98 research outputs found

    A summary of my twenty years of research according to Google Scholars

    Get PDF
    I am David Pardo, a researcher from Spain working mainly on numerical analysis applied to geophysics. I am 40 years old, and over a decade ago, I realized that my performance as a researcher was mainly evaluated based on a number called \h-index". This single number contains simultaneously information about the number of publications and received citations. However, dif- ferent h-indices associated to my name appeared in di erent webpages. A quick search allowed me to nd the most convenient (largest) h-index in my case. It corresponded to Google Scholars. In this work, I naively analyze a few curious facts I found about my Google Scholars and, at the same time, this manuscript serves as an experiment to see if it may serve to increase my Google Scholars h-index

    A summary of my twenty years of research according to Google Scholars

    Get PDF
    I am David Pardo, a researcher from Spain working mainly on numerical analysis applied to geophysics. I am 40 years old, and over a decade ago, I realized that my performance as a researcher was mainly evaluated based on a number called \h-index". This single number contains simultaneously information about the number of publications and received citations. However, dif- ferent h-indices associated to my name appeared in di erent webpages. A quick search allowed me to nd the most convenient (largest) h-index in my case. It corresponded to Google Scholars. In this work, I naively analyze a few curious facts I found about my Google Scholars and, at the same time, this manuscript serves as an experiment to see if it may serve to increase my Google Scholars h-index

    Swarm Reinforcement Learning For Adaptive Mesh Refinement

    Full text link
    The Finite Element Method, an important technique in engineering, is aided by Adaptive Mesh Refinement (AMR), which dynamically refines mesh regions to allow for a favorable trade-off between computational speed and simulation accuracy. Classical methods for AMR depend on task-specific heuristics or expensive error estimators, hindering their use for complex simulations. Recent learned AMR methods tackle these problems, but so far scale only to simple toy examples. We formulate AMR as a novel Adaptive Swarm Markov Decision Process in which a mesh is modeled as a system of simple collaborating agents that may split into multiple new agents. This framework allows for a spatial reward formulation that simplifies the credit assignment problem, which we combine with Message Passing Networks to propagate information between neighboring mesh elements. We experimentally validate the effectiveness of our approach, Adaptive Swarm Mesh Refinement (ASMR), showing that it learns reliable, scalable, and efficient refinement strategies on a set of challenging problems. Our approach significantly speeds up computation, achieving up to 30-fold improvement compared to uniform refinements in complex simulations. Additionally, we outperform learned baselines and achieve a refinement quality that is on par with a traditional error-based AMR strategy without expensive oracle information about the error signal.Comment: Version 1 of this paper is a preliminary workshop version that was accepted as a workshop paper in the ICLR 2023 Workshop on Physics for Machine Learnin

    Easy-to-implement hp-adaptivity for non-elliptic goal-oriented problems

    Get PDF
    The FEM has become a foundational numerical technique in computational mechanics and civil engineering since its inception by Courant in 1943 Courant1943. Originating from the Ritz method and variational calculus, the FEM was primarily employed to derive solutions for vibrational systems. A distinctive strength of the FEM is its capability to represent mathematical models through the weak variational formulation of PDE, facilitating computational feasibility even in intricate geometries. However, the search for accuracy often imposes a significant computational task. In the FEM, adaptive methods have emerged to balance the accuracy of solutions with computational costs. The hh-adaptive FEM designs more efficient meshes by reducing the mesh size hh locally while keeping the polynomial order of approximation pp fixed (usually p=1,2p=1,2). An alternative approach to the hh-adaptive FEM is the pp-adaptive FEM, which locally enriches the polynomial space pp while keeping the mesh size hh constant. By dynamically adapting hh and pp, the hphp-adaptive FEM achieves exponential convergence rates. Adaptivity is crucial for obtaining accurate solutions. However, the traditional focus on global norms, such as L2L^2 or H1H^1, might only sometimes serve the requirements of specific applications. In engineering, controlling errors in specific domains related to a particular QoI is often more critical than focusing on the overall solution. That motivated the development of GOA strategies. In this dissertation, we develop automatic GO hphp-adaptive algorithms tailored for non-elliptic problems. These algorithms shine in terms of robustness and simplicity in their implementation, attributes that make them especially suitable for industrial applications. A key advantage of our methodologies is that they do not require computing reference solutions on globally refined grids. Nevertheless, our approach is limited to anisotropic pp and isotropic hh refinements. We conduct multiple tests to validate our algorithms. We probe the convergence behavior of our GO hh- and pp-adaptive algorithms using Helmholtz and convection-diffusion equations in one-dimensional scenarios. We test our GO hphp-adaptive algorithms on Poisson, Helmholtz, and convection-diffusion equations in two dimensions. We use a Helmholtz-like scenario for three-dimensional cases to highlight the adaptability of our GO algorithms. We also create efficient ways to build large databases ideal for training DNN using hphp MAGO FEM. As a result, we efficiently generate large databases, possibly containing hundreds of thousands of synthetic datasets or measurements

    Quantum computing for finance

    Full text link
    Quantum computers are expected to surpass the computational capabilities of classical computers and have a transformative impact on numerous industry sectors. We present a comprehensive summary of the state of the art of quantum computing for financial applications, with particular emphasis on stochastic modeling, optimization, and machine learning. This Review is aimed at physicists, so it outlines the classical techniques used by the financial industry and discusses the potential advantages and limitations of quantum techniques. Finally, we look at the challenges that physicists could help tackle

    hp-Adaptive simulation and inversion of magnetotelluric measurements

    Get PDF
    xlix, 121 p.The magnetotelluric (MT) method is a passive exploration technique that aims at estimating the resistivity distribution of the Earth’s subsurface, and therefore at providing an image of it. This process is divided into two different steps. The first one consists in recording the data. In a second step, recorded measurements are analyzed by employing numerical methods. This dissertation focuses in this second task. We provide a rigorous mathematical setting in the context of the Finite Element Method (FEM) that helps to understand the MT problem and its inversion process. In order to recover a map of the subsurface based on 2D MT measurements, we employ for the first time in MTs a multigoal oriented self adaptive hp-Finite Element Method (FEM). We accurately solve both the full formulation as well as a secondary field formulation where the primary field is given by the solution of a 1D layered media. To truncate the computational domain, we design a Perfectly Matched Layer (PML) that automatically adapts to high-contrast material properties that appear within the subsurface and on the air-ground interface. For the inversion process, we develop a first step of a Dimensionally Adaptive Method (DAM) by considering the dimension of the problem as a variable in the inversion. Additionally, this dissertation supplies a rigorous numerical analysis for the forward and inverse problems. Regarding the forward modelization, we perform a frequency sensitivity analysis, we study the effect of the source, the convergence of the hp-adaptivity, or the effect of the PML in the computation of the electromagnetic fields and impedance. As far as the inversion is concerned, we study the impact of the selected variable for the inversion process, the different information that each mode provides, and the gains of the DAM approachUniversité de Pau et des Pays de l'Adour. bca
    corecore