multi-core platform.
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Figure 3.1: Mapping of an application onto a multi-core platform: (a) task
graph for an application, (b) core communication graph, (c) TDM
schedule for processor P0, and (d) section of multi-core platform
with possible routing for processor P0.

3.3.3 Argo NoC Architecture

As already mentioned, in the Argo NI architecture, the TDM-driven DMA con-
trollers are integrated into the NI. This avoids buffering and flow control and
leads to an efficient NI architecture.

Fig. 3.2 shows a 2-by-2 section of a regular mesh topology, and the expanded
tile in the figure shows the interface between the processor and the NoC as well
as key elements of the NI. The processor is connected to one side of a dual-
ported scratchpad memory (SPM), and the NI is connected to the other side of
the SPM. The SPM populates a part of the processor’s local address space and
the processor sees it as a regular data SPM.
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Figure 3.2: A 2-by-2 section of a multicore platform and the content of a
processing tile.

Each NI contains a TDM counter, that indexes into a schedule table, see
Fig. 3.2. The value of the TDM counter is not the current TDM slot, but it is
the index of the current schedule table entry. The TDM counters in all the NIs
operate synchronously and wrap around at the end of the TDM period. Each
entry in the schedule table points to an entry in the DMA table that stores
the counters and pointers corresponding to a DMA controller, and the route
that a packet should follow through the network. The indexed DMA controller
reads the payload data of a packet from the SPM, illustrated in Fig. 3.2, and
sends a packet. The fact that the DMA controller is activated by the TDM
counter means that the DMA controller reads the data from the SPM just in
time to transmit it across the network. Finally, when a packet is received at
its destination NI, the payload is directly written into the SPM at the target
address carried by the packet.

The Argo router is a pipelined crossbar that routes incoming packets accord-
ing to the routing information contained in the packet header. Argo supports
both synchronous, mesochronous, and asynchronous router implementations.
For the Argo 2.0 NoC, we assume a 3-stage synchronous implementation of the
router as shown in Fig. 3.3. However, the NoC is compatible with any of the
Argo routers [15, 18]. The router shown in Fig. 3.3, consist of the three pipeline
stages: link traversal, header passing unit (HPU), and crossbar. The header of
an incoming packet is read in the HPU and, based on the route in the header,
the packet is routed to the output port in the crossbar stage.
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Figure 3.3: An Argo router with three pipeline stages and registers (R). The
three pipeline stages are the link stage, the header passing unit
(HPU) stage, and the crossbar stage.

3.3.4 Reconfiguration for Mode Changes

Finally, we provide some background on reconfiguration for mode changes, since
this is the main contribution of this paper.

In a parallel application, a mode change is defined as a change in the subset
of the executing software tasks during normal operation. Mode changes can be
triggered as part of the normal operation of the system or in response to external
events [5, p.340]. In normal operation, a mode change is triggered at a well-
defined moment in the application execution. As a response to an external event,
a mode change is triggered to adapt the system behavior to new environmental
conditions. For example, an external alarm may require the execution of a set
of tasks to manage specific situations.

Real-time multicore applications rely on the GS communication of the
NoC to guarantee correct timing behavior. A single configuration of the time-
predictable NoC may be unable to support all modes of operation for a given
real-time application. Such applications need the time-predictable NoC to sup-
port reconfiguration of the VCs during run-time. This reconfiguration needs to
be performed in bounded time to guarantee correct behavior of the tasks that
continue operating across a mode change of the application.

We assume that each mode consists of a set of communicating tasks assigned
to processors and that each mode has an associated core communication graph,
from which the TDM scheduler can generate a schedule for the corresponding
configuration.



48

A Resource-Efficient Network Interface Supporting Low
Latency Reconfiguration of Virtual Circuits in Time-Division

Multiplexing Networks-on-Chip

1st 32-bit payload

2
nd

32-bit payload

n
th

32-bit payload

.

.

.

RouteWrite address
Pkt
type

3130 29 16 15 0

Figure 3.4: Argo 2.0 network packet format. A packet contains one 32-bit
header word and n 32-bit payload words. For configuration and
interrupt packets, n = 1 and for data packets n = 1, 2, . . . , 15.

3.4 Argo 2.0 Microarchitecture

Before discussing reconfiguration, we first present the basic operation and mi-
croarchitecture of the Argo 2.0 NI. Compared to the original Argo NI [27] the
Argo 2.0 NI has a more elaborate microarchitecture that allows a more com-
pact representation of a TDM schedule. The following four subsections describe
the Argo 2.0 packet format, the compact schedule representation, and how the
Argo 2.0 NI design transmits and receives packets.

3.4.1 Packet Format

The microarchitecture of the Argo 2.0 NI supports three types of network pack-
ets: data packets, interrupt packets, and configuration packets. Fig. 3.4 shows
the general packet format, it contains a 32-bit header followed by n 32-bit pay-
loads. For configuration and interrupt packets, n = 1 and for data packets
n = 1, 2, . . . , 7. The variable length of data packets that allow quite long packets
may be used to reduce the header overhead for VCs that require high bandwidth.
The most significant two bits of the header contain the packet type. The next
14 header bits contain the write address in the target SPM where the payload
data of the packet will be written. The last 16 header bits contain the route
that the packet will take through the NoC.

Data packets are used to transfer regular data from the local SPM of one
core to the local SPM of another core. A single DMA transfer may involve a
sequence of packets sent during several consecutive TDM periods. If the sender
process needs to notify the receiver when the DMA transfer is complete, the
sender can mark the transfer so the last packet invokes an interrupt at the
destination core. We call this a local interrupt, as it is generated and processed
in the processor node that receives the message.

Interrupt packets are used to invoke an interrupt in a remote processor
core, and this feature is needed to support multicore operating systems. When
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Figure 3.5: Detailed view of how the schedule in Fig. 3.1(c)is represented in
the NI. ‘PL’ stands for packet length.

an interrupt packet arrives at the remote core it invokes an interrupt. We call
this a remote interrupt, as it is triggered by a remote core.

Configuration packets are used to remotely write configuration data into
the tables of a remote NI. The data of a configuration packet is written word
by word into the tables of the NI.

3.4.2 Compact Schedule Representation

The Æthereal family of NoCs and the original Argo NoC use a fixed 3-word
packet format. In both designs the TDM counter is incremented once every
3 clock cycles, resulting in a 3 clock cycle slot. The TDM counter in these
designs index directly into the schedule table, where unused entries are marked
as not valid. Compared to these relative straightforward designs, the Argo 2.0
NI design represents the schedule in a more compact form. Argo 2.0 represent
each packet with an entry in the schedule table and adds two fields to each
entry of the schedule table. One of these fields specifies the number of payload
words of the specific packet and the other specifies the time until the header of
the next packet; an example of this is illustrated in Fig. 3.5. In the example,
the schedule period is 18 clock cycles and the schedule requires 3 entries in
the schedule table. For comparison, we mention that the original Argo and
the Æthereal family would require 6 entries in the schedule table in order to
represent a schedule with a period of 18 cycles (6 TDM slots of 3 cycles each).

The incremental reconfiguration that is used by the Æthereal family re-
quires this uncompressed representation, such that a scheduled packet can be
written into the active schedule in one atomic write. Because the Argo 2.0 re-
configuration approach can instantaneously switch between two configurations,
we can compress the schedule.
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Figure 3.6: A block diagram of our NI. The block diagram is split into two
parts: the transmit module and the receive module.

3.4.3 Transmitting Packets

The transmit module of the NI, shown in Fig. 3.6, consists of the following
components: the TDM controller, the schedule table, the DMA table, the packet
manager, and the reconfiguration controller. The reconfiguration controller is
described in Section 3.5.

The NI contains several tables where pointers in one table index into the
next. Its architecture and operation are best explained using an example.
Fig. 3.1(c) showed a schedule executed by the NI in processor node P0 that
has two outgoing VCs c1 and c4. Fig. 3.5 shows the same schedule in greater
detail. The scheduler has assigned one 4-word packet per TDM period to c1
and two 3-word packets to c4. The period of the TDM schedule in the example
is 18 clock cycles, and in principle the TDM counter operates as a wrapping
modulo-18 counter.

The example schedule requires three entries in the schedule table, one for
c1 and two for c4. Passing time in combination with the time-to-next (T2N)
field controls how and when the TDM controller indexes/accesses the schedule
table. In the example, the TDM controller will access the entry corresponding
to c1 in TDM cycle 0, the entry corresponding to c4’ in cycle 7 and the entry
corresponding to c4” in cycle 13. As the implementation is pipelined, the table
is actually accessed a few cycles earlier.

The schedule table can hold entries belonging to different schedules used for
reconfiguration. The reconfiguration controller marks the region in the schedule
table of the currently active schedule.

An entry in the schedule table contains the route of the packet that the
NI is about to send. The entry also contains an index into the DMA table.
Each entry in the DMA table represents a VC. Our example schedule with two



Argo 2.0 Microarchitecture 51

VCs requires two entries in the DMA table, one for the DMA controller that
pushes data across c1 and one for the DMA controller that pushes data across
c4. Using information from the schedule table and from the DMA table the
packet manager assembles and sends out packets. The header of an outgoing
packet is assembled from the packet type field of the DMA table entry, the route
field of the schedule table entry and the write address field of the DMA table
entry. The following payload words are read from the SPM. The packet length
field Pkt. len. of the schedule table entry indicates the maximum number of
payload words that can be appended the header word. The words are read using
the read address field of the DMA table entry. During transmission of a packet
the read address, the write address and the word count in the DMA table are
updated.

If the data DMA transfer is marked as causing a local interrupt when
it completes, the NI marks the last packet when the word count field in the
DMA table entry reaches zero. When the DMA transfer is complete the packet
manager set the active field in the DMA entry to inactive. A TDM schedule
reserves slots for the different VCs and the schedule table repeatedly indexes the
DMA table accordingly. If the indexed DMA table entry is inactive, no packet
is transmitted in the reserved slot.

As our scheduler [25] generates schedules with shortest-path routing, all the
possible paths that a packet can take through the NoC have the same number
of hops. This means that packets arrive in order, and this gives the scheduler
the freedom to route multiple packets belonging to the same VC along different
paths. For this reason, the Argo 2.0 design places the route field into the schedule
table. In the example illustrated in Fig. 3.1 and Fig. 3.5 this feature may be
used for VC c4 where packets c4’ and c4” may be sent along different routes.

In order to program a TDM schedule into the NIs, information must be
written into the TDM controller, the schedule table and the reconfiguration
controller of every NI. This can be done by the local processors or by a remote
master processor sending out configuration packets as explained in the next
subsection. The entries in the DMA table can be written and read by the local
processor.

3.4.4 Receiving Packets

The receive module shown in Fig. 3.6 consists of two blocks: the receive unit
and the interrupt (IRQ) unit. The receive unit processes incoming packets
depending on the packet type. Incoming data packets carry the target address
as part of the header and the data payload is written directly into the SPM
as it is being received. For each packet, the receive unit increments the target
address for each write into the SPM. If the data packet is the last packet of a
DMA transfer, the target address of the last word is written into the IRQ FIFO
for local interrupts.
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If the received packet is a configuration packet, the data payload is written
into one of the NI tables in the transmit module. The data structures in these
blocks are mapped into a private address space of the NI and the address of the
configuration packet header points into this address space.

If the received packet is an interrupt packet, the data payload is written
into the SPM and the target address is written into the remote interrupt FIFO.

The IRQ unit contains two FIFO queues that store interrupts. One queue
is for external interrupts communicated using the interrupt packet format. The
other is for local interrupts that are generated when the last packet belonging
to a message is received.

The transmit and receive modules share one port to the SPM. To allow
sustained and concurrent 32-bit reads and writes, the SPM uses a double width
read/write port. The associated buffering and arbitration is implemented by
the SPM arbiter.

The data payload of incoming packets is written directly to its target ad-
dress. Therefore, there is no need for buffers or flow control in the NI, or for
extra DMA controllers in the processor to copy the received data out of the NI.
This makes the area of the receive module very small.

3.5 Reconfiguration
This section describes how we support mode changes by reconfiguration. Firstly,
we present the underlying observations and ideas, and introduce the architec-
tural features supporting reconfiguration. Secondly, we discuss a number of
ways in which the reconfiguration mechanism can be used by an application
requiring mode changes.

3.5.1 Key Observations and Ideas

As we target domain-specific platforms that support a multitude of applica-
tions, our primary concern is to avoid adding resources that are specialized for
one use. Therefore, we decided to use the available NoC for reconfiguration
commands and transmission of schedules. This is in contrast to a dedicated
(re)configuration network, as for example used in dAElite [28]. Given a fixed
amount of hardware resources for the NoC, a dedicated reconfiguration NoC
establishes a static split of bandwidth between regular traffic and configura-
tion traffic. We prefer to use all hardware resources to provide as much total
bandwidth as possible, leaving it to the application programmer to allocate
bandwidth for schedule transmission and regular traffic.

In Argo 2.0, this implies that the VCs dedicated for reconfiguration com-
mands and possible transmission of new schedules must be set up alongside the
VCs that are used for transmission of regular data; for example a VC for re-
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configuration from a master core to each of the other cores in the platform. As
seen in the results section, the addition of VCs for configuration often has little
impact on the TDM schedule period of an application.

As mentioned earlier, reconfiguration of a NoC typically requires accessing
and modifying the state in the NoC, as well as flushing the VCs that are torn
down and some initialization of VCs that are set up. In this respect, the Argo 2.0
NI has three characteristics that both individually and in combination greatly
simplify reconfiguration.

Firstly, the combination of TDM and source routing means that the routers
are simple, pipelined switches, without any buffers, flow control, or arbitration.
A router does not preserve any state when switching between VCs. For this
reason, reconfiguration does not involve the routers; only the NIs.

Secondly, Argo 2.0 avoids VC buffers in the NIs and credit-based flow con-
trol among these buffers. Therefore, Argo 2.0 does not need to flush VCs and
initialize credits counters when new connections are set up.

Thirdly, end-to-end transmission of packets, in which incoming packets are
written directly into the destination SPM, in combination with the way the
scheduler maps VCs to time slots in the TDM schedule, means that the network
is conceptually empty at the end of each TDM period. This opens for the very
interesting perspective of instantaneously switching from one TDM schedule
to another in a way that is fully transparent to VCs that persist across the
reconfiguration. These circuits can even be re-mapped to different TDM slots
and different (shortest path) routes. This feature avoids the fragmentation of
resources that is seen in NoCs where VCs are torn down and created on an
incremental basis. This ability to switch from one TDM schedule to another
can be used to support reconfiguration and mode changes in a number of ways,
as described at the end of this section.

3.5.2 Reconfiguration Controller
To support reconfiguration, we add a reconfiguration controller to the NI and
connect the receive unit to the configuration bus, as seen in Fig. 3.6. Connecting
the receive unit to the configuration bus allows the receive unit to write incom-
ing configuration packets into all the tables connected to the configuration bus.
The schedule table may hold several different schedules, each spanning a range
of entries. Each range is represented by a pair of pointers, high and low, that
are stored in the configuration table of the reconfiguration controller. A recon-
figuration simply requires that the TDM counter is set to the start entry of the
new schedule when the TDM counter reaches the end of the current schedule.

A master invokes a reconfiguration of the NoC by sending a reconfiguration
packet to the reconfiguration controller of all the slave NIs, announcing that
they must switch to the new schedule. This packet contains two parameters:
the index of the reconfiguration table entry that holds the high and low pointers
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Figure 3.7: Time diagram illustrating the reconfiguration of the NoC.

for the new schedule and the number of the TDM period after which the new
schedule should be used.

The reconfiguration process is illustrated in Fig. 3.7. When the master
issues the reconfiguration command in TDM period i, the NI transmit configu-
ration packets to all the slave reconfiguration controllers in period i + 1. Due
to pipelining in the routers and in the NI, packets sent during a TDM period
arrive in a time window that is phase-shifted by some clock cycles. Therefore,
some packets will reach the final destination in TDM period i+ 2. A new TDM
schedule can thus be used at the earliest in TDM period i+ 3.

All the tables that contain configuration data in the NI are connected to the
receive unit through the configuration bus. The receive unit writes the incoming
NoC configuration packets into these tables. Therefore, we can also use the NoC
to transmit new schedules from the master core to the slave cores by sending
the schedules using configuration packets. This transmission is transparent to
the slave core.

3.5.3 Using the Reconfiguration Features

The reconfiguration mechanism described above can be used to implement recon-
figuration in a number of ways when an application requests a reconfiguration:

1. In cases where the schedule table and the DMA table have sufficient ca-
pacity to store all possible configurations, these can be loaded into the
NIs when the platform is booted. In this way, a master only needs to
send reconfiguration requests to the NIs, and this method has the lowest
reconfiguration latency.
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2. Another approach is first to transmit the new schedule and then send a
reconfiguration request. As seen in the next section, the time required to
first distribute and then activate a new schedule is relatively short and
comparable to the reconfiguration seen in other NoCs.

3. A hybrid of the above two methods is also possible, and is preferred if 1) is
not possible. This hybrid divides the mode change graph into components,
such that each component can be mapped into a statically sized portion
of the schedule table. The mode change graph is divided by cutting either
the least likely mode transitions or the mode transitions with the longest
timing requirements. In this way, the reconfiguration master can switch
rapidly between the schedules of one group. Switching between groups of
schedules will include the transmission of the new group.

4. It is also possible to use the incremental approach [28], by tearing down
and setting up individual circuits by writing into the live schedule. This
approach requires a non-compacted schedule, where T2N and Pkt. len.
are 3 and empty slots are represented by an invalid schedule table entry.
As mentioned earlier, this method can suffer from fragmentation in the
schedule tables.

Not all of these procedures are feasible for all applications, but the best solution
is to use as much of the schedule table as possible. In general, this reduces the
worst-case reconfiguration time.

3.6 Evaluation
This section evaluates the proposed architecture in terms of six criteria: (i) the
TDM period extension due to statically allocating VCs for reconfiguration, (ii)
the impact of variable-length packets on the schedule period, (iii) the storage
size of the schedule in the schedule table, (iv) the worst-case reconfiguration
time, (v) the worst-case schedule transmission time, (vi) and the hardware cost
and maximum operating frequency of the NI. Each criterion is evaluated in one
of the following subsections. For the evaluation, we use a 4-by-4 platform with
a bi-torus network and 3-stage pipelined routers. We use the MCSL benchmark
suite [19] and an All2all schedule as communication patterns for the evaluation.
For space reasons, we leave out the H264-1080p benchmark, as its communica-
tion pattern is identical to that of H264-720p.

3.6.1 Virtual Circuits For Configuration
This subsection evaluates the TDM period extension due to statically allocat-
ing VCs for configuration packets in the application-specific schedules from the
MCSL benchmark and an All2all schedule. In the All2all schedule each core
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Benchmark Baseline w/ VCs for config.
(cc) (cc) (%)

FFT-1024 63 78 24
Fpppp 120 120 0
RS-dec 90 92 2
RS-enc 84 86 2
H264-720p 90 92 2
Robot 171 171 0
Sparse 27 30 11
All2all 54 75 39

Table 3.1: TDM period in clock cycles (cc) and overhead (%) relative to the
baseline, when VCs are used for configuration.

communicates with equal bandwidth to all other cores. Table 3.1 shows the
TDM period of the baseline schedules without VCs for configuration and of the
baseline schedules plus the added VCs for configuration. The VCs for configu-
ration connect the master core to all slave cores in the platform.

The traffic patterns from the MCSL benchmarks are mapped to homoge-
neous platforms of square dimension. We choose the core with the smallest
outgoing bandwidth as the reconfiguration master core. We believe that this
mimics a real application best, since in most cases the reconfiguration master
would not have a high communication load.

A TDM schedule involving a master core that sends a single configuration
packet to each slave core in the platform has a lower input/output (I/O) bound,
on the TDM period, of two words per slave core. This is because the master
needs to transmit for two clock cycles per slave core. For a 16 core platform
this lower I/O bound on the TDM period is 2 words per packet times 15 slave
cores, in total 30 clock cycles.

The Sparse benchmark in Table 3.1 reaches this I/O bound. Table 3.1
shows that the TDM periods of some benchmarks are only increased by two
clock cycles when VCs for configuration are added. These two slots are the
two words of the configuration packet from the master to the node that has the
highest incoming bandwidth requirements. The TDM periods of the All2all and
FFT-1024 benchmarks are increased considerably, because all cores have high
outgoing bandwidths.

3.6.2 Variable-Length Packets

This subsection evaluates the TDM period reduction of the MCSL benchmarks,
when allowing variable-length packets. We let the scheduler route fewer packets
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Benchmark w/ VCs for config. Var.-len. pkt.
(cc) (cc) (%)

FFT-1024 78 74 5
Fpppp 120 95 21
RS-dec 92 77 16
RS-enc 86 73 15
H264-720p 92 78 15
Robot 171 127 26
Sparse 30 30 0
All2all 75 75 0

Table 3.2: TDM period in clock cycles (cc) and reduction (%) relative to the
schedules with VCs for configuration when variable-length packets
are allowed.

with more payload words, such that the number of payload bytes during one
TDM period is the same as without variable-length packets. Table 3.2 shows
the TDM periods with VCs for configuration and packet lengths between 3 and
16 words, which is one header word plus 1 to 15 payload words.

In Table 3.2 we see two benchmarks, Fpppp and Robot, where the reduction
is considerable, 21% and 26%, respectively. Looking into the communication
patterns of the Fpppp and Robot benchmarks, we see that they have a few cores
that are involved in most of the communication. These few cores communicate
through VCs that require a high bandwidth, so reducing the header overhead of
these VCs causes this more than 20% reduction in TDM period. The variable-
length packets reduce the TDM period of most benchmarks, except for the
sparse and All2all benchmarks.

3.6.3 Schedule Storage Size

This subsection evaluates the size of the schedules in the schedule table and the
size of the DMA controllers in the DMA table. The minimum and maximum
number of bytes that it takes to store the schedule in the schedule table of one
node in the platform is shown in Table 3.3, for each MCSL benchmark and an
All2all schedule. The sum of the maximum schedule table sizes of all the MCSL
benchmarks and the All2all schedule is 696 bytes for one node. This is an upper
bound on the schedule table size that is required to store all the schedules at
the same time. For further studies, we assume that a schedule table of 1 KB is
enough to keep all the schedules of most applications in the schedule table at
the same time, avoiding the need to transmit a new schedule from the master
core to all the slave cores through the NoC.
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Benchmark
Sched. tbl. DMA tbl. # VC(Byte) (Byte)
min max min max min max

FFT-1024 52 108 74 152 13 27
Fpppp 56 108 74 147 13 26
RS-dec 24 76 23 102 4 18
RS-enc 20 68 6 90 1 16
H264-720p 20 72 6 90 1 16
Robot 32 84 6 85 1 15
Sparse 8 60 6 85 1 15
All2all 60 120 85 169 15 30

Table 3.3: The minimum and maximum number of bytes of storage in the
schedule table and in the DMA table of one node, and the minimum
and maximum number of outgoing VCs in one node.

The minimum and maximum number of bytes that are required in the DMA
table of one node in the platform to execute the DMA controllers are shown in
Table 3.3. The required number of bytes in the DMA table is the number of
VCs multiplied by the width of the DMA table. The width of the DMA table
mainly depends on the read pointer, the write pointer and the word count. The
numbers that are shown in Table 3.3 are for a case where 14 bits are used for the
three fields, which enables an SPM of 64 KB to be used, and this is also what
the current packet format supports. Each entry in the DMA table represent
an outgoing VC. Therefore, the memory requirements for the DMA tables of
each schedule can be overlapped by the VCs that persist across reconfigurations
between the schedules of an application.

In the original version of Argo and in Argo 2.0, the number of entries in the
DMA tables of each node is the same, since it is determined by the application.
Therefore, we only compare the number of schedule table entries in each node
of the original version of Argo against the number of entries in Argo 2.0, in
table 3.4. The average reduction in the schedule table entries of each node is
58 %, this improvement is due to the new and more efficient architecture of the
Argo 2.0 NI.

3.6.4 Worst-case Reconfiguration Time
This subsection gives an overview of how to calculate the worst-case reconfigu-
ration time Trecon of a new schedule Cnew. Trecon depends only on the currently
executing schedule Ccurr. From Fig. 3.7 we see that:

Trecon = 3 · Pcurr (3.1)
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Benchmark Original Argo 2.0 Reduction
(entries) (entries) (%)

FFT-1024 21 15 28.6
Fpppp 40 16 60.0
RS-dec 30 8 73.3
RS-enc 28 6 78.6
H264-720p 30 7 76.7
Robot 57 10 82.5
Sparse 9 4 55.6
All2all 18 16 11.1

Table 3.4: The number of schedule table entries in each core of the origi-
nal Argo version (Original.) and the average number of entries
in Argo 2.0.

Ccurr Trecon

FFT-1024 267
Fpppp 285
RS-dec 279
RS-enc 261
H264-720p 279
Robot 381
Sparse 135
All2all 270

Table 3.5: The worst-case reconfiguration time Trecon, starting from each
benchmark as the current schedule.

Where, Pcurr is the TDM period of Ccurr. We calculate Trecon of the MCSL
benchmark and an All2all schedule, shown in Table 3.5. An application pro-
grammer needs to add the software overhead of setting up DMA transfers and
triggering a reconfiguration request to the numbers in the table.

For the benchmarks presented in Table 3.5, the Trecon is between 135 and
381 clock cycles, depending on the current benchmark. For the maximum num-
ber of entries shown in Table 3.3 and assuming a schedule table of 256 entries
(1 KB), it is possible to store of the order of 10 schedules. We believe that in
most cases this schedule table size is sufficient to store the schedules associated
with all the modes of an application.

The time interval required by Æthereal and dAElite to set up a single VC
is respectively 246 and 60 clock cycles [28]. Moreover, these NoCs also need to
tear down the unnecessary VCs. Assuming that any two modes differ by more
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than a handful of VCs, the reconfiguration time of Argo 2.0 is in general shorter
than the reconfiguration time of Æthereal and comparable to or less than that
of dAElite.

3.6.5 Worst-case Schedule Transmission Time
This subsection gives an overview of how to calculate the schedule transmis-
sion time Tst of a new schedule Cnew that is not stored in the schedule tables
of the slave processors. The Tst of Cnew depends on the currently executing
schedule Ccurr. The worst-case analysis of software depends on the processor
that executes the software. Therefore, we do not include the software overhead
of setting up DMA transfers in the Tst. We assume that Cnew is loaded in the
processor local SPM of the reconfiguration master.

A NoC schedule is different in each NI and with the compact schedule
representation that we evaluated in subsection 3.6.3, the schedules for each NI
might be of different sizes. The Tst of transferring Cnew to the slave NIs is the
maximum of the individual worst-case latencies for each slave NI. We calculate
the Tst as:

Tst = max
i∈N

(
Licurr +

⌈
Sinew − P icurr

Bicurr

⌉
· Lcurr + Lichan

)
(3.2)

Here i is the slave NI from the set N of nodes in the platform, Licurr is the
worst-case latency of waiting for a time slot to slave i, Sinew is the number of
words of Cnew to be sent to slave i, P icurr is the number of words that can be sent
in one packet towards slave i in Ccurr, Bicurr is the bandwidth of Ccurr towards
slave i, Lcurr is the TDM period of Ccurr, and Lichan is the NoC latency in clock
cycles to slave i.

We apply (3.2) to calculate the worst-case schedule transmission time be-
tween the schedules of the MCSL benchmark and an All2all schedule, shown in
Table 3.6.

We see that the Tst in Table 3.6 is between 519 and 3822 clock cycles. The
Sparse benchmark, as Ccurr, results in the lowest Tst, as Sparse has the shortest
TDM period, and thus the highest bandwidth to the slaves.

In the rare case that a schedule needs to be transmitted to the slave NIs,
our approach is still comparable. The maximum schedule transmission time in
Table 3.6 is 3822 clock cycles. For Argo 2.0, this transmission represents the
transmission of 255 VCs. In this time interval, Æthereal and dAElite can only
set-up 16 and 64 VCs, respectively, this does not include tearing-down VCs.

3.6.6 Hardware Results
This subsection presents the evaluation of the Argo 2.0 FPGA implementa-
tion presented here with respect to hardware size and maximum operating fre-
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Ccurr

Cnew FFT-
1024 Fpppp RS-dec RS-enc H264-

720p Robot Sparse All2all

FFT-1024 – 2010 1418 1270 1341 1560 1122 2229
Fpppp 2577 – 1814 1624 1716 2004 579 2862
RS-dec 2091 2088 – 1318 1398 1626 1164 2316
RS-enc 1983 1980 1396 – 1326 1548 1104 2196
H264-720p 2115 2112 1494 1338 – 1644 1176 2355
Robot 3435 3438 2422 2174 2292 – 1914 3822
Sparse 822 549 579 519 546 639 – 912
All2all 2034 2037 1431 1281 1365 1587 1137 –

Table 3.6: Worst-case schedule transmission time of a new schedule Cnew ex-
pressed in clock cycles. Since this depends on both the current
schedule Ccurr and the new one Cnew, we show a matrix of the
combination of current and new schedules.

quency. All the results presented in this section were produced using Xilinx ISE
Design Suite (version 14.7) and targeting the Xilinx Virtex-6 FPGA (model
XC6VLX240T-1FFG1156). All the synthesis properties were set to their de-
faults, except for the synthesis optimization goal which were set to area or
speed. The results are expressed in terms of numbers of flip-flops (FFs), 6-input
look-up tables (LUTs), and block RAMs (BRAMs).

Table 3.7 shows the comparison of the Argo 2.0 implementation to the
TDM-based NoCs aelite and dAElite [28], and to the IDAMC [20] NoC that
uses a classic router designed with virtual channel buffers and flow control. The
table shows the results of the four designs for one router and one NI and the
number of supported TDM slots and connections per node. The published num-
bers we compare against are available for comparison for a 2-by-2 platform with
mesh topologies. From these results we derived the hardware consumption of
one 3-ported router and one NI.

The results in Table 3.7 show that overall the Argo 2.0 NoC implementation
is smaller than the other NoCs. The results also show that the numbers for the
IDAMC are much higher that the aelite, dAElite and Argo 2.0. This is due to
its use of virtual channels buffers and the flow control mechanisms.

The results in Table 3.7 shows that the maximum frequency fmax of the
Argo 2.0 implementation is comparable to the ones of aelite and dAElite for
a 3-port router. The fmax results for the IDAMC NoC are not available for
comparison.

As mentioned, the Argo 2.0 NoC is designed to be used in a domain-specific
platform. Therefore, Table 3.8 presents numbers for a network node comprising
one 5-ported router and one NI with 256 TDM slots and 64 connections, which
we consider reasonable numbers for a larger platform. Moreover, it compares
the Argo 2.0 NoC against the original Argo NoC in order to show that our
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Optimized for area Optimized for speed
aelite dAElite Argo 2.0 aelite dAElite Argo 2.0 IDAMC

Slots 8 8 8 8 8 8 N/A
Conn 1 1 2 1 1 2 8
LUTs 1916 2506 1185 2351 3117 1342 9160
FFs 3861 3081 1021 3960 3243 1047 5462
BRAM 0 0 0 0 0 0 7
fmax (MHz) 119 122 125 200 201 204 N/A

Table 3.7: Hardware resources and maximum operating frequency of the
Argo 2.0 architecture presented here and three similar designs for
one 3-port router and one NI.

Opt. for area Opt. for speed
Argo Argo 2.0 Argo Argo 2.0

LUTs 926 1071 1155 1358
FFs 897 908 923 931
BRAM 4 4 4 4
fmax (MHz) 155 166 167 179

Table 3.8: Hardware resources and maximum operating frequency of the
Argo 2.0 architecture and the original Argo NoC, for one 5-port
router and one NI. The implemented design has 256 slots and 64
connections.

extensions only add a small amount of hardware resources. We re-synthesized
the original Argo implementation for the results in the table. For the results in
Table 3.8, we used BRAM to implement the tables in the NI.

In terms of fmax, the Argo 2.0 5-port router implementation optimized for
area is around 33% faster than the 3-port one, since it uses BRAM instead of
distributed memory (implemented using FFs), and around 7% faster than the
original Argo.

3.6.7 Scalability

The results in the previous subsections are based on a 16 core platform. As the
number of cores in the platform increases, we consider the hardware size and the
TDM period to evaluate the scalability of the new reconfiguration capability of
Argo 2.0. We consider the hardware size of the NoC per core and the extension
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of the TDM period due to statically allocating VCs for reconfiguration. As the
number of cores increase, the hardware size of one NI and one router increases
due to the number of required entries in the schedule table and in the DMA
table.

The number of entries that are required in the schedule table is the accu-
mulated number of entries per core. Our reconfiguration approach requires the
TDM schedule to include VCs for configuration from the master to all slave
cores. The lower bound on the TDM period increases linearly with the number
of slave cores, due to the increasing number of VCs for configuration. The lower
bound is two clock cycles per slave core, which can be represented by one sched-
ule table entry. The aelite NoC has the same property, as it also allocates VCs
for reconfiguration. The dAElite NoC does not allocate VCs for configuration
in the TDM schedule, but dAElite uses a separate single-master configuration
tree network that causes a minor increase in the hardware size. The single-
master configuration tree network results in a fixed, i.e., less flexible, allocation
of bandwidth between the configuration and data communication.

As mentioned previously, the number of active entries in the DMA table
is the number of outgoing VCs from the processor node. The number of DMA
table entries in the Argo 2.0 NI grows in the same way as the VC buffers with
credit-based flow control grows in the aelite and dAElite NIs. The hardware
size of a DMA table entry is considerably smaller than the size of a VC buffer
with credit-based flow control.

3.7 Conclusion

This paper presented an area-efficient time-division multiplexing network-on-
chip that supports reconfiguration for mode changes. The NoC addresses hard
real-time systems and provides guaranteed-service VCs between processors. The
NI provides reconfiguration capabilities of end-to-end VCs to support mode
changes at the application level. For the set of benchmarks used for evalua-
tion, we showed that the TDM period overhead of statically allocating VCs for
configuration was on average 10%. Furthermore, we showed that our compact
schedule representation reduces the memory requirements by more than 50% on
average.

We evaluated an implementation of the proposed architecture in terms of
hardware cost and worst-case reconfiguration time. The results show that the
proposed architecture is less than half the size of NoCs with similar functionality
and that the worst-case reconfiguration time is comparable to those NoCs. If
the new schedule is already loaded in the schedule table, the worst-case recon-
figuration time is significantly shorter.
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Abstract
This paper presents a metaheuristic scheduler for inter-processor com-
munication in multi-processor platforms using time division multiplexed
(TDM) networks on chip (NOC). Compared to previous works, the
scheduler handles a broader and more general class of platforms.
Another contribution, which has significant practical implications, is the
minimization of the TDM schedule period by over-provisioning band-
width to connections with the smallest bandwidth requirements. Our
results show that this is possible with only negligible impact on the
schedule period.
We evaluate the scheduler with seven different applications from the
MCSL NOC benchmark suite. In the special case of all-to-all communi-
cation with equal bandwidths on all communication channels, we obtain
schedules with a shorter period than reported in previous work.
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4.1 Introduction

In this paper we address the scheduling of data-traffic in a TDM-based NOC that
supports message passing across virtual end-to-end circuits in a multi-processor
platform. There are two rather different variations of mapping applications to
hardware platforms. The first variation maps the application onto a given hard
real-time application-independent platform. The second variation synthesizes a
specific NOC platform for the given application, including a TDM schedule.

The increasing cost of designing and fabricating integrated circuits and the
limited fabrication volume of most hard real-time systems speaks strongly in
favor of application-independent platforms. This is what we address in this
paper. The context for our work is the T-CREST project [6] in which we
are developing an application-independent multi-processor platform designed for
hard real-time systems, and for which the scheduler described in this paper is
being used. Details of the hardware implementation may be found in [18, 8, 14].

The mapping of an application onto an application-independent NOC-based
multi-processor platform is generally understood to include the steps illustrated
in Figure 4.1 [12, 10]. An application is modeled as a task graph where nodes rep-
resent tasks and edges represent communication channels (end-to-end circuits).
The first step is to assign tasks to processors and as part of this to decide which
tasks will share a processor. The result of this is a core communication graph
where the nodes represent processors and the edges represent communication
flows and their required bandwidth between the processors. The second step
is the binding of processors to specific processor cores in the platform. This
usually aims at minimizing the total number of router-to-router hops for traffic.
The first and second steps are not specific for TDM-based NOCs and they are
well studied in the literature. Early works include [12]. The third step, and the
topic of this paper, is to generate the TDM schedule for the NOC.

An important challenge is to make a generic and parameterized specifica-
tion of the NOC-based platform allowing the scheduler to target a large class of
different multi-processor platforms using TDM-based NOCs. These parameters
include the topology of the NOC (regular as well as irregular topologies), the
packet length, and the pipeline depth of the routers and links. The scheduling
problem can be modeled as a fixed-flow, minimum-time integer multi-commodity
flow problem that is known to be NP-complete [4]. In this case each communi-
cation channel is modeled as a commodity.
The paper makes contributions in two areas:

• An open source scheduler that is more general in terms of parameterization
and produces better results than previously published schedulers.

• The novel idea of minimizing the number of slots in a period of the gen-
erated TDM schedule.
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Figure 4.1: Mapping of an application onto a multi-processor platform: (a)
Task graph for application, (b) core communication graph, (c)
multi-processor platform, and (d) details of a node in the plat-
form (router (R), links, network interface (NI), processor and local
memory).

The goal is to reduce the size of the potentially very large schedule-tables
such that they fit into the memory structures that are implemented in the
hardware platform. Our results show that it is possible to compress the schedules
to around 100 slots for actual benchmarks, with only a negligible increase of the
frequency of the TDM clock.

The paper is organized as follows. In Section 4.2 we review related work.
In Section 4.3 we discuss and identify the details of the scheduling problem. Fol-
lowing this, Section 4.4 presents the design and implementation of the scheduler.
A description of the benchmarks used in our experiments is given in Section 4.5.
Results from a range of benchmarks are presented in Section 4.6 and discussed
in Section 4.7. Finally, Section 4.8 concludes the paper.
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4.2 Related work

The UMARS scheduler described in [7] can generate TDM schedules and an
application-specific Æthereal platform. This allows the scheduler to modify the
topology of the NOC and the pipeline depth of the NOC links to obtain feasible
schedules that satisfy the bandwidth requirements. The UMARS scheduler
operates in two phases: path allocation and TDM-slot allocation. The path
allocation phase is an all-pair shortest-path search for the possible routes for each
communication channel. The TDM-slot allocation is a collision free mapping of
the allocated paths to TDM slots. The UMARS scheduler works at the level of
3-word flits/packets and pipelining of routers and links is done in multiples of
three. Our work addresses the communication mapping of an application onto
an application-independent platform.

Nostrum is another NOC that is based on TDM scheduling [11]. The sched-
uler supports regular topologies (mesh, torus, etc.) and it has the same two
phases (path selection and slot allocation) as the UMARS scheduler. Com-
pared to a conventional packet-switched NOC, Nostrum is a bit more elabo-
rated. It uses temporal-disjoint networks and looped containers (like multiple
slotted rings on top of an underlying mesh-style topology). The number of vir-
tual circuits through a router is limited to the number of temporally disjoint
networks.

The mapping and scheduling of fully connected core communication graphs
that offer virtual circuits with identical bandwidth between all pairs of processor
nodes onto platforms with regular NOC topologies (mesh, torus, tree, etc.) is
studied in [15]. The paper provides a number of theoretical lower bounds on the
schedule length and it presents an ILP-based scheduler that produces optimal
schedules, in terms of schedule length. A very high run-time limits the scheduler
to platforms with a small or modest number of nodes – for a platform with 25
nodes the run-time is reported to be 2 weeks. A heuristic solution to the problem
is studied in [2]. A unique aspect of this work is that the routing is identical in
all routers. This may allow sharing of routing tables in routers in technologies
where this is possible (e.g. FPGAs).

Our scheduler is different from the above work, because it is not limited
to symmetric all-to-all core communication graphs, it targets an application-
independent platform, and it accepts a highly parameterized specification of the
TDM-based NOC in the platform (NOC-topology, pipeline depth of routers and
links, different packet lengths on different channels in the core communication
graph, etc.). In conclusion our scheduler is far more generic than previously
published work and it reveals some interesting insight into the period of the
TDM schedules and ways to reduce the period.
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4.3 The Scheduling Problem
The task of the scheduler is to schedule and route the communication channels of
the core communication graph onto the TDM-based NOC in a multi-processor
platform. The nodes in a core communication graph are processor cores and
the edges are communication channels annotated with bandwidth requirements.
The NOC must be configured to implement the communication channels.

Definition 4.1 An application has the directed core communication graph
A(P,C), where P is the set of processors and C is the set of communication
channels.

Definition 4.2 A communication channel c ∈ C is the triple (psrc, pdest, b),
where psrc ∈ P is the sending processor, pdest ∈ P is the receiving processor
and b ∈ R is the required bandwidth in MB/s.

The aim of the scheduling is to avoid situations where multiple packets
compete for the same resource, i.e. a link in the NOC or an output port of the
router. This requires a common time reference (e.g. a clock signal) that defines
the time slots that are the basis for the scheduling. In the following we call this
the TDM clock. A packet consists of a sequence of data-words that is sent in a
corresponding sequence of TDM-clock cycles. The routers and links in the NOC
are typically pipelined, which has to be considered when scheduling the traffic.

The TDM clock should be seen as variable parameter that can be set for a
given application. In most situations, the bandwidth required by the application
does not need the NOC to run at its maximum clock frequency. This allows the
use of a TDM clock with a lower frequency.

Input to the scheduler is a specification of the application and a specification
of the platform. The application is specified by a core communication graph as
explained in Section 4.1 and Figure 4.1.

A platform specification describes the platform on which to route the com-
munication from the core communication graph. The platform specification
describes routes and links, as explained in Section 4.1, the routers and links
have multiple parameters. In the following definitions we assume that pipeline
depths for routers and links are 1 and 0, respectively, in order to keep the def-
initions simple. It is also possible to specify the packet size for each individual
channel in the core communication graph, but in most cases the entire NOC
will use only one packet size.

Definition 4.3 A platform specification is the directed graph T (N,L), where
N is the set of nodes in the platform and L is the set of directed physical links
connecting two unique nodes. A node n ∈ N consists of a router connected to
a local processor. A directed physical link l ∈ L is the tuple (nsrc, ndest), where
src, dest ∈ N2, i.e., two-dimensional Cartesian coordinates.
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Figure 4.2: Possible routing and scheduling of traffic out of processor core p02
(channels c1 and c4 from figure 4.1(b). Several or all of the paths
marked c4’, c4” and c4”’ may be used to implement channel c4.
In the schedule shown, only paths c4’ and c4” are used.

Given a core communication graph and a platform specification, the task
of the scheduler is to determine the routing and scheduling of the data traffic
in the NOC. Figure 4.2 shows a close-up of Figure 4.1(c) and illustrates the
routing and scheduling of traffic out of processor core p02, i.e., channels c1 and
c4 in the core communication graph shown in Figure 4.1(b). The scheduler
allows a channel in the core communication graph to be provided by multiple
communication paths through the NOC. To ensure that packets arrive in order,
the scheduler allows only shortest-path communication channels. For channel
c1 there is only one option, as processor cores p02 and p12 are direct neighbors
(connected by one link between routers in tiles 02 and 12). For channel c4,
three different paths marked c4’, c4’ and c4”’ may be used. This assumes that
the total pipeline depth from p02 to p12 is the same along all three paths (to
ensure in-order delivery of packets). The ports connecting p02 and p21 to their
respective router must be able to carry all the data traffic corresponding to
channels c1 and c4.

A communication path is the route of one packet traversing the NOC from
its source to its destination. The communication path consists of a sequence
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of neighboring scheduled links in consecutive time slots. A scheduled link is a
physical link together with a time slot.

Definition 4.4 A scheduled link s ∈ S is the pair (l, t), where l ∈ L is the
physical link considered at time slot t ∈ N0.

Definition 4.5 A communication path is the vector ~φ = 〈s0, s1, . . . , slast〉 ∈ Φ
of scheduled links s ∈ S with ~φ[i].t + 1 = ~φ[i+1].t and ~φ[i].l.pdest = ~φ[i+1].l.psrc.
Φ is the set of all possible communication paths.

When the scheduler schedules the communication channels, it needs to know
how many packets it needs to schedule in one TDM period. The bandwidth
of the communication channels is given in MB/s, this bandwidth needs to be
normalized to a number of packets per period. Because we want to minimize
the schedule period, we cannot directly convert between MB/s and the number
of packets per TDM period. Therefore, we normalize the bandwidth of each
communication channel to the bandwidth of the communication channel with
the smallest bandwidth requirement. This bandwidth is rounded up to the
nearest integer; this (dimensionless) bandwidth is then the required number of
packets in one TDM period.

Definition 4.6 The normalization of the bandwidth of a communication chan-
nel is given by the norm function.

norm : b 7→

 b

min
cm∈C

cm.b


A valid schedule is a specific set of communication paths that satisfy the

normalized bandwidth requirements of the core communication graph. In a valid
schedule, no link must be part of two different communication paths in the same
time slot. The objective of the scheduler is to minimize the TDM period. This
minimization may be exploited to decrease latency (and increase bandwidth),
or to lower the frequency of the TDM clock (while preserving the bandwidth).

Definition 4.7 A schedule is a specific set of paths Φ∗ ⊂ P(Φ), where P(·) is
the powerset. The schedule period of a schedule is the function period : Φ∗ 7→
max
~φ∈Φ∗
{~φ[last].t}.

Definition 4.8 The scheduler sched : (A, T ) → Φ∗ maps the channels of A,
given the platform T , to a specific set of communication paths Φ∗, i.e., a valid
schedule.
Constraint: No overlapping paths ~φa 6= ~φb : ∀

i,j

~φa[i] 6= ~φb[j]
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Objective: Minimize period(Φ∗), where Φ∗ is the produced schedule from spe-
cific A∗, T ∗.

In the generated schedule, the channel with the smallest bandwidth re-
quirement is scheduled to send exactly one packet and the scheduler aims at
generating a schedule with the shortest possible period that satisfies the nor-
malized bandwidth requirements. Based on this schedule period, the minimum
frequency of the TDM clock that satisfies the absolute bandwidth requirements
is determined.

The normalization of bandwidth requirementsmay result in very long sched-
ules. As the TDM schedule table for each node has to be implemented in hard-
ware in the NI, it is desirable to limit the number of table entries and therefore
to derive schedules with a modest period. Based on previously published hard-
ware designs, we consider 64-128 entries as realistic and 256 entries on the high
side. By assigning more bandwidth to the channel with the smallest required
bandwidth, the normalized bandwidth of all other channels is reduced, and this
results in a reduced TDM-schedule period. During a physical time window a
channel of cause needs the same number of slots and the compressed TDM
schedule is simply repeated more times. In many cases the TDM-schedule pe-
riod is reduced by the same factor as the normalized bandwidths are reduced,
and this means that the frequency of the TDM clock is the same. When ag-
gressively compressing the TDM schedule, the NOC may start to saturate, and
the schedule period is no longer reduced proportional to the normalized band-
widths. This may be compensated for by increasing the frequency of the TDM
clock. This schedule compression is an important contribution of the paper.

As the platform is given, there is no guarantee that the required absolute
bandwidths (for example MB/s) can be supported by the platform. To accept a
produced schedule, we need to verify that it provides enough bandwidth on the
specified platform. If the inequality in equation 4.1 holds, the produced schedule
provides more than the required bandwidth from the core communication graph.

Breq <
Bsched
period ·Dp · fmax (4.1)

In equation 4.1 Breq is the maximum bandwidth of any channel in the core
communication graph in MB/s, and Bsched is the number of time slots allocated
to the communication channel with the largest bandwidth requirement in one
TDM-schedule period. period is number of slots in a TDM period, fmax is the
maximum operating frequency of the NOC, and Dp is the number of bytes that
can be transferred in one time slot.

The inequality only needs to be verified for the communication channel with
the largest required bandwidth, because the remaining communication channels
are assigned more than the required bandwidth.



The metaheuristic scheduler 77

4.4 The metaheuristic scheduler

Our metaheuristic scheduler produces a schedule that satisfies the given nor-
malized bandwidth requirements while minimizing the TDM schedule period.
It implements two different metaheuristic algorithms. In this section we give
a brief outline of the metaheuristic algorithms that we have used and their
implementation.

4.4.1 Metaheuristics

A metaheuristic is a high-level optimization strategy that can be used to explore
large search spaces. The non-problem-specific metaheuristics guide the search
process and the search process is usually non-deterministic [1]. Metaheuris-
tics are used to find good, but not guaranteed optimal, solutions to NP-hard
problems.

The two metaheuristics we have implemented are Greedy Randomized Adap-
tive Search Procedure (GRASP) [5] and Adaptive Large Neighborhood Search
(ALNS) [13]. GRASP and ALNS work well for problems with no clear sense of
direction, as opposed to the metaheuristic TABU search [3, Chapter 6], which
saves the path in the solution space that it has already searched to avoid going
back to an already visited solution.

The GRASP pseudo code is shown in Algorithm 1. GRASP creates a
greedy randomized initial solution and tries to improve it through a local search,
until it finds a local optimum. This local search is performed by selecting an
operator from the operator table. Each entry in the operator table is an operator
and the probability of the given operator being selected. The probabilities in
the operator table are updated after each of the iterations, depending on the
results of the performed local search. This process of creating an initial solution
and improving it is then repeated for a given amount of time. In each of the
iterations, the best solution is updated if the current solution is better.

The ALNS pseudo code is shown in Algorithm 2. ALNS creates an initial
solution that satisfies the normalized core communication graph. Then part of
the solution is destroyed and repaired and this process is repeated. Section 4.4.2
describes the methods for generating initial solution that we have implemented
and tested. In the destroy function, the operator is chosen probabilistically, and
the probabilities are updated according to the improvements of the different
operators in each of the iterations. The operators select which paths to destroy;
after the paths are destroyed the same paths are repaired in a random greedy
fashion. This is done for a given amount of time, and the globally best solution
is saved.

To allow ALNS to move away from local minima, we want the probability of
choosing a given operator to converge slowly. This slow convergence is similar
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Algorithm 1 GRASP(A,T ) – Pseudo code for the GRASP metaheuristic.
Require:

A: the normalized core communication graph
T : the platform specification

1: Best ← initialSolution(A,T )
2: operator ← OperatorTable.select()
3: Best.localSearch(operator)
4: while Time left do
5: Solution ← initialSolution(A,T )
6: operator ← OperatorTable.select()
7: Solution.localSearch(operator)
8: if eval(Solution) better eval(Best) then
9: Best ← Solution
10: OperatorTable.update()
11: return Best

to setting a higher temperature in simulated annealing [3, Chapter 7]. The
operators are explained in more detail in Section 4.4.3.

The metaheuristic algorithms continuously try to minimize the number of
slots in the TDM schedule; therefore a user should allow the scheduler to run
for as long as can be afforded. Since the schedule is generated at compile time,
it is affordable to let it run for several hours.

4.4.2 Generating initial solutions for GRASP and ALNS

The initial solutions are built to satisfy the bandwidth requirements of the
normalized core communication graph; they are built using a greedy algorithm
with an adjustable degree of randomness. We have applied randomization for the
two types of routing decisions in the algorithm. The first is the decision of which
output port to choose when a communication path is routed. The second is the
order in which the communication paths are routed. In the deterministic case,
the algorithm sorts the set of unscheduled paths by the length from its source
to its destination. The sorted set of communication paths is then placed in the
schedule one at a time, always picking the longest remaining channel. In any
case, a communication path is routed in the earliest possible time slot. We have
implemented the algorithm with the following combinations of randomization:

1. Deterministic, no randomization.

2. Randomization of choosing the next output port.

3. Randomization of both the next output port and order of paths.
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Algorithm 2 ALNS(A,T ) – Pseudo code for the ALNS metaheuristic.
Require:

A: the normalized core communication graph
T : the platform specification

1: Current ← initialSolution(A,T )
2: Best ← Current
3: while Time left do
4: operator ← OperatorTable.select()
5: Current.destroy(Current)
6: Current.repair(Current)
7: if eval(Current) better eval(Best) then
8: Best ← Current
9: OperatorTable.Update()
10: return Best

4. (Only for GRASP) Takes parameter β, the percentage of paths to be
swapped in the sorted set of unscheduled paths. If β = 0, the behavior is
equal to the second combination of randomization. If β = 1 the behavior
is equal to the third combination of randomization.

Good values for beta have been found by running the algorithm on many dif-
ferent problems of different sizes with a wide range of β values. For mesh
topologies, we found 0.2 to be a good value and for bi-torus we found 0.02 to
be a good value.

4.4.3 Operators
In this subsection we discuss which changes to a solution can lead to optimiza-
tions, and we select which operations to implement and use in the scheduler.
In order to decrease the period of an existing solution, the end of the schedule
should be moved backwards. Intuition says that an existing solution generated
by the scheduler is more dense in the beginning than in the end, therefore there
is more freedom to reroute paths in the end of the schedule. After each of the
optimization iterations, all communication paths are routed completely. The
quality of a solution is measured by the period of the TDM schedule.

Definition 4.9 The dominating paths are the set
D = {~φ ∈ Φ∗ : ~φ[last].t = period(Φ∗)}

The dominating paths are the direct cause preventing a shorter schedule.
Removing complete communication paths and rerouting them one at a time will
not reduce the number of slots in the TDM schedule. Removing a collection of
communication paths that prevent each other from being routed earlier might
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lead to a shorter schedule period when they are rerouted randomly. To make
adaptive decisions on which operators to choose, we need a set of diverse oper-
ators to choose from. We have implemented the operators: Dominating paths,
Dominating rectangle, Late paths and Random.

Definition 4.10 Three basic selection functions:
links : ~φ 7→ {0 ≤ i ≤ ~φ[last] : ~φ[i].l}
touches : L∗,Φ∗ 7→ {~φ ∈ Φ∗ : links(~φ) ∩ L∗ 6= ∅}
rect : ~φ→ P(L) returns the links within the bounding box spanned by ~φ.

The dominating paths operator selects the dominating paths and the paths
that are routed on the same physical links as the dominating paths, no matter
which time slot they are routed in.

Definition 4.11 The dominating paths operator selects the set DP of paths to
reroute, where

DP = touches

⋃
~φ∈D

links(~φ),Φ∗


The dominating rectangle operator selects all paths that are routed on the
physical links in the bounding box of each dominating path, no matter which
time slot they are routed in.

Definition 4.12 The dominating rectangle operator selects the set DR of paths
to reroute, where

DR = touches

⋃
~φ∈D

rect(~φ),Φ∗


The late paths operator selects the paths that end in the last time slot (the
dominating paths) and the paths that end in the second-last time slot.

Definition 4.13 The late paths operator selects the set
DL = {~φ ∈ Φ∗ : ~φ[last].t ≥ period(Φ∗)− 1}

The Random operator selects a random-sized set of randomly selected
paths. At least two paths are always selected and up to 10 % of all existing
paths can be selected.
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4.4.4 Implementation

Our scheduler is written in C++11, using BOOST 1.49[16] and pugixml 1.01

as 3rd party libraries. The source code of our scheduler can be downloaded at
https://github.com/t-crest/poseidon.git. The scheduler reads an input
XML file describing the core communication graph of the application and the
platform specification. The communication is then scheduled and the resulting
schedule is written to an output XML file.

4.5 Benchmarks

For the benchmarks in this paper, we assume that our platform is a square bi-
torus. In addition we assume that the pipeline depth of all routers is one, that
the pipeline depth of all links is zero, and that the packet size is one data word.
Additional benchmarks can be seen in the technical report [17].

We will experiment with two different types of benchmarks. The first is
the special case of all-to-all communication where core communication graphs
are fully connected graphs with a bandwidth of one on each channel. The sec-
ond type is the more general case of application-specific schedules from the
MCSL benchmarks suite[9]. In all our experiments, we create a core commu-
nication graph and a platform specification. For the platform specification we
only change the network size.

In the MCSL benchmark suite the tasks are already mapped onto pro-
cessors, so the benchmarks are basically core communication graphs. As some
processors execute more tasks, and as these tasks may have different communica-
tion behaviors, we associate the maximum data rate as the required bandwidth
for the different channels in the core communication graph. The normalized
core communication graph is found as described in Section 4.3.

If the produced schedule is longer than the number of time slots supported
by the hardware platform, the schedule needs to be shortened/compressed. One
way to achieve this is to normalize the bandwidths with a larger constant than
the smallest bandwidth. Another normalization function with a normalization
factor as a parameter can be seen in Equation 4.2. The normalization function
normf takes the bandwidth and the new normalization factor as input parame-
ters.

normf : b, σ 7→

 b

σ min
cm∈C

cm.b

 (4.2)

1Source code can be downloaded at http://pugixml.googlecode.com/files/pugixml-1.0.
zip

https://github.com/t-crest/poseidon.git
http://pugixml.googlecode.com/files/pugixml-1.0.zip
http://pugixml.googlecode.com/files/pugixml-1.0.zip
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Table 4.1: A comparison of the schedule length for the all-to-all case. The
schedule lengths are expressed in TDM slots, and the numbers in
bold are the best results for the given topology and network size.

Bi-torus Previous work This work

Size Opt. Lower Sym. GREEDY ALNS GRASP
[15] bound [15] [2]

3× 3 10 8 11 12 10 10
4× 4 18 15 20 21 19 19
5× 5 28 24 28 32 30 30
6× 6 – 35 – 45 45 43
7× 7 – 48 – 64 63 61
8× 8 – 64 88 87 87 85
9× 9 – 90 – 113 113 113

10× 10 – 125 158 154 154 151
15× 15 – 420 481 471 471 477

Where, σ is the normalization factor. Normalizing with a large σ degrades
the relationship between bandwidths, because the minimum bandwidth is al-
ways 1. As σ increases at some point the overall performance drops. Taken to
the extreme, the shortest possible schedule is when we normalize with a factor
equal to the bandwidth of the largest communication channel. This results in a
normalized core communication graph where all channels have a required band-
width of one packet per TDM period. The TDM period needs to be repeated σ
times to provide the same amount of data to be transferred as the uncompressed
schedule.

4.6 Results
The scheduler always produces a solution that satisfies the bandwidth require-
ments of the normalized core communication graph, and the goal of the sched-
uler is to minimize the schedule period. This again minimizes the frequency of
the TDM clock at which the absolute required bandwidths are met. Below we
present results for the all-to-all communication and for the core communication
graphs derived from the MCSL benchmark applications.

4.6.1 All-to-All Communication

To evaluate the performance of our scheduler in the special case of all-to-all
communication, we schedule the communication patterns for different network
sizes on both mesh and bi-torus topologies. Table 4.1 shows the results and com-
pares against the results of the heuristic scheduler in [2] and against the optimal
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Figure 4.3: The link utilization of a greedy all-to-all schedule on a network
with a bi-torus topology. The optimal link utilization is calculated
from[15], along with the upper bound on the link utilization that
is derived from the lower bound of the schedule period.

results and theoretical lower bounds given in [15]. All our results have been ob-
tained by running our metaheuristic scheduler for two hours on a computer with
an i7-3630QM (4 cores @ 2.4 GHz) with 16 GB of memory.

As seen in Table 4.1 our scheduler produces better results than the sym-
metric scheduler [2] in all cases except the 5× 5 bi-torus. This conforms to the
fact that the symmetric scheduler is restricted to produce solutions where all
routers execute the same schedule, whereas our scheduler has more freedom and
hence is able to find solutions with a shorter schedule period.

For the bi-torus our schedules are approx. 30 % longer than the analytical
lower bound from [15]. As seen in Table 4.1, the optimal schedule period for a
3 × 3 bi-torus network is 10, and both our ALNS and GRASP schedulers are
able to find schedules with this period. For the other cases for which optimal
schedules are known, our scheduler finds solutions whose schedule periods are
only slightly larger.

Comparing the GREEDY solutions with the metaheuristic solutions (ALNS
and GRASL) produced in Table 4.1, we see that the metaheuristic algorithms
produce better results in most cases. For the large network sizes, the im-
provement by the metaheuristics diminishes. There are several reasons for this.
Firstly the link utilization increases with the number of nodes as seen in Fig-
ure 4.3 for the bi-torus and the greedy scheduler. The link utilization increases
because the average communication channel length grows with the network size.
This limits the ability to reroute paths.
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Table 4.2: The schedule period (measured in TDM slots) for applications
from the MCSL benchmark suite [9] mapped to different network
sizes. Numbers marked with a ∗and a †are generated by ALNS and
GRASP, respectively. For unmarked numbers ALNS and GRASP
generated schedules of the same length.

Bi-torous Reed Reed Dyn. Com-
network Sol. Sol. Robot SPEC plex H.264
size enc. Dec. Ctl. 95 FFT Dec.

3× 3 225 ∗3,202 529 40 24 305
4× 4 393 7,951 1,248 184 41 571
5× 5 561 †9,601 1,233 2,306 68 †1,417
6× 6 161 †12,401 1,233 389 84 1,331
7× 7 151 †22,477 1,233 2,018 †99 1,825
8× 8 151 †12,417 1,233 †1,103 98 2,395
9× 9 150 †22,476 1,232 1,192 †117 –

10× 10 140 22,502 1,232 †1,466 †115 –
15× 15 392 †16,960 1,232 †1,585 †111 –

4.6.2 Application-Specific Schedules

In this section we investigate the general case of scheduling arbitrary commu-
nication patterns. The communication patterns of interest are communication
graphs from real applications. The MCSL NOC Benchmark Suite [9] provides
statistical traffic patterns for seven different applications mapped onto different
topologies of different sizes. The seven benchmarks represent different types of
traffic patterns, such as one-to-many, many-to-many, grid-like patterns and com-
binations of these. These communication patterns are also valid for real-time
systems, as they contain a dynamic control application, encoding and decoding
of error-correcting codes and general mathematical operations.

The normalized communication patterns are scheduled with the presented
scheduler on mesh and bi-torus topologies of different sizes. In Table 4.2 we
show the obtained schedule period of the benchmark applications generated
with ALNS and GRASP.

The long schedules shown in Table 4.2 are bound by IO of the most communication-
intensive processors in the network. Another observation that can be made from
the table is the irregularity of the schedule lengths. There is no correlation be-
tween the schedule period of an application mapped to a mesh topology or a
bi-torus topology of the same size.

In practice it is not feasible to implement the hardware tables needed to
support the longest schedules shown in Table 4.2 (1000+ time slots). Based
on the hardware complexity of the NOC-implementation, we consider RAM or
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ROM tables with 64-128 entries to be acceptable and tables with 256 entries to
be a on the high side.
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Figure 4.4: The measured and ideal schedule period as a function of σ of all
the benchmark applications mapped on an 8×8 bi-torus platform.

Therefore, it is interesting how much the schedule period can be compressed
before the overall performance decreases. Varying the normalization factor, we
can observe how the resulting schedule periods change. In Figure 4.4 we show
how the schedule period changes as a function of the normalization factor σ
for the benchmark applications in an 8 × 8 bi-torus platform. We picked this
topology because it reflects a likely topology. We have also experimented with
a 16 × 16 bi-torus platform, where we found similar results. The dotted lines
are the initial schedule period divided by the increasing σ. They indicate how
the schedule period would decrease in the ideal case, where bandwidths are not
affected (c.f., the discussion in Section 4.3). If the measurements are above
the dotted line, the schedule period is longer than what corresponds to the
compression factor. This represents a decrease in bandwidth (in the normalized
domain) and this must be compensated for by an increase in the frequency of
the TDM clock.

We see that the curves for all the applications follow the ideal lines well
below 1000 time slots. When the curves break off from the ideal lines, this is be-
cause the increasing compression factor causes an over-allocation of bandwidth
to the communication channels with the smallest requirements. It is seen that
all applications can be scaled down to less than 100 TDM slots with a negligible
performance degradation compared to the unscaled version. In most cases this
can be compensated for by increasing the frequency of the TDM clock used in
the NOC. We consider this insight and the idea of compressing the schedules an
important contribution of the paper.
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4.7 Discussion

Summarizing the results, we see that our scheduler produces very good results
for the special case of all-to-all communication. The all-to-all schedules are
hard to optimize because their link utilization is very high and their core com-
munication graph is fully connected. The schedule period length of the all-to-all
schedules grows polynimially with the number of nodes in the network. For large
networks it is not be feasible to support an all-to-all schedule, because the la-
tency is very high, the bandwidth to a single core is very limited, and the tables
would be very large, increasing the size of the interconnect hardware. An ap-
plication mapped onto a 16× 16 platform, where all cores need to communicate
to all other cores, is quite unlikely. In the tool flow, an all-to-all schedule would
lead to simplifications. The mapping of tasks to processors is simplified because
the bandwidth is equally low to all cores. Therefore, the mapping of tasks has
very little effect on the performance, only the latency changes depending on the
mapping.

From the application-specific schedules of the benchmark application, it
looks plausible that we can set a limit on the number of time slots that an
application-independent platform needs to support. For the applications in the
benchmark suite it seems a good limit on the number of time slots is around
100. If we limit the number of time slots to 100, we can schedule all of the
applications from the benchmark with only a negligible performance decrease
compared to the unlimited case. Given a limit on the time slots available in
the hardware platform, the tool flow should do a binary search for the optimal
normalization factor.

Overall the application-specific schedules provide an excessive amount of
bandwidth compared to the all-to-all schedules. The excessive amount of band-
width can be removed by reducing the clock frequency of the network or reducing
the width of the links, a combination of the two will save both power and area.

4.8 Conclusion

The paper presented a metaheuristic scheduler for inter-processor communica-
tion in multi-processor platforms using time division multiplexed (TDM) net-
works on chip (NOC). This scheduling problem is NP-complete and we use a
metaheuristic approach to solve it. The scheduler is intended for use in a de-
sign flow where an application is mapped onto a predesigned and therefore fixed
platform.

Input to the scheduler is a specification of the NOC in the platform and
a specification of the application in the form of a core communication graph.
The input formats are highly parameterized, and compared to previous work,
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the scheduler therefore handles broader and more general class applications and
platforms.

For the special case of all-to-all communication with identical bandwidth,
our scheduler produces better results than reported in previous work. The
scheduler was also evaluated for a set of larger and non-symmetric applications
from the MCSL NOC benchmark suite. Among our results is the observation
that our metaheuristics perform better than the greedy solution.

The scheduler uses a dimensionless and normalized representation of band-
width requirements, and the paper shows that the period of the TDM schedule
can be compressed to less than 100 slots with almost no increase in the TDM-
clock frequency.
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Abstract
Real-time systems need time-predictable computing platforms. For a
multicore processor to be time-predictable, communication between pro-
cessor cores needs to be time-predictable as well. This paper presents a
time-predictable message-passing library for such a platform. We show
how to build up abstraction layers from a simple, time-division mul-
tiplexed hardware push channel. We develop these time-predictable
abstractions and implement them in software. To prove the time-
predictability of these functions we analyze their worst-case execution
time (WCET) with the aiT WCET analysis tool. We combine these
WCET numbers with the calculation of the network latency of a mes-
sage and then provide a statically computed end-to-end latency for this
core-to-core message.
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5.1 Introduction

In hard real-time systems, all tasks must meet their deadlines to avoid catas-
trophic consequences. Therefore, execution times of tasks, including communi-
cation timings, must have a provable upper bound. This provable upper bound
is the worst-case execution time (WCET). The WCET is a major concern when
the designer analyzes the performance of the system.

Inter-core communication via external shared memory quickly becomes a
performance bottleneck in multicore processors as the number of cores grows.
With a shared cache caching the external memory, this single resource still is a
bottleneck. Access to a shared cache and cache-coherence traffic will not scale to
more than a few processors. Using message passing between cores via a network-
on-chip (NoC) promises to eliminate this bottleneck [14, 17]. Hardware support
for on-chip message passing is also beneficial when added to a standard multicore
architecture to reduce the cache traffic. Furthermore, the message passing NoC
shall be visible and directly accessible to the application programmer for efficient
and predictable use of the communication infrastructure.

The T-CREST project [25] developed a time-predictable multicore proces-
sor, consisting of the time-predictable processor Patmos [22], a time-predictable
memory NoC [24, 3], a time-predictable memory controller [4, 15], and the time-
predictable message passing NoC Argo [12, 29].

This paper mainly addresses the software layer for Argo. Argo uses time-
division multiplexed (TDM) scheduling, which allows deriving upper bounds
of message latencies [23, 27]. Furthermore, as the TDM schedule is static and
precomputed [28], the routers and network interfaces are small. The network
interfaces include direct memory access (DMA) controllers to transfer data from
a local scratchpad memory (SPM) to a remote SPM. A processor can only setup
a DMA to transfer data to a remote processor; this type of communication is
called push communication. However, using the NoC for more general message
passing between cores requires a detailed understanding of the hardware and its
capabilities.

This paper presents a time-predictable message-passing (TPMP) library
that abstracts from the details of the T-CREST platform and makes the plat-
form’s time-predictable features available to the application developer.

The Message Passing Interface (MPI) standard [18] – the de-facto stan-
dard for message passing in distributed memory systems – inspired the TPMP
library. We used MPI as inspiration to provide an interface that is easy to use
for developers that are already familiar with message passing. However, imple-
menting MPI requires dynamic allocation of messages, which is usually avoided
in real-time applications. For better analyzability we statically allocate mes-
sage buffers. To avoid copying of data and maximize performance, our library
operates on messages placed directly in the communication SPMs.
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We implement flow control in software on top of the push communication
supported in hardware. If we use the cycle executive model to implement hard
real-time programs, one can argue that the library does not need flow control.
However, the library needs flow control to implement atomic updates of sample
values in state based communication. Flow control also simplifies communica-
tion between tasks that execute at different periods.

On top of the flow control we implement double buffering to interleave com-
munication and computation. We need double buffering at both the sender and
the receiver side to interleave communication and computation. By extending
the double buffering to a queue of buffers we support multi-rate synchronous
programming and asynchronous message passing.

Our library implements a barrier and a broadcast primitive in addition to
the send and receive primitives. We envision that our platform developed for
hard real-time applications will also support soft real-time and non-real-time
application. Therefore, we explore a broader set of communication primitives
including a barrier. Even though Argo does not provide direct hardware support
for these primitives, the evaluation shows that our implementation is efficient.

The contributions of this paper are:

• a message passing library that takes into account the capabilities of the
Patmos multicore processor while providing an interface that is familiar
to developers

• an evaluation that shows efficiently implemented primitives with collective
semantics on top of Argo, even though there is no direct hardware support
for them

• an evaluation of the WCET of the implemented communication primitives

This paper is organized as follows: Section 5.2 presents related work. Sec-
tion 5.3 presents background on the MPI standard. Section 5.4 presents an
overview of the T-CREST hardware platform. Section 5.5 describes the design
of the TPMP library. Section 5.6 describes the implementation of the TPMP
library and provides evidence for its analyzability. Section 5.7 evaluates the
WCET of TPMP library functions. Section 5.8 concludes the work presented
in this paper.

5.2 Related Work
Intel created the Single-chip Cloud Computer (SCC) as a research chip to ease
research on many-core architectures [8, 9]. Along the SCC, Intel provides a
library for message passing via the NoC called RCCE. RCCE provides high-
level functions and “gory” low-level functions for message passing [16].
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Scheller [21] investigates real-time programming on the Intel SCC. In par-
ticular, he describes a message passing interface for the SCC and evaluates the
achievable bandwidth. In contrast, this paper investigates a message passing
library for a hard real-time platform with time-predictable hardware.

A more detailed evaluation of the Intel SCC reveals that its NoC can ex-
hibit unbounded timing behavior under high contention [20]. Due to the TDM
scheduling used in Argo, such behavior would be impossible on the platform
considered in this paper.

Kang et al. [11] present an evaluation of an MPI implementation for the
Tile64 processor platform from Tilera. The sending primitive loads the message
data through the data cache, causing high cache miss costs for large messages.
The library presented in our paper avoids these costs by placing messages in the
communication SPM.

The CompSOC platform [5] aims at time-predictability, similarly to the
platform we are targeting. While the hardware implementation of the NoC
in CompSOC is more complex than in our platform, the network interfaces
resemble each other from a software perspective: the application places messages
in a local memory and transfers them through the NoC with a DMA mechanism.
Therefore, the design of the library presented in this paper should also apply to
the CompSOC platform.

There has been an attempt to define a variant of the MPI standard for
real-time systems [10, 26]. However, this real-time variant of MPI has not found
widespread adoption.

To analyze multicore programs using message passing, Potop-Butucaru et
al. [19], describes a method that includes communication in the control flow
graph of the program. The architecture and library we present in this paper
can also use this method.

5.3 MPI background
The MPI standard [18] is the de-facto standard interface for message passing in
distributed memory systems. The MPI standard has eight different communi-
cation concepts, where four of them apply for all versions of the MPI standard
and the remaining four only apply to the MPI-2 version of the MPI standard.
We have decided that the concepts of MPI-2 are out of scope for this paper,
as we focus on the basic message passing primitives. The four communication
concepts that apply for all the MPI standards are:

1. Communicator

2. Point-to-point basics

3. Collective basics
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4. Derived datatypes

The Communicator concept describes a group of processors that can com-
municate. The program can reorganize a group during runtime. We omit the
runtime configuration, as it is not statically analyzable. Instead we setup the
communication channels statically to provide a statically analyzable solution.

The point-to-point concepts describe the send and receive functions in
blocking and non-blocking versions. Point-to-point communication behaves as
a communication channel through which only one core can send and only one
core can receive. With TPMP we implement the principles of point-to-point
communication of MPI. We provide both blocking and non-blocking versions of
the send and the receive functions.

The concept of collective behavior describes how groups of processors can
communicate. The collective communication involves both synchronization and
exchange of data between multiple processors. The semantics of collective be-
havior in MPI is that they all start with a barrier to synchronize and then
exchange data. By analyzing the sequential pieces of code between commu-
nication points and joining the results together in a system-level analysis, the
designer can analyze the collective behavior. In this paper we present the im-
plementation of the base services for collective behavior, the barrier and the
broadcast. The other collective primitives are straightforward to implement
using the principles from the barrier and the broadcast.

The derived datatypes concept defines some MPI specific datatypes that
can have different implementations on different architectures. While the derived
datatypes are useful on heterogeneous systems, they are out of scope for this
paper because we focus on a homogeneous hardware platform.

The TPMP environment differs from the MPI standard in four ways: (1)
TPMP only addresses on-chip communication. Therefore, the communication
stack of our platform and TPMP can be much shallower than the communi-
cation stack of the MPI standard. (2) The T-CREST platform uses TDM to
communicate through the NoC. Therefore, the latency and bandwidth of the
communication channels can be guaranteed and are easy to compute. (3) The
data structures should be statically allocated in the initialization phase before
the application switches into hard real-time mode. (4) The shared memory
bandwidth is the bottleneck of the system, so TPMP should force the program-
mer to keep data locally, reducing the use of the shared memory as much as
possible.

5.4 The T-CREST Platform
This section gives an overview of the T-CREST multicore platform and a more
in-depth presentation of the hardware functionality of the message passing NoC
and the associated TDM scheduler.
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5.4.1 Platform Overview

The Patmos multiprocessor is a time-predictable homogeneous multiprocessor
platform. It is designed to be a general-purpose platform for real-time systems,
but it is also possible to instantiate application-specific FPGA implementations.

Figure 5.1 shows the structure of a Patmos processor node. Each processor
node contains three caches and three SPMs: a method cache (M$), a stack cache
(S$) for stack allocated data, a data cache (D$) for heap allocated and static
data, and SPMs for instructions, data, and message passing communication.
Patmos can also bypass caches and directly access the shared memory. The
platform has two NoCs, one that provides access to a shared memory, and one
that supports inter-core communication. We refer to these NoCs as the memory
tree NoC (due to its structure) and the message passing NoC. Both NoCs use
TDM to guarantee latency and bandwidth.

The processor has two address spaces: (i) a globally shared address space,
and (ii) a local I/O address space for I/O devices and local SPM data. Accesses
to the globally shared address space go through the memory tree NoC.

5.4.2 The Message Passing NoC

The Argo packet switched NoC for message passing implements end-to-end vir-
tual channels and DMA controllers in the processor nodes. The processor can
set up a DMA controller to push a block of data from the local SPM into the
SPM of a remote processor core. This is the fundamental hardware mecha-
nism underlying our message-passing library. A range of multicore platforms
including [13, 5] provide similar functionality to Argo.

The processor needs to set up a communication channel to communicate
between two processors. The Argo NoC uses static TDM scheduling for routing
communication channels in routers and on links. The repeating schedule is an
assignment between communication channels, DMA controllers, and TDM slots.
In every time slot the NI can transmit a short packet with a two-word payload.
The NI sends larger blocks of data (i.e., messages) as a sequence of packets. In
this way all the outgoing channels from a processor node can be active at the
same time in a time-multiplexed fashion.

In contrast to other TDM based NoCs that require credit-based flow control
across the virtual channels, we have been able to avoid all forms of flow control
and buffering in hardware. We achieve this by a novel network interface (NI)
design [29] that integrates the DMA controllers with the TDM scheduling in the
NIs as illustrated in Figure 5.1. In a given time slot of the TDM schedule, the
corresponding DMA controller reads two words of payload data from the SPM
and injects a packet into the NoC. This packet traverses the NoC and when it
arrives at the destination the NI writes it directly to the SPM.
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Figure 5.1: Block diagram of a node in the T-CREST multicore processor and
its connections to the memory tree NoC and the message passing
NoC.

We have implemented the DMA controllers in a single time-shared DMA
state machine, because only one controller is active in each TDM slot. The de-
sign stores the address pointers and the word count corresponding to one logical
DMA controller in a table. This sharing of the DMA controller hardware, and
the absence of flow control and buffering, results in an extremely small hardware
implementation; the NI is 2-3 times smaller than existing designs offering similar
functionality [29]. At the same time the design supports a globally-asynchronous
locally-synchronous platform with a minimum of clock-domain crossings.

5.4.3 The Scheduler

The off-line scheduler [28] generates a TDM schedule for a given application.
Input to the scheduler is a communication graph that specifies groups of tasks
mapped to the same processor (nodes in the graph), and the communication
channels (edges annotated with the required bandwidth) along with a mapping
of groups of tasks to specific processors in the platform.
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Using a meta-heuristic optimization algorithm, the scheduler minimizes the
period length of the generated schedule. In general, the schedule period depends
on the number of processor nodes and channels. It is interesting to note that a
schedule for a fully connected communication graph with the same bandwidth
requirement on all channels is 19 slots for a 16-node platform and 85 slots for a
64-node platform.

The scheduler supports arbitrary NoC topologies, arbitrary pipelining in
the individual routers and links, and different sized packets on different channels.

5.5 Design

A user-friendly message passing library shall hide all the complicated and the
platform-specific details from the programmer, such that the programmer can
concentrate on the application design. The programmer should not have to
take care of hiding communication latency or preventing message buffers from
overflowing. The library should hide these details from the programmer without
inferring significant overhead and while maintaining the analyzability of the
whole system. When we designed the TPMP library we assumed a platform
similar to the T-CREST platform, with simple DMA-driven NIs [29].

5.5.1 Requirements

The overall requirements to the TPMP library are time-predictability, ease-of-
use, and low overhead. To be time-predictable it shall be possible to compute the
end-to-end latency of a message transfer. This end-to-end latency depends on
the size of the message, the bandwidth allocated for the communication channel,
and the code running on the processors involved in the communication. The
communication primitives shall be implemented such that they minimize the
WCET.

Ease-of-use means that the interface functionality shall be designed to fit
many different applications. The interface shall provide communication primi-
tives with different levels of configurability, such that the application developer
can choose which runtime checks to perform in the application.

In a low overhead design it is important to avoid unnecessary movement of
data. If the message data is moved to the shared memory it might be evicted
from the caches, which can lead to a very high WCET. Even if the data stays
resident in the cache, WCET analysis might not be able to classify those accesses
as cache hits.
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5.5.2 Push Communication

To push data to another core we need to setup a DMA transfer. We need four
parameters to setup the DMA transfer: (1) the local address, (2) the destination
core, (3) the remote address, and (4) the amount of data that the DMA should
transfer. After this setup, the DMA and NoC transfer the message without any
processor interaction. The sender can poll the DMA to detect the completion
of the push message transfer.

On the receiving side the NI moves the message data to the destination
address in the SPM without any interaction between the processor and the
NI. The NoC and NI do not support any notification of a completed message
transfer. Therefore, we need to implement this notification of the completed
message transfer in software on top of the pure push communication. The NI
transfers the message data in-order, so when the processor detects the last word
of a transfer, it knows that it has received the complete message. Therefore, we
append one word for a flag to the end of a message that is initially cleared by
the receiver. The message itself has this flag set (by the sender). The receiver
polls this flag to detect when the message has arrived. Then the flag is reset
again.

5.5.3 Flow Control

To implement flow control, the receiver needs to acknowledge that it has received
the previous message, such that the sender can send a new message. To avoid
flow control on the acknowledge message, we need an acknowledgement scheme
where consecutive acknowledgements can be overwritten without losing data.
Such a scheme can be a simple counter, counting the number of messages the
receiver has acknowledged. Every time the receiver acknowledges a message, the
library updates the counter and sends the value of the counter to the sender.
The sender can then calculate if there is any free buffer space at the receiver, by
subtracting the number of acknowledged messages from the number of messages
sent.

The acknowledgment message uses the very same push communication as
described above for the message transfer. It is not different from a normal data
packet.

5.5.4 Point-to-Point Primitives

Point-to-point communication involves two processors, the sender and the re-
ceiver. To make point-to-point communication efficient, the library needs to
double buffer the messages to interleave communication and computation. To
take advantage of the overlapping in both ends of the point-to-point communi-
cation channel, both the sender and receiver need to have two buffers. These
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four buffers comprise one for the sender to write into, two for the network to
operate on, and one for the receiver to read from. The sender needs to keep
track of its own double buffer and it needs to coordinate with the receiver where
to write into the receiver’s double buffer.

We construct the double buffering as a circular buffer. To control the
circular buffer at the receiver the sender needs a pointer to the tail of the queue
and the receiver needs a pointer to the head of the queue. With the flow control
described in Subsection 5.5.3, the only check the primitives have to make is to
reset the head or tail pointer when they reach the end of the circular buffer
space.

To increase the flexibility of the point-to-point communication primitives
and to support a larger set of programming models, we add buffers to the existing
double buffer and use the available handling of the circular buffers. The number
of buffers is configurable on a per channel basis.

We can add additional capacity either to the sender side or to the receiver
side. If we add the buffer capacity to the sender circular buffer, the sending
processor needs to handle every message twice. Once to enqueue the message
and once to setup the DMA transfer for that message. Therefore, we add the
buffer capacity to the receiver circular buffer where we can wait for a message
and dequeue the message in a single step. As we already have circular buffers
for the double buffering, it is straightforward to increase the size of the circular
buffers.

The acknowledgement scheme described in Subsection 5.5.3 together with
the added buffer capacity allows the receiver to receive two or more messages
before acknowledging any of these messages.

Figure 5.2 shows the memory layout of the two communication data struc-
tures allocated in the SPMs. The application programmer can configure the
number of read buffers of the point-to-point channel to match the needs of
the application. The library hides the communication latency from the sender,
by overlapping computation and communication in two write buffers. The Ac-
knowledge count in the receiver SPM is the number of messages that the receiver
has acknowledged. The acknowledge primitive transfers the local Acknowledge
count to the remote Acknowledge count in the sender SPM using push commu-
nication. The sender can compute the number of free buffers in the receiver side
message queue from the number of messages sent and the number of messages
acknowledged.

After using the data in a buffer, the receiver sends the acknowledgement
for this buffer back to the sender. An acknowledgement means that the point-
to-point connection can reuse the acknowledged receive buffer for new data.

For the point-to-point communication there are three primitives, (1) a send
primitive, (2) a receive primitive, and (3) an acknowledge primitive. For each
primitive there is a blocking and a non-blocking version. The blocking commu-
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Figure 5.2: The memory layout of the buffering structure for point-to-point
communication primitives.

nication primitives complete when all conditions are meet. The non-blocking
versions check the conditions and return a success or a failure code depending
on the failing condition.

The non-blocking send primitive can fail for two reasons, either there is
no free buffer at the receiver end, or there is no free DMA on the sender side
to transfer the data. The non-blocking receive and acknowledge primitives can
each fail for one reason. If the buffer queue is empty, the non-blocking receive
primitive fails. If there is no free DMA to transfer the Acknowledge count to
the sender, the non-blocking acknowledge primitive fails. With the error codes
the application programmer can take action depending on the error.

5.5.5 Collective Primitives

The basic collective primitive is a barrier. All cores in a group call the barrier
function for synchronization. The semantics of a barrier is that none of the
participating tasks can advance beyond the barrier before all tasks have called
the barrier function.
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Figure 5.3: The memory layout of the collective communication primitives.

Broadcast, all-to-all, reduce, and reduce-all are examples of extended prim-
itives. The semantics of these extended primitives are a barrier synchronization
followed by a data exchange. The differences between these extended primitives
are the data exchange patterns. We have implemented the broadcast to show
the basic operation, and with the following ideas we can easily implement the
other extended collective primitives. As the extended collective primitives start
with a barrier, the tasks have to finish using the data of the previous exchange
before calling the next collective primitive. Therefore, there is no need for flow
control; we only need a packet arrival notification. Or in other words, the barrier
serves as flow control.

Barrier A barrier has two phases: notify and wait. In the notify phase the
task will notify the task group that it has reached the barrier. In the wait phase
the task will wait for a notification from all the tasks in the group. When a
task has seen all members of its group arrive at the barrier, it can continue
its execution. We can implement a notification to all members of a group by
sending a message to each of them. With an all-to-all TDM schedule in the NoC
the bandwidth is already allocated and the individual communication channels
do not interfere. Therefore, each member in the group sends a flag to every
other member. Figure 5.3 shows the memory layout for the collective primitives
in each SPM. The barrier uses only the barrier flags.

Broadcast With the help of the barrier we can implement a broadcast. The
broadcast starts with a barrier and then the root process of the broadcast trans-
mits a block of data to all the other participants in the broadcast. We place the
broadcast data in the data exchange area of the root process, as seen in Fig-
ure 5.3. The broadcast primitive transfers this data to the participants’ SPMs
by setting up a DMA transfer for each participant.
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5.6 Analyzable Implementation
Our main target for the implementation of the TPMP library is its WCET
analyzability. During the development we use AbsInt’s aiT WCET analysis
tool [6] to guide development decisions. First, we bound all loops to enable
WCET analysis. Second, cache misses are very costly on a time-predictable
multicore processor. Therefore, we tried to avoid accessing shared memory
completely, by allocating as many data structures as possible in the processor
local SPM.

5.6.1 Push Communication

The Argo NoC implements push communication in hardware, but does not
generate a notification when a message is received. We implement the receive
notification in a single 32-bit value at the end of each message. Adding the
receive notification does not change the way we analyze the communication.

5.6.2 Flow Control

Our design implements flow control by sending a counter value from the receiver
to the sender. The library sends this counter value in a single network flit (64
bits of unsigned data), with no receive flag as notification. Calculating the
number of free buffers is safe across an overflow, as long as the overflow value
is greater than the largest possible difference between the two unsigned values,
i.e., the number of buffers in the queue.

5.6.3 Point-to-Point Primitives

Figure 5.4 shows the interaction between two communicating threads using the
blocking point-to-point primitives. When mp_send() sets up the DMA, the NI
starts to transmit packets to the receiver. After receiving all packets the blocking
mp_recv() continues. When the receiver finishes using the received message, it
updates the Acknowledge count and sends it to the sender. Depending on the
number of free elements in the buffer queue, the sender may proceed.

To analyze the blocking primitives, we assume that the blocking primitives
do not have to wait for messages to arrive or free buffer space. We bounded the
unbounded while loops in the blocking point-to-point primitives with source
code annotations. We set the upper loop bound of the while loops to one. The
analysis method presented in [19] supports this interaction enabling worst-case
response time analysis.

The implementation of the non-blocking point-to-point primitives is free of
unbounded loops. Therefore, the source code needs no annotations to complete
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Figure 5.4: A model of the implemented point-to-point communication.

the analysis. We minimized the WCET for all primitives by looking at the
feedback from the interactive analysis in the aiT tool.

5.6.4 Barrier Primitive

Figure 5.5 shows the interaction between cores that participate in a barrier.
First, the barrier preamble calculates the addresses of the flags to send to the
other participants. Then, it sends a message with a flag to all the others. When
the primitive has set up all messages for transfer, the core synchronizes with
the other cores one by one. To separate subsequent barrier calls, the primitive
needs to reset the flag; resetting the flag requires the cores to synchronize a
second time. To avoid resetting the flag twice, we make use of sense switching,
first described by Hensgen [7]. Sense switching combines an alternating phase
with the flag.

5.6.5 Broadcast Primitive

Figure 5.6 shows the model of the broadcast primitive. The broadcast primitive
starts by synchronizing all cores with a barrier call. After the barrier call, the
root of the broadcast pushes data to the other cores by setting up one DMA
transfer to each of them. The cores receiving data from the root core wait for
the receive flag.
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Figure 5.5: A model of the implemented barrier primitive.

5.6.6 Concurrency Issues

The SPM has two independent read/write ports that are used by the processor
and by the NI. The processor and the NI behave as two truly concurrent threads:
a software thread and a hardware thread. Both threads can access the same
memory cell in the exact same clock cycle. Reading concurrently is not an
issue. Writing concurrently will result in an undefined value. The TPMP library
avoids concurrent writes by design. The remaining issue is reading and writing
concurrently.

Most FPGA technologies do not define the result of a read during a write
to the same address at the same time. An undefined value may be a random
mix of the old value and the new value, but the stored value will be the new
value [1, 30]. Reading an undefined value from the SPM might cause wrong
behavior by the communication primitives.

In the design, discussed in Section 5.5, a processor can read an undefined
value when reading the receive flag or the acknowledge count. The DMA con-
troller of the NI will never read an undefined value as the processor starts the
DMA only after the processor has written all the data.

If the NI and the processor reside in the same clock domain, we can solve the
problem of reading an undefined value in hardware by adding forwarding to the
SPM, from the network port to the processor port; but with the implementation
of our TPMP library this is not necessary.

The receive flag arrives only after the NoC has delivered all the message
data. If the processor reads the receive flag in the same cycle as the flag arrives,
the processor reads an undefined value; 0 or 1. If the processor reads a 1 it
correctly concludes that it has received a message. If it reads a 0 it will continue



106 Message Passing on a Time-predictable Multicore Processor

Application 
code

Barrier
preamble

Broadcast
preamble

Barrier
synchronization

Application 
code

Broadcast
postamble

Broadcast
data

Figure 5.6: A model of the implemented broadcast primitive.

waiting and polling at the next try it will read a 1. This adds only a few cycles
to the receive operation.

For the acknowledgment the receiver communicates back to the sender,
the situation is somewhat similar, but more complex. The count value may
signal the availability of one or more free buffers and the processor may read an
arbitrary value.

A key observation is that this only happens if the NI writes a new value in
the same cycle, and that this only happens when there is at least one free buffer
in the receiver. By restricting to sending only a single message after a read
of the count value, the sending processor can draw one of two conclusions and
both are on the safe side: (i) If a potentially incorrect count value causes the
sender to conclude that the receiver does not have a free buffer, then the sender
will continue waiting and polling, and at the next read of the count it will read
the correct value. (ii) If the potentially incorrect count value causes the sender
to conclude that the receiver does have at least one free buffer, then – despite
the incorrect count value – this conclusion is actually correct. In both cases the
behavior is correct, and in the worst case the additional polling operation adds
a few cycles to the latency of the send operation.

If the processor and NI are in different clock domains it is not only a
matter of reading potentially undefined digital values. It is also a matter of
metastability and reading non-digital signals. Handling of this situation requires
synchronization of signals/flags to the processor clock domains. Implementing
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this involves a minor addition to the NI implementation and this is future work.
However, the effect on the WCET analysis as presented in this paper will be
very small.

5.7 Evaluation
For the WCET analysis and the measurements we use a 9-core platform with a
3×3 bi-torus network and a TDM arbiter for shared memory access. Each core
in the platform is running at 80 MHz and has 4 KB of communication SPM.
The platform is running in an Altera Cyclone IV FPGA with 2 MB of external
SRAM. The cache miss time with the TDM arbiter is 189 clock cycles for a
16-byte burst.

We computed the WCET numbers with the aiT tool from AbsInt [6], which
supports the Patmos processor architecture. For the average-case execution time
(ACET) results, we ran a test application in the described hardware, reading
out the clock cycle counter to get the timing. For these results we assume that
the functions are resident in the method cache.

We optimized the source code of the TPMP library functions with respect
to WCET by looking at the feedback from the interactive mode of the aiT tool.

5.7.1 Point-to-Point Primitives

Table 5.1 shows the measured ACET and the WCET of all library functions.
Each blocking function contains a while loop that blocks until a condition be-
comes true. The design section describes the conditions of each primitive. We
assume that the functions do not wait for any of these conditions to become
true. A system-level analysis will show if our assumption does not hold and
in this case we can add the delay found by the system level analysis to the
WCET. For the WCET analysis we bounded the loop iteration count to one.
As shown in Table 5.1 the WCETs of the blocking function calls are higher than
the WCETs for the non-blocking calls. This is because the if statement in the
non-blocking primitive use predicates, avoiding a conditional branch.

The WCET is relatively close to the measured average-case execution time
because the platform is optimized for time predictability. The execution time is
a few tens of clock cycles. The library code is efficient, as no data needs to be
copied between the user program and the message-passing library. All buffers
in the SPM are directly usable for computation and communication.

5.7.2 Barrier Comparison

Figure 5.7 shows the WCET and the ACET of our message-passing barrier
against a tournament barrier [7]. The hardware platform is the same for all
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Table 5.1: Average-case execution time (ACET) and worst-case execution time
(WCET) for each point-to-point communication primitive.

Function ACET (cycles) WCET (cycles)
mp_nbsend() 51 83
mp_send() 74 99
mp_nbrecv() 32 36
mp_recv() 28 43
mp_nback() 55 59
mp_ack() 49 77
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Figure 5.7: The measured average-case execution time and the worst-case ex-
ecution time of a barrier call as a function of the number of cores
participating in the barrier.

the measurements; the number of cores is the number of cores participating in
the barrier. This figure shows that our barrier implementation using message
passing is faster than the shared memory tournament barrier in both the worst
case and the average case. Furthermore, message passing scales better in the
number of cores.

5.7.3 End-to-End Latency

We can calculate the end-to-end latency of transmitting a message from one
core to another with our library by adding the WCET of the executed code
and the time it takes the DMA to transfer the data. We refer to this latency as
Lmsg. Gangwal et al. [2] show how to calculate the latency of a write transaction
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through a TDM NoC. With an all-to-all TDM schedule, where all communica-
tion channels have equal bandwidth, this formula simplifies to what we show
below.

We assume that the clock frequency of the processors and the NoC is the
same to shorten the formula. One could extend the formula to account for
multiple frequencies, but we omit this here for space reasons. Lmsg is the worst-
case latency in clock cycles from the time the source processor calls mp_send()
to the time the destination processor returns from mp_recv(), assuming that the
sender does not wait for a free buffer or a free DMA, and the receiver is ready
to call mp_recv(). A system-level analysis can find any delays that break these
assumptions and add them to the worst-case latency.

Lmsg consists of two parts: (1) the WCET of the code running on the
processors and (2) the latency of a write transaction [2]. Table 5.1 shows the
WCET of the communication primitives and Equation 5.1 shows the formula
for the latency Lwrite of a write transaction.

Lwrite =
(⌈

Smsg

Schan

⌉
· PTDM

)
· Cslot +H ·D (5.1)

Smsg is the size of the transmitted message, Schan is the number of payload
bytes that the NoC can send in one TDM period from the source processor to
the destination processor, PTDM is the length of the TDM period, Cslot is the
number of clock cycles in a TDM slot, H is the number of hops from the source
to the destination processor, and D is the number of phits that one router can
store.

With our Argo NoC Schan is 8 bytes and Cslot is 3 clock cycles, meaning
that two 32-bit words can transferred every 3 clock cycles. For the synchronous
version of the Argo router D is 3 phits. For the presented 3×3 core platform
H is at most 3 hops. With an all-to-all schedule for this platform, PTDM is 10
time slots. Smsg is the message size.

To the latency of a DMA transfer we add the WCET of sending and re-
ceiving the message. The WCET of sending and receiving does not depend on
the size of the message, because it does not involve moving the data. Table 5.2
shows the worst-case latency of sending a message from a sender to a receiver.
The designer can reduce the latency of transmitting large messages considerably
by generating an application specific schedule that reduces PTDM.

5.8 Conclusion

Real-time systems need time-predictable computing platforms. For a multicore
processor not only the processor needs to be time-predictable, but also the mes-
sage passing hardware and software. This paper presented a message-passing
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Table 5.2: The worst-case latency in clock cycles of sending a message, without
acknowledgement of messages, for the blocking and non-blocking
communication primitives.

Message size (bytes) 8 32 128 512 2048
Blocking 211 301 661 2101 7861
Non-blocking 188 278 678 2078 7838

library for a time-division multiplexed network-on-chip. We developed the li-
brary to be time-predictable and we show this by analyzing the code with the
aiT WCET analysis tool from AbsInt. As the design carefully avoids access to
shared memory in the library code, the resulting WCET for the message passing
primitives is in the order of tens of clock cycles.

The message passing library and the application code operate on data allo-
cated in a local scratchpad memory that the network-on-chip also use for data
transmission. Therefore, the message passing library does not need to copy data
and the WCET of the message passing functions is less than 100 clock cycles,
independent of the message size.
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Abstract
Some real-time systems use a form of task-to-task communication called
state-based or sample-based communication that does not impose any
flow control among the communicating tasks. The concept is similar
to a shared variable, where a reader may read the same value multiple
times or may not read a given value at all. This paper explores time-
predictable implementations of state-based communication in network-
on-chip based multicore platforms through five algorithms. With the
presented analysis of the implemented algorithms, the communicating
tasks of one core can be scheduled independently of tasks on other cores.
Assuming a specific time-predictable multicore processor, we evaluate
how the read and write primitives of the five algorithms contribute to the
worst-case execution time of the communicating tasks. Each of the five
algorithms has specific capabilities that make them suitable for different
scenarios.
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6.1 Introduction

In real-time systems, a variation of channel-based communication that empha-
sizes modularity and encapsulation is often denoted by phrases and terms like
sending of state messages [10] or sample based communication [1]. The seman-
tics of these types of state-based communication resembles a shared variable
that is accessed atomically by a single writer and one or more readers without
any coordination. A value may be read multiple times or not at all before it is
overwritten by the next value.

In multicore systems, the number of processor cores is increasing year by
year. Therefore, the access to a shared memory not only becomes a bottleneck,
it also becomes more difficult to estimate the worst-case access time due to
interference with memory traffic from other processor cores. In hard real-time
systems, where the ability to find a tight estimate of the worst-case execution
time (WCET) is of paramount importance, communication through the main
memory represents a major problem. In this paper we concentrate on on-chip
communication through a network-on-chip (NoC).

The contributions of this paper are: (i) a study of five WCET-analyzable
state-based communication algorithms that target and exploit NoC-based mul-
ticore platforms and aim at minimizing interference, (ii) an analysis of the worst-
case communication delay (WCCD) that is valid for any schedule where tasks
meet their deadline, allowing the set of tasks to be scheduled independently of
the task schedules on other cores, and (iii) an analysis of the worst-case end-to-
end latency, presented through an example.

The schedulability analysis scales better to many cores if the tasks of one
core can be scheduled independently of the tasks executing on other cores. Our
algorithms offer modularity through independent timing and schedulability anal-
ysis of the communicating tasks on individual cores.

The paper is organized as follows: Section 6.2 provides related work on
state-based communication and timing analysis. Section 6.3 describes our sys-
tem model and hardware platform. Section 6.4 describes the five communication
algorithms. Section 6.5 presents the analysis of the WCCD through a commu-
nication flow. Section 6.6 presents the analysis of the maximum end-to-end
latency of an application using an example. Section 6.7 evaluates the presented
algorithms. Section 6.8 concludes the paper.

6.2 Related Work

The concept of state-based communication is equivalent to a shared variable that
can be written by a single writer process and read by multiple reader processes.
Lamport [14] named a more general version of this problem, allowing multiple
writer processes, the readers/writers problem.
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Courtois et al. [3] first formulated the readers/writers problem and proposed
two algorithms that prioritize either the reader processes or the writer processes.
Both algorithms can make the processes that are not prioritized wait indefinitely,
which is not acceptable in a real-time system.

Sorenson et al. [24] later proposed a non-blocking algorithm of the read-
ers/writers problem for real-time systems, but their algorithm is limited to simu-
lated concurrency using a single processor and it is not applicable on a multicore
platform offering true concurrency.

Lamport [14] later proposed an algorithm allowing readers to read concur-
rently while a writer is writing. The algorithm allows the reader to check if a
value is a mix of an old and a new value. In case of a mix, the reader re-reads.
Lamport’s algorithm does not use mutual exclusion, but continuous re-reading
of the variable can keep the reader busy indefinitely. Kopetz and Reisinger [11]
present an implementation of this algorithm, including an analysis of the upper
bound on the number of re-reads due to writer interference. In the worst-case
reader needs to read the whole message a number of times depending on the
timing of the reader and writer, for large messages this overhead becomes pro-
hibitively high and introduces a large amount of jitter.

In general-purpose systems, the predominant way of achieving mutual ex-
clusion is to use a lock. As a solution to the readers/writers problem, Mellor-
Crummey and Scott [17] proposed a read-write lock that allows multiple readers
to gain access to the lock at the same time and thereby read simultaneously.
Krieger et al. [12] proposed a similar version of the read-write lock that requires
fewer atomic operations. For these locks to be usable in a real-time system,
Brandenburg and Anderson [2] presented bounds of the blocking time of these
read-write locks.

The timing analysis of communicating tasks in a real-time application can
be divided into two parts: the WCET analysis of the application tasks and the
analysis of the delay of communication between tasks. In a multicore system, the
analysis of communication delays through a network is specific to the hardware
implementation. Indrusiak [8] shows how response-time analysis can be used
to calculate end-to-end latency of communication through a NoC with priority-
preemptive arbitration in routers.

Gangwal et al. [7] shows how to calculate the communication delay of read
and write transactions in a network using a time-division multiplexing (TDM)
schedule.

With the WCETs and communication delays of the application, the end-to-
end timing properties can be verified. Lauer et al. [15] presents such an end-to-
end latency and freshness analysis of an integrated modular avionics systems.
We show an example of a similar approach with a more detailed task model.
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6.3 System Model
This section describes the semantics of state-based communication, the platform
model and evaluation platform, and the application model that we assume in
our analysis of the problem and in the analysis of our proposed algorithms.

6.3.1 State-based Communication
The concept of state-based communication is vaguely defined in the literature.
The fundamental mechanism involves a writer and (possibly) multiple readers
that operate without any coordination. The following sources from the real-time
domain address the semantics of state-based communication.

The “standard for space and time partitioned safety-critical avionic real-
time operating systems” (ARINC 653) [1] describes two concepts for inter-
partition communication; queuing ports and sampling ports. Queuing ports
are similar to asynchronous message passing, and sampling ports are what we
are concerned with in this paper.

In [10, sect.4.3.4] Kopetz discusses time-triggered messages – the alterna-
tive to event-based messages – and he writes: “The semantics of state messages
is similar to the semantics of a program variable that can be read many times
without consuming it. Since there are no queues involved in state message trans-
missions, queue overflow is no issue. [. . .] State messages support the principle
of independence [. . .] since sender and receiver can operate at different (inde-
pendent) rates and there is no means for a receiver to influence the sender.”

In this paper we use the following semantics of state-based communication:
State-based communication involves a single writer and one or more readers.
Writing and reading of a state value must be performed atomically. Each state
variable needs its own data structure and is written or read independently of
other state variables. A read should always return the newest completely written
state value, and at the global level, multiple concurrent readers should observe
the same version of a state value at any given point in time. We refer to this as
temporal consistency between readers.

State-based communication should in principle not cause interference be-
tween communicating tasks. However, some interference in the form of jitter
will be observed due to the critical sections enforcing atomicity or the number
of re-reads on a non-blocking algorithm [11]. All mechanisms that establish
atomicity inherently cause latency and timing jitter, and minimizing these is a
main focus of all work in this area. In practice, this can be tolerated as long as
we can find a tight upper bound of the run-time.

State values are typically time-stamped in order to allow a receiving process
to check whether the state data has become stale. In this work, we assume that
the timestamps are part of the data and that the user writes and checks these
timestamps.



System Model 119

The challenge of implementing state-based communication on a truly con-
current multicore platform with distributed memory is to ensure atomicity of
read and write transactions. We also note that temporal consistency is an ideal
that may not be 100% feasible in distributed algorithms due to different com-
munication latencies towards different readers. In practice, some jitter can be
tolerated.

6.3.2 Platform Model and Evaluation Platform

This paper considers a time-predictable multicore platform, where all processing
cores are connected to a globally shared off-chip memory, a NoC, and a local
scratchpad memory (SPM). Furthermore, we consider that the network-on-chip
provides data transfer capabilities, such that each core can push data from its
local SPM to a remote SPM.

To generalize our work and to avoid benchmarking features specific to the
evaluation platform, we implement synchronization in software where needed.
Implementing the communication primitives on a platform with hardware sup-
port for synchronization will allow optimization of the synchronization.

We evaluate our work on the open-source T-CREST platform [22], which
is a multicore platform developed specifically to be time-predictable. However,
the presented algorithms and analysis can easily be adapted to other multicore
platforms that include a message passing NoC that can guarantee latency and
bandwidth and an SPM in each node. Examples of such platforms include
the Kalray MPPA processor series [5], which uses network calculus [16] to find
guarantees, or the IDAMC [18] NoC, which uses virtual channel buffers and
Back Suction [4] to find guarantees.

In the T-CREST platform, each node contains a Patmos [20] core, an in-
struction cache, a data cache, and a local SPM under software control. The plat-
form has two NoCs, one that provides access to a shared memory via a memory
arbiter [21], and Argo [9] that supports inter-core communication. Both NoCs
use TDM to guarantee latency and bandwidth.

The Argo packet-switched NoC implements end-to-end virtual circuits driven
by direct memory access (DMA) controllers in the sending platform nodes. A
core can set up a DMA controller to push a block of data from the local SPM
into the SPM of a remote core. The Argo NoC uses a static TDM schedule for
routing communication flows through routers and links. The static schedule is
generated by the off-line scheduler [23] for the specified application.

6.3.3 Application Model

Our system contains a set T = {τ1, τ2, ..., τn} of n periodic tasks that commu-
nicate via a set F = {f1, f2, ..., fl} of l state-based communication flows.
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Each communication flow fj ∈ F is characterized by a tuple (wj , rj , mj , bj),
where wj is the task that writes to fj , rj is the task that reads from fj , mj is
the size of a state message, and bj is the guaranteed bandwidth through fj . It
holds that wj ∈ T , rj ∈ T , and wj 6= rj .

Each task τi ∈ T is characterized by a tuple (Ti, Ci, pi), where Ti is the
period of the task, Ci is the WCET of the task, and pi is the statically assigned
processor core on which the task is executed on using partitioned scheduling.
The kth release of a task τi is called a job τki and may experience some release
jitter Ji, introduced by the scheduling, e.g., for a static priority preemptive
scheduling policy jitter is upper bounded by Ti − Ci.

For simplicity, we only consider tasks that execute on different cores to
communicate. Communicating tasks that execute on the same core can easily
be added to any of the algorithms we propose, because all our algorithms work
for true concurrent systems. To reduce the inter-core interference and simplify
the analysis of end-to-end properties, we assume that the critical sections of
tasks are non-preemptible.

In our system, a job of a task only performs a single write or read to
one communication flow, but a job is allowed to communicate through multiple
communication flows.

We define the WCCDDj of state-based communication flow fj as the worst-
case separation time between the start of the write primitive and the end of the
first instance of the read primitive that reads the new value. This definition
makes Dj independent of the algorithm and ensures that the tasks of each core
can be schedules independently of the tasks executing on other cores.

We assume that the reads and writes of communication flows within a task
τi are executed unconditionally, such that the reads and writes are executed in
the same sequence for every job. Therefore, each job is split into a sequence
of phases. These phases can have one of three types: a reading phase, a com-
putation phase, or a writing phase. Thus, the total WCET Ci of a job can be
decomposed into a sequence of phases, where each element of the sequence is
the WCET of that execution phase.

6.4 Communication Algorithms

We present five state-based communication algorithms and their implementa-
tions in on-chip distributed memory. In the following, we use the terms writer
managed memory and reader managed memory to denote the memory allocated
in the local SPM of the writer and the local SPM of the reader, respectively.

The following subsection describe common considerations of the algorithms,
the five algorithms one by one, and how the algorithms can be extended to
multiple readers also referred to as multi-casting.
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6.4.1 Common Considerations

To ensure atomicity of the state-based communication, it is necessary that reads
and writes are performed mutually exclusively, while concurrent reads are al-
lowed. To guarantee mutual exclusion between the writer and the readers, the
first four algorithms use a lock and the fifth algorithm uses a queue.

For the four algorithms that use a lock, the length of the critical section
of the read or write primitives directly impact the synchronization delay expe-
rienced by the other end of the communication. If the read or write functions
move a new state value while they are in their critical sections, then the WCET
of critical sections are comparable to the WCET of whole function.

Communication between the processing cores of the platform can be ex-
ecuted in two ways: the writer writes/pushes data to a reader or a reader
reads/pulls data from the writer. These communication paradigms are called
push and pull communication, respectively. Push communication is a single
unidirectional transfer of data, whereas pull communication involves a request
followed by a transfer of data in the opposite direction, causing higher latency.
If we implement state-based communication using push communication, all mes-
sages are pushed through the network even though a message may not be read
before it is overwritten by the next message. If we implement state-based com-
munication using pull communication, the slave pulls a message through the
network even though is was not updated since the last time it was written.

We use push communication to implement the five algorithms, because of
the lower latency of push communication. With push communication the writer
transfers the state value from its local SPM across the NoC to the local SPM
of the reader and the reader copies out the state value from its local SPM.

The writer and reader can transfer or copy the state value, respectively,
inside or outside their critical sections. The four algorithms that use a lock
represent the four combinations of inside or outside the critical section of the
reader and writer.

6.4.2 Algorithm 1: Single Shared Buffer and a Lock

A common practice of implementing an atomically updated shared variable uses
a single buffer that is protected by a lock. We implement the shared buffer by
allocating it in the processor-local SPM of the reader. The write operation
acquires the lock and transfers the new state value to the allocated buffer and
then it releases the lock. The read operation acquires the lock and reads the
newest state value from the allocated buffer, before it releases the lock.

This is probably the simplest way of implementing state-based communica-
tion. However, the implementation has a long critical section because the state
value is copied inside the critical section.
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Figure 6.1: The memory layout of the double buffering schemes with an ex-
ample scenario.

6.4.3 Algorithm 2 & 3: Double Buffering and a Lock

To reduce the interference between reading and writing, we reduce the length
of the critical sections of the read and write primitives. By using two shared
buffers, we can move the copying or the transferring of the state value out of the
critical section of either the writer or the reader. Figure 6.1 shows the memory
layout of the double buffering schemes with two shared buffers and two pointers.

An algorithm that copies the state value outside the critical section of the
writer needs a Newest pointer that points to the newest completely written value.
The writer alternates between writing a state value to one or the other buffers
in the reader SPM. When the writer has completed writing a state value to a
buffer it acquires the lock, moves the newest pointer to the newly written buffer,
and then releases the lock. In this algorithm, the reader acquires the lock, reads
the buffer that the newest pointer points to, and releases the lock. We refer to
this algorithm as algorithm 2 – reader blocking.

An algorithm that copies the state value outside the critical section of the
reader needs a second Reading pointer that points to the state value that the
reader is reading. The writer writes a new state value to the buffer that the
reader is not reading. The writer acquires the lock, transfers the state value to
the buffer that the reader is not reading, updates the newest pointer to point
to the newly written value, and releases the lock. The reader acquires the lock,
updates the reading pointer to the buffer that the newest pointer is pointing at,
releases the lock, and copies the new state value out of that buffer. We refer to
this algorithm as algorithm 3 – writer blocking.

6.4.4 Algorithm 4: Triple Buffering and a Lock

By using three buffers, we can remove the copying of the state value from the
critical section of the reader and the writer. Figure 6.2 shows a snapshot of
the algorithm considering three shared buffers. The writer managed memory
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Figure 6.2: An example of a buffering scheme with three buffers for one writer
and one reader that only acquire the lock once per operation. The
gray buffer in the writer managed memory is transfered to buffer
3 in the reader managed memory. The gray buffer in the reader
managed memory is the newest completely written value.

contains the private Next variable, the writ buffer, and the remotely writable
Reading variable. The reader managed memory contains the remotely writable
Newest variable and the three state value buffers.

In Figure 6.2, the reader is reading from buffer two while the writer has
completed writing to buffer one and started to write to buffer three. The access
to the three buffers in the reader managed memory is controlled by the shared
variables Newest and Reading that are protected by a lock. The Next variable
is incremented in a circular manor to point to the next buffer that the writer
should transfer a state value to. If the Next value is incremented to point to the
same buffer as the Reading variable, it is incremented again.

The following two enumerated lists describe the steps involved for a write
and a read operation. A write operation:

1. Transfer the state message to the buffer pointed to by the variable Next.

2. Acquire the lock.

3. Update the variable Newest to point to the newly written state buffer.

4. Read the variable Reading

5. Update the variable Next to point to the buffer that is free. The Next
buffer is the one that does not contain the newest state and that is not
being read.

6. Release lock
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A read operation:

1. Acquire the lock

2. Read the variable Newest.

3. Update the variable Reading to the value of Newest.

4. Release lock

5. Read the state message from the buffer pointed to by the variable Newest.

A drawback of the presented buffering scheme is that the memory footprint
increases. For large message sizes, this buffering scheme might not be feasible
in practice.

6.4.5 Algorithm 5: Message Passing Queue
A message passing queue can be used as a solution to the readers/writers prob-
lem, if we can find the upper bound on the number of elements in the queue
that are needed to avoid overflow. With a queue, the writer writes to the next
free buffer and the reader can read the newest value by dequeuing all available
elements, only keeping the most recent one.

To find the upper bound on the number of elements that are needed to
avoid overflow, we need to know the maximum write rate and the minimum
read rate.

For periodic tasks, the rate is the number of writes or reads of the state
value during the task period over the period. The number of elements needed
in the queue is the ratio of the production rate over the consumption rate plus
one extra buffer to account for a possible offset in the release time of the writer.

A drawback of the message passing queue is that the memory footprint
increases with the period ratio of the writer and reader. When the reader has
a shorter period than the writer, we only need two buffers at the reader side.
Otherwise, more buffers are needed at the reader side. For large message sizes
and a reader with a long period, this buffering scheme might not be feasible in
practice.

6.4.6 Extending to Multi-casting
We can extend the five algorithms to multi-casting by allocating a copy of the
reader managed memory in the local SPM of each reader and by issuing write
transfers through communication flows for each reader, or by performing a multi-
cast operation, if the hardware supports this. In the T-CREST platform the
individual write transfers can be setup to transfer the new state value in parallel.
In a multi-casting implementation, we can use a task-fair read-write lock [2] to
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(b) Scenario two

Figure 6.3: The two scenarios that lead to the WCCD. In both cases the con-
dition that leads to the worst-case is when reads and writes are
aligned exactly so that the critical section of a read blocks the
critical section of a write.

reduce the worst-case synchronization delay, by allowing multiple readers to
enter their critical sections at the same time.

To ensure a starvation free solution to the readers/writers problem, the lock
needs to grant access to the lock requesters in the same order as the requests
are made. The temporal consistency property is fully satisfied for the four
algorithms using a lock, because the lock enforces the strict ordering of accesses.
Thus, all reads will return the new state value.

The temporal consistency property of the algorithm that uses a queue is not
completely satisfied. There can be jitter on the completion of a write, observed
locally at the readers. This jitter is caused by variable network latencies and
variable start times of the individual DMA transfers. This jitter can be reduced
if the hardware platform supports multi-casting data transfers.
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6.5 Worst-case Communication Delay

This section presents an analysis of the WCCD of the five algorithms that is
independent of how tasks are schedules. The temporal alignment of the writer
and reader jobs that cause the WCCD Dj , occurs when a job of the reader
causes the maximum interference on a job of the writer.

The alignment of the WCCD is illustrated in Figure 6.3a. If τ1
R would be

released later in time, then τ1
W would instead block τ1

R and τ1
R would read the

new value. If τ1
R would be released earlier in time, τ1

R would block τ1
W for a

shorter time and τ2
R would be released earlier w.r.t. the beginning of τ1

W . In
both cases, the communication delay is shorter than the WCCD.

If the second job of the reader task τ2
R is interfered by a job of the writer

task, then τ2
R will read the new value of the writer task. This scenario is il-

lustrated in Figure 6.3b. The following two subsections present the WCCD
formulas for the presented algorithms.

6.5.1 Algorithm 1 – 4: Shared Buffers and a Lock

For the four presented algorithms that use a lock to protect one, two or three
buffers, we model the read and the write functions that communicate through
flow fj as five variables, where the subscript S denotes the index R of the
reader task τR or the index W of the writer task τW .: (1) BjS is the WCET of
the preamble Before the critical section, (2) IjS is the worst-case synchronization
interference, (3) CSjS is the WCET of the critical section, (4) AjS is the WCET
of the postamble After the critical section, and (5) mj is the message size of
the state-based value. The superscript j of the variables denotes the flow index.
The read and write primitives inherit their period Ti from the calling task.

The worst-case traversal time (WCTT) of transmitting the state value
through the NoC is included in one of the BjS , CS

j
S , or AjS , depending on

the algorithm. The WCTT of transmitting the state value through the NoC is
proportional to the bandwidth bj and is in the case of our NoC, calculated from
the TDM schedule.

Figure 6.3a shows the most common scenario that leads to the WCCD.
In case TR is short enough that the critical section of τ1

W can interfere with
the critical section of τ2

R, then it is the scenario in Figure 6.3b that causes
the WCCD. To find the WCCD for each scenario in Figure 6.3, we sum up a
sequence of the known variables that connect the start and end arrows. The
sequence in scenario one is {BjW , −B

j
R, TR, JR, B

j
R, CS

j
R, A

j
R}. We subtract

the second variable in the sequence −BjR, because the period TR+JR starts BjR
before BjW ends. Observe that if the length of the BjR phase of τ1

R is decreased
while CSjR still enforces the maximum interference on τ1

W , the starting time
of TR + JR and thus the release time of τ2

R is delayed. Therefore, the WCCD
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Figure 6.4: The scenario that leads to the WCCD for read and write functions
that do not use a lock. The first job of the reader τ1

R misses the
newly written value.

occurs when the execution time of BjR of τ1
R is the best-case execution time B̂jR.

We show the WCCD for scenario one:

Dj = BjW − B̂
j
R + TR + JR +BjR + CSjR +AjR (6.1)

We assume that B̂jR � TR, therefore we set B̂jR = 0. This is a safe underestima-
tion of the best-case execution time that leads to a safe overestimation WCCD.
We also find the sequence of known variables in scenario two and by reordering
to resemble (6.1), we get:

Dj = BjW + IjW + CSjW + CSjR +AjR (6.2)

To unify (6.1) and (6.2) we take the maximum of the two formulas. We show
the formula for the WCCD:

Dj = BjW + max(TR + JR +BjR, I
j
W + CSjW ) + CSjR +AjR (6.3)

The write functions do not return until after the complete transfer of the state
value where the new value is available in the SPM of the reader task. Therefore,
the message size mj changes the WCET of the primitives, depending on which
algorithm is used.

6.5.2 Algorithms 5: Message Passing Queue
The presented algorithm that implements state-based communication with a
message passing queue does not use a lock and therefore there is no synchro-
nization interference. We model the read and write primitives for flow fj as the
WCETs QjR and QjW , respectively. When QjW has completed, the new state
value is completely written into the reader SPM. For this algorithm, the tem-
poral alignment that causes the WCCD is when τ1

R just misses the new state
value before it starts copying out the previously newest value, such that it is τ2

R
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Figure 6.5: An example application with three tasks, three communication
flows, and two paths for end-to-end latency analysis.
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Figure 6.6: The three tasks of our application with execution phases and
WCCD. Red execution phases are writes and grey execution
phases are reads.

that reads the newest value. This is illustrated in Figure 6.4. The WCCD for
this scenario is:

Dj = QjW + TR + JR +QjR (6.4)

The value of QjR depends on the number of elements that are needed in the
queue to avoid overflow.

6.6 Maximum End-to-end Latency
End-to-end latency is the time from when an input event occurs until the result-
ing output event occurs. This section uses the WCCDs derived in the previous
section, to analyze the end-to-end or input-to-output latency of a small exam-
ple with three tasks that communicate via state-based communication. The
example contains a straight path and a path that loops back to a previous task.

Figure 6.5 shows the example that comprises three periodic tasks τ1, τ2,
and τ3, one input event i1, two output events o1 and o2, three communication
flows f1, f2, and f3, and two paths p1 and p2 that indicate the propagation
of the input value to the outputs. A path is defined by the triggering input
event, the involved tasks and communication flows, plus the resulting output
event. A detailed timing diagram of the three tasks, including their execution
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phases and their mutual communication, is illustrated in Figure 6.6 using the
notation introduced in Section 6.3.3. The tasks are periodic and in the example,
task τ1 (identified by the subscripts) has five execution phases (identified by the
superscripts). The read primitive and the write primitive are connected by an
arrow representing the WCCD Dj found in Section 6.5, where the red execution
phases are write primitives and the gray execution phases are read primitives.
The fj in parenthesis of the colored execution phases is the communication flow
that the state values are sent across.

Below we analyze the end-to-end latency of the two paths p1 and p2 from
the example in Figure 6.5. We represent the paths as event chains of tasks and
flows, such that p1 = {i1, τ1, f1, τ2, f3, τ3, o2} and p2 = {i1, τ1, f1, τ2, f2, τ1, o1}.
To calculate the end-to-end latency of either path, we add the WCETs of each
phase from the start of the path to the end of the path. For path p1 we get the
end-to-end latency Dp1 :

Dp1 = T1 + J1 + C1
1 + C2

1 + C3
1 +D1 + C3

2 + C4
2 + C5

2 +D3 + C3
3

For path p2, we use the knowledge that τ1 is periodic and calculate the maximum
number of periods, as Lauer et al. [15] shows on a simpler task model, before τ1
gets the updated state value from τ2.

Dp2 = T1 + J1 + T1 · k + J1 + C∗1

= T1 · (k + 1) + 2J1 + C∗1

C∗1 is the total WCET of all the phases of τ1 and k is the number of periods
from τ1

1 to τk+1
1 that observes a change as a result of the input event i1 through

the flow f2. We calculate k as the ceiling of the path from the release of τ1
1 to

g divided by the period T1 of τ1, where g is the time when the new value of f2
can be read by τ1. The formula for k is:

k =
⌈
C1

1 + C2
1 + C3

1 +D1 + C3
2 + C4

2
T1

⌉
(6.5)

Depending on which algorithm of state-based communication the developer
chooses, either the formulas in (6.3) or (6.4) should be inserted in place of
the WCCD of the flows.

These formulas are valid for any task schedule where all tasks meet their
deadline. If we include a concrete schedule, it may be possible to reduce the
maximum end-to-end latency of the paths with the holistic schedulability anal-
ysis presented by Tindell and Clark [25].

6.7 Worst-case Evaluation
This section describes the evaluation setup and the evaluation of the five algo-
rithms. As we consider real-time systems, we use static WCET analysis for the
performance comparison instead of average-case measurements.
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6.7.1 Evaluation setup

For this evaluation, we assume a 9 core platform, where the code for the prim-
itives is stored in the instruction SPM. In the 9 core platform, the bandwidth
towards main memory is divided equally between the 9 cores and the guaranteed-
service of the NoC is setup such that all cores can send to all other cores with
equal bandwidth. We refer to this NoC schedule as an all-to-all schedule. The
guaranteed service to each core corresponds to a guaranteed minimum band-
width of one 8-byte packet every 36 clock cycles (cc) and a guaranteed maximum
latency of 45 cc for 8 bytes and 297 cc for 64 bytes.

We find the WCET of the communication primitives with the aiT tool
from AbsInt [6], which supports the Patmos processor. In the source code of
the communication primitives, there are a number of busy-wait while loops
that continuously loop until certain events that are time-bounded happen, such
as the completion of a DMA transfer. The worst-case waiting time of a DMA
transfer can be calculated based on the size of the transfer and the bandwidth of
the communication flow towards the receiver. The worst-case wait time divided
by the WCET of one iteration of the while loop is equal to the maximum loop
bound of that while loop. For each data point shown in the following plots, we
found the WCET of one iteration of all the while loops. Based on the maximum
waiting time and the WCET of each loop iteration, we can calculate the loop
bounds of each while loop and pass them to the tool.

The WCET numbers that we show in the following subsections include
the code for the locking functions acquire_lock() (240 cc) and release_lock()
(82 cc). These numbers do not account for the interference from other cores
that try to take the lock. The application designer needs to add the interference
of the other threads holding the lock to the length of the critical sections during
the schedulability analysis.

The lock that we use for the results is Lamport’s Bakery [13] algorithm
using the on-chip distributed memory. The Bakery algorithm is well-suited for
implementation in distributed memory, because the variables can be laid out
such that it uses local-only spinning and remote writes.

6.7.2 Algorithm 1 – 4: Shared Buffers and a Lock

Figure 6.7 shows the WCET of the critical sections, read_cs and write_cs, and
the whole read and write functions, read and write, for algorithm 1 – 4 as a
function of the message size.

Figure 6.7a shows the WCET of algorithm 1. We see that the critical
section of the write primitive is longer than the critical section of the read
primitive. This is due to the fact that the network bandwidth of the all-to-all
schedule is lower than the bandwidth between the local SPM and the processor.
Furthermore, the gaps between the WCET of the whole functions and their
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Figure 6.7: The WCET of the read and write functions of algorithm 1 to 4
and their critical sections, as a function of the message size.

critical sections are the 240 cc overhead of the acquire_lock() function, which
is constant across all message sizes.

Figure 6.7b shows the WCET of algorithm 2. We see that the critical
section of the write function is constant across all message size, at the cost of
a slightly higher WCET of the whole write primitive. The WCET of the read
function is very similar to that of algorithm 1. The read function of algorithm
2 contains an extra load from the local SPM and a comparison, to determine
which buffer to read from.

Figure 6.7c shows the WCET of algorithm 3. The critical section of the
read function is constant cross all message sizes and the critical section of the
write function is slightly increased, compared to the critical section of the write
function in algorithm 1. Compared to algorithm 2, the WCET of the whole
write function is lower and of the whole read function is higher.

Figure 6.7d shows the WCET of algorithm 4. The WCET of the critical
sections of the read and write primitives are constant across the different message
sizes. The length of the critical sections of the read and the write primitive
are similar, because they both contain one 8-byte write through the network.
Furthermore, we see that the difference between the critical section and the
overall WCET of the communication primitive scales linearly with the message
size.

For the four algorithms, the write functions have higher WCETs than the
read functions, because the bandwidth of the NoC transfer is lower than the
bandwidth towards the local SPM. The algorithms with shorter critical sections
considerably reduce the interference between the read and write functions, at
the cost of slightly higher WCETs. Furthermore, a NoC TDM schedule with
higher bandwidth from the writer to the reader, will reduce the gap between
the WCET of the whole write function and the read function.
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Figure 6.8: The WCET of the read and write functions, with the queuing
algorithm, as a function of the size of a sample.

6.7.3 Algorithm 5: Message Passing Queue

The queuing algorithm does not have any locking and therefore no critical sec-
tions. Figure 6.8 shows the WCET of the write primitive and the WCET of the
read primitive with 3 and 6 elements in the queue. With 3 buffers, the algorithm
supports that the writer writes twice as fast as the reader reads. With 6 buffers
the ratio is 5-times faster writes.

The number of buffers in the queue changes the WCET of the read prim-
itive. In the worst-case, the reader needs to dequeue all the elements of the
buffer and then return the last successfully dequeued message. The WCET
of the read primitive increases with the number of buffers, but the reading of
the message becomes the dominating factor in the WCET as the message size
grows. Therefore, the WCET of the reads are higher than the WCET of the
write for small messages sizes, even though the bandwidth for the remote write
transaction is lower than of the local read.

6.7.4 Comparison

Figure 6.9a and 6.9b shows a comparison of the WCET for the write functions
and for the read functions, respectively. Figure 6.9c shows the WCCDs Dj

minus the period TR and the jitter JR of the five algorithms as a function of
the message size, as shown in (6.3) and (6.4). We show the numbers without
TR and JR because these variables are the same for the five algorithms and
they are determined by an application. For this WCCD comparison of the five
algorithms, we assume that the period TR is much higher than the WCET of
write and read functions, which is scenario one from Figure 6.3a.
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Figure 6.9: The WCET of the read and write functions and the WCCD for
all the presented algorithms, as a function of the size of a sample.

There is not one algorithm that performs better than the other algorithms
in all scenarios. In the following, we will outline in which scenario each algorithm
performs better than the other algorithms.

Algorithm 1, the single buffer algorithm, has the lowest memory footprint,
the lowest WCCD, and low WCETs, but it also has the highest synchronization
interference due to the long critical sections of the read and write functions.

Algorithm 2, the double buffer algorithm with a short critical section in the
write function, also has a low memory footprint and it has low WCET of the
read function, but it has a high WCET of the write function.

Algorithm 3, the double buffer algorithm with a short critical section in the
read function, has a low WCCD and a low memory footprint, but it has a high
WCET and synchronization of the read function due to the long critical section
of the write function.

Algorithm 4, the triple buffer algorithm, has a larger memory footprint
and high WCETs of the write and read functions, but has lower synchronization
interference than the other algorithms that use a lock, due to the short critical
sections, but it has the highest WCCD.

Algorithm 5, the message queue with three buffers, is the best solution in
terms of WCET and synchronization interference, because it does not suffer any
synchronization interference. With six buffers, the WCET of the read function
becomes the highest of all the algorithms. The synchronization interference of
the write function is low because it does not suffer any synchronization inter-
ference. The synchronization interference of the read function suffers mainly
from the number of buffers that needs to be dequeued. If the ratio between the
writing frequency and the reading frequency is high, then the memory footprint
becomes prohibitively high.
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Table 6.1: A comparison of the five communication algorithms. For each pa-
rameter of comparison the algorithms are ranked from the best
(++) to the worst (– –).

Sync. intf WCET WCCD Memory
Alg. Write Read Write Read
1 – – – – + ++ ++ ++
2 – – + – – ++ – +
3 + – – – – – + +
4 + + – – – – – – –
5 ++ ++ ++ +/– – – –(–)

In Figure 6.9c, we see that algorithm 1 and 3 have significantly lower WC-
CDs than the other algorithms. This is because the preamble of the write
functions for algorithm 1 and 3 does not contain the transfer of a state value
through the NoC.

In Table 6.1, we summarize the advantages and disadvantages of the five
algorithms with the parameters of the WCET and the jitter for the read and
write functions, the WCCD, and the memory footprint. For each parameter, we
rank each algorithm giving (++) to the lowest and (– –) to the highest of each
parameter. Table 6.1 suggests that by increasing the memory footprint and the
WCCD, we can lower the synchronization interference. As we see in Table 6.1
the WCETs of the write and read functions are comparable in contrast to the
synchronization interference caused by the critical sections as seen in Figure 6.7.
In a schedulability analysis, the algorithms that has a high synchronization
interference suffer more than the algorithms with a high WCET.

6.8 Conclusion

This paper addressed the implementation of time-predictable state-based com-
munication in multicore platforms for hard real-time systems. The concept of
state-based communication is similar to a shared variable that can be written
and read atomically.

Aiming for an algorithm that scales better with a growing number of proces-
sors, and has low latency and low jitter, this paper proposed and evaluated five
algorithms that exploit the scalable message passing NoC and the processor-
local memories found in many recent multicore platforms. The evaluation is
based on actual hardware and the WCET in clock cycles is obtained using the
aiT tool from AbsInt.
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We have shown how to calculate the WCCD of the five algorithms and
we have outlined in which parameters each algorithms perform better than the
others. For the five algorithms, a reduction in the synchronization interference
results in an increase of the WCCD.
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Chapter 7

Conclusions

The previous five chapters investigate time-predictable inter-core communica-
tion on a multicore platform with a statically scheduled TDM NoC. This chap-
ter summarizes the findings of these five chapters and identifies areas for future
work.

7.1 Summary of Findings

This thesis contributes in the three research areas: reconfigurable time-division
multiplexing networks-on-chip, static time-division multiplexing scheduling, and
time-predictable inter-core communication. The TDM NoC uses statically gen-
erated TDM schedules to provide GS VC that supports the time-predictable
inter-core communication. This section summarizes the findings of each of the
three research areas and the overall findings in the following four subsections.

7.1.1 Reconfigurable Time-Division Multiplexing Network-
on-Chip

We have extended the Argo 1.0 TDM NoC with a new generation of the NI
architecture that increases the flexibility of the hardware compared to the pre-
vious Argo version. We have increased the flexibility by adding the possibility
of remotely writing the configuration tables in the NI. Additionally, we have
added support for instantaneous reconfiguration of the VCs. The NI hardware
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architecture also supports the incremental approach for reconfiguration that is
used by previous state-of-the-art TDM NoCs that offer reconfiguration.

The hardware size of our new generation NI and the original Argo router,
is less than half the size of architectures that provide similar functionality. The
hardware resources are designed to be more flexible and they are able to imple-
ment schedules that are more parameterized than what is supported by previous
state-of-the-art NoCs. These more parameterized schedules allows the applica-
tion developer to make efficient use of resources. When we use the compact
schedule representation from our new generation NI, the NI can store several
schedules in a small schedule table.

7.1.2 Static Time-Division Multiplexing Scheduling
We have designed and implemented a TDM scheduler that can generate sched-
ules for a TDM NoC from a communication pattern. Our TDM scheduler sup-
ports a more parameterized class of NoCs and communication patterns than
previously published TDM schedulers. The TDM scheduler can generate sched-
ules for custom NoC topologies and with variable packet lengths on VCs. A
schedule that can fit the communication pattern of an application better, re-
sults in a more efficient use of the NoC hardware resources.

We have shown a method that can shorten the TDM schedules by allocat-
ing more bandwidth to the channels of a communication pattern that has the
smallest bandwidth requirements. This method reduces the hardware require-
ments, by reducing the length of a TDM period, with a negligible reduction in
the resulting bandwidth.

Our approach of reconfiguration, which needs to store multiple schedules
in the schedule table at the same time, benefits twofold from the short TDM
schedules. First, they can store a larger number of schedules in less memory of
the schedule table. Second, the time to reconfigure can be reduced because the
length of the TDM periods are shorter.

7.1.3 Time-Predictable Inter-Core Communication
We have identified and implemented two types of inter-core communication
that are used by real-time applications: message passing and state-based com-
munication. For message passing, the consumer needs to consume all produced
messages. For state-based communication, the consumer must always read the
newest produced message. For both types of inter-core communication, our
implementations avoid unnecessary copying of messages, which ensures a low
WCET.

We showed that message passing can be implemented efficiently in terms of
WCET and worst-case latency of a message and that it matches well with the
push communication that the Argo platform provides. Furthermore, the WCET
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of the send and receive functions are not dependent on the message size, which
simplifies the WCET analysis of a communicating task.

We have implemented five algorithms that provide state-based communi-
cation. The results show that the five proposed algorithms each have their ad-
vantages and disadvantages and that no one algorithm is better that the others
in all scenarios. State-based communication requires a more complex algorithm
than message passing, due to the synchronization of atomically updating a state
value. With the developed analysis for our communication primitives, tasks that
are executed on one core can be scheduled independently of tasks executing on
other cores.

Due to the relatively low software overhead, the latencies of sending and
receiving state values or messages are greatly affected by the NoC data transfer
timings. The NoC data transfer timings are determined by the TDM schedule
that is operating in the NoC. We have used an all-to-all schedule for the worst-
case numbers in all the results we have shown. If we use an application specific
schedule, the transmission time of the NoC data transfer can be greatly reduced,
which reduces the total worst-case times even further.

The WCET of the send and receive functions for message passing is low and
does not depend on the message size, as the message transfer is decoupled from
the program. Whereas, the message transfer of the state-based communication
is not decoupled from the program, due to the needed synchronization.

7.1.4 Overall Findings

In this thesis, we investigated a time-predictable NoC from the network interface
layer up to the system layer functions in the API. We developed a new resource-
efficient and more flexible generation of the NI for the Argo NoC and we showed
how to implement two types of time-predictable inter-core communication on
this new hardware architecture.

With the increased flexibility of the Argo 2.0 NI, the TDM scheduler can
generate TDM schedules that match the requirements of inter-core communica-
tion more precisely and thereby reduce the latency of inter-core communication
and/or the operating frequency of the NoC.

Compared to NoCs with similar functionality, we implement the task of
allocating memory for communication buffers in the software layer rather than
fixed hardware buffers, which increases the flexibility of the system.

One use case of the increased flexibility is that the application can allocate
buffering space for the inter-core communication algorithms on a per connection
basis. Allowing the application to decide which communication algorithm to use,
on a per connection basis, depending on which timing properties are desirable.

Furthermore, we added support to the Argo 2.0 for inter-core interrupts
and for efficient reconfiguration of the VCs that provide the GS that enable the
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time-predictable inter-core communication. These two features are important
for supporting a symmetric multiprocessing operating system.

7.2 Future Work
Based on the work carried out in this thesis, we expect the following research
areas to bring new important insight into how time-predictable multicore plat-
forms should be build efficiently:

• The added interrupt capabilities of the NI opens up the possibility of
adding power management to the processor, such that if the local core
is waiting for a remote core, the clock of the processor is gated until an
incoming packet causes an interrupt. This clock gating scheme can also be
used for hardware accelerators waiting for a request from a remote core.
In case the processor clock is gated and the processor is sleeping, the NI
has to continue operating to keep track of the TDM schedule.

• Many of the benchmark communication patterns we have used throughout
the thesis have a few cores with a large number of outgoing VCs and most
cores with a few outgoing VCs. The length of the schedules for these
communication patterns are lower bound by the number of outgoing VC
for the few cores, we refer to this kind of schedule as being I/O bound.
Communication patterns that are I/O bound inherently has a low overall
link utilization. We can address this issue by decreasing the number of
links. If we can decrease the total number of links without increasing
the TDM period of the I/O bound communication patterns, then the link
utilization will increase.
The total number of links can be decreased by reducing the number of
links per NI in the network. We propose to investigate how the link
utilization and the TDM period changes when four five-ported routers are
collapsed into one eight-ported router, as shown in Figure 7.1. This change
in topology reduces the number of links by a factor of four, but it only
reduces the bisection bandwidth by two. The overall bisection bandwidth
could be the same by doubling the link width and reducing the packet
lengths. We expect that these changes will reduce the hardware size and
the worst-case latency in the network, especially for neighboring cores.
To investigate this proposal, we need to change the input format that spec-
ifies the platform topology and the internal data structure of the scheduler
that represents the platform.

• In our new generation of the Argo NI, we introduced the instantaneous
reconfiguration capabilities and evaluated how the addition of dedicated
configuration VCs extended the TDM period of the benchmarks. When
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Figure 7.1: Sections of a platform with 16 cores with five-ported routers and
with eight-ported routers.

the number of cores in the network increases, the lower bound on the
TDM period also increases. If we scale the network up to a size where this
lower bound becomes infeasible, we can move the configuration VCs into
a dedicated configuration tree network. The hardware size of such a tree
network scales linearly in the number of cores, but it restricts that only
one core, the master of the network, can trigger a reconfiguration of the
network.

• The NoC reconfiguration feature that we introduced enables the NoC to
instantaneously switch from one configuration to another in the schedule
table. Any VC that exists in the active schedule before and after the
reconfiguration must keep its entry in the DMA table to experience unin-
terrupted GS across the reconfiguration. Generating a static mapping for
all VCs, included in the set of configurations that belong to an applica-
tion, can be modeled as a global register allocation problem. In this model
the VCs that persist across one or more reconfigurations are modeled as
values that live across a basic block. This is an interesting problem and it
should be investigated if a dynamic approach of solving this problem can
be made analyzable.
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