40,861 research outputs found

    An Efficient Algorithm for Bulk-Loading xBR+ -trees

    Get PDF
    A major part of the interface to a database is made up of the queries that can be addressed to this database and answered (processed) in an efficient way, contributing to the quality of the developed software. Efficiently processed spatial queries constitute a fundamental part of the interface to spatial databases due to the wide area of applications that may address such queries, like geographical information systems (GIS), location-based services, computer visualization, automated mapping, facilities management, etc. Another important capability of the interface to a spatial database is to offer the creation of efficient index structures to speed up spatial query processing. The xBR + -tree is a balanced disk-resident quadtree-based index structure for point data, which is very efficient for processing such queries. Bulk-loading refers to the process of creating an index from scratch, when the dataset to be indexed is available beforehand, instead of creating the index gradually (and more slowly), when the dataset elements are inserted one-by-one. In this paper, we present an algorithm for bulk-loading xBR + -trees for big datasets residing on disk, using a limited amount of main memory. The resulting tree is not only built fast, but exhibits high performance in processing a broad range of spatial queries, where one or two datasets are involved. To justify these characteristics, using real and artificial datasets of various cardinalities, first, we present an experimental comparison of this algorithm vs. a previous version of the same algorithm and STR, a popular algorithm of bulk-loading R-trees, regarding tree creation time and the characteristics of the trees created, and second, we experimentally compare the query efficiency of bulk-loaded xBR + -trees vs. bulk-loaded R-trees, regarding I/O and execution time. Thus, this paper contributes to the implementation of spatial database interfaces and the efficient storage organization for big spatial data management

    Performance comparison of point and spatial access methods

    Get PDF
    In the past few years a large number of multidimensional point access methods, also called multiattribute index structures, has been suggested, all of them claiming good performance. Since no performance comparison of these structures under arbitrary (strongly correlated nonuniform, short "ugly") data distributions and under various types of queries has been performed, database researchers and designers were hesitant to use any of these new point access methods. As shown in a recent paper, such point access methods are not only important in traditional database applications. In new applications such as CAD/CIM and geographic or environmental information systems, access methods for spatial objects are needed. As recently shown such access methods are based on point access methods in terms of functionality and performance. Our performance comparison naturally consists of two parts. In part I we w i l l compare multidimensional point access methods, whereas in part I I spatial access methods for rectangles will be compared. In part I we present a survey and classification of existing point access methods. Then we carefully select the following four methods for implementation and performance comparison under seven different data files (distributions) and various types of queries: the 2-level grid file, the BANG file, the hB-tree and a new scheme, called the BUDDY hash tree. We were surprised to see one method to be the clear winner which was the BUDDY hash tree. It exhibits an at least 20 % better average performance than its competitors and is robust under ugly data and queries. In part I I we compare spatial access methods for rectangles. After presenting a survey and classification of existing spatial access methods we carefully selected the following four methods for implementation and performance comparison under six different data files (distributions) and various types of queries: the R-tree, the BANG file, PLOP hashing and the BUDDY hash tree. The result presented two winners: the BANG file and the BUDDY hash tree. This comparison is a first step towards a standardized testbed or benchmark. We offer our data and query files to each designer of a new point or spatial access method such that he can run his implementation in our testbed

    Location-based indexing for mobile context-aware access to a digital library

    Get PDF
    Mobile information systems need to collaborate with each other to provide seamless information access to the user. Information about the user and their context provides the points of contact between the systems. Location is the most basic user context. TIP is a mobile tourist information system that provides location-based access to documents in the digital library Greenstone. This paper identifies the challenges for providing effcient access to location-based information using the various access modes a tourist requires on their travels. We discuss our extended 2DR-tree approach to meet these challenges

    A Density-Based Approach to the Retrieval of Top-K Spatial Textual Clusters

    Full text link
    Keyword-based web queries with local intent retrieve web content that is relevant to supplied keywords and that represent points of interest that are near the query location. Two broad categories of such queries exist. The first encompasses queries that retrieve single spatial web objects that each satisfy the query arguments. Most proposals belong to this category. The second category, to which this paper's proposal belongs, encompasses queries that support exploratory user behavior and retrieve sets of objects that represent regions of space that may be of interest to the user. Specifically, the paper proposes a new type of query, namely the top-k spatial textual clusters (k-STC) query that returns the top-k clusters that (i) are located the closest to a given query location, (ii) contain the most relevant objects with regard to given query keywords, and (iii) have an object density that exceeds a given threshold. To compute this query, we propose a basic algorithm that relies on on-line density-based clustering and exploits an early stop condition. To improve the response time, we design an advanced approach that includes three techniques: (i) an object skipping rule, (ii) spatially gridded posting lists, and (iii) a fast range query algorithm. An empirical study on real data demonstrates that the paper's proposals offer scalability and are capable of excellent performance
    • 

    corecore