6 research outputs found

    OM-2017: Proceedings of the Twelfth International Workshop on Ontology Matching

    Get PDF
    shvaiko2017aInternational audienceOntology matching is a key interoperability enabler for the semantic web, as well as auseful tactic in some classical data integration tasks dealing with the semantic heterogeneityproblem. It takes ontologies as input and determines as output an alignment,that is, a set of correspondences between the semantically related entities of those ontologies.These correspondences can be used for various tasks, such as ontology merging,data translation, query answering or navigation on the web of data. Thus, matchingontologies enables the knowledge and data expressed with the matched ontologies tointeroperate

    Geo-L: Topological Link Discovery for Geospatial Linked Data Made Easy

    Get PDF
    Geospatial linked data are an emerging domain, with growing interest in research and the industry. There is an increasing number of publicly available geospatial linked data resources, which can also be interlinked and easily integrated with private and industrial linked data on the web. The present paper introduces Geo-L, a system for the discovery of RDF spatial links based on topological relations. Experiments show that the proposed system improves state-of-the-art spatial linking processes in terms of mapping time and accuracy, as well as concerning resources retrieval efficiency and robustness

    Exploiting general-purpose background knowledge for automated schema matching

    Full text link
    The schema matching task is an integral part of the data integration process. It is usually the first step in integrating data. Schema matching is typically very complex and time-consuming. It is, therefore, to the largest part, carried out by humans. One reason for the low amount of automation is the fact that schemas are often defined with deep background knowledge that is not itself present within the schemas. Overcoming the problem of missing background knowledge is a core challenge in automating the data integration process. In this dissertation, the task of matching semantic models, so-called ontologies, with the help of external background knowledge is investigated in-depth in Part I. Throughout this thesis, the focus lies on large, general-purpose resources since domain-specific resources are rarely available for most domains. Besides new knowledge resources, this thesis also explores new strategies to exploit such resources. A technical base for the development and comparison of matching systems is presented in Part II. The framework introduced here allows for simple and modularized matcher development (with background knowledge sources) and for extensive evaluations of matching systems. One of the largest structured sources for general-purpose background knowledge are knowledge graphs which have grown significantly in size in recent years. However, exploiting such graphs is not trivial. In Part III, knowledge graph em- beddings are explored, analyzed, and compared. Multiple improvements to existing approaches are presented. In Part IV, numerous concrete matching systems which exploit general-purpose background knowledge are presented. Furthermore, exploitation strategies and resources are analyzed and compared. This dissertation closes with a perspective on real-world applications
    corecore