27 research outputs found

    Does the Foundational Model of Anatomy Ontology Provide a Knowledge Base for Learning and Assessment in Anatomy Education?

    Get PDF
    Throughout the development of the Foundational Model of Anatomy (FMA) ontology, one of the use cases put forth has been anatomy education. In this work, we examine which types of knowledge taught to anatomy students can be supported by the FMA knowledge base. We first categorize types of anatomical knowledge, then express these patterns in the form “Given ____, state ____”. Each of the 33 patterns was evaluated for whether this type of knowledge is compatible with the modeling and scope of the FMA

    Developing Graphic Libraries to Accompany the Craniofacial Human Ontology

    Get PDF
    I describe the development of two graphic libraries to accompany parts of the Craniofacial Human Ontology. One library depicts phenotypes of cleft lip. The other represents development of the human head between 4 and 8 weeks of gestation

    The Infectious Disease Ontology in the Age of COVID-19

    Get PDF
    The Infectious Disease Ontology (IDO) is a suite of interoperable ontology modules that aims to provide coverage of all aspects of the infectious disease domain, including biomedical research, clinical care, and public health. IDO Core is designed to be a disease and pathogen neutral ontology, covering just those types of entities and relations that are relevant to infectious diseases generally. IDO Core is then extended by a collection of ontology modules focusing on specific diseases and pathogens. In this paper we present applications of IDO Core within various areas of infectious disease research, together with an overview of all IDO extension ontologies and the methodology on the basis of which they are built. We also survey recent developments involving IDO, including the creation of IDO Virus; the Coronaviruses Infectious Disease Ontology (CIDO); and an extension of CIDO focused on COVID-19 (IDO-CovID-19).We also discuss how these ontologies might assist in information-driven efforts to deal with the ongoing COVID-19 pandemic, to accelerate data discovery in the early stages of future pandemics, and to promote reproducibility of infectious disease research

    OOPS: The Ontology of Plant Stress: A semi-automated standardization methodology

    Get PDF
    Plant stress traits are important breeding targets for all crop species. Massive amounts of research dollars are spent generating data to combat plant diseases and environmental stress. Often this data is used to achieve a single goal, and then left in a repository to never be used again. As a scientific community, we should be striving to make all publicly funded data reusable, and interoperable. This goal is achievable only through careful annotation using universal data and metadata standards. One such standard is the use of a standardized vocabulary, or ontology. This paper presents a semi-automated method to define and label plant stresses using a combination of web scraping and ontology design patterns. Standardizing the definitions and linking plant stress with established hierarchies leverages previous work of developed knowledge bases such as taxonomic classifications and other ontologies

    A Natural Language Processing Pipeline to extract phenotypic data from formal taxonomic descriptions with a focus on flagellate plants

    Get PDF
    Assembling large-scale phenotypic datasets for evolutionary and biodiversity studies of plants can be extremely difficult and time consuming. New semi-automated Natural Language Processing (NLP) pipelines can extract phenotypic data from taxonomic descriptions, and their performance can be enhanced by incorporating information from ontologies, like the Plant Ontology (PO) and the Plant Trait Ontology (TO). These ontologies are powerful tools for comparing phenotypes across taxa for large-scale evolutionary and ecological analyses, but they are largely focused on terms associated with flowering plants. We describe a bottom-up approach to identify terms from flagellate plants (including bryophytes, lycophytes, ferns, and gymnosperms) that can be added to existing plant ontologies. We first parsed a large corpus of electronic taxonomic descriptions using the Explorer of Taxon Concepts tool (http://taxonconceptexplorer.org/) and identified flagellate plant specific terms that were missing from the existing ontologies. We extracted new structure and trait terms, and we are currently incorporating the missing structure terms to the PO and modifying the definitions of existing terms to expand their coverage to flagellate plants. We will incorporate trait terms to the TO in the near future

    Cells in ExperimentaL Life Sciences (CELLS-2018): capturing the knowledge of normal and diseased cells with ontologies

    Full text link
    Abstract Cell cultures and cell lines are widely used in life science experiments. In conjunction with the 2018 International Conference on Biomedical Ontology (ICBO-2018), the 2nd International Workshop on Cells in ExperimentaL Life Science (CELLS-2018) focused on two themes of knowledge representation, for newly-discovered cell types and for cells in disease states. This workshop included five oral presentations and a general discussion session. Two new ontologies, including the Cancer Cell Ontology (CCL) and the Ontology for Stem Cell Investigations (OSCI), were reported in the workshop. In another representation, the Cell Line Ontology (CLO) framework was applied and extended to represent cell line cells used in China and their Chinese representation. Other presentations included a report on the application of ontologies to cross-compare cell types and marker patterns used in flow cytometry studies, and a presentation on new experimental findings about novel cell types based on single cell RNA sequencing assay and their corresponding ontological representation. The general discussion session focused on the ontology design patterns in representing newly-discovered cell types and cells in disease states.https://deepblue.lib.umich.edu/bitstream/2027.42/148823/1/12859_2019_Article_2721.pd

    Coordinated Evolution of Ontologies of Informed Consent

    Get PDF
    Informed consent, whether for health or behavioral research or clinical treatment, rests on notions of voluntarism, information disclosure and understanding, and the decisionmaking capacity of the person providing consent. Whether consent is for research or treatment, informed consent serves as a safeguard for trust that permissions given by the research participant or patient are upheld across the informed consent (IC) lifecycle. The IC lifecycle involves not only documentation of the consent when originally obtained, but actions that require clear communication of permissions from the initial acquisition of data and specimens through handoffs to, for example, secondary researchers, allowing them access to data or biospecimens referenced in the terms of the original consent

    The eXtensible ontology development (XOD) principles and tool implementation to support ontology interoperability

    Get PDF
    Abstract Ontologies are critical to data/metadata and knowledge standardization, sharing, and analysis. With hundreds of biological and biomedical ontologies developed, it has become critical to ensure ontology interoperability and the usage of interoperable ontologies for standardized data representation and integration. The suite of web-based Ontoanimal tools (e.g., Ontofox, Ontorat, and Ontobee) support different aspects of extensible ontology development. By summarizing the common features of Ontoanimal and other similar tools, we identified and proposed an “eXtensible Ontology Development” (XOD) strategy and its associated four principles. These XOD principles reuse existing terms and semantic relations from reliable ontologies, develop and apply well-established ontology design patterns (ODPs), and involve community efforts to support new ontology development, promoting standardized and interoperable data and knowledge representation and integration. The adoption of the XOD strategy, together with robust XOD tool development, will greatly support ontology interoperability and robust ontology applications to support data to be Findable, Accessible, Interoperable and Reusable (i.e., FAIR).https://deepblue.lib.umich.edu/bitstream/2027.42/140740/1/13326_2017_Article_169.pd

    AgroPortal: a vocabulary and ontology repository for agronomy

    Get PDF
    Many vocabularies and ontologies are produced to represent and annotate agronomic data. However, those ontologies are spread out, in different formats, of different size, with different structures and from overlapping domains. Therefore, there is need for a common platform to receive and host them, align them, and enabling their use in agro-informatics applications. By reusing the National Center for Biomedical Ontologies (NCBO) BioPortal technology, we have designed AgroPortal, an ontology repository for the agronomy domain. The AgroPortal project re-uses the biomedical domain’s semantic tools and insights to serve agronomy, but also food, plant, and biodiversity sciences. We offer a portal that features ontology hosting, search, versioning, visualization, comment, and recommendation; enables semantic annotation; stores and exploits ontology alignments; and enables interoperation with the semantic web. The AgroPortal specifically satisfies requirements of the agronomy community in terms of ontology formats (e.g., SKOS vocabularies and trait dictionaries) and supported features (offering detailed metadata and advanced annotation capabilities). In this paper, we present our platform’s content and features, including the additions to the original technology, as well as preliminary outputs of five driving agronomic use cases that participated in the design and orientation of the project to anchor it in the community. By building on the experience and existing technology acquired from the biomedical domain, we can present in AgroPortal a robust and feature-rich repository of great value for the agronomic domain. Keyword

    The Monarch Initiative in 2019: an integrative data and analytic platform connecting phenotypes to genotypes across species.

    Get PDF
    In biology and biomedicine, relating phenotypic outcomes with genetic variation and environmental factors remains a challenge: patient phenotypes may not match known diseases, candidate variants may be in genes that haven\u27t been characterized, research organisms may not recapitulate human or veterinary diseases, environmental factors affecting disease outcomes are unknown or undocumented, and many resources must be queried to find potentially significant phenotypic associations. The Monarch Initiative (https://monarchinitiative.org) integrates information on genes, variants, genotypes, phenotypes and diseases in a variety of species, and allows powerful ontology-based search. We develop many widely adopted ontologies that together enable sophisticated computational analysis, mechanistic discovery and diagnostics of Mendelian diseases. Our algorithms and tools are widely used to identify animal models of human disease through phenotypic similarity, for differential diagnostics and to facilitate translational research. Launched in 2015, Monarch has grown with regards to data (new organisms, more sources, better modeling); new API and standards; ontologies (new Mondo unified disease ontology, improvements to ontologies such as HPO and uPheno); user interface (a redesigned website); and community development. Monarch data, algorithms and tools are being used and extended by resources such as GA4GH and NCATS Translator, among others, to aid mechanistic discovery and diagnostics
    corecore