15 research outputs found

    LTE/MVNO networks structure optimization based on tensor decomposition

    Get PDF
    The usage of tensor methods on the decomposition basis is offered for the tasks solution of structure optimization for LTE/MVNO networks mobile communication. The choice problem of optimum topology of e-Node B base stations connections in the radio access of E-UTRAN/LTE network was solved. The assessment problem of QoS quality characteristics of complex LTE/MVNO network architecture was solved

    RGIM: An Integrated Approach to Improve QoS in AODV, DSR and DSDV Routing Protocols for FANETS Using the Chain Mobility Model

    Get PDF
    Flying ad hoc networks (FANETs) are a collection of unmanned aerial vehicles that communicate without any predefined infrastructure. FANET, being one of the most researched topics nowadays, finds its scope in many complex applications like drones used for military applications, border surveillance systems and other systems like civil applications in traffic monitoring and disaster management. Quality of service (QoS) performance parameters for routing e.g. delay, packet delivery ratio, jitter and throughput in FANETs are quite difficult to improve. Mobility models play an important role in evaluating the performance of the routing protocols. In this paper, the integration of two selected mobility models, i.e. random waypoint and Gauss–Markov model, is implemented. As a result, the random Gauss integrated model is proposed for evaluating the performance of AODV (ad hoc on-demand distance vector), DSR (dynamic source routing) and DSDV (destination-Sequenced distance vector) routing protocols. The simulation is done with an NS2 simulator for various scenarios by varying the number of nodes and taking low- and high-node speeds of 50 and 500, respectively. The experimental results show that the proposed model improves the QoS performance parameters of AODV, DSR and DSDV protocol

    Diffusion Based Anti-Interference Joint Modulation in MIMO Molecular Communication

    Get PDF
    Molecular communication(MC) is a significant technology in the field of nano-biology, which uses molecules as message carriers to transmit information. Diffusion channel model is the most common channel model base on Brownian motion in molecular communication since molecules can diffuse to the destination without the need of extra energy supply. However, the random Brownian motion brings high delay and uncertainty to the communication process and thus modulation methods are required to improve the communication performance. The molecular communication system in the SISO (Single Input Single Output) scenario will be seriously affected by ISI (Inter Symbol Interference). In MIMO(Multi-Input Multi-Output) scenario, since there are multiple transmitters and receivers, in addition to ISI, there will be ILI (Inter Link Interference) as well. At present, most modulations are based on the concentration, type, time and space of molecules and only focus on SISO scenario. In this study, inspired by the MoSK(Molecule Shift Keying) modulation method, we proposed a new joint modulation method for MIMO communication in order to minimize the effect of ISI and ILI. Numerical results show that compared with the current modulation scheme, the proposed scheme allows the MIMO system achieve better BER(Bit error rate) performance and transmission rate

    Millimeter wave propagation measurements and characteristics for 5G system

    Get PDF
    In future 5G systems, the millimeter wave (mmWave) band will be used to support a large capacity for current mobile broadband. Therefore, the radio access technology (RAT) should be made available for 5G devices to help in distinct situations, for example device-to-device communications (D2D) and multi-hops. This paper presents ultra-wideband channel measurements for millimeter wave bands at 19, 28, and 38 GHz. We used an ultra-wideband channel sounder (1 GHz bandwidth) in an indoor to outdoor (I2O) environment for non-line-of-sight (NLOS) scenarios. In an NLOS environment, there is no direct path (line of sight), and all of the contributed paths are received from different physical objects by refection propagation phenomena. Hence, in this work, a directional horn antenna (high gain) was used at the transmitter, while an omnidirectional antenna was used at the receiver to collect the radio signals from all directions. The path loss and temporal dispersion were examined based on the acquired measurement data—the 5G propagation characteristics. Two different path loss models were used, namely close-in (CI) free space reference distance and alpha-beta-gamma (ABG) models. The time dispersion parameters were provided based on a mean excess delay, a root mean square (RMS) delay spread, and a maximum excess delay. The path loss exponent for this NLOS specific environment was found to be low for all of the proposed frequencies, and the RMS delay spread values were less than 30 ns for all of the measured frequencies, and the average RMS delay spread values were 19.2, 19.3, and 20.3 ns for 19, 28, and 38 GHz frequencies, respectively. Moreover, the mean excess delay values were found also at 26.1, 25.8, and 27.3 ns for 19, 28, and 38 GHz frequencies, respectively. The propagation signal through the NLOS channel at 19, 28, and 38 GHz was strong with a low delay; it is concluded that these bands are reliable for 5G systems in short-range applications

    A Survey on Subsurface Signal Propagation

    Get PDF
    Wireless Underground Communication (WUC) is an emerging field that is being developed continuously. It provides secure mechanism of deploying nodes underground which shields them from any outside temperament or harsh weather conditions. This paper works towards introducing WUC and give a detail overview of WUC. It discusses system architecture of WUC along with the anatomy of the underground sensor motes deployed in WUC systems. It also compares Over-the-Air and Underground and highlights the major differences between the both type of channels. Since, UG communication is an evolving field, this paper also presents the evolution of the field along with the components and example UG wireless communication systems. Finally, the current research challenges of the system are presented for further improvement of the WUCs

    Routing schemes in FANETs: a survey

    Get PDF
    Flying ad hoc network (FANET) is a self-organizing wireless network that enables inexpensive, flexible, and easy-to-deploy flying nodes, such as unmanned aerial vehicles (UAVs), to communicate among themselves in the absence of fixed network infrastructure. FANET is one of the emerging networks that has an extensive range of next-generation applications. Hence, FANET plays a significant role in achieving application-based goals. Routing enables the flying nodes to collaborate and coordinate among themselves and to establish routes to radio access infrastructure, particularly FANET base station (BS). With a longer route lifetime, the effects of link disconnections and network partitions reduce. Routing must cater to two main characteristics of FANETs that reduce the route lifetime. Firstly, the collaboration nature requires the flying nodes to exchange messages and to coordinate among themselves, causing high energy consumption. Secondly, the mobility pattern of the flying nodes is highly dynamic in a three-dimensional space and they may be spaced far apart, causing link disconnection. In this paper, we present a comprehensive survey of the limited research work of routing schemes in FANETs. Different aspects, including objectives, challenges, routing metrics, characteristics, and performance measures, are covered. Furthermore, we present open issues

    Bio-Internet of Things Through Micro-Circulation Network: A Molecular Communication Channel Modeling

    Get PDF
    The future of the Internet of Things (IoT) holds great promise, particularly in the realm of healthcare, where the concept of Bio-Internet of Things (B-IoT) has gained significant attention. B-IoT involves the coordination of monitoring and treatment within the human body using bio-implants that require communication. However, how to efficiently communicate among bio-implants is seldom studied. Molecular communication (MC), which uses molecules as information carriers, is a novel communication method of nano-devices for its excellent bio-compatibility and low energy consumption. In every part of the body, there is a micro-circulation network (MCN) responsible for substance exchange which can be utilized as a channel to deliver information efficiently by Bio-implants. However, since the structure of MCN is complicated and the characteristics of blood flow vary, there is not yet a mature channel modeling on MCN, making it impossible to design and evaluate the performance of B-IoT. In this paper, we address the need for efficient communication channels in B-IoT by exploring the potential of micro-circulation networks (MCN) in MC. We have fully analyzed the characteristics of MCN and blood flow and derived the mathematical model of channel impulse response. We also built a simple end-to-end communication model based on MCN and analyzed its error probability and mutual information from a communication perspective. The numerical results have shown that MCN is an effective communication channel of MC for B-IoT in the scale of m and mm
    corecore